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Abstract

Trajectory prediction plays a vital role in the performance of autonomous driving
systems, and prediction accuracy, such as average displacement error (ADE) or
final displacement error (FDE), is widely used as a performance metric. However,
a significant disparity exists between the accuracy of predictors on fixed datasets
and driving performance when the predictors are used downstream for vehicle
control, because of a dynamics gap. In the real world, the prediction algorithm
influences the behavior of the ego vehicle, which, in turn, influences the behaviors
of other vehicles nearby. This interaction results in predictor-specific dynamics that
directly impacts prediction results. In fixed datasets, since other vehicles’ responses
are predetermined, this interaction effect is lost, leading to a significant dynamics
gap. This paper studies the overlooked significance of this dynamics gap. We
also examine several other factors contributing to the disparity between prediction
performance and driving performance. The findings highlight the trade-off between
the predictor’s computational efficiency and prediction accuracy in determining
real-world driving performance. In summary, an interactive, task-driven evalu-
ation protocol for trajectory prediction is crucial to capture its effectiveness for
autonomous driving. Source code along with experimental settings is available
online.

1 Introduction
Current trajectory prediction evaluation [29, 9, 5] relies on real-world datasets, operating under the
assumption that dataset accuracy is equivalent to prediction capability. We refer to this as Static
Evaluation. This methodology, however, falls short when the predictor serves as a sub-module
for downstream tasks in Autonomous Driving (AD) [28, 24]. As illustrated in Figure 1, the static
evaluation metrics on datasets, such as Average Displacement Error (ADE) and Final Displacement
Error (FDE), do not necessarily reflect the actual driving performance [36, 8, 10]. In contrast to the
conventional focus on uncertainty [39, 16] and potential interaction [27], we demonstrate that this
disparity stems from the overlooked dynamics gap between fixed datasets and AD systems and the
computational efficiency of predictors. The trade-off between these two factors matters in the actual
prediction performance within the entire AD system.

The dynamics gap arises from the fact that the behavior of the autonomous vehicle, also known as
the ego-agent, varies with different trajectory predictors, as presented in Figure 2. In real-world
scenarios, the ego-agent utilizes predictors to determine its actions. Different predictors result
in varied behaviors of the ego-agent, which, in turn, influence the future behaviors of other road
users, leading to different dynamics within the environment. This directly affects the accuracy of
predictions, as other agents behave differently. Since the ego-agent’s actions are predetermined on
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Figure 1: Prediction accuracy vs driving performance. Contrary to popular belief (left, black curves),
our study indicates no strong correlation between common prediction evaluation metrics and driving
performance (left, red curves). Eight representative prediction models are selected: Constant Velocity
(CV) [30], Constant Acceleration (CA) [30], K-Nearest Neighbor (KNN) [9], Social KNN (S-KNN)
[9], HiVT [40], LaneGCN [22], LSTM, and Social LSTM (S-LSTM) [2]. The definition of driving
performance metrics can be found in Section 4.4. Details can be found in the supplementary materials.

the dataset, there exists a significant disparity between the dynamics represented in the dataset and
the actual driving scenario when evaluating a specific trajectory predictor. To tackle this issue, we
propose the use of an interactive simulation environment to evaluate the predictor for downstream
decision-making. This environment enables Dynamic Evaluation as the ego-agent operates with
the specific predictor, thus, mitigating the dynamics gap. We demonstrate a strong correlation
between the dynamic evaluation metrics and driving performance through extensive experiments.
This underscores the dominant role of the dynamics gap in aligning prediction accuracy with driving
performance and emphasizes the importance of incorporating it into the evaluation process.

(a) (b)

Figure 2: Dynamics Gap. (a) In static evaluation,
the agent’s motion is determined and unaffected by
predictors. (b) In the real-world, different predic-
tors result in varied behaviors of the agent, which
directly affects the ground truth of prediction.

