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Abstract

The stochastic generalised linear bandit is a well-understood model for sequential
decision-making problems, with many algorithms achieving near-optimal regret
guarantees under immediate feedback. However, the stringent requirement for
immediate rewards is unmet in many real-world applications where the reward is
almost always delayed. We study the phenomenon of delayed rewards in gener-
alised linear bandits in a theoretical manner. We show that a natural adaptation
of an optimistic algorithm to the delayed feedback achieves a regret bound where
the penalty for the delays is independent of the horizon. This result significantly
improves upon existing work, where the best known regret bound has the delay
penalty increasing with the horizon. We verify our theoretical results through
experiments on simulated data.

1 Introduction

Recently, bandit algorithms have found application in areas from dynamic pricing and healthcare to
finance and recommender systems with great success [Misra et al., 2019, Durand et al., 2018, Shen
et al., 2015, McInerney et al., 2018]. There are many formulations of bandit problems. One of these
is the stochastic generalised linear bandit, which captures a wide class of problems, such as when
the rewards are counts, binary values or can take any real-valued number. The generalised linear
bandit problem proceeds in rounds, where in each round, a learner must choose from a set of possible
actions. After selecting an action, the learner receives feedback from the environment in the form of a
reward which stochastically depends on the inner product of the action and some unknown parameter
vector. The goal of the learner is to maximise their expected cumulative reward.

There are many provably efficient algorithms for the generalised linear bandit [Filippi et al., 2010,
Abbasi-Yadkori et al., 2011, Li et al., 2017, Faury et al., 2020]. Unfortunately, these existing
algorithms require immediate feedback from the environment. This strict requirement for immediate
rewards often goes unmet in practice. For example, in many recommender systems, the user must
provide feedback to the learner while operating on a very different time scales; e.g. the learner can
make thousands of recommendations per second, whereas a user may take several minutes to a couple
of days to respond to the recommendation, if at all [Chapelle, 2014]. Alternatively, practitioners
might want to optimise for a longer-term measure of success [Han and Arndt, 2021], in which case
the reward is not observable or even defined immediately. Delayed feedback also arises in clinical
trials due to the time-consuming task of obtaining medical feedback and because patients do not
respond to their prescribed treatment immediately.

In all the above settings, the reward for any given action returns at an unknown time in the future.
Meanwhile, the learner must continue operating in the environment without feedback from many of
their past choices. A natural model for this phenomenon is to introduce a random delay between
taking action and receiving the reward. However, the delays pose significant theoretical challenges
because standard tools for analysing bandit algorithms rely on utilising immediate feedback to reduce
the uncertainty in the learner’s estimation. Under delayed feedback, it is unclear how long the learner
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will have to wait before they gain information about the quality of an action, which hinders their
future decision-making abilities.

These challenges have led to the development of algorithms specifically for delayed feedback in
generalised linear bandits. However, to the best of our knowledge, these existing algorithms require
a-priori knowledge of the expected delay (along with other quantities), strong assumptions on the
delay distribution, restrictive assumptions on the action sets, or any combination thereof. Moreover,
the best regret bound achievable by these algorithms is Õ(

√
dT
√
d+ E[τ ]) where T is the number

of rounds, d is the dimension of the unknown parameter, and E[τ ] is the expected delay. This result
suggests that as the horizon increases, the impact of the delayed feedback will increase. This result is
counter intuitive and starkly differs from the results in the K-armed bandit setting where the impact
of the delay is independent of the horizon [Joulani et al., 2013]. In this paper, we prove that a simple
algorithm based on optimism can achieve a regret bound of Õ(d

√
T + d3/2E[τ ]). This improves the

penalty for delayed feedback from
√
dTE[τ ] in prior work to d3/2E[τ ], separating the delay penalty

from the horizon.

1.1 Related Work

The multi-armed bandit literature covers stochastically delayed feedback extensively. Both Joulani
et al. [2013] and Mandel et al. [2015] propose queue-based approaches to adapt existing K-armed
bandit algorithms to delayed feedback, each proving that the regret bound of the chosen algorithm
only increases by an additive factor of E[τ ], where E[τ ] denotes the expected delay between playing
an action and observing the corresponding reward. Pike-Burke et al. [2018] study another version of
delayed feedback, where the rewards from various rounds are not only delayed but also aggregated.
Vernade et al. [2017] consider the setting of delayed conversions, where actions associated with long
delays can have censored feedback.

Comparatively, fewer theoretical results quantify the impact of delays beyond K-armed bandits.
Vernade et al. [2020] consider a Bernoulli bandit with censored rewards whose expected value is linear
in some unknown parameter vector. Combining Bernoulli rewards with delays makes it impossible
to distinguish between a reward of zero and a delayed reward. Thus, the challenges they face are
different to ours. Nevertheless, they deal with the delays by inflating the exploration bonus and handle
the censoring by introducing a windowing parameter that sets rewards taking too long to return equal
to zero. Dudik et al. [2011] develop a policy elimination algorithm capable of handling contextual
information and prove a regret bound of the form Õ(

√
KT +

√
Kτconst), where K is the number

of actions and τconst is a constant delay between playing an action and observing the corresponding
reward. However, they remark that their algorithm is challenging to implement, requires perfect
knowledge of the distribution of the contextual information, and needs a-priori knowledge of the
constant delay.

Zhou et al. [2019] and follow-up work by Blanchet et al. [2020], that analyses that same algorithm,
consider learning in the same setting as us. They propose an optimistic algorithm that inflates the
exploration bonus by the square root of the number of missing feedbacks. They do this to account for
the uncertainty arising from the missing rewards. Combining this bonus with an elegant argument
allows them to use standard theoretical tools to handle the leading-order terms, namely the elliptical
potential lemma. This lemma has found applications in the analysis of many linear bandit algorithms
and is provably tight [Carpentier et al., 2020]. However, due to the delay-dependent bonuses, their
arguments lead to a multiplicative increase in the regret of the form Õ(d

√
T +

√
dT (E[τ ] +Mτ )),

where Mτ is a known non-negative delay-dependent constant beyond which the delays have tails
that are as heavy as (or lighter than) the exponential distribution. However, this algorithm requires
prior knowledge of the expected delay and Mτ (along with other quantities). This theoretical result
suggests that the impact of the delayed feedback increases with the horizon, which does not align
with the intuition that the delays become irrelevant once the learner has observed enough feedback to
obtain a "good" estimate of the underlying expected reward function.

1.2 Contributions

In this paper, we present a natural approach based on optimism that does not require any prior
knowledge of the delays and achieves regret bound of Õ(d

√
T + d3/2E[τ ] ), up to problem-specific
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constants. This result significantly improves upon the best-known theoretical results for generalized
linear bandits with delayed feedback, whose regret bound is Õ(d

√
T +

√
dTE[τ ] ). Further, our

results align with what is seen in the K-armed bandit setting, where the delays only impact the
worst-case performance by an additive penalty involving the expected delay [Joulani et al., 2013],
and not the horizon T .

In contrast to prior work, we forgo the period of forced exploration which is present in many
generalised linear bandit algorithms [Filippi et al., 2010, Li et al., 2017]. Our algorithm is optimistic
and constructs optimistic estimates using only observations that have returned. To do this, we develop
delay-adapted confidence sets and prove that these are valid. Although this algorithm is natural,
proving regret bounds for it is somewhat involved. In particular, the presence of delayed feedback
obscures how selecting a sub-optimal action in round t will improve the estimation in future rounds.
To overcome these issues we provide a novel analysis centered around an elliptical potential lemma
for delayed feedback, which may be of independent interest for bandit algorithms with complex
feedback structures. We show that this technique leads to the stated regret bound. We also validate
our theoretical findings experimentally in some simulated environments.

2 Problem Formulation

The stochastic generalised linear bandit problem considers learning in an environment where the
expected reward is a known function of the dot product between the action and the unknown parameter
vector. Letting Xt ∈ At ⊂ Rd and Yt ∈ R be the action and reward associated with the t-th round,
we assume that the conditional distribution of the reward given the action belongs to the exponential
family:

f (Yt |Xt) ∝ exp

(
YtX

T
t θ

∗ − b
(
XT

t θ
∗)

a (ϕ)

)
(1)

where θ∗ ∈ Rd is an unknown parameter vector; a and b are known distribution specific functions;
and ϕ is a known constant that is often referred to as the dispersion parameter. For distributions
belonging to the exponential family, one can verify that:

E [Yt |Xt] = µ
(
XT

t θ
∗) = ḃ

(
XT

t θ
∗) .

Here, µ(·) is a strictly increasing link function that relates the inner product of the action vector
and the unknown parameter to the expected reward. For example, if the rewards are normally
distributed, µ(z) = z and we recover the standard linear model. If the rewards are Bernoulli, then
µ(z) = 1/(1 + exp(−z)) and we have a logistic regression model.

In the stochastic setting, the learner selects an action Xt ∈ At ⊂ Rd and receives noisy observations
of the unknown expected reward function of the form Yt ∼ f (Yt |Xt) where

ηt := Yt − µ
(
XT

t θ
∗)

is the noise and is zero-mean conditional on past decisions and rewards. Section 2.2 formally states
the assumptions we make on the link function and the noise.

