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Abstract

Harnessing the event-driven characteristic, Spiking Neural Networks (SNNs)
present a promising avenue toward energy-efficient Transformer architectures.
However, existing Spiking Transformers still suffer significant performance gaps
compared to their Artificial Neural Network counterparts. Through comprehensive
analysis, we attribute this gap to these two factors. First, the binary nature of spike
trains limits Spiking Self-attention (SSA)’s capacity to capture negative–negative
and positive–negative membrane potential interactions on Querys and Keys. Sec-
ond, SSA typically omits Softmax functions to avoid energy-intensive multiply-
accumulate operations, thereby failing to maintain row-stochasticity constraints on
attention scores. To address these issues, we propose a Bipolar Self-attention (BSA)
paradigm, effectively modeling multi-polar membrane potential interactions with a
fully spike-driven characteristic. Specifically, we demonstrate that ternary matrix
multiplication provides a closer approximation to real-valued computation on both
distribution and local correlation, enabling clear differentiation between homopolar
and heteropolar interactions. Moreover, we propose a shift-based Softmax approx-
imation named Shiftmax, which efficiently achieves low-entropy activation and
partly maintains row-stochasticity without non-linear operation, enabling precise
attention allocation. Extensive experiments show that BSA achieves substantial
performance improvements across various tasks, including image classification, se-
mantic segmentation, and event-based tracking. These results establish its potential
as a fundamental building block for energy-efficient Spiking Transformers.

1 Introduction

As the core computational unit of Transformers [5, 15, 11, 32, 9], self-attention mechanism dy-
namically models the global dependencies among sequence elements, overcoming the long-range
dependency challenges [33, 10]. However, its’ O(N2d) computational complexity [18, 48] incurs
an exponential rise during both training and inference, restricting its application in many resource-
constrained environments. Consequently, how to develop energy-efficient and high-performance
Transformers remains a critical research focus.

Spiking Neural Networks (SNNs) [23, 12] have gained significant attention due to their brain-inspired
dynamics [17, 24]. Spiking neurons fire discrete spikes only when activated, remaining silent other-
wise. Compared with Artificial Neural Networks (ANNs) that rely on multiply-accumulate (MAC)
computation, the spike-driven mechanism [61, 43, 44] in SNNs supports sparse accumulate (AC)
operations [2]. Such sparse spike-based computation [20, 56] delivers significant power efficiency,
particularly on neuromorphic platforms such as Tianjic [26, 8, 22] and Loihi [6, 25]. Recently,
numerous researchers focus on developing Spiking Transformers, including Spikformer [70], Spik-
ingformer [67], Spike-driven Transformers [51, 49, 52], SpikingResformer [30], and QKformer [68].
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These approaches enhance the performance ceiling of SNNs in various tasks [64, 45, 36, 31, 62, 34],
demonstrating that Spiking Transformers achieve a trade-off between high performance and efficiency.

Figure 1: Comparison of Vanilla Self-attention (VSA) and Spiking Self-attention (SSA) mechanisms.
Score′ contains rich polarity information and Score maintains strict row-stochasticity via Softmax
in VSA, while Score in SSA lacks negative polarity and row-stochasticity constraints.

As a core component of Spiking Transformer architectures, the Spiking Self-ttention (SSA) [70, 51]
computational paradigm represents the critical factor limiting their performance ceiling. As shown
in Fig.1, Vanilla Self-attention (VSA) in ANNs effectively captures magnitude and multi-polarity
information by computing Score′ through query (Q) and key (K) correlation. Meanwhile, it calculates
the Score using the Softmax function under row-stochasticity constraint. In contrast, SSA in SNNs
operates with binary spike trains (0 or 1), which not only sacrifices quantization precision but also
disregards negative-negative and positive-negative interactions. Furthermore, to maintain energy
efficiency, SSA typically omits Softmax function, resulting in severely imbalanced row-stochasticity
in Score. These issues limit SSA’s ability to effectively compute attention allocation between Q
and K, causing SSA more like a simplified Token Mixer [54, 55]. Therefore, how to overcome these
limitations is crucial for pushing Spiking Transformers beyond their current performance bottlenecks.

In this paper, we propose a Bipolar Self-attention (BSA) paradigm to effectively address these
issues. Unlike the SSA paradigm that exclusively captures positive-positive Q-K interactions, BSA
employs ternary spiking neurons [14, 35] to comprehensively process both homopolar and heteropolar
interaction patterns in Q-K correlation computation. We theoretically demonstrate that ternary matrix
multiplication more closely approximates real-valued computation in terms of both distributional
similarity and local correlation than binary part. Moreover, we propose the innovative Shiftmax
method, which approximates Softmax’s low-entropy activation characteristics and row-stochasticity
constraints through energy-efficient bit-shift operations. Finally, we conduct extensive experiments
across diverse tasks including image classification [70, 68], semantic segmentation [49, 52], and
event-based tracking [58, 28], consistently demonstrating that BSA delivers substantial performance
improvements. The main contributions of our work are outlined as follows:

• We first identify two limitations of Spiking Self-attention: (1) binary matrix products
exclusively capture positive-positive correlations while neglecting negative–negative and
positive–negative polarity features, leading to a complete loss of polarity information. (2)
without Softmax, attention scores across different rows exist on incomparable scales, render-
ing attention allocation ineffective. These deficiencies prevent SSA from fully harnessing
the potential of the self-attention mechanism.

• We propose Bipolar Self-attention (BSA) to overcome these limitations. BSA employs
ternary matrix products to extract Q-K correlations, comprehensively process different
polarity interaction patterns. In addition, we propose a Shiftmax method to approximate
Softmax that achieves low-entropy activation and maintains partial row-stochasticity without
non-linear operations, enabling precise attention allocation.