The awareness of the dynamics gap significantly
enhances the correlation between prediction ac-
curacy and driving performance. However, there
are still factors that affect driving performance
apart from prediction accuracy. The downstream
modules in AD systems, with different tasks and
varying levels of complexity, impose different
requirements on prediction models. In our exper-
iments, we vary the type of planner and the time
constraint for the motion planning task. Our
findings suggest that predictors’ computational
efficiency plays a vital role in real-time tasks.
Moreover, it is the trade-off between prediction
accuracy and computational efficiency that deter-
mines driving performance. This highlights the
necessity for task-driven prediction evaluation.

In this paper, we aim to address two specific aspects of trajectory prediction for AD systems. Firstly,
we uncover the limitation of static prediction evaluation systems in accurately reflecting driving per-
formance. We demonstrate the dominant role of the dynamics gap in causing the disparity. Secondly,
we emphasize the necessity of an interactive, task-driven evaluation protocol that incorporates the
trade-off between dynamic prediction accuracy and computational efficiency. The protocol presents a
promising way for applying prediction models in real-world autonomous driving, which is the truly
mattered aspect in trajectory prediction for autonomous driving.

2 Related Work

2.1 Motion Prediction and Evaluation

Motion prediction methods can be classified along three dimensions [17]: modeling approach, output
type, and situational awareness. The modeling approach includes physics-based models [30, 3]
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that use physics to simulate agents’ forward motion, and learning-based models [40, 22] that learn
and predict motion patterns from data. The output type can be intention, single-trajectory [26],
multi-trajectory [18], or occupancy map [14, 15]. These outputs differ in the type of motion they
predict and how they handle the uncertainty of future states. The situational awareness includes
unawareness, interaction [2], scene, and map awareness [31]. It refers to the predictor’s ability to
incorporate environmental information, which is crucial for collision avoidance and efficient driving.
Most researchers [29, 25] and competitions [9, 5] evaluate the performance of prediction models
on real-world datasets, in which ADE/FDE and their probabilistic variants minADE/minFDE are
commonly used metrics. However, these metrics fail to capture the dynamics gap between datasets
and real-world scenarios, as the actions of the ego-agent remain unaffected by predictors. In this study,
we select four model-based and six learning-based models with varying output types and situational
awareness to cover a wide range of prediction models. We implement these predictors in both datasets
and an interactive simulation environment to illustrate the limitation of current prediction evaluation
in accurately reflecting driving performance, due to the neglect of the dynamics gap.

2.2 Task-aware Motion Prediction and Evaluation
Task-aware motion prediction remains an underexplored area in research. While some studies touch
upon the subject, they focus on proposing task-aware metrics for training or eliminating improper
predictions on datasets. One notable example of training on task-aware metrics is the Planning KL
Divergence (PKL) metric [28]. Although designed for 3D object detection, it measures the similarity
between detection and ground truth by calculating the difference in ego-plan performance. In the
context of motion prediction, Rowan et al. [24] propose a control-aware metric (CAPO) similar to
PKL. CAPO employs attention [35] to find correlations between predicted trajectories, assigning
higher weights to agents inducing more significant reactions. Similarly, the Task-Informed method
[19] assumes a set of candidate trajectories from the planner and adds the training loss for each
candidate. Another line of work focuses on designing task-aware functions to eliminate improper
predictions [21, 13]. The proposed metric can capture unrealistic predictions and better correlate
with driving performance in planner-agnostic settings. However, these works are conducted in an
open-loop manner, neglecting the disparity between open-loop evaluation and real-world driving
performance. To the best of our knowledge, we are the first to conduct a thorough investigation into
the disparity and demonstrate the dominant role of the dynamics gap on this issue.

3 Planning with Motion Prediction

3.1 Problem Formulation
In this section, we present the problem formulation for motion prediction with planning in the context
of autonomous driving. Different from conventional formulations that consider the planner as a policy,
our formulation employs the predictor as the policy. This enables us to identify the primary challenge
in developing predictors for real-world autonomous driving. We define the prediction problem as an
MDP: M = (S,A, T ,R).

State. The state of the system is represented by the tuple s = (sego, sexo) for s ∈ S, where sego

denotes the state of the AV including historical information, sexo denotes that of surrounding traffic
participants. Specifically, sego = {segot−tobs

, . . . , segot }, where tobs represents the observation horizon
and t denotes the current timestep. The state for each vehicle includes its position, velocity, heading,
and other relevant attributes, e.g., segot = (xego

t , yegot , vegot , θegot ).