The ultimate goal of the learner in the generalised linear bandit setting is to minimise the regret.
Intuitively, this compares the expected reward of the action selected by the learner to the action with
the highest expected reward. Mathematically, we define the regret of an algorithm in the generalised
linear bandit setting as follows:

R̂T =

T∑
t=1

µ (⟨X∗
t , θ

∗ ⟩)− µ (⟨Xt, θ
∗ ⟩) :=

T∑
t=1

r̂t (2)

where X∗
t = argmaxx∈At

{µ (⟨x, θ∗⟩)} is the action in the decision set At maximising the expected
reward in the t-th round.

2.1 Delayed Feedback Learning Setting

Let τt ∈ [0,∞) denote the random delay associated with the decision made in the t-th round. Then,
the sequential decision-making procedure for generalized linear bandits under stochastically delayed
feedback is as follows. For t ∈ {1, · · · , T}:
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1. The learner receives a decision set containing the context vectors: At ⊂ Rd where ∥x∥2 ≤ 1
for all x ∈ At.

2. The learner selects a d-dimensional feature vector from the decision set: Xt ∈ At.
3. Unbeknownst to the learner, the environment generates a random delay, a random reward

and then schedules an observation time:
3a. The random reward has the form:

Yt = µ
(
XT

t θ
∗)+ ηt .

3b. The environment schedules the observation time of the reward: ⌈t+ τt⌉ where τt ∼
fτ (·) .

5. The learner receives delayed rewards from its previous actions: {(s, Ys) : t−1 < s+τs ≤ t}.

From the above decision-making procedure, it is clear that the learner only has access to the rewards
of the actions whose observation times are less than or equal to t− 1 when making decisions in round
t. Therefore, Ys is observable to the learner in the rounds where s + τs ≤ t − 1. Otherwise, it is
missing. To that end, we define the σ-algebra generated by the set of observable information at the
start of the t-th round as:

Ft−1 = σ
({(

Xs, C
t−1
s , YsC

t−1
s

)
: s ≤ t− 1

}
∪ At

)
where

Ct
s = 1 {s+ τs ≤ t}

indicates whether the reward associated with the s-th round is observable at the end of the t-th round.
Naturally, Ct

s is observable at the end of each round, as the learner can easily check which actions
have and have not received feedback; this is standard in most works on delays in the bandit literature
[Dudik et al., 2011, Joulani et al., 2013, Mandel et al., 2015, Zhou et al., 2019, Blanchet et al., 2020].
Notably, Ct

s is Ft-measurable, meaning the learner only has access to the indicators and the rewards
observed at the end of rounds 1, · · · , t− 1 when making decisions in round t.

2.2 Assumptions

We make the following assumptions on the noise and the link function. These are standard in the
literature on linear and generalised linear bandits [Filippi et al., 2010, Abbasi-Yadkori et al., 2011, Li
et al., 2017].
Assumption 1 (Subgaussian Noise). Let R ≥ 0 and |ηt| ≤ R almost surely. Then, the moment
generating function of the noise distribution conditional on the observed information must satisfy the
following inequality:

E [exp (γ ηt) |Ft−1] ≤ exp

(
1

2
γ2R2

)
for all γ ∈ R.
Assumption 2 (Link Function). The link function µ : R → R is known a-priori and is twice
differentiable with first and second derivatives bounded by Lµ and Mµ, respectively. Further,

κ := inf {µ̇ (⟨x, θ ⟩) : (x, θ) ∈ A×Θ} > 0.

where Θ is the set of all possible parameter vectors.

Assumption 1 implies that the noise distribution has light tails. Assumption 2 implies that the link
function is Lµ-Lipschitz. One can interpret the condition on κ as guaranteeing that it is possible to
distinguish between two actions whose expected rewards are arbitrarily close to one another. Indeed,
R, Lµ and κ all feature in the theoretical analysis and regret bounds.

It will also be necessary for the delays to satisfy some assumptions (see Section 4). In particular, we
assume the following holds.
Assumption 3 (Subexponential Delays). The delays are non-negative, independent and identically
distributed (v, b)-subexponential random variables. That is, their moment generating function
satisfies the following inequality:

E [exp (γ (τt − E [τt]))] ≤ exp

(
1

2
v2γ2

)
for some non-negative v and b, and all |γ| ≤ 1/b.
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The class of distributions with subexponential tail behaviour is broad enough to include many heavy-
tailed distributions, such as the χ2 and Exponential distributions. Importantly, Assumption 3 aligns
with the empirical evidence suggesting that delays have exponential-like tails in practice [Chapelle,
2014]. However, other tail bounds on the delays can be used if they exist. Furthermore, it is possible
to relax this assumption to only requiring that the delays have a finite (unknown) expected value by
considering the expected regret, a weaker theoretical guarantee.

2.3 Notation

Throughout, ∥x∥p denotes the p-norm of an arbitrary vector x ∈ Rd. For A,B ∈ Rd×d, we denote
∥x∥A =

√
xTAx and adopt the following notation for positive (semi)-definite matrices:

• A ⪰ 0 (positive semi-definite) ⇐⇒ ∥x∥2A ≥ 0 for all x ∈ Rd.

• A ⪰ B ⇐⇒ ∥x∥2A ≥ ∥x∥2B for all x ∈ Rd.

Additionally, λi(A) and σi(A) denote the i-th largest eigenvalue and the i-th largest singular value of
matrix A, respectively. Finally, we denote the first and second derivatives of a real-valued function f
by ḟ and f̈ , respectively.

3 Delayed OFU-GLM

In this section, we describe a provably efficient algorithm for generalised linear bandits with stochastic
delays. We base our approach on the optimistic principle and show that delays only cause an additive
increase in the regret bound. This is in contrast to the multiplicative effect seen in existing work
[Blanchet et al., 2020].

Due to the delays, it is necessary to introduce some additional notation that discriminates between
rounds whose feedback has or has not been observed. Denote the number of missing rewards at the
end of the t-th round by:

Gt =

t∑
s=1

1 {s+ τs > t} .

Further, we define the total, observed and missing design matrices as

V̄t = λI +

t∑
s=1

XsX
T
s (3)

W̄t = λI +

t∑
s=1

1{s+ τs ≤ t}XsX
T
s (4)

Zt =

t∑
s=1

1{s+ τs > t}XsX
T
s , (5)

respectively. Here, λ > 0 is a regularisation parameter. Briefly, V̄t is the total design matrix and
contains information relating to all past choices. Whereas W̄t and Zt include information about
actions with and without observed rewards, respectively. It is easy to see that the total, observed and
missing design matrices must satisfy the following relationship:

V̄t = W̄t + Zt . (6)

Thus, when there are no delays, the total and observed design matrices are equivalent to each other,
and the missing design matrix is full of zeros.

3.1 Estimation Procedure

As is standard when fitting generalised linear models, we use maximum likelihood estimation to
estimate the unknown parameter of the environment. However, we make several adjustments to the
estimator to account for delayed feedback.
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First note that not all actions played will have received feedback. To mitigate this issue, we ignore
the actions with missing feedback in our estimation procedure. Secondly, many existing algorithms
for generalised linear bandits use a phase of pure exploration [Filippi et al., 2010, Li et al., 2017].
This exploration phase lasts until the observed design matrix is of full rank, which ensures a unique
maximiser of the likelihood function exists. Since we choose to ignore actions with missing feedback,
the length of this exploration phase will increase depending on delay distribution. To avoid waiting
for an exploration phase to pass, we introduce a penalisation term into the objective function, an
idea that we borrow from the linear bandits where one can derive a closed-form penalised maximum
likelihood estimator [Abbasi-Yadkori et al., 2011, Chu et al., 2011]. In the generalised linear setting,
this trick equates to penalising the log-likelihood function and has found use for logistic bandits under
immediate feedback [Jun et al., 2017, Faury et al., 2020]. From Equation (1) and the conditional
independence of the rewards given past actions, one can write the penalised log-likelihood as follows:

Lt (θ, α) =

t∑
s=1

Ct
s log (f (Yt |Xt))−

α

2
∥θ∥22 (7)

Equation (7) always has a unique maximiser due to the introduction of α > 0, which means we can
leverage new information from the very first round. One can easily verify that the maximiser is the
solution of the following equation:[

t∑
s=1

Ct
s

(
Ys − µ

(
XT

t θ
))
Xs

]
− αa(ϕ) θ = 0 (8)

where a(ϕ) is a known function of the dispersion parameter of the reward distribution. We denote the
solution of Equation (8) by θ̂t. To implement the optimistic principle, we construct confidence sets
around our estimators and prove that this set contains θ∗ with high probability.
Lemma 1. Let λ = αa(ϕ)/κ and assume that ∥θ∗∥2 ≤ m1. Then, with probability at least 1− δ,
for all rounds t ≥ 0:

∥θ̂t − θ∗∥W̄t
≤

√
λm1 +

R

κ

√√√√2 log

(
det
(
W̄t

)1/2
δ λd/2

)

Proof Sketch. Firstly, we account for regularising the log-likelihood function, which we do in Lem-
mas 4 and 5 of Appendix A. These lemmas allow us to separate noise-related terms from those
introduced by biasing our estimator with the regularisation term. Subsequently, we show that the
noise-related terms satisfy the martingale property under the information structure created by the
delays. This result allows us to apply existing results for self-normalising processes [de la Peña et al.,
2004, Abbasi-Yadkori et al., 2011]. See Appendix A for a full proof.