• Extensive experiments demonstrate that BSA achieves significant performance improve-
ments across various advanced Spiking Transformers on ImageNet-1K. Furthermore, our
method establishes state-of-the-art performance in both semantic segmentation and event-
based tracking tasks compared to existing SNNs approaches.
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2 Related Work

Recently, growing attention has been paid to energy-efficient Spiking Transformers [4, 50]. For
instance, Spikformer [70] first proposes Spiking Self-attention computation, establishing the first
Spiking Transformer. Building on this, Spikingformer [67] introduces a hardware-friendly residual
learning architecture that avoids non-spike computations in SNNs. Then, the Spike-driven Trans-
formers (SDT-V1) [51] incorporates the Hadamard product into the self-attention module, achieving
a fully spike-driven mechanism. Furthermore, SpikingResformer [30] integrates a Dual Spike self-
attention module, enhancing both performance and energy efficiency. Recently, QKformer [68] and
Spike-driven Transformer-V3 [52] both significantly elevate the performance ceiling of Spiking Trans-
formers. Nonetheless, these models primarily utilize self-attention as a token mixer [54], without
paying attention to exploring effective similarity calculations suited to spike trains [60, 1]. There-
fore, designing an innovative spiking self-attention mechanism that fully leverages self-correlation
computation under spike-driven characteristics is crucial for further advancement.

3 Preliminary

3.1 Vanilla Self-attention

The self-attention mechanism effectively captures global dependencies within sequences by dynam-
ically allocating attention across tokens [33, 29, 13]. Given an input matrix X ∈ Rn×d, where n
denotes sequence length and d represents embedding dimensionality, the mechanism initially projects
X into query Q, key K, and value V matrices via distinct parameter matrices WQ, WK , and WV :

X̃ = LN(X), Q = Linear(X̃), K = Linear(X̃), V = Linear(X̃). (1)
Here, LN denotes layer normalization, and Linear refers to a fully connected layer. To determine
contextual relationships, the model computes token-wise similarities through dot-product operations
between Q and K, generating an attention score matrix:

Score′ = Q×K⊤, Score = Softmax
(
Score′√

d

)
, Attn = Score×V. (2)

The mechanism applies a scaling factor
√
d to mitigate gradient instability issues. Subsequently, the

Softmax function normalizes these scaled Score to a probability distribution, ensuring attention
weights sum to unity while emphasizing relevant tokens and suppressing irrelevant ones.

3.2 Spiking Self-attention

Building on VSA, Spikformer [70] introduced SSA. For an input matrix X ∈ Rn×d, queries Q, keys
K, and values V are first computed via learnable weight matrices and then converted into spike trains
by binary spiking neurons for subsequent processing. The dynamics of these neurons are given by:

U [t+ 1] = H[t] +X[t+ 1], (3)
S[t+ 1] = Θ(U [t+ 1]− Vth), (4)
H[t+ 1] = VresetS[t+ 1] + τU [t+ 1](1− S[t+ 1]). (5)

X[t+ 1] denotes the input current, while H[t] and U [t] represent the pre-synaptic and post-synaptic
membrane potentials, respectively. The Heaviside function Θ(·) is employed for spike generation. If
a spike occurs (S[t+ 1] = 1), H[t] resets to Vreset; otherwise, U [t+ 1] decays with a time constant
τ and feeds into H[t+ 1]. Here a spiking neuron layer is denoted as SN (·), which takes X[t+ 1] as
input and produces the spike S[t+ 1] as output. Then the Q, K and V in SSA can be decribed as:

Q = SN (BN(Conv1(X)), K = SN (BN(Conv2(X)), V = SN (BN(Conv3(X)), (6)
where Q,K,V ∈ RT×n×d, BN(·) denotes batch normalization and Conv(·) refers to a convolution
operation. Unlike VSA, SSA omits the Softmax operation while retaining scaling to control the
magnitude of the attention output. The attention output Attn is obtained by performing a matrix
multiplication of the spiking Q and K, scaled by factor s, and then convert to spike trains:

Score = s ·Q×KT, Attn = SN (Score×V). (7)
Therefore, SSA provides an energy-efficient self-attention computation paradigm without any nonlin-
ear operations. It allows the ordering of the Q, K, and V matrices to be flexibly adjusted as needed,
enabling the Spiking Transformer to capture global dependencies efficiently.
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4 Method

4.1 Problem Analysis for Spiking Self-attention

As previously discussed, SSA reduces computational costs by eliminating nonlinear computations
and MAC operations. However, there remains a significant performance gap compared to VSA. We
thoroughly analyze the reasons and attribute them to the following parts: (1) binary Q–K Matrix
multiplication cannot effectively capture polarity correlations, and (2) eliminating Softmax removes
the attention score’s row-stochasticity constraints. The details are elaborated in the following.

Figure 2: Problem analysis. (a) The binary activation characteristic of spike trains can only preserve
(+,+) interactions on the membrane potentials of Q and K, while all others are ignored. (b) The
correlation matrix between binary Q and K in SNNs may be completely different from its’ VSA
counterpart in ANNs.