Action. At each time step, the AV can take an action a ∈ A, where A is the action space. We denote
the n surrounding traffic participants as i ∈ {1, . . . , n}. The action consists of the AV’s prediction of
all exo-agents, e.g., a = {a1, . . . , an}.

Transition Function. The transition function T : S ×A → S defines the dynamics of the system
and how the system evolves as a result of the action of the ego vehicle. In the MDP, it refers to:
T (st+1|st, at) = T1(s

ego
t+1|st, at)T2(s

exo
t+1|st), T ∈ T . We denote the planner as a mapping function

T1 that takes the current state st and action at as input and outputs the AV’s next state segot+1. The
motion models of exo-agents are integrated into the mapping function T2, which takes the current
state st as input and generates the next state sexot+1 for all exo-agents.

Predictor. The predictor is represented as a policy a = π(s) that takes the current state s as input,
and produces an action a ∈ A as output.
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Objective Function. The objective of prediction is to accurately predict exo-agents future states
while considering their interactions and map information. The reward function R : S ×A → R maps
a state-action pair to a real-valued reward. The objective function is the accumulated reward over the
task horizon H , defined as J(s, a) =

∑H
t=0 R(st, at).

Optimal Policy. The objective of autonomous driving is to identify the optimal policy that minimizes
the objective function under the real-world transition function. The optimal policy π∗ is expressed as:
π∗ = argmax

T1=T∗
1 ,T2=T∗

2

Eπ[
∑H

t=0 R(st, at)], where T ∗
1 represents any realistic planners used in AVs, and

T ∗
2 denotes the integrated motion model of exo-agents in the real world.

3.2 The Limitation of Static Evaluation
Traditional prediction methods overlook the difference between the transition function T ∗

1 in real-
world autonomous driving and the represented T̂1 in datasets. These methods focus on training a
policy using well-designed reward functions to perform effectively within the state distribution of
datasets. The trained policy π satisfies:

π = argmax
T1=T̂1,T2=T∗

2

Eπ[

H∑
t=0

R(st, at)]. (1)

In this context, T̂1 serves as a static planner that remains unaffected by predictors. Regardless of the
input, the static planner T̂1 generates the recorded next state. As a result, the mapping function T ∗

2
remains consistent with the real world since the input state is unchanged. We define the disparity
in future states resulting from changes in the ego-planner as the dynamics gap in static evaluation,
denoted as G = T ∗

1 − T̂1.

The proposed planning-aware metrics, such as PKL [28] and CAPO [24], aimed to address the
disparity between prediction accuracy and the ultimate driving performance by improving the cost
function. However, unless the dynamics gap is mitigated, the optimization deviation plays a dominant
role in causing the disparity and should be addressed as a priority.

3.3 Measuring the Impact of Dynamics Gap
Conducting real-world tests is the most effective way to address and assess the impact of the dynamics
gap. However, due to its high cost, the simulator serves as a proxy. The ego-agent utilizes the realistic
planner T ∗

1 and the motion model T ∗
sim of the simulator. The optimal policy π∗

sim satisfies:

π∗
sim = argmax

T1=T∗
1 ,T2=Tsim

2

Eπ[

H∑
t=0

R(st, at)]. (2)

To evaluate the impact of the dynamics gap, we train various predictors on the Alignment dataset
obtained from the simulator, the trained policy πsim satisfies:

πsim = argmax
T1=T̂1,T2=Tsim

2

Eπ[

H∑
t=0

R(st, at)]. (3)

The equations suggest that the dynamics gap between the Alignment dataset and simulator mirrors
the dynamics gap between the real-world dataset and actual autonomous driving scenarios. Thus, it is
reasonable to employ the simulator for evaluating the influence of the dynamics gap. However, the
simulator merely serves as a substitute to mitigate the dynamics gap, leaving a remaining dynamics
gap represented by G′ = T ∗

2 − T sim
2 .