By Lemma 1, defining the confidence sets as:

Ct =
{
θ ∈ Rd : ∥θ̂t − θ∥W̄t

≤
√
βt

}
(9)

with √
βt =

√
λm1 +

R

κ

√√√√2 log

(
det
(
W̄t

)1/2
δ λd/2

)
(10)

guarantees that P(∃ t ≥ 0 : θ∗ ̸∈ Ct) ≤ 1− δ.

3.2 Delayed OFU for Generalised Linear Bandits

Algorithm 1 presents the pseudo-code for our algorithm, Delayed OFU-GLM. It requires several
input parameters that we briefly discuss below.

Firstly, Algorithm 1 requires knowledge of a(ϕ), a known function of the dispersion parameter
of the reward distribution. For Bernoulli and Poisson rewards, one can show that a(ϕ) = 1. In
the Gaussian case, this parameter is the variance of the reward distribution a(ϕ) = R2, which all
optimistic algorithms require to define the confidence sets.
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Algorithm 1 Delayed OFU-GLM
Input: model parameters d, a(ϕ), m1, κ, and tuning parameters α > 0 and δ ∈ (0, 1).
Initialise: θ̂0 = 0⃗, λ = αa(ϕ)

κ and W̄0 = λI
for t = 1 to T do

Play Xt where:
(Xt, θ̃t) = argmax

(x,θ)∈At×Ct−1

xT θ

Receive the (possible empty) set of delayed rewards.
Update W̄t, θ̂t and βt via Equations (4), (8) and (10).

end for

Secondly, m1 ≥ ∥θ∗∥2 is an upper bound on the ℓ2-norm of the unknown parameter vector that
features in many existing algorithms for the immediate feedback setting [Abbasi-Yadkori et al., 2011,
Jun et al., 2017, Faury et al., 2020]. Note that since [Zhou et al., 2019] uses a period of explicit
exploration, they do not need this hyperparameter. Instead, they require knowledge of the delay
distribution to define the length of the exploration phase.

Finally, κ quantifies the smallest possible rate of change in the expected reward function. For Linear
bandits with Gaussian rewards, κ = 1. For other distributions, one can replace this quantity with a
lower bound and our theoretical results will still hold. For Logistic bandits, one can utilise the fact
that the first derivative of the link function is symmetric about zero and decreasing to show that: κ ≥
m2 := µ̇(m1). For Poisson bandits, by the definition of the inner product, κ ≥ m2 := exp(−m1).
Indeed, many optimistic algorithms for generalised linear bandits require this hyperparameter, as
it features in the definition of the confidence sets. Recent work removes the need to specify this
hyperparameter for the logistic bandit [Faury et al., 2020].

4 Theoretical Analysis

Here, we state and prove a worst-case regret bound for our algorithm. Specifically, Algorithm 1 only
suffers an additive penalty caused by the delays under the assumptions outlined in Section 2.2.

Theorem 1. Suppose ∥x∥2 ≤ 1 for all x ∈ ∪∞
t=1At, and Assumptions 1, 2 and 3 hold. Then,

with probability greater than 1− 3δ, Delayed OFU-GLM with any regularisation parameter λ =
αa(ϕ)/κ ≥ 1 has pseudo-regret that satisfies:

R̂T ≤ Õ
(
dRLµ

κ

√
T +

d3/2RLµ (E [τ ] + min {v, b})
κ

)
where v and b are the subexponential parameters of the delay distribution.

Proof. Via standard optimistic arguments, one can show that the pseudo-regret has the following
upper bound:

R̂T ≤ 2Lµ

√
βT

T∑
t=1

∥Xt∥W̄−1
t−1

(11)

with probability at least 1− δ. Usually, an application of Cauchy-Schwarz and the elliptical potential
lemma handles the remaining summation. This algebraic argument completes the proof in the
immediate feedback setting and provides a tight upper bound on the term in question [Carpentier
et al., 2020]. However, the elliptical potential lemma requires that the learner updates the design
matrix at the end of every round with the most recent action.

This is not the case for the summation in (11), as the feedback associated with the most recent action
is not necessarily observable immediately and is, therefore, not used to increment the observed design
matrix. Moreover, there will likely be rounds where no feedback arrives at all and rounds where
multiple feedbacks return to the learner, meaning that the matrix determinant lemma does not hold; a
key argument in the proof. Consequently, we introduce the following technical lemmas that aid in
bounding the summation.
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Lemma 2. Let λ = αa(ϕ)/κ > 0. Then, W̄t and V̄t are invertible and have inverses that satisfy the
following relationship:

W̄−1
t = V̄ −1

t + V̄ −1
t Zt W̄

−1
t = V̄ −1

t +Mt

where Mt := V̄ −1
t Zt W̄

−1
t .

Proof. See Appendix B.

Lemma 3. Let {τt}∞t=1 be an arbitrary sequence of non-negative random variables. Then, for
λ = αa(ϕ)/κ ≥ 1:

T∑
t=1

∥Xt∥Mt−1 ≤
T∑

t=1

1 +G∗ + τt
2

∥Xt∥2V̄ −1
t−1

where G∗ = max{Gt : t ≤ T}.

Proof. See Appendix B.

Lemma 2 relates the inverse of the observed design matrix to the inverse of the total design matrix
and a product of three matrices. This allows us to separate the usual elliptical potential from terms
involving the delays by application of the triangle inequality. Then, Lemma 3 shows that we can
relate the remaining summation to a lower-order term. Chaining the above lemmas together gives:

R̂T ≤ 2Lµ

√
βT

T∑
t=1

∥Xt∥V̄ −1
t−1+Mt−1

(Lemma 2)

≤ 2Lµ

√
βT

T∑
t=1

∥Xt∥V̄ −1
t−1

+ 2Lµ

√
βT

T∑
t=1

∥Xt∥Mt−1
(Cauchy-Schwarz)

≤ 2Lµ

√
βT

T∑
t=1

∥Xt∥V̄ −1
t−1

+ 2Lµ

√
βT

T∑
t=1

1 +G∗ + τt
2

∥Xt∥2V̄ −1
t−1

(Lemma 3)

Lemmas 7 and 8 of Appendix show that:

G∗ ≤ E [τ ] + ψτ = E [τ ] +
4

3
log

(
3T

2δ

)
+ 2

√
2E [τ ] log

(
3T

2δ

)
.

τt ≤ E [τ ] +Dτ = E [τ ] + min

{√
2v2 log

(
3T

2δ

)
, 2b log

(
3T

2δ

)}
where each holds with probability 1 − δ for all t ≤ T . Define D+

τ = 1 + 2E[τ ] + Dτ + ψτ .
Substituting D+

τ and applying the elliptical potential lemma (Lemma 14 of Appendix D) reveals:

R̂T ≤ 2Lµ

√
2dTLβT + 2dLD+

τ Lµ

√
βT

where L = ln((dλ+ T )/dλ). Recall V̄t ⪰ W̄t, because the observed design matrix is a partial sum
of positive semi-definite matrices that make up the total design matrix. Therefore,

√
βT ≤

√
λm1 +

R

κ

√
2 log

(
|V̄T |1/2
λd/2

)
+ 2 log

(
1

δ

)
≤

√
λm1 +

R

κ

√
2dL+ 2 log

(
1

δ

)
where the inequality follows from Lemma 15 of Appendix D. Consequently, omitting polylogarithmic
factors, we have that:

R̂T ≤ Õ
(
dRLµ

κ

√
T +

d3/2RLµ (E [τ ] + min {v, b})
κ

)
completing the proof.

8



Remark 1. Under Assumptions 1 and 2, one can relax the assumption on the delays from subexpo-
nential to only requiring a finite expected value if we only consider a weaker notion of regret, namely
the expected regret. Formally, for a fixed θ∗ and any delay distribution with a finite expected value:

E
[
R̂T

]
≤ Õ

(
dRLµ

κ

√
T +

d3/2RLµE[τ ]
κ

)
where we take the expectation over the randomness of the rewards and the delays. This result follows
from standard arguments; e.g. by setting δ = 1/T and using the definition of the confidence sets.
Remark 2. In the proof, we focused on the confidence sets given in Lemma 1. At the heart of this
confidence set is a high probability bound on:∥∥∥∥∥

t∑
s=1

1{s+ τs ≤ t}Xsηs

∥∥∥∥∥
W̄−1

t

which we prove is a non-negative supermartingale under the information structure imposed on the
learner by the delays. Many other algorithms utilise slightly different techniques to bound an identical
term [Filippi et al., 2010, Li et al., 2017] or one that differs by the choice of weight in the norm
[Faury et al., 2020] to define confidence sets. By Lemma 6, Algorithm 1 ensures that these confidence
sets are valid in the delayed feedback setting too. Thus, combining our theoretical results within their
analyses will yield a similar delay dependence in the regret bounds under delayed feedback.