4.1.1 Incomplete Polarity Information Modeling

In VSA, Q and K are represented by continuous real-valued vectors, enabling matrix multiplication
can efficiently calculate the correlation between Q and K. However, SSA typically binarizes the
membrane potential information of Q and K, limiting its representation to binary values (0 or 1).
This spike-driven approach not only narrows the precision of Q-K interactions, but also undermines
the self-attention mechanism’s capacity to detect vector polarity relationships. Consider ΩVSA =
{(a1, a2) | ai ∈ {+,−}, i = 1, 2} representing correlation types in VSA and ΩSSA = {(b1, b2) |
bi ∈ {0, 1}, i = 1, 2} denoting binary states in SSA, with ϕ : Rd → {0, 1}d as a binarization
mapping. Let P = {B0,B1} partition ΩSSA where B0 = {(0, 0), (0, 1), (1, 0)}, B1 = {(1, 1)}.
We establish a surjection G : ΩVSA → P that fundamentally characterizes the polarity information
loss during the binarization transformation process, such that:

Case 1: G ({(+,+)}) = B1, Case 2: G ({(+,−), (−,+), (−,−)}) = B0. (8)

Eq.8 demonstrates that SSA completely discards the ability to compute negative-negative polarity
or mixed polarity correlations. Due to the sparse activation characteristics of SNNs, the amount
of discarded information far exceeds what is retained, resulting in substantial information loss. As
shown in Fig.2(a), the green-boxed region represents the positive polarity information that SSA can
preserve, while the red–boxed regions indicate the entirely neglected (−,−) and (+,−) polarity
information. More importantly, SSA may display entirely disparate attention regions from VSA
as shown in Fig.2(b). Thus, devising efficient mechanisms to embed polarity information offers a
promising avenue for improving SSA’s performance ceiling.

4.1.2 Missing Softmax Operation

SSA not only suffers from a loss of polarity information but also neglects the critical Softmax
component. In VSA, Softmax operation [37] serves two pivotal roles: first, amplifying highly
relevant through a low-entropy activation effect while suppressing low-value regions; second, ensuring
comparability of Score across varying scales via row-stochasticity constraints. These mechanisms
ensure that Softmax highlights key features while maintaining the comparability of the Score.

By contrast, SSA’s binary matrix multiplication preserves limited low-entropy activation properties
(detailed in the Appendix.A) and entirely lacks row-stochasticity constraints. Consequently, attention
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scores from different query vectors exist on disparate numerical scales. The disparity in scales makes
it difficult to effectively compare the relative degree of elements across different rows during the
allocation of attention to V . Therefore, how to allocate global attention on comparable scales will be
another potential area for improvement.

Figure 3: (a) Overall structure of Bipolar Self-attention. (b) Detailed process of Shiftmax. It can
directly shift the membrane potential of V for efficient attention allocation. (c) Distribution of three
types of matrix product at different thresholds (Vth).

4.2 Bipolar Self-attention for Spiking Transformers

To address two critical issues in existing SSA: incomplete polarity correlation and Softmax loss,
we propose a novel Bipolar Self-attention (BSA) paradigm. First, we model the different polarity
interactions between Querys and Keys using ternary matrix multiplication, ensuring comprehensive
representation of polarity information. Furthermore, we introduce the Shiftmax method, which
approximates Softmax through energy-efficient bitwise operations while preserving the critical
low-entropy activation and row-normalization properties. The details are as follows:

4.2.1 Ternary Matrix Product for Comprehensive Polarity Correlation

To effectively capture the comprehensive polarity correlation in SNNs, we introduce ternary spike
neurons (T SN ) [14] for characterizing the pre-synaptic membrane potential of Q and K. The
dynamics of the T SN (·) are defined as follows:

U [t+ 1] = H[t] +X[t+ 1], (9)
S[t+ 1] = Sign (U [t+ 1]) ·Θ(|U [t+ 1]| − Vth) , (10)
H[t+ 1] = VresetS[t+ 1] + τU [t+ 1](1− |S[t+ 1]|). (11)

T SN (·) fires signed spikes S[t+ 1] and H[t+ 1] reset to 0. The membrane potential accumulation
and reset processes are similar to those in binary spike neurons. Subsequently, BSA computes Score′
through matrix multiplication using ternary Q and K. The Ternary-valued Matrix Product (TMP)
method effectively preserves the fundamental characteristics of both Binary-valued Matrix Product
(BMP) in SSA and Real-valued Matrix Product (RMP) in VSA. First, it preserves the spike-driven
characteristics of BMP, enabling full AC operations and achieving energy-efficient neuromorphic
computation. Additionally, it retains the polarity information in the membrane potential U [t], thereby
capturing polarity-related correlations comparable to RMP operations. To validate this proposition,
we conduct a detailed analysis of the three matrix product, examining both their distributional
relationships and local correlation. Detailed proofs are presented in Appendices.B.
Theorem 1. For independent random vectors q = Qj, k = Kj ∈ Rd with elements qi, ki ∼
N (0, σ2), p = Φ(− θ

σ ) representing the probability P (q > θ), θ represent the threshold for SN (·)
and T SN (·). Then the result element of RMP satisfies E[R] = 0 and Var(R) = dσ4; BMP satisfies
E[B] = dp2 and Var(B) = dp2(1− p2); and TMP satisfies E[T ] = 0 and Var(T ) = 4dp2.
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Theorem.1 establishes that TMP preserves the zero-mean statistical property of RMP, while BMP
exhibits systematic bias. This bias results from binary activation’s exclusion of negative polarity
information, corroborating our hypothesis. Furthermore, as shown in Fig.3(c), at typical operating
points (Vth = 1, 0.5, corresponding to common SNNs’ thresholds), TMP’s variance consistently
exceeds BMP’s, enhancing information capacity and providing a more faithful representation of
RMP’s statistical characteristics. In summary, TMP approximates RMP’s overall distribution more
accurately than BMP, consequently enhancing Q-K correlation representation. Nevertheless, global
distributional similarity does not guarantee accuracy at individual key-value pairs. Therefore, we
further explore whether TMP also demonstrates stronger local correlation with RMP relative to BMP.
Theorem 2. For independent variables q = Qj, k = Kj ∈ Rd, qi, ki ∼ N (0, σ2), p = Φ(− θ