4 Experimental Setup

Our aim is to identify the key factors involved in trajectory prediction for autonomous driving and
recognize their impact on driving performance by simulating real-world scenarios that vehicles might
encounter. The ultimate goal is to introduce an interactive, task-driven prediction evaluation protocol.
To achieve this objective, we need to determine four crucial components: 1) motion prediction
methods to be covered; 2) realistic planners to employ prediction models; 3) the simulator to replicate
interactive scenarios; 4) evaluation metrics to assess the effectiveness of the key factors involved in
motion prediction with respect to real-world driving performance.
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Table 1: Selected prediction methods.
Modeling Approach Method Output Type Interaction Aware Scene Aware Map Aware

Model-based

CV [30] ST ✗ ✗ ✗
CA [30] ST ✗ ✗ ✗
KNN [9] MT ✗ ✗ ✗

S-KNN [9] MT ✓ ✗ ✗

Data-driven

LSTM ST ✗ ✗ ✗
S-LSTM [2] ST ✓ ✗ ✗
HiVT [40] MT ✓ ✓ ✓

LaneGCN [22] MT ✓ ✓ ✓
HOME [14] OM ✓ ✓ ✓

DSP [38] MT ✓ ✓ ✓

*Abbreviations: ST: Single-Trajectory, MT: Multi-Trajectory, OM: Occupancy Map.

4.1 Motion Prediction Methods
We select 10 representative prediction models to achieve comprehensive coverage of mainstream
approaches, ranging from simple model-based methods to complex data-driven approaches, as
presented in Table 1. Constant Velocity (CV) and Constant Acceleration (CA) [30] assume that the
predicted agent maintains a constant speed or acceleration within the prediction horizon. K-Nearest
Neighbor (KNN) predicts an agent’s future trajectory based on most similar trajectories, while
Social-KNN (S-KNN) [9] extends it by also considering the similarity of surrounding agents. These
methods are widely used as baselines given their widespread effectiveness in simple prediction cases.
Social LSTM (S-LSTM) [2], HiVT [40], LaneGCN [22], and HOME [14] represent four distinct
types of neural networks: RNN, Transformer, GNN, and CNN. DSP [38] utilizes a hybrid design of
neural networks, representing state-of-the-art prediction models.

4.2 Planners
An ideal planner should: 1) be able to handle state and action uncertainty; 2) take into account
multiple factors of driving performance, such as safety (collision avoidance), efficiency (timely goal
achievement), and comfort (smooth driving); 3) be aware of interactions with other agents; and 4)
supports real-time execution. We select two realistic planners based on these criteria: a simplistic
planner that only meets 2) and 4), and a sophisticated planner that satisfies all of 1) - 4). This allows
us to draw planner-agnostic conclusions.

RVO. The RVO planner [34] is a simplistic planner that solves the optimization problem in the
velocity space under collision avoidance constraints. The planner uses motion predictions to avoid
possible collisions with the deterministic motions, and thus does not consider the state and action
uncertainty. As the RVO planner does not maintain states between consecutive timesteps, it also
cannot optimize its planning with respect to interactions with other agents. The objective function of
the RVO planner involves safety and efficiency within a short time window, and the RVO planner
executes in real time.

DESPOT. The DESPOT planner [32] is a state-of-the-art belief-space planning algorithm that address
uncertainties near-optimally. To account for stochastic states and actions, we adopt the bicycle model,
a kinematic model with two degrees of freedom, and introduce Gaussian noise to the displacement.
DESPOT considers the system state, context information, and the ego-agent’s action to predict the
future states of exo-agents. This allows it to consider the interaction between agents. Moreover, the
objective function of DESPOT incorporates safety, efficiency, and comfort metrics, making it an ideal
algorithm for planning in complex and dynamic environments.

We use these planners to control the speed of the ego-agent while pure-pursuit algorithm [11] for
adjusting the steering angle. Details can be found in the supplementary materials.