5 Experimental Results

We conduct simulated experiments to empirically investigate the impact of delayed feedback in Linear
and Logistic bandits. We compare our algorithmic ideas to other approaches for the setting of delayed
feedback in generalised linear bandits, which inflate the exploration bonus by the number of missing
rewards [Blanchet et al., 2020].

Appendix C details our experimental set-up and presents all the results. Briefly, the empirical results
show that our approach out-performs existing algorithms designed for the same problem setting.
These results are consistent with the theoretical guarantees, where the delayed feedback causes an
additive penalty for our algorithm and a larger multiplicative penalty for the approach of Blanchet
et al. [2020].

6 Conclusion

In this work, we studied the impact of delayed feedback on algorithms for generalised linear bandits.
Under Assumption 3, that the delays are subexponential random variables, we designed an optimistic
algorithm whose worst-case regret bound increases by an additive term involving the expected delay.
We obtain a similar result for the expected regret, which only requires that the delays have a finite
expected value.

These theoretical results significantly improve on prior work, where existing algorithms suffer a
multiplicative penalty and require a-priori knowledge of the delay distribution as input. Reducing
the delay dependence from multiplicative to additive was possible by introducing a novel technique
to carefully separate the delays from the difficulty of the learning problem. Doing so allowed us to
define tighter confidence sets than existing algorithms, leading to better theoretical guarantees and
superior empirical performance. Indeed, the theoretical techniques introduced in this paper might be
useful in other bandit problems with complex feedback structures.

Our result nearly recovers the additive delay penalty from multi-armed bandits, despite the additional
difficulties of our setting. Whether or not it is possible to remove the d-dependence entirely remains
an interesting open question. Another open question relates to relaxing our assumptions on the delays.
Namely, can we get high probability bounds that only require that the delays have a finite expected
value? We anticipate that addressing these open questions may require adjustments to our theoretical
techniques or different algorithmic approaches.

Finally, we expect that similar results hold for a Thompson Sampling version of our algorithm.
Combining techniques found in Russo and Van Roy [2014] with those in this paper will likely give
similar guarantees for the Bayesian regret.
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A Confidence Sets

Here, we show that the confidence sets are valid under delayed feedback. To that end, we define the
following σ-algebra:

Ft−1 = σ
({(

Xs, C
t−1
s , YsC

t−1
s

)
: s ≤ t− 1

}
∪ At

)
(12)

Consequently, Yt is Ft-measurable. Further, Xt is Ft−1-measurable. For notational purposes, we
find it useful to define:

gt (θ) = αa(ϕ) θ +

t∑
s=1

1 {s+ τs ≤ t}µ (⟨Xt, θ ⟩)Xs

as well as the second derivative of the negative log likelihood:

Ht (θ) = αa(ϕ) +

t∑
s=1

1 {s+ τs ≤ t} µ̇ (⟨Xs, θ ⟩)XsX
T
s
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Now, θ̂t is the vector satisfying the following equality:

∂Lt (θ, α)

∂θ
=

[
t∑

s=1

1 {s+ τs ≤ t}
(
Ys − µ

(
XT

t θ
))
Xs

]
− αa(ϕ) θ

=

[
t∑

s=1

1 {s+ τs ≤ t}YsXs

]
− gt (θ)

= 0 (13)

Lemma 1. Let λ = αa(ϕ)/κ and assume that ∥θ∗∥2 ≤ m1. Then, with probability at least 1− δ,
for all rounds t ≥ 0:

∥θ̂t − θ∗∥W̄t
≤

√
λm1 +

R

κ

√√√√2 log

(
det
(
W̄t

)1/2
δ λd/2

)

Proof. By Lemmas 4 and 5 of Appendix A.1, we have that:

∥θ̂t − θ∗∥W̄t
≤

√
λ∥θ∗∥2 +

1

κ
∥St∥W̄−1

t

where

St =

t∑
s=1

1 {s+ τs ≤ t}Xsηs

Further Lemma 6 of A.1 reveals that the last term in the above is a non-negative supermartingale
under the delayed feedback information structure. Therefore, we are able to use known methods for
bounding self-normalised vector-valued martingales [de la Peña et al., 2004, Abbasi-Yadkori et al.,
2011]. Let ω be a stopping time with respect to the filtration. Applying Lemma 9 of Abbasi-Yadkori
et al. [2011] to the stopped martingale gives:

P

∥Sω∥W̄−1
ω

≥ R

√√√√log

(
det
(
W̄ω

)
λd

)
+ 2 log

(
1

δ

) ≤ δ

Since Lemma 6 guarantees that the stopped supermartingale is well-defined, regardless of whether
the stopping time is finite, the above inequality holds across all rounds without the need for a union
bound. That is:

P

∃ t ≥ 0 : ∥St∥W̄−1
t

≥ R

√√√√log

(
det
(
W̄t

)
λd

)
+ 2 log

(
1

δ

) ≤ δ (14)

Therefore, with probability at least 1− δ:

∥θ̂t − θ∗∥W̄t
≤

√
λ∥θ∗∥2 +

1

κ
∥St∥W̄−1

t
(Lemmas 4 & 5)

≤
√
λ∥θ∗∥2 +

R

κ

√√√√log

(
det
(
W̄t

)
λd

)
+ 2 log

(
1

δ

)
as required.

A.1 Supporting Lemmas

Proving Lemma 1 requires several supporting lemmas. Firstly, the confidence sets are in terms of θ̂t
and θ∗. Conversely, Equation (13) reveals that our estimation procedure involves gt(θ̂) and gt(θ∗).
The following lemma allowed us to relate these two quantities to one another.
Lemma 4. Let θ1 ∈ Rd and θ2 ∈ Rd be arbitrary vectors, and λ = αa(ϕ)/κ. Then, the following
inequality holds:

κ ∥θ1 − θ2∥W̄t
≤ ∥g (θ1)− g (θ2)∥W̄−1

t

12



Proof. Similarly to Filippi et al. [2010], we apply the mean value theorem to the terms inside the
norm on the right-hand side of the above, which allows us to related them to the original vectors.
Expanding g (θ1) and g (θ2) reveals that:

g (θ1)− g (θ2) = αa(ϕ) θ1 − αa(ϕ) θ2 +

t∑
s=1

1 {s+ τs ≤ t} [µ (⟨Xt, θ1 ⟩)− µ (⟨Xt, θ2 ⟩)]Xs

= αa(ϕ) θ1 − αa(ϕ) θ2 +

t∑
s=1

1 {s+ τs ≤ t} µ̇
(
⟨Xt, θ̄ ⟩

)
XsX

T
s (θ1 − θ2)

=

[
αa(ϕ) +

t∑
s=1

1 {s+ τs ≤ t} µ̇
(
⟨Xt, θ̄ ⟩

)
XsX

T
s

]
(θ1 − θ2)

= Ht

(
θ̄
)
(θ1 − θ2) (15)

where the second equality follows from the mean value theorem for some θ̄ ∈ (θ2, θ1). Rewriting the
Hessian for some θ ∈ Rd and recalling that κ ≤ µ̇(z) reveals that:

Ht (θ) = αa(ϕ) +

t∑
s=1

1 {s+ τs ≤ t} µ̇ (⟨Xs, θ ⟩)XsX
T
s

⪰ κ

[
αa(ϕ)

κ
+

t∑
s=1

1 {s+ τs ≤ t}XsX
T
s

]
= κW̄t

(16)

From Equation (16), we immediately have that H−1
t (θ) ⪯ W̄−1

t /κ. Combining Equation (15) with
the partial ordering of Equation (16) gives:

∥θ1 − θ2∥κW̄t
≤ ∥θ1 − θ2∥Ht(θ̄) (κW̄t ⪯ Ht(θ))

=
∥∥∥H1/2

t

(
θ̄
)
(θ1 − θ2)

∥∥∥
2

(∥x∥A = ∥A1/2x∥2)

=
∥∥∥H−1/2

t

(
θ̄
)
(gt (θ1)− gt (θ2))

∥∥∥
2

(Equation (15))

= ∥gt (θ1)− gt (θ2)∥H−1
t (θ̄) (∥A1/2x∥2 = ∥x∥A)

≤ ∥gt (θ1)− gt (θ2)∥ 1
κ W̄−1

t
(H−1

t (θ) ⪯ W̄−1
t /κ)

Therefore, using homogeneity property of norms on the first and last terms of the above reveals that:
√
κ∥θ1 − θ2∥W̄t

= ∥θ1 − θ2∥κW̄t
≤ ∥gt (θ1)− gt (θ2)∥ 1

κ W̄−1
t

=
1√
κ
∥gt (θ1)− gt (θ2)∥W̄−1

t

Bringing all κ’s to the left hand side side gives the stated result.