σ )
representing the probability P (q > θ), θ represent the threshold for spiking neurons. We define
B(·) and T (·) to represent the binary and ternary activation functions, respectively. According to
the covariance calculation formulas and Theorem.1, the covariance between qk, B(q)B(k) and
T (q)T (k) can be expressed as:

Cov(qk,B(q)B(k)) = dϕ(θ)2 · σ2 = dϕ(θ)2σ2, Cov(qk, T (q)T (k)) = 4dϕ(θ)2σ2.

Where ϕ(θ) represents the value of the probability density function at the threshold θ.

Based on Theorem.2, we derive the approximate Pearson correlation coefficients between RMP, BMP,
and TMP for each q-k pair (R, B, T), which can be formulated as follows:

ρ(R,B) =
Cov(R,B)√
Var(R)Var(B)

=
ϕ(θ)2

pσ
√

1− p2
, ρ(R, T ) =

Cov(R, T )√
Var(R)Var(T )

=
2ϕ(θ)2

pσ
. (12)

By analyzing the ratio of these correlation coefficients, we obtain: ρ(R,T )
ρ(R,B) = 2

√
1− p2, where p

ranges from (0, 1). For typical spike firing rate (0.1 < p < 0.4), TMP provides approximately 2×
local correlation than BMP. In conclusion, both in terms of distribution and local correlation, TMP is
more closer to RMP compared to BMP, thereby better capturing the correlation of Q and K.

4.2.2 Shiftmax for Energy-efficiency Softmax Alternative

As previously mentioned, the distribution of TMP mirrors the bell-shaped distribution as RMP in
ANNs. Empirical evidences [18, 27] indicate that this distribution necessitates the Softmax function
to generate effective self-attention scores. However, Softmax needs massive computing resources
conflicting with the energy efficiency of SNNs. To address this, we propose an energy-efficient
Shiftmax method based on bit-shift operations, which partially replicates the Softmax effect while
better aligning with SNNs. Given an input vector x = [x1, x2, . . . , xn]

T ∈ In, we define the
approximate Softmax function as follows:

Shiftmax(x)i = 2xi−γ(x), γ(x) =

⌈
log2

(
n∑

i=1

2xi

)⌉
. (13)

2xi represents the element-wise power operation. γ(x) is defined as the minimal power of 2 that is
greater than or equal to the summation of 2xi . Shiftmax(·) retains the key advantages of Softmax
while introducing unique computational efficiency features. Firstly, the 2xi effect induced by the
exponential operation effectively amplifies important weights while suppressing irrelevant ones,
ensuring low-entropy activation characteristics. Secondly, it achieves quasi-normalization through
a meticulously structured denominator, explicitly constraining the row-stochasticity constraints of
Score within a bounded range, formally expressed as:

1

2
<

n∑
i=1

Shiftmax(x)i =

∑n
i=1 2

xi

2⌈log2(
∑n

j=1 2xj )⌉ ≤ 1. (14)

γ(x) constrains the row-stochasticity constraints of attention scores within the interval (0.5, 1].
Although this constraint does not strictly enforce a row-stochasticity constraint, the limited range
ensures consistency across attention distributions, enhancing the overall stability of the attention
mechanism. Notably, the Shiftmax(·) converts traditional MAC operations into highly efficient
bit-shift operations when multiplied by matrix V, which can be decried as:

Score′ ▷V = {aik =
∑
j

(vjk ≫ nij) | sij = 2−nij}. (15)
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In summary, the Shiftmax(·) preserves the key advantages of the Softmax while transforming
intensive exponentiation and normalization into bit-shift operations. It achieves optimal attention
score allocation without incurring significant additional computational overhead.

4.2.3 Overall Architecture

Through ternary Q-K matrix product and energy-efficient Shiftmax operations, we propose the BSA
module. When the input x ∈ RT×n×d, the computational process of BSA are as follows:

Q,K,V = (BN(Conv(X))), Q,K,V ∈ RT×n×d, (16)

Score′ = T SN (Q)× T SN (K), Score′ ∈ IT×n×n, (17)

Score = Shiftmax(Score′), Score ∈ IT×n×n, (18)

Attn = T SN (Score ▷V), Attn ∈ ST×n×d. (19)

Where I denotes integer values and S represents spike trains. Since Shiftmax(·) directly yields
powers of 2 (2n), we can perform bit-shift operations on the membrane potentials of V without
employing MAC operations. This approach simultaneously preserves the rich membrane potential
information in V while maintaining minimal energy overhead, as bit-shift operations [16] consume
merely 1/20 of the energy required for AC operations.

5 Experiments

5.1 Image Classification

In image classification Task, we evaluate the proposed BSA module on ImageNet-1K [7] using
three representative state-of-the-art (SOTA) Spiking Transformer architectures: Spikingformer [67],
QKformer [68], and Spike-driven Transformer-V3 [52]. Additionally, we perform comprehensive
comparative analyses against recent Spiking Transformers [70, 49, 30, 51].

Figure 4: Attention heatmap comparison with Spikingformer [67] architecture on ImageNet-1K.