4.3 Simulator
In order to evaluate different prediction models, the ideal simulator should: 1) provide real-world
maps and agents; 2) model potential unregulated behaviors; 3) accurately mirror the interactions
between agents; and 4) provide realistic perception data for effective planning. We choose the
SUMMIT simulator [6] for our experiments since it meets all the criteria, as demonstrated in Table 2.
SUMMIT is a sophisticated simulator based on the Carla [12] framework, offering various real-world
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Table 2: Comparison between simulators.
Simulator Real-World Maps Unregulated Behaviors Dense Interactions Realistic Visuals

SUMO [23] ✓ ✗ ✓ ✗
TrafficSim [33] ✗ ✓ ✓ ✗

TORCS [7] ✗ ✓ ✗ ✓
BARK [4] ✗ ✓ ✗ ✗
Apollo [1] ✗ ✗ ✗ ✗

Symphony [20] ✓ ✓ ✗ ✓
SUMMIT [6] ✓ ✓ ✓ ✓

maps and agents to create diverse and challenging scenarios. It uses a realistic motion model to
simulate interactions between agents and supports the simulation of crowded scenes, complex traffic
conditions, and unregulated behaviors.

There are two distinct concepts of time in our experiments: simulation time and real time. The
former corresponds to the duration of actions in the simulator, while the latter represents the wall time
consumed by the planner. By default, the simulator runs in asynchronous mode. In this mode, the
simulator and planner run individually, and the simulation time is equal to the real time. However, in
this study, we employ the SUMMIT simulator in synchronous mode to accommodate slow predictors.
In this mode, the simulator waits for the planner to establish communication before proceeding to
the next step. Since the simulation time for each execution step remains constant at 0.03 s, the ratio
between simulation time and real time can be manually set by varying the communication frequency,
known as the tick rate. For example, once the tick rate is set to 30 Hz, the simulation time equals the
real time. But, when the tick rate is set to 3 Hz, the ratio between simulation time and real time is 0.1.

4.4 Evaluation Protocols
Motion Prediction Performance Metrics. Four commonly used prediction performance metrics are
employed in this study, as presented in Table 3. In our experiments, the consensus of K=6 is adopted.
While ADE/FDE can be applied to evaluate single-trajectory prediction models, their probabilistic
variants minADE and minFDE can be applied to evaluate multi-trajectory predictors.

Driving Performance Metrics. The driving performance is primarily determined by three factors:
safety, comfort, and efficiency. Let H represent the total timestep for each scenario.

Safety is typically evaluated in terms of the collision rate. The collision is determined whether the
smallest distance between the ego-agent and surrounding agents is smaller than a threshold ϵ, that is:
PSafety = 1

H

∑H
t=1 I[min{||stA − s|| : s ∈ {st1, ..., stn}} < ϵ], where || · || is the L2 distance between

the ego-agent’s bounding box and the exo-agent’s bounding box, I is the boolean indicator function.
We set ϵ = 1m for our experiments since the DESPOT planner rarely causes real collisions.

Efficiency is evaluated by the average speed of the ego-agent over the whole scenario: PEfficiency =
1
H

∑H
t=1 v

t
A. Comfort is represented by the jerk of the ego-agent, which is the rate of change of

acceleration with respect to time: PComfort =
1
H

∑H
t=1 v̈

t
A.

Since these three metrics are not comparable, we normalized each metric to [0, 1] before calculating
the driving performance. Furthermore, we standardized the direction of these metrics, with higher
values indicating better performance:

P̄m = [
Pm −min(Pm)

max(Pm)−min(Pm)
]n + [1− Pm −min(Pm)

max(Pm)−min(Pm)
]1−n. (4)

The boolean indicator n = I[m ∈ {Efficiency}] is employed to adjust the direction of driving
performance metrics. The ultimate driving performance is derived through the average of normalized
metrics for safety, efficiency, and comfort. Pseudocode can be found in the supplementary materials.

Experimental Design. We conduct two types of experiments for both planners in the SUMMIT
simulator: Fixed Prediction Ability and Fixed Planning Ability.