Lemma 5. Let θ∗ be the unknown parameter of the environment and θ̂t be the solution to (13).
Further, define λ = αa(ϕ)/κ and

St =

t∑
s=1

1 {s+ τs ≤ t}Xsηs

Then,

∥θ̂t − θ∗∥W̄t
≤

√
λ∥θ∗∥2 +

1

κ
∥St∥W̄−1

t

Proof. By Lemma 4, we have that:

∥θ̂t − θ∗∥W̄t
≤ 1

κ

∥∥∥ g (θ̂t)− g (θ∗)
∥∥∥
W̄−1

t

(17)

Since θ̂t is the solution to (13), it follows that:[
t∑

s=1

Ct
sYsXs

]
− gt

(
θ̂t

)
= 0 ⇐⇒ gt

(
θ̂t

)
=

[
t∑

s=1

Ct
sYsXs

]

13



where Ct
s = 1{s+ τs ≤ t}. Substituting the above into (17) gives:∥∥∥θ̂t − θ∗

∥∥∥
W̄t

≤ 1

κ

∥∥∥ g (θ̂t)− g (θ∗)
∥∥∥
W̄−1

t

=
1

κ

∥∥∥∥∥
t∑

s=1

Ct
sYsXs − g (θ∗)

∥∥∥∥∥
W̄−1

t

=
1

κ

∥∥∥∥∥
t∑

s=1

Ct
sYsXs −

[
αa(ϕ) θ∗ +

t∑
s=1

µ (⟨Xt, θ
∗ ⟩)XsC

t
s

]∥∥∥∥∥
W̄−1

t

=
1

κ

∥∥∥∥∥−αa(ϕ) θ∗ +
t∑

s=1

Ct
s [Ys − µ (⟨Xs, θ

∗ ⟩)]Xs

∥∥∥∥∥
W̄−1

t

=
1

κ

∥∥∥∥∥−αa(ϕ) θ∗ +
t∑

s=1

Ct
s [µ (⟨Xs, θ

∗ ⟩) + ηs − µ (⟨Xs, θ
∗ ⟩)]Xs

∥∥∥∥∥
W̄−1

t

=
1

κ

∥∥∥∥∥−αa(ϕ) θ∗ +
t∑

s=1

Ct
sXsηs

∥∥∥∥∥
W̄−1

t

=
1

κ
∥St − αϕθ∗∥W̄−1

t

≤ 1

κ
∥αa(ϕ) θ∗∥W̄−1

t
+

1

κ
∥St∥W̄−1

t

≤ 1

κ

√
α2 a(ϕ)2

λ
∥θ∗∥2 +

1

κ
∥St∥W̄−1

t

=
√
λ∥θ∗∥2 +

1

κ
∥St∥W̄−1

t

where the final inequality follows from the fact that W̄−1
t ⪯ λ−1I , and the final equality follows

from the fact that λ = αa(ϕ)/κ.

All that remains is bounding the norm involving the noise terms with high probability, which is the
second term in the result stated in Lemma 5. By Fenchel Duality, we have that [Abbasi-Yadkori et al.,
2011]:

1

2
∥St∥2W̄−1

t
= max

x∈Rd

{
⟨x, St⟩ −

1

2
∥x∥2W̄t

}
= max

x∈Rd

{
log

(
exp

(
⟨x, St⟩ −

1

2
∥x∥2W̄t

))}
= log

(
max
x∈Rd

{
exp

(
⟨x, St⟩ −

1

2
∥x∥2W̄t

)})
(18)

Equation (18) suggests that it would be useful to obtain a high probability bound on the following
random variable:

Mt (x) = exp

(
1

R
⟨x, St⟩ −

1

2
∥x∥2Wt

)
where

Wt = W̄t − λI =

t∑
s=1

1 {s+ τs ≤ t}XsX
T
s =

t∑
s=1

Ct
sXsX

T
s

for an arbitrary vector x ∈ Rd. To do so, we first establish the following supermartingale argument,
which is essential in showing the validity of the confidence sets. Due to the delayed feedback, we
cannot directly use results from the immediate feedback setting. Therefore, we make the necessary
adjustments to account for the delays.
Lemma 6. Let x ∈ Rd be an arbitrary vector and define:

Mt (x) = exp

(
1

R
⟨x, St⟩ −

1

2
∥x∥2Wt

)
= exp

(
t∑

s=1

Ct
s

(
⟨x,Xs⟩ ηs

R
− 1

2
⟨x,Xs⟩2

))
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Let ω be a stopping time with respect to the filtration {Ft}∞t=0. Then, Mω(x) is almost surely
well-defined and E [Mω(x)] ≤ 1.

Proof. Recall that Ct
s = 1 {s+ τs ≤ t}. Define F t

s = 1{s+ τs > t}. We start by re-writing Mt(x)
in terms of Mt−1(x):

Mt (x) = exp

(
t∑

s=1

1 {s+ τs ≤ t}
(
⟨x,Xs⟩ ηs

R
− 1

2
⟨x,Xs⟩2

))

= exp

(
t∑

s=1

Ct−1
s

(
⟨x,Xs⟩ ηs

R
− 1

2
⟨x,Xs⟩2

)
+

t∑
s=1

F t−1
s

(
⟨x,Xs⟩ ηs

R
− 1

2
⟨x,Xs⟩2

))

= exp

(
t∑

s=1

Ct−1
s

(
⟨x,Xs⟩ ηs

R
− 1

2
⟨x,Xs⟩2

))
exp

(
t∑

s=1

F t−1
s

(
⟨x,Xs⟩ ηs

R
− 1

2
⟨x,Xs⟩2

))

= exp

(
t−1∑
s=1

Ct−1
s

(
⟨x,Xs⟩ ηs

R
− 1

2
⟨x,Xs⟩2

))
exp

(
t∑

s=1

F t−1
s

(
⟨x,Xs⟩ ηs

R
− 1

2
⟨x,Xs⟩2

))

=Mt−1 (x) exp

(
t∑

s=1

F t−1
s

(
⟨x,Xs⟩ ηs

R
− 1

2
⟨x,Xs⟩2

))
where the penultimate equality follows from the fact that 1{t+ τt ≤ t− 1} = 0 as the delays are
non-negative random variables, allowing us to stop the first summation at round t− 1 by pulling the
corresponding exp(0) out of the the summation and utilising that exp(a+ b) = exp(a) exp(b).

Recall that Ct−1
s = 1 {s+ τs ≤ t− 1} is Ft−1-measurable. Since Ft−1 is a σ-algebra, F t−1

s =
1 {s+ τs > t− 1} must also be measurable. Utilising this fact, it is clear that everything except the
noise terms are Ft−1-measurable. Assumption 1 guarantees the noise is subgaussian, therefore:

E [Mt (x) | Ft−1] = E

[
Mt−1 (x) exp

(
t∑

s=1

F t−1
s

(
⟨x,Xs⟩ ηs

R
− 1

2
⟨x,Xs⟩2

)) ∣∣∣Ft−1

]

=Mt−1 (x) E

[
exp

(
t∑

s=1

F t−1
s

(
⟨x,Xs⟩ ηs

R
− 1

2
⟨x,Xs⟩2

)) ∣∣∣Ft−1

]

=Mt−1 (x) exp

(
−1

2

t∑
s=1

F t−1
s ⟨x,Xs⟩2

)
E

[
exp

(
t∑

s=1

F t−1
s ⟨x,Xs⟩ ηs

R

) ∣∣∣Ft−1

]

≤Mt−1 (x) exp

(
−1

2

t∑
s=1

F t−1
s ⟨x,Xs⟩2

)
exp

(
1

2

t∑
s=1

F t−1
s ⟨x,Xs⟩2

)
=Mt−1 (x)

showing that {Mt(x)}∞t=0 is indeed a non-negative supermartingale.1 For conciseness, denote:

Pt = exp

(
t∑

s=1

F t−1
s

(
⟨x,Xs⟩ ηs

R
− 1

2
⟨x,Xs⟩2

))
Then, by the law of total expectation:

E [Mt (x)] = E [Mt−1 (x)Pt] = E [E [Mt−1 (x)Pt | Ft−1]] = E [Mt−1 (x) E [Pt | Ft−1]]

≤ E [Mt−1 (x)] = E [Mt−2 (x)Pt−1] = E [Mt−2 (x) E [Pt−1 | Ft−2]]

...
≤ E [M1 (x)] = E [E [M1 (x) | F0]]

≤ 1

1By definition, the exponential function is always positive. Hence, Mt(x) is always non-negative.
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where we define M0(x) = 1. By the convergence theorem for non-negative supermartingales:

Mx
∞ = lim

t→∞
Mx

t

is almost surely well-defined. Hence, Mx
ω is almost surely well-defined, regardless of whether the

stopping time is finite or not. Now, Fatou’s Lemma tells us that:

E [Mω (x)] = E
[
lim inf
t→∞

Mmin{t,ω} (x)
]
≤ lim inf

t→∞
E
[
Mmin{t,ω} (x)

]
Combining the right hand side of the above with the law of total expectation reveals that for any
t ≥ 0:

E
[
Mmin{t,ω} (x)

]
= E

[
E
[
Mmin{t,ω} (x) | Ft−1

]]
≤ E

[
Mmin{t−1,ω} (x)

]
= E

[
E
[
Mmin{t−1,ω} (x) | Ft−1

]]
...