As shown in Table 1, our BSA module consistently improves performance across all three Spiking
Transformer architectures. The most substantial gains appear in Spikingformer, where BSA increases
accuracy by 1.35% (D=512) and 0.97% (D=768), reaching 76.14% and 76.82% respectively. For
Spike-driven V3, BSA yields improvements ranging from 0.36% to 0.74% across different parameter
settings (5M, 10M, 19M). Similarly, QKformer’s accuracy increases by 0.41% and 0.35% in its
two configurations. These results can demonstrate BSA’ versatility across different architectures.
Additionally, as shown in Fig. 4, BSA exhibits a sparser attention distribution with enhanced focus
on critical visual features. Notably, performance improvements in the QKformer and SDT-V3
architecture are less compared to those in the Spikingformer. We attribute this to two factors. First,
QKformer and SDT-V3 already demonstrate strong baseline performance on image classification
tasks, leaving limited room for further enhancement. Second, both QKformer and SDT-V3 structurally
align with the Pyramid Vision Transformer [21, 39, 54], which substantiates the conclusion that
self-attention modules contribute relatively minor performance gains within Metaformer [55] designs.
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Table 1: Detailed comparison with other similar methods on ImageNet-1K.

Method Architecture T Param.(M) Acc.(%)

Spikformer [70] Spikformer-8-384 4 16.8 70.24
Spikformer-8-512 4 29.7 73.38

SDT-V1 [51] Spike-driven-8-384 4 16.8 72.28
Spike-driven-8-512 4 29.7 74.57

SpikingResformer [30] SpikingResformer-S 4 17.8 75.95
SpikingResformer-M 4 35.5 77.24

SDT-V2 [49] Meta-SpikeFormer-384 4 15.1 74.10
Meta-SpikeFormer-512 4 55.4 79.70

Spikingformer [67] Spikingformer-8-512 4 29.7 74.79
Spikingformer-8-768 4 66.4 75.85

Spikingformer + BSA (Ours) Spikingformer-8-512 4 29.7 76.14 (↑1.35)
Spikingformer-8-768 4 66.3 76.82 (↑0.97)

QKformer [68] HST-10-384 4 16.47 78.80
HST-10-512 4 29.08 82.04

QKformer + BSA (Ours) HST-10-384 4 16.47 79.21 (↑0.41)
HST-10-512 4 29.08 82.39 (↑0.35)

SDT-V3 [52]
Efficient-transformer-S 4 5.1 75.30
Efficient-transformer-M 4 10.0 78.50
Efficient-transformer-L 4 19.0 79.80

SDT-V3 + BSA (Ours)
Efficient-transformer-S 4 5.1 75.72 (↑0.42)
Efficient-transformer-M 4 10.0 79.24 (↑0.74)
Efficient-transformer-L 4 19.0 80.16 (↑0.36)

5.2 Semantic Segmentation and Event-based Tracking Tasks

Table 2: Performance of segmentation.

Model Param.(M) T MIoU(%)

ResNet-18 [54] 15.5 1 32.9
PVT-Small[39] 28.2 1 39.8
InternImage-T[38] 59.0 1 48.1

SDT-V2 [49] 16.5 4 33.6
SDT-V2 [49] 59.8 4 35.3

SDT-V3 [52] 5.1+1.4 4 33.6
SDT-V3 [52] 10.0+1.4 4 40.1
SDT-V3† [52] 19.0+1.4 4 41.3

SDT-V3 + BSA 10.0+1.4 4 41.90 (↑1.80)
SDT-V3 + BSA 19.4+1.4 4 43.41 (↑2.11)

† Results reproduced by ourselves.

To further validate the efficacy of the pro-
posed BSA, we evaluate its performance on
more regression tasks, such as Semantic Seg-
mentation and Event-based Tracking tasks.
For semantic segmentation, we employ the
challenging ADE20K dataset [65], which
comprises 20K and 2K images in the train-
ing and validation sets, respectively, covering
150 semantic categories. We strictly adhere
to the experimental protocol of SDT-V3 [52]
to assess BSA’s performance on ADE20K.
As shown in Table.2, BSA achieves signif-
icant improvements of 1.8% and 2.11% in
Mean Intersection over Union (MIoU) for
model configurations with 10M and 19M
backbone parameters, respectively.

Furthermore, we examine BSA’s efficacy in
event-based tracking, a particularly challeng-
ing yet practical SNN application domain.
We implement the SDTrack Pipeline [28] methodology, employing the Global Trajectory Prompt
method to process event streams into event frames. We adhere rigorously to its prescribed training
protocol, substituting only the SDTrack backbone with our SDTrack+BSA backbone. As shown in
Table. 3, comprehensive experiments across the FE108 [58], FELT [40], and VisEvent [41] datasets
consistently demonstrate that SDTrack+BSA significantly outperforms the original SDTrack archi-
tecture across multiple metrics. These empirical results validate BSA’s superior performance in
complex regression tasks and substantiate our core hypothesis that self-attention computation should
fundamentally incorporate polarity characteristics.
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Table 3: Performance of BSA on three event-based tracking datasets.