1. Fixed Prediction Ability: The planner is required to perform a fixed number of predic-
tions within an interactive simulation environment, regardless of the predictor’s execution
speed. The objective is to clarify the factor that dominates the disparity between prediction
performance and driving performance while ensuring the predictive ability of methods.
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Table 3: Trajectory prediction metrics.
Metric Name Metric Equation

ADE 1
T

∑T
i=1

√
(xi − x̂i)2 + (yi − ŷi)2

FDE
√

(xT − x̂T )2 + (yT − ŷT )2

minADE mink∈K
1
T

∑T
i=1

√
(xi − x̂i)2 + (yi − ŷi)2

minFDE mink∈K

√
(xT − x̂T )2 + (yT − ŷT )2

2. Fixed Planning Ability: The planner is allocated varying time budgets to simulate a predictor
running at different speeds. Three sub-experiments are conducted with tick rates set at
30 Hz, 3 Hz, and 1 Hz. The objective is to investigate the factors, except for prediction
accuracy, that represent the predictive ability of methods. This provides an explanation for
the remaining disparity between prediction accuracy and driving performance.

We collect 50 scenarios for each predictor in each experiment. For each scenario, we randomly
select the start and end point for the ego-agent from one of the four real-world maps provided by the
SUMMIT simulator. A reference path of 50 meters is maintained between the two points, and the
ego-agent is instructed to follow this path. A certain number of exo-agents including pedestrians,
cyclists, and vehicles is randomly distributed within the environment. We implement all selected
predictors in the simulator, except for HOME and DSP, due to their significantly longer running time,
making the closed-loop evaluation infeasible. These two methods are solely employed in the Sim-Real
Alignment, as shown in the supplementary materials. Notably, the RVO planner produces identical
results for these two experimental settings since it conducts prediction only once per timestep.

To investigate the correlation between prediction accuracy and driving performance, we train all
selected motion prediction models on the Alignment dataset collected from the SUMMIT simulator.
We collect 59,944 scenarios and separate them into two groups: 80% training and 20% validation.
Each scenario consists of about 300 steps. Subsequently, it is filtered down to 50 steps by taking into
account the number of agents and their occurrence frequency. The nearest three agents are randomly
selected to be the interested agent for prediction. The data collection was conducted on a server
equipped with an Intel(R) Xeon(R) Gold 5220 CPU. We use four NVIDIA GeForce RTX 2080 Ti to
speed up the running.

5 Experimental Results

The experiment part is designed and organized to answer the following questions:1) Can the current
prediction evaluation system accurately reflect the driving performance?; 2) What is the main factor
causing the disparity between prediction accuracy and driving performance?; and 3) How do we
propose evaluating predictors based on driving performance?

5.1 The Limitation of Current Prediction Evaluation
This section illustrates the limitation of current prediction evaluation systems in accurately reflecting
realistic driving performance. We use ADE as an example, with FDE results provided in the
supplementary materials. We refer to the ADE and minADE calculated in the Alignment dataset as
Static ADE and Static minADE since they are obtained from static evaluation. Fixed prediction ability
experiments are conducted for both RVO and DESPOT planners in the SUMMIT simulator.

Static ADE. As revealed in Figure 3a, there is no significant correlation between Static ADE and
driving performance. Specifically, in the DESPOT planner, we observe a counterintuitive positive
relationship. According to this finding, higher Static ADE would imply better driving performance.
However, this hypothesis lacks a realistic basis and should be rejected since it exceeds the 95%
confidence interval. Static ADE can not serve as a reliable indicator of driving performance.

Static minADE. To consider the impact of multi-modal prediction, we further investigate the
correlation between Static minADE and driving performance. As depicted in Figure 3b, the multi-
modal prediction accuracy better reflects the driving performance. However, in the RVO planner,
the linear regression exceeds the 95% confidence interval, thereby weakening the credibility of the
evaluation metric. Furthermore, we still observe the positive correlation between prediction error
and driving performance in the DESPOT planner, despite the lack of a realistic basis. These two
observations prevent us from asserting the efficacy of Static minADE.
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Figure 3: The correlation between static prediction metrics and driving performance for RVO (left)
and DESPOT (right) planners. (a) Static ADE versus driving performance. (b) Static minADE versus
driving performance. A substantial disparity between prediction accuracy and driving performance is
observed, regardless of whether the accuracy is measured by Static ADE or Static minADE.
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Figure 4: The correlation between Dynamic ADE and Driving
Performance with fixed prediction ability. (a) In the RVO
planner. (b) In the DESPOT planner. Due to the mitigation
of the dynamics gap, a strong correlation between Dynamic
ADE and driving performance is observed for both planners.
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The correlation becomes weaker
when the tick rate is set higher.