≤ E
[
Mmin{0,ω} (x)

]
= E [M0 (x)] = 1

Therefore, E[Mx
ω ] ≤ 1, as required.

B Missing Proofs of Theorem 1

Proving Theorem 1 required the introduction of four technical lemmas. These lemmas are crucial in
showing that our algorithms only suffer from an additive penalty due to the delays.
Lemma 2. Let λ = αa(ϕ)/κ > 0. Then, W̄t and V̄t are invertible and have inverses that satisfy the
following relationship:

W̄−1
t = V̄ −1

t + V̄ −1
t Zt W̄

−1
t = V̄ −1

t +Mt

where Mt := V̄ −1
t Zt W̄

−1
t .

Proof. From Equations (3), (4) and (5), and λI ≻ 0, we have that the total and observed gram
matrices are symmetric and positive-definite. They are symmetric because they are the sum of
symmetric matrices. And they are positive-definite because they are the sum of a positive-definite
matrix and a positive semi-definite matrix. Thus, the first part of the lemma follows from the fact that
all symmetric positive-definite matrices are invertible.

Next, we move on to the second claim of the lemma. From Equations (3), (4) and (5), we have that
the total, observed, and missing design matrices satisfy the following relationship:

V̄t = λI +

t∑
s=1

XsX
T
s (1{s+ τs ≤ t}+ 1{s+ τs > t}) = W̄t + Zt (19)

We prove the second statement in the lemma as follows:

W̄−1
t = V̄ −1

t + W̄−1
t − V̄ −1

t

= V̄ −1
t + V̄ −1

t V̄tW̄
−1
t − V̄ −1

t W̄tW̄
−1
t

= V̄ −1
t + V̄ −1

t

(
V̄t − W̄t

)
W̄−1

t

= V̄ −1
t + V̄ −1

t Zt W̄
−1
t ,

where the final equality follows from rearranging Equation (19).

Lemma 3. Let {τt}∞t=1 be an arbitrary sequence of non-negative random variables. Then, for
λ = αa(ϕ)/κ ≥ 1:

T∑
t=1

∥Xt∥Mt−1 ≤
T∑

t=1

1 +G∗ + τt
2

∥Xt∥2V̄ −1
t−1

where G∗ = max{Gt : t ≤ T}.
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Proof. Firstly, we rewrite the norm as follows:

∥Xt∥Mt−1 = ∥Xt∥V̄ −1
t−1Zt−1W̄

−1
t−1

=
√
XT

t V̄
−1
t−1Zt−1W̄

−1
t−1Xt

=
√
Tr
(
XT

t V̄
−1
t−1Zt−1W̄

−1
t−1Xt

)
=
√
Tr
(
V̄ −1
t−1Zt−1W̄

−1
t−1XtXT

t

)
Let A = V̄ −1

t−1Zt−1 and B = W̄t−1XtX
T
t . Then Lemma 9 guarantees that A and B have non-

negative eigenvalues, meaning:

Tr(AB) = Tr(AB1/2B1/2) = Tr(B1/2AB1/2) ≤ Tr(B1/2(Tr(A))IB1/2) = Tr(A) Tr(B)

Therefore

∥Xt∥Mt−1
≤
√

Tr
(
W̄−1

t−1XtXT
t

)
Tr
(
V̄ −1
t−1Zt−1

)
≤ 1

2
Tr
(
W̄−1

t−1XtX
T
t

)
+

1

2
Tr
(
V̄ −1
t−1Zt−1

)
(AM-GM Inequality)

=
1

2
∥Xt∥2W̄−1

t−1

+
1

2

t−1∑
s−1

1 {s+ τs > t− 1} ∥Xs∥2V̄ −1
t−1

(Equation (5))

≤ 1 +Gt−1

2
∥Xt∥2V̄ −1

t−1

+
1

2

t−1∑
s−1

1 {s+ τs > t− 1} ∥Xs∥2V̄ −1
t−1

(Lemma 2 & 11 and λ ≥ 1)

≤ 1 +G∗

2
∥Xt∥2V −1

t−1

+
1

2

t−1∑
s=1

1 {s+ τs > t− 1} ∥Xs∥2V −1
t−1

(Gt ≤ G∗)

Now, we are ready to reintroduce the outer summation. Doing so gives:
T∑

t=1

∥Xt∥Mt−1 ≤ 1 +G∗

2

T∑
t=1

∥Xt∥2V −1
t−1

+
1

2

T∑
t=1

t−1∑
s=1

1 {s+ τs > t− 1} ∥Xs∥2V −1
t−1

≤ 1 +G∗

2

T∑
t=1

∥Xt∥2V −1
t−1

+
1

2

T∑
t=1

t−1∑
s=1

1 {s+ τs > t− 1} ∥Xs∥2V −1
s−1

(V̄t ⪰ Vs for t ≥ s)

≤ 1 +G∗

2

T∑
t=1

∥Xt∥2V −1
t−1

+
1

2

T∑
t=1

τt ∥Xt∥2V −1
t−1

The final equality follows from expanding the two summations and realising that the indicator ensures
each term contributes to the summation τt times. Simply rearranging the above terms gives the final
result.

Lemma 7. Define Gt =
∑t

s=1 1{s + τs > t} and let {τt}∞t=1 be a sequence of independent and
identically distributed random variables with a finite expectation and define:

ψt
τ :=

4

3
log

(
3t

2δ

)
+ 2

√
2E [τ ] log

(
3t

2δ

)
.

Then,
P
(
∃ t ≥ 1 : Gt ≤ E[τ ] + ψt

τ

)
≤ 1− δ.

Proof. The proof of this claim is similar to that found in work done on multi-armed bandits [Joulani
et al., 2013]. However, we extend the result so it holds for continuous delay distributions. Bernstein’s
inequality gives the following tail bound on sums of subgaussian random variables:

P

(
Gt − E [Gt] ≥

2

3
log

(
1

δ′

)
+ 2

√
V [Gt] log

(
1

δ′

))
≤ δ′
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Setting δ′ = 6δ/π2t2 and taking a union bound over all possible rounds reveals that:

P

(
∃ t ∈ N1 : Gt − E [Gt] ≥

2

3
log

(
1

δ′

)
+ 2

√
V [Gt] log

(
1

δ′

))
≤

∞∑
t=1

δ′ = δ

Therefore, with probability 1− δ:

Gt ≤ E [Gt] +
4

3
log

(
2t

3δ

)
+ 2

√
2V [Gt] log

(
2t

3δ

)
for any t ∈ N1. All that remains is to show that expectation and variance of the number of missing
feedbacks is smaller than the expected delay. By assumption, the delays are independent. Therefore,
each of the indicator variables involved in the definition of Gt are independent. Considering its
expectation reveals that:

E [Gt] =

t∑
s=1

E [1 {s+ τs > t}] =
t∑

s=1

P [s+ τs > t] =

t−1∑
i=0

P [ τt−i > i ]

≤
∞∑
i=0

P [ τ > i ] =

∞∑
i=0

∞∑
j=i+1

P [ τ = j ] =

∞∑
j=1

j−1∑
i=0

P [ τ = j ]

=

∞∑
j=1

j P [ τ = j ] = E [τ ]

for discrete delay distributions. For continuous delay distributions, we can obtain a similar result by
utilising the fact that the complement of the cumulative distribution function is non-increasing:

E [Gt] =

t∑
s=1

E [1 {s+ τs > t}] =
t∑

s=1

P [τs > t− s] =

t−1∑
x=0

P [τ > x]

≤ 1 +

∫ t

0

P [ τ > x ] dx = 1 +

∫ t

0

∫ ∞

x

fτ (y) dy dx (Setting x = t− s)

≤ 1 +

∫ ∞

0

∫ ∞

x

fτ (x) dy dx = 1 +

∫ ∞

0

∫ y

0

fτ (y) dx dy (Tonelli’s Theorem)

= 1 +

∫ ∞

0

[xfτ (y)]
y
0 dy = 1 +

∫ ∞

0

yfτ (y)dy

= 1 + E [τ ]

Similarly, looking at the variance reveals that:

V [Gt] =

t∑
s=1

V [1 {s+ τs ≥ t}] ≤
t∑

s=1

E
[
1 {s+ τs ≥ t}2

]
= E [Gt] ,

which is smaller than the expected delay. Therefore,

Gt ≤ 1 + E [τ ] +
4

3
log

(
2t

3δ

)
+ 2

√
2E [Gt] log

(
2t

3δ

)
as required.

Lemma 8. Let {τt}∞t=1 satisfy Assumption 3 and define:

Dt
τ = min

{√
2v2 log

(
3t

2δ

)
, 2b log

(
3t

2δ

)}
Then,

P
(
∃ t ≥ 1 : τt ≤ E [τ ] +Dt

τ

)
≤ 1− δ

Proof. The above follows from a standard tail bound for subexponential random variables [Wain-
wright, 2019] and a union bound.
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B.1 Supporting Lemmas

Proving Lemma 3 requires Lemma 11, which itself requires two additional results. We state and
prove all three of these results in this subsection.
Lemma 9. Let A ∈ Rd×d and B ∈ Rd×d be two symmetric positive semi-definite matrices. Then,
A1/2BA1/2 and AB share the same set of eigenvalues. Further, these eigenvalues are all non-
negative.