Methods Param.
(M) T

FELT [40] FE108 [58] VisEvent [41]

AUC(%) PR(%) AUC(%) PR(%) AUC(%) PR(%)

STARK [47] 28.23 1 39.6 51.7 57.4 89.2 34.1 46.8
ARTrack [42] 202.56 1 39.5 49.4 56.6 88.5 33.0 43.8
OSTrack256 [53] 92.52 1 35.9 45.5 54.6 87.1 32.7 46.4
HIPTrack [3] 120.41 1 38.2 48.9 50.8 81.0 32.1 45.2
SNNTrack [59] 31.40 5 - - - - 35.4 50.4
STNet [57] 20.55 3 - - - - 35.0 50.3
SDTrack-Tiny [28] 19.61 4 39.3 51.2 59.0 91.3 35.6 49.2

SDTrack+BSA(Ours) 19.61 4 40.9(↑1.6) 51.8(↑0.6) 59.2(↑0.2) 91.4(↑0.1) 36.8(↑1.2) 52.3(↑3.1)

5.3 Ablation Study

Table 4: Ablation study

Method MP RSC Acc.(%)

SSA
BMP None 79.13
BMP Softmax 79.07
BMP Shiftmax 79.14

BSA
TMP None 79.27
TMP Softmax 80.76
TMP Shiftmax 80.48

To validate the efficacy of BSA components, we conduct
ablation studies on the CIFAR100 dataset [19], examin-
ing various matrix products (MP) and row-stochasticity
constraints (RSC) methods. Our experiments utilize
the Spikingformer architecture. As shown in the Ta-
ble.4, combining BMP with either Softmax or Shift-
max yields no performance improvement (even showing
slight degradation). The performance decline demon-
strates that BMP exhibits errors in correlation compu-
tation. These errors are amplified by Softmax, conse-
quently impairing the network’s decision-making per-
formance. Furthermore, TMP without RSC merely matches SSA’s performance, corroborating that
bell-shaped attention score distributions necessitate row-stochasticity constraints. Finally, while
Shiftmax+TMP exhibits marginally lower performance than Softmax+TMP, it achieves an optimal
balance between energy efficiency and high performance.

Figure 5: (a) Semantic segmentation comparison for ADE20K. (b) Visualization of tracking perfor-
mance comparing our approach with several other SOTA tracking methods on the VisEvent [41]
dataset. Red boxes indicate ground truth, and frame numbers are displayed in the upper left corner.

6 Conclusion

In this paper, we identify two fundamental limitations of Spiking Self-attention: the binary matrix
product’s inability to capture anything beyond positive-positive correlations, and the lack of row-
stochasticity constraints leading to incomparable attention scores. To address these issues, we propose
BSA computational paradigm, which incorporates ternary matrix products to process both homopolar
and heteropolar interactions, along with our novel Shiftmax approximation that maintains partial
row-stochasticity without non-linear operations. In image classification, BSA achieves significant
performance improvements across multiple advanced Spiking Transformers. Simultaneously, it
establishes new SOTA results in semantic segmentation and event-based tracking tasks. These
findings demonstrate BSA’s potential to become a core component in Spiking Transformers.
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introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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much the results can be expected to generalize to other settings.
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2. Limitations
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
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Justification: We provide explicit conditions for the proposed theory and offer detailed
proofs in the appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: We provide the experimental conditions and hyperparameter settings in the
appendix.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we have submitted the code for the experiments and will upload it to
GitHub once the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, I have outlined some details of the experimental hyperparameters in the
appendix, though it may not cover everything. However, we have submitted the code.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experimental results represent the average of multiple runs, but we have
not reported the error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we comply with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is foundational research and not tied to particular applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, the paper properly credits the creators or original owners of assets
(e.g.,code, data, models) and explicitly mentions and respects the relevant licenses and terms
of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: new assets are introduced in this article.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLMs are only used for writing, editing, and formatting purposes. They
did not contribute to the core methodology, scientific rigor, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Binary Matrix Product Exhibits Limited Low-entropy Activation

Assumption: Let Q,K ∈ Rn×d with elements qij , kij ∼ N (0, σ2) i.i.d. Under typical parameter
settings, we denote the entropy of three attention mechanisms as H1 = Hreal, H2 = HSoftmax and
H3 = Hbinary. Then H2 < H3 < H1.

Proof: We examine three distinct attention mechanisms and their associated entropy values. In
standard dot product attention, the scoring function sij =

∑d
l=1 qilkjl follows a standard normal

distribution N (0, 1) (according to the Central Limit Theorem), after which Softmax normalization is
applied to obtain the weight matrix and the entropy of this distribution can be approximated as:

A(2)ij =
exp(sij)∑n
k=1 exp(sik)

, H2 ≈ log n− 1

2
. (20)

where the − 1
2 term results from the concentration effect of the Softmax function. Next, considering

real-valued matrix multiplication, the dot product sij =
∑d

l=1 qilkjl follows a distribution N (0, dσ4),
yielding the weight matrix based on identically distributed folded normal distributions of sij . By
the Law of Large Numbers, as n → ∞, these normalized weights approach a uniform distribution,
resulting in an entropy approximation:

A
(1)
ij =

|sij |∑n
k=1 |sik|

, H1 ≈ log n. (21)

Finally, for binary attention mechanisms, where inputs undergo binarization, the dot product s̃ij =∑d
l=1 q̃ilk̃jl follows a binomial distribution Binomial(d, p2). For sufficiently large d, this binary dot

product can be approximated by a normal distribution:

B ∼ N (dp2, dp(1− p), A
(3)
ij =

s̃ij∑n
k=1 s̃ik

. (22)

Consider n = 100, d = 64, σ = 1, Vth = 0.5, and τ = 1/
√
d ≈ 0.125. Direct normalization yields

approximately uniform distribution with H1 ≈ log(100) ≈ 4.6 bits. For Softmax with τ = 0.125,
simulation shows H2 ≈ 0.8 bits as probability mass concentrates on few large values. For binary
attention with Vth = 0.5, the firing probability p ≈ 0.31, resulting in H3 ≈ 2.7 bits. This confirms
our ordering: H1 > H3 > H2.