In summary, current evaluation metrics merely represent the vanilla accuracy of predictors and do not
fully reflect the driving performance. It is urgent to identify the overlooked factor(s) on this issue.

5.2 The Dominant Factor: Dynamics Gap
The disparity between static evaluation metrics and driving performance can be attributed to various
factors. However, due to the lack of quantitative analysis, it remains unclear which factor primarily
contributes to this disparity. In this section, we utilize fixed prediction ability experiments to identify
the dominant factor affecting the disparity between prediction accuracy and driving performance. We
use Dynamic ADE as an example. Similar to Static ADE, Dynamic ADE is calculated as the average
L2 distance between the forecasted trajectory and the ground truth. However, the dynamic prediction
accuracy in the interactive simulator differs from that of the Alignment dataset, since agents behave
differently. This leads to the difference between Dynamic ADE and Static ADE.

Dynamics Gap. Figure 4 reports the correlation between Dynamic ADE and driving performance for
both RVO and DESPOT planners. Compared to Static ADE, Dynamic ADE displays a significantly
stronger correlation with driving performance for both planners. Quantitatively, using the correlation
coefficient as a measurement, the dynamics gap accounts for 77.0% of the inconsistency between
Static ADE and driving performance in the RVO planner, and 70.3% in the DESPOT planner. This
emphasizes the dominant role of the dynamics gap in addressing the challenge of implementing
predictors in the real world.

Furthermore, we compare the dynamics gap with factors that influence prediction accuracy and
potentially affect driving performance. Except for the multi-modal prediction, the asymmetry of
prediction errors [21] and occlusion are selected for comparison. We measure the significance of
factors by assessing their impact on the correlation coefficient between prediction accuracy and
driving performance. The disparity between static ADE and driving performance is denoted as Total.

Multi-Modal Prediction. We examine the variation in correlation coefficient from single-trajectory
prediction to their multi-trajectory variants.
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Table 4: Impacts on the correlation coefficient between prediction accuracy and driving performance.

Factor ∆Correlation Coefficient

RVO DESPOT

Occlusion -0.22 0.16
Prediction Asymmetry 0.17 0.20
Multi-Modal Prediction 0.70 0.45

Dynamics Gap 0.77 1.16

Total 1.00 1.65

Prediction Asymmetry. We check the change in correlation coefficient from considering all agents’
predictions to considering only the interested agent that may affect the ego-plan.

Occlusion. We examine the variation in correlation coefficient from considering only agents with
complete observations to considering agents with missed observations.

As depicted in Table 4, considering the asymmetry of prediction errors, multi-modal prediction, and
dynamics gap can mitigate the disparity between prediction accuracy and driving performance. The
consideration of occlusion does not yield satisfactory results in the RVO planner, as the planner
mainly focuses on short-term predictions and is minimally affected. The asymmetric of prediction
errors has a noticeable impact on both planners, highlighting the importance of predictions involving
agents that may affect ego-planning. The multi-modal prediction exerts a significant impact on the
RVO planner. However, when a complex planner such as DESPOT is used in conjunction, the impact
becomes much weaker. It is reasonable to assume that the sampling-based feature of the DESPOT
planner mitigates the influence of prediction uncertainty. Among various metrics, the dynamics gap
exhibits superior performance in both planners and effectively resolves the majority of the disparity.

We can conclude that the dynamics gap is the main factor that causes the disparity between prediction
accuracy and realistic driving performance. The Dynamic ADE, which is evaluated through interactive
simulation environments, is capable of incorporating the dynamics gap and displaying a significant
correlation with driving performance.