Proof. Since A is positive semi-definite, we can utilise the spectral decomposition to show that:
AB = A1/2A1/2B. Suppose AB has an eigenvalue equal to λ. Then, there exists a non-zero
eigenvector such that:

ABv⃗ = A1/2A1/2Bv⃗ = λv⃗

Pre-multiplying both sides of the above equation by the same matrix gives:

A1/2BABv⃗ = A1/2BA1/2
(
A1/2B

)
v⃗ = λ

(
A1/2B

)
v⃗

Thus, AB and A1/2BA1/2 share the same set of eigenvalues, albeit with different eigenvectors,
verifying the first statement of the lemma. Now, A1/2BA1/2 is symmetric, because:(

A1/2BA1/2
)T

= (A1/2)TBT (A1/2)T = A1/2BA1/2

Further, it is positive semi-definite, because:

xTA1/2︸ ︷︷ ︸
x̃T

BA1/2x︸ ︷︷ ︸
x̃

= x̃TBx̃ ≥ 0

The final inequality follows from the fact that B is positive semi-definite. Therefore, A1/2BA1/2

must have non-negative eigenvalues, as it is symmetric and positive semi-definite. Recall AB and
A1/2BA1/2 shares the same set of eigenvalues. Therefore,AB has non-negative eigenvalues too.

Lemma 10. Let Zt and Gt be the missing design matrix and the number of missing feedbacks at the
end of the t-th round, respectively. Then, λ1(Zt) ≤ Gt.

Proof. By Equations (3), (4) and (5), we have that:

Zt =
∑
s≤t

1{s+ τs > t}XsX
T
s ,

Clearly, XsX
T
s is a symmetric matrix, as it is the outer product of two vectors. The

Courant–Fischer–Weyl min-max principle shows that:

λ1
(
XsX

T
s

)
≤ ∥Xs∥22 ≤ 1,

where the final inequality follows from assuming that the vectors are appropriately normalised.
Applying Weyl’s inequality repeatedly to each symmetric matrix in the summation and utilising the
above result gives:

λ1 (Zt) ≤
∑
s≤t

1{s+ τs > t}λ1 (I) = Gt

as required.

Lemma 11. Let V̄t, W̄t and Zt be the total, observed and missing gram matrices, respectively. Then,
Gt

λ
V̄ −1
t ⪰ V̄ −1

t Zt W̄
−1
t =Mt

Proof. Firstly, A ⪰ B ⇐⇒ A−B ⪰ 0. Therefore, we focus on proving that the difference between
the two matrices is positive semi-definite. That is, we prove that:

Dt =
Gt

λ
V̄ −1
t − V̄ −1

t Zt W̄
−1
t (20)

is positive semi-definite. To do so, we take a four-stepped approach. Below is an overview of these
four steps.
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1. Firstly, we show that the matrix of (20) is symmetric.

2. Next, we define a similar matrix and prove that it has the same set of eigenvalues as that of
(20).

3. Then, we show that all the eigenvalues of the similar matrix are non-negative.

4. Finally, we chain the above three steps in reverse order and recall basic facts about symmetric
matrices to prove the claim.

Step 1. Indeed, Dt is the difference of two symmetric matrices. From Equations (3), (4) and (5), the
first matrix is symmetric, as it is just the total gram matrix scaled by a constant. Also, the second
matrix is symmetric because it is the difference between the two symmetric matrices:

V̄ −1
t ZtW̄

−1
t = V̄ −1

t

(
V̄t − W̄t

)
W̄−1

t = W̄−1
t − V̄ −1

t

Therefore, Dt is symmetric, as it is the difference between two symmetric matrices. Indeed, a
symmetric matrix must have all non-negative eigenvalues for positive semi-definiteness to hold. Thus,
it is sufficient to find a matrix with the same eigenvalues and show that its quadratic form is greater
than or equal to zero, for which non-negative eigenvalues is a necessary condition.

Step 2. To that end, we define the following matrix:

D̃t := V̄
−1/2
t

(
Gt

λ
I − Zt W̄

−1
t

)
V̄

−1/2
t

Applying Lemma 9 with A = V̄t and B = (Gt/λ)I−ZtW̄
−1
t reveals that Dt and D̃t share the same

set of eigenvalues, albeit with different eigenvectors.

Step 3. Showing D̃t ⪰ 0 proves it must have non-negative eigenvalues, as this is a necessary condition
for the positive semi-definiteness of an arbitrary (possibly non-symmetric) matrix. Utilising the
definition of positive semi-definiteness, we can verify whether or not this holds by checking if:
xT D̃tx ≥ 0. To do so, we first decompose the matrix into the sum of symmetric and anti-symmetric
matrices:

D̃t =
1

2

(
D̃t + D̃T

t

)
+

1

2

(
D̃t − D̃T

t

)
,

Then, we use the fact that:

y = xT
(
D̃t − D̃T

t

)
x =

(
xT
(
D̃t − D̃T

t

)
x
)T

= xT
(
D̃t − D̃T

t

)T
x = −xT

(
D̃t − D̃T

t

)
x

= −y
which holds if and only if y = 0. Doing so gives:

xT D̃tx =
1

2
xT
(
D̃t + D̃T

t

)
x+

1

2
xT
(
D̃t − D̃T

t

)
x =

1

2
xT
(
D̃t + D̃T

t

)
x

=
1

2
xT
(
V̄

−1/2
t

(
2Gt

λ
I − Zt W̄

−1
t − W̄−1

t Zt

)
V̄

−1/2
t

)
x

=
Gt

λ
xT V̄ −1

t x− 1

2
xT V̄

−1/2
t

(
Zt W̄

−1
t + W̄−1

t Zt

)
V̄

−1/2
t x

=
Gt

λ
∥x∥2

V̄ −1
t

− 1

2
xT V̄

−1/2
t

(
Zt W̄

−1
t + W̄−1

t Zt

)
V̄

−1/2
t x

Now, A = Zt W̄
−1
t + W̄−1

t Zt is a real-value symmetric matrix. Therefore, its eigendecomposition is
given by A = QΛQT where Λ is a diagonal matrix containing its eigenvalues and Q is an orthogonal
matrix whose columns contain its unit eigenvectors.

xT D̃tx =
Gt

λ
∥x∥2

V̄ −1
t

− 1

2
xT V̄

−1/2
t QΛQT V̄

−1/2
t x

=
Gt

λ
∥x∥2

V̄ −1
t

− 1

2
x̃TΛx̃ (Setting x̃ = QT V̄

−1/2
t x)
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=
Gt

λ
∥x∥2

V̄ −1
t

− 1

2

d∑
i=1

λi x̃
2
i (21)

where λi is the i-th largest eigenvalue of matrix A = ZtW̄
−1
t + W̄−1

t Zt. Indeed, A is a symmetric
matrix positive definite matrix. It is symmetric because it is the sum of a matrix and its transpose and
it is positive semi-definite because:

∥x∥2A = 2xTZt︸ ︷︷ ︸
∈Rd

(W̄−1
t ) Ztx︸︷︷︸

∈Rd

and W̄−1
t ≻ 0. Thus, it follows that the singular values A are the absolute values of its eigenvalues.

Define σi as the i-th largest singular value of matrix ZtWt (λ∗)
−1

+Wt (λ∗)
−1
Zt. Then, we have

that:

(21) ≥ Gt

λ
∥x∥2

Vt(λ∗)
−1 −

1

2

d∑
i=1

σi x̃
2
i (Since x ≤ |x|)

≥ Gt

λ
∥x∥2

V̄ −1
t

− 1

2
σmax∥x∥2V̄ −1

t
(Definition of x̃)

=
Gt

λ
∥x∥2

V̄ −1
t

− 1

2

∥∥ZtW̄
−1
t + W̄−1

t Zt

∥∥
2
∥x∥2

V̄ −1
t

(For A ∈ Rd×d: σmax = ∥A∥2)

≥ Gt

λ
∥x∥2

V̄ −1
t

− 1

2

(
∥ZtW̄

−1
t ∥2 + ∥W̄−1

t Zt∥2
)
∥x∥2

V̄ −1
t

(Matrix Norm is Sub-additive)

≥ Gt

λ
∥x∥2

V̄ −1
t

− ∥Zt∥2∥W̄−1
t ∥2 ∥x∥2V̄ −1

t
(Matrix Norm is Sub-multiplicative)

By definition, ∥W̄−1
t ∥2 ≤ 1/λ. Further, Lemma 10 tells us that ∥Zt∥2 ≤ Gt. Substituting this into

the above gives:

xT D̃tx ≥ Gt

λ
∥x∥2

V̄ −1
t

− ∥Zt∥2∥W̄−1
t ∥2 ∥x∥2V̄ −1

t

≥ Gt

λ
∥x∥2

V̄ −1
t

− Gt

λ∗
∥x∥2

V̄ −1
t

= 0

Step 4. Now, Step 3 shows D̃t is positive semi-definite, implying all of its eigenvalues are non-negative.
Therefore, Step 2 shows Dt has non-negative eigenvalues. Finally, Step 1 shows Dt is a symmetric
matrix. Since Dt is symmetric, non-negative eigenvalues implies positive semi-definiteness. Finally,
Dt ⪰ 0 implies that:

Gt

λ
V̄ −1
t ⪰ V̄ −1

t Zt W̄t =Mt ,

as required.
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C Experimental Results

In our experiments, we consider d ∈ {5, 10, 20} and fix T = 100, 000. At the start of the simulations,
we randomly sample θ∗ from the unit ball for the Linear and Logistic bandit environments so that
it remains fixed across each independent run of our experiments. The decision set in each round is
a random sample of K = 100 actions from the unit ball. We choose the confidence parameter for
each algorithm so that the theoretical guarantees hold with probability 0.95 by setting δ = 0.05/3.
All results are averaged over 30 independent runs and the shaded region in all figures represent the
standard errors of the estimates.