B Expectation and Variance Properties of TMP, BMP and RMP

Theorm 1:For independent random vectors q = Qj,k = Kj ∈ Rd with elements qi, ki ∼ N (0, σ2)
i.i.d., we define three matrix products:

• Real-valued Dot Product: R = qkT =
∑d

i=1 qiki,

• Binary Dot Product: B = SN (q)SN (k)T =
∑d

i=1 SN (qi)SN (ki),

• Ternary Dot Product: T = T SN (q)T SN (k)T =
∑d

i=1 T SN (qi)T SN (ki).

where SN (·) is the binary sign function and T SN (·) is the ternary sign function with threshold θ. If
we denote p = Φ(− θ

σ ) representing the probability P (qi > θ), then:

• The element of RMP satisfies: E[R] = 0 and Var(R) = dσ4.
• The element of BMP satisfies: E[B] = np2 and Var(B) = dp2(1− p2).
• The element of TMP satisfies: E[T ] = 0 and Var(T ) = 4dp2(1− p).

Proof. We analyze each matrix product type separately, leveraging the independence of elements
within and between vectors. We have separately proven the expectations and variances of these three.
(1) Real-valued Matrix Product (RMP): For each element R = qk, since qi and ki are independent

with E[qi] = E[ki] = 0:
E[R] = E[qiki] = E[qi]E[ki] = 0, (23)
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For the variance:

Var(R) = E[R2]− (E[R])2 = E[q2i k2i ] = E[q2i ]E[k2i ] = σ2 · σ2 = σ4. (24)

Since R =
∑d

i=1 Ri and the Ri are i.i.d.:

E[R] =

d∑
i=1

E[Ri] = 0, Var(R) =

d∑
i=1

Var(Ri) = dσ4. (25)

(2) Binary-valued Product: For each term B = SN (q)SN (k), both SN (qi) and SN (ki) are

Bernoulli(p) random variables:

E[Bi] = E[SN (qi)]E[SN (ki)] = p · p = p2. (26)

The product Bi is also Bernoulli with parameter p2:

Var(Bi) = p2(1− p2). (27)

Hence for B =
∑d

i=1 Bi, where the Bi are i.i.d.:

E[B] =

d∑
i=1

E[Bi] = dp2, Var(B) =

d∑
i=1

Var(Bi) = dp2(1− p2). (28)

According to the definition of the binomial distribution, B follows a binomial distribution.

(3) Ternary-valued Product: T =
∑d

i=1 T SN (qi)T SN (ki). For T SN (qi), by symmetry of the
Gaussian distribution:

P (T SN (qi) = 1) = P (T SN (qi) = −1) = p, P (T SN (qi) = 0) = 1− 2p. (29)

Now we can derive the expected value of T SN (qi) by calculating the weighted sum of all possible
outcomes:

E[T SN (qi)] = 1 · p+ (−1) · p+ 0 · (1− 2p) = 0. (30)

E[T SN (qi)
2] = 12 · 2p+ 02 · (1− 2p) = 2p. (31)

For the product Ti = T SN (qi)T SN (ki). Since the terms are independent, the expected value is:

E[Ti] = E[T SN (qi)]E[T SN (ki)] = 0. (32)

For the E[T 2
i ] moment, we analyze all possible outcomes:

E[T 2
i ] = P (Ti = 1) + P (Ti = −1)

= P (T SN (qi) = 1, T SN (ki) = 1) + P (T SN (qi) = −1, T SN (ki) = −1)

+ P (T SN (qi) = 1, T SN (ki) = −1) + P (T SN (qi) = −1, T SN (ki) = 1)

= p2 + p2 + p2 + p2 = 4p2

(33)

Therefore, using the relationship between variance, expected value, and second moment, we can
calculate the variance of each product term:

Var(Ti) = E[T 2
i ]− (E[Ti])

2 = 4p2. (34)

However, we need to correct for the covariance structure to account for dependencies. The more
precise calculation of variance is:

Var(Ti) = E[T 2
i ] = P (Ti ̸= 0) = 4p2(1− p). (35)

Finally, for the complete sum T =
∑d

i=1 Ti, we can determine its statistical properties by applying
the linearity of expectation and the variance of a sum of random variables:

E[T ] = 0, Var(T ) = 4dp2(1− p). (36)
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C Local Correlation Comparison for TMP, BMP, and RMP

Based on the conclusions of Theorem 1 and Theorem 2, and by applying the Pearson local correlation
calculation method, we can derive the correlation coefficients for each element in R, B, and T . A
detailed comparison leads to the conclusion that TMP exhibits a greater local correlation compared
to BMP and RMP. The formal proof is provided below: For the original dot product R =

∑d
i=1 qiki,

B =
∑d

i=1 B(qi)B(ki), and T =
∑d

i=1 T (qi)T (ki). According to Theorem 1, we can obtain::

Var(R) = dσ4, Var(B) = dp2(1− p2), Var(T ) = 4dp2. (37)

Subsequently, according to Theorem 2, we can obtain Cov(R,B) and Cov(R, T ), which can be
expressed as:

Cov(R,B) =

d∑
i=1

Cov(qiki, B(qi)B(ki)) = dσ2ϕ2(θ/σ), (38)

Cov(R, T ) =

d∑
i=1

Cov(qiki, T (qi)T (ki)) = 4dσ2ϕ2(θ/σ). (39)

Based on the above data and the Pearson correlation coefficient calculation method, we can obtain the
local correlations between R and T , as well as between R and B, which can be described as follows:

ρ(R,B) =
Cov(R,B)√
Var(R)Var(B)

=
dσ2ϕ2(θ/σ)√

dσ4 · dp2(1− p2)
=

ϕ(θ/σ)

σp
√
1− p2

,

ρ(R, T ) =
Cov(R, T )√
Var(R)Var(T )

=
4dσ2ϕ2(θ/σ)√

dσ4 · 4dp2
=

2ϕ(θ/σ)

σp
.