5.3 On the Predictive Ability of Methods

Although the dynamics gap accounts for the majority of the disparity between prediction accuracy and
driving performance, the correlation between Dynamic ADE and driving performance is unsatisfactory
in the DESPOT planner. To address this issue, we must answer two additional questions: 1) Does
prediction accuracy fully reflect the predictive ability of methods? 2) If not, what other factor(s)
is most important? We examine three well-known but never fully investigated factors and their
correlation with driving performance: the temporal consistency of predictions [37], the distribution
of prediction errors, and the computational efficiency of predictors.

Temporal Consistency. Each prediction scenario contains multiple successive frames within a fixed
temporal chunk. Any two overlapping chunks of input data with a small time-shift should produce
consistent results. The difference between the predictions of the two overlapping chunks is measured
as the temporal consistency, with time-shift set to one frame.

Error Distribution. The error distribution of motion prediction contains the mean and variance.
While the mean has been captured by the prediction accuracy, we incorporate the variance of
prediction errors to account for the remaining impact.

Computational Efficiency. The computational efficiency of predictors is determined by their
inference time when applied to downstream tasks. Feature extraction time is also included.

According to Figure 6, surprisingly, the temporal consistency of predictions and the distribution of
prediction errors show a weak correlation with driving performance in both planners. However, the
computational efficiency of predictors exerts a significant influence on the driving performance, as
shown in Table 5. In three sub-experiments, the ranking of driving performance is aligned with the
ranking of predictors’ inference time in the DESPOT planner. We can conclude that the prediction
accuracy can not fully represent the predictive ability of methods, and the computational efficiency of
predictors is also a significant metric that affects driving performance.
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Figure 6: Contrary to common belief, the correlation between temporal consistency/error distribution
and driving performance is not strong for both RVO (left) and DESPOT (right) planners. (a) Temporal
Consistency versus Driving Performance. (b) Error Distribution versus Driving Performance.

Table 5: The correlation between predictors’ computation efficiency and driving performance.

Method Inference Time (↓) Driving Performance (↑)

30Hz 3Hz 1Hz

CV 0.001s 0.753 0.771 0.761
CA 0.001s 0.739 0.774 0.779

LSTM 0.010s 0.644 0.753 0.766
S-LSTM 0.014s 0.649 0.715 0.733

HiVT 0.024s 0.616 0.730 0.753
LaneGCN 0.024s 0.637 0.711 0.742

KNN 0.224s 0.526 0.648 0.692
S-KNN 0.248s 0.530 0.633 0.677

5.4 The Trade-Off between Accuracy and Speed
It should be noted that there is a trade-off between computational efficiency and dynamic prediction
accuracy for predictors to derive driving performance. As shown in Figure 5, the correlation between
Dynamic ADE and driving performance becomes less strong when the tick rate is set higher. This is
indicated by the data points deviating further from the best-fit-line in higher tick rates. At this time,
it is the computational efficiency rather than dynamic prediction accuracy that decides the driving
performance, as shown in Table 5. When the tick rate is set to 30Hz, the planner cannot generate
an optimal solution, whereby the ranking of driving performance is determined by computational
efficiency. When the tick rate is set to 3Hz, the CA outperforms CV since they have near-optimal
solutions. When the Tick Rate is set to 1Hz, the LSTM also outperforms CV. The driving performance
is determined by both dynamic prediction accuracy and computational efficiency of predictors in a
trade-off manner, highlighting the significance of task-driven prediction evaluation.

6 Conclusion
Our study demonstrates the limitation of current prediction evaluation systems in accurately reflecting
realistic driving performance. We identify the dynamics gap as the dominant factor contributing to
this disparity. Furthermore, our findings reveal that the ultimate driving performance is determined
by the trade-off between prediction accuracy and computational efficiency, rather than solely relying
on prediction accuracy. We recommend further research incorporating interactive and task-driven
evaluation protocols to assess prediction models. Despite these insights, there is still work to be
done in the future. Our study focuses on sampling-based and reactive planners, and incorporating
optimization-based or geometric planners could further substantiate our conclusions. Oracle percep-
tion data from the simulator can not fully represent the complexities of real-world situations. It would
be beneficial to use raw sensor data to understand the comprehensive interplay within the entire AD
system.
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