We consider several delay distributions to investigate the impact of the delays on the performance of
each algorithm, namely:

• Exponential(λ) with λ = 1/E[τ ],
• Uniform(a, b) with a = 0 and b = 2E[τ ],
• Pareto(a, xm = 1) with a = (1 + E[τ ])/E[τ ].

For each delay distribution, we consider expected values of E[τ ] = {100, 250, 500, 1000}. Notably,
Assumption 3 holds for the uniform and exponential distributions. However, it does not hold for the
Pareto distribution. Blanchet et al. [2020] make a similar subexponential assumption on the delays,
meaning that their theoretical guarantees do not hold for Pareto delays either.

C.1 Exponential Delays

Figure 1: Linear Bandit & Exponentially Distributed Delays.

Figure 2: Logistic Bandit & Exponentially Distributed Delays.

Figures 1 and 2 illustrate the results of our experiments for exponentially distributed delays.
Appendices C.2 and C.3 shows similar results for the other delay distributions and expected delays
considered. The empirical results show that our approach out-performs existing algorithms designed
for the same problem setting. These results are consistent with the theoretical guarantees, where the
delayed feedback causes an additive penalty for our algorithm and a larger multiplicative penalty for
the approach of Blanchet et al. [2020].
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C.2 Uniform Delays

Figure 3: Linear Bandit & Uniform Delays.

Figure 4: Logistic Bandit & Uniform Delays.

C.3 Pareto Delays

Figure 5: Linear Bandit & Pareto Delays.

Figure 6: Logistic Bandit & Pareto Delays
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C.4 Final Round Regret and Expected Delay

Figure 7: Final Round Regret vs. Expected Delay in Linear Bandits.

Figure 8: Final Round Regret vs. Expected Delay in Logistic Bandits.

Figures 7 and 8 show the regret at the end of the final round as a function of the expected delay for
our algorithm. Although Assumption 3 does not hold for delays drawn from the Pareto distribution,
our algorithm still provides good performance for the various values of E[τ ] considered by our
experiments. Notably, these empirical results are consistent with the expected regret guarantee stated
in Remark 1, which only requires that the delays have a finite expected value. Our experiments also
suggest that the penalty for Pareto delays is lesser than the other distributions under investigation. This
observation may be due to our particular parameterisation of the Pareto distribution producing many
small delays; indeed, P(τt ≤ 20) ≥ 0.95 for all the expected delays considered by our experiments.
The same is not true for the other distributions.

D Standard Results

Here, we present a selection of well-known tail bounds for subgaussian and subexponential random
variables that find use in our paper. Additionally, we provide proof of the elliptical potential lemma.
Lemma 12 (Bernstein’s Inequality). Let {Xt}nt=1 be a sequence of independent and identically
distributed σt-subgaussian random variables. Define Sn = X1 +X2 + · · ·+Xn. Then,

P

(
Sn − E [Sn] ≥

2

3
log

(
1

δ

)
+ 2

√
V [Sn] log

(
1

δ

))
≤ δ

Lemma 13 (Subexponential Tail Bounds). Suppose {τt}∞t=1 are (v, α) subexponential random
variables. Then,

P (τt − E [τt] ≥ ϵ) ≤ exp

(
−1

2
min

{
ϵ2

v2
,
ϵ

α

})
Therefore, with probability 1− δ:

τt ≤ E [τt] + min
{√

2v2 log (2t/3δ), 2α log (2t/3δ′)
}

for any t ∈ N1.
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D.1 Elliptical Potential Lemma

Lemma 14 (Elliptical Potential Lemma). Let {Xt}∞t=1 be an arbitrary sequence of d-dimensional
vectors such that ∥Xt∥22 ≤ 1. Define V0 = λI , Vt =

∑t
s=1XsX

T
s and V̄t = V0 + Vt. Then,

T∑
t=1

∥Xt∥2V̄ −1
t−1

≤ 2 log

(
det
(
V̄T
)

det
(
V̄0
) ) ≤ 2d log

(
dλ+ T

dλ

)
for λ ≥ 1/2.

Proof. For completeness, we provided a detailed proof of the elliptical potential lemma using the
arguments of Abbasi-Yadkori et al. [2011]. However, we note that this is not the only way to obtain
the stated result. Carpentier et al. [2020] prove the lemma using insights from linear algebra.

Firstly, notice that:

∥x∥2V̄t
= λ∥x∥22 +

t∑
s=1

(
xTXs

) (
XT

s x
)
= λ∥x∥22 +

t∑
s=1

∥XT
s x∥22 ≥ λ∥x∥22 > 0 =⇒ ∥x∥2

V̄ −1
t

> 0

Additionally, λ ≥ 1/2 and ∥Xt∥22 ≤ 1. Therefore,

∥x∥2
V̄ −1
t

≤ ∥x∥2
V̄ −1
0

=
1

λ
∥x∥22 ≤ 1

λ
Consequently,

0 < ∥Xt∥2V̄ −1
t

≤ 1

λ
≤ 2

Since x < 2 ln(1 + x) for any 0 < x ≤ 2, we have that:
T∑

t=1

∥Xt∥2V̄ −1
t

≤ 2

T∑
t=1

log
(
1 + ∥Xt∥2V̄ −1

t

)
= 2 log

(
T∏

t=1

(
1 + ∥Xt∥2V̄ −1

t

))
(22)

Now, proving the first inequality amounts to relating the term inside the logarithm to the determinants
of the matrices. By Definition, we have that:

V̄t = V̄t−1 +XtX
T
t = V̄

1/2
t−1

(
I + V̄

−1/2
t−1 XtX

T
t V̄

−1/2
t−1

)
V̄

1/2
t−1

and

det
(
V̄n
)
= det

(
V̄

1/2
n−1

(
I + V̄

−1/2
n−1 XnX

T
n V̄

−1/2
n−1

)
V̄

1/2
n−1

)
= det

(
V̄n−1

)
det
(
I + V̄

−1/2
n−1 XnX

T
n V̄

−1/2
n−1

)
(Properties of Determinants)

= det
(
V̄n−1

) (
1 +XT

n V̄
−1
n−1Xn

)
(Matrix Determinant Lemma)

= det
(
V̄n−1

) (
1 + ∥Xn∥2V̄ −1

n−1

)
(By Positive Definiteness)

= det (V0)

n∏
t=1

(
1 + ∥Xt∥2V̄ −1

t−1

)
Rearranging and plugging this into (22) gives:

T∑
t=1

∥Xt∥2V̄ −1
t

≤ 2 log

(
T∏

t=1

(
1 + ∥Xt∥2V̄ −1

t

))
= 2 log

(
det (VT )

det (V0)

)
proving the first inequality. Lemma 15 proves the second inequality, completing the proof.

Lemma 15. Let {Xt}∞t=1 be an arbitrary sequence of d-dimensional vectors such that ∥Xt∥22 ≤ 1.
Define V0 = λI , Vt =

∑t
s=1XsX

T
s and V̄t = V0 + Vt. Then,

2 log

(
det
(
V̄T
)

det
(
V̄0
) ) ≤ 2d log

(
dλ+ T

dλ

)
for λ ≥ 1/2.
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Proof. Let V̄T have eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd. Then,

2 log

(
det (VT )

det (V0)

)
= 2 log

(∏d
i=1 λi
λd

)

≤ 2 log


(

1
d

∑d
i=1 λi

)d
λd

 = 2 log

(∑d
i=1 λi
dλ

)d
 (AM-GM Inequality)

= 2 log

(Tr
(
V̄T
)

dλ

)d
 = 2 log


Tr

(
V0 +

∑T
t=1XtX

T
t

)
dλ

d


= 2 log

(Tr (V0) +
∑T

t=1 Tr
(
XtX

T
t

)
dλ

)d
 = 2 log

(dλ+
∑T

t=1 Tr
(
XT

t Xt

)
dλ

)d


= 2 log

(dλ+
∑T

t=1∥Xt∥22
dλ

)d


≤ 2 log

((
dλ+ T

dλ

)d
)

= 2d log

(
dλ+ T

dλ

)
which completes the proof.
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