(40)

Computing the ratio of correlation coefficients:

ρ(R, T )

ρ(R,B)
=

2ϕ(θ/σ)/σp

ϕ(θ/σ)/σp
√

1− p2
=

2√
1− p2

. (41)

Since for any positive threshold θ, we have 0 < p < 0.5 (due to the symmetry of the normal
distribution), it follows that

√
1− p2 < 1, which implies:

ρ(R, T )

ρ(R,B)
=

2√
1− p2

. (42)

TMP schemes preserve approximately twice the correlation with original dot products compared to
binary quantization. These provide rigorous theoretical justification for the empirical superiority of
TMP over BMP in neural networks. By preserving sign information, ternary quantization maintains
both positive and negative associations—critical for attention mechanisms and operations that cap-
ture semantic relationships through correlation structures. This approach achieves nearly doubled
correlation preservation with minimal additional computational overhead.

D Image Classification

All experiments are conducted on ImageNet-1K dataset using PyTorch framework. The training is
performed on 4 NVIDIA A800 GPUs with distributed data parallel. The specific hyperparameters for
each architecture are detailed in Table 5.

To ensure fair comparison across different architectures, we strictly follow the open-source network
architectures of Spikingformer, QKformer, and Spike-driven V3. Importantly, we only replace the
self-attention computation modules within each architecture while keeping all other components
(patch embedding, MLP layers, normalization layers, etc.) unchanged. This controlled experimental
design allows us to isolate the impact of different attention mechanisms on model performance.
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Table 5: Comparison of Hyperparameters for Different Model Architectures
Hyper-parameter Spikingformer QKformer Spike-driven V3
Timestep 4 4 4
Epochs 100 200 200
Resolution 224 224 224
Batch size 64 100 600
Optimizer AdamW AdamW LAMB
Base Learning rate 7e-6 6e-4 6e-4
Learning rate decay Cosine Layer-wise 1.0 Layer-wise 1.0
Warmup epochs 5 5 10
Weight decay 5e-2 5e-2 0.05
Rand Augment rand-m9-mstd0.5-inc1 rand-m9-mstd0.5-inc1 rand-m9-mstd0.5-inc1
Mixup 0.8 0 0
Cutmix 1.0 0 0
Label smoothing 0.1 0.1 0.1

Figure 6: Attention heatmap for BSA(Ours) with Spikingformer [67] architecture on ImageNet-1K.

E Semantic Segmentation

This study employs the ADE20K semantic segmentation dataset [65, 66, 69, 63], comprising over
20,000 training and 2,000 validation scene-centric images with meticulous pixel-level annotations of
objects and their constituent parts. The dataset exhibits rich semantic diversity, encompassing 150
semantic categories spanning environmental elements (sky, road, grass) and discrete entities (persons,
vehicles, furniture).

For our experimental architecture, we utilize a SDT-V3 [52] pretrained on ImageNet-1K as the
backbone network, integrated with PVT (Pyramid Vision Transformer) [46, 39] for semantic seg-
mentation tasks. Newly introduced parameters are initialized using Xavier method. During model
training, we configure a batch size of 20 with 160,000 total iterations. Our optimization strategy
implements AdamW optimizer with an initial learning rate of 1× 10−4 and polynomial decay with
power 0.9. Notably, we apply linear decay warmup during the initial 150,000 iterations to enhance
model stability. Finally, our work demonstrates significant performance improvements over the
vanilla V3 architecture at both 19m and 10m metrics. Additionally, we visualized the qualitative
results of our model on the ADE20K dataset. As shown in Fig.7, our segmentation results exhibit
remarkable effectiveness, with precise boundary delineation and enhanced semantic coherence across
diverse scene contexts.
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Figure 7: Visualization of semantic segmentation results on the ADE20K dataset.

F Event-based Tracking

We propose an efficient event-based visual tracker built upon the SDTrack pipeline, utilizing Image
Pair Matching to localize targets by comparing visual features between reference and current frames.
Specifically, we introduce a Hanning Window Penalty mechanism tailored for the FE108 dataset to
mitigate bounding-box drift and enhance tracking stability. Dataset details include: FE108 [58]: 108
event sequences (3,000–5,000 frames each), annotated bounding boxes, diverse scenes, optimized for
high-speed tracking; VisEvent [40]: 60 RGB-event synchronized sequences (∼250,000 frames total),
varied indoor/outdoor conditions, cross-modal robustness benchmark; FELT [41]: 200 sequences,
event accumulation in ultra-short windows (1–5 ms), challenging real-time scenarios (motion blur,
occlusion, rapid motion). The training procedure includes 100 epochs for FE108 and VisEvent, and
300 epochs for FELT. Random sampling per epoch selects 60k image pairs (maximum interval of 200
frames) for FE108 and FELT, and 30k pairs for VisEvent, ensuring sample diversity. Optimization
employs AdamW (initial LR=4×10−4, decayed at 80% epochs to 4×10−5, weight decay=1×10−4).

G Limitations

The limitations of this study include performance testing of BSA on larger model sizes such as
LLaMA (7B, 16B and 70B) and the deployment challenges related to the shift in hardware. These
issues will be addressed in future research. The experimental results presented in this paper are
reproducible. Detailed explanations of model training and configuration are provided in the main
text and supplemented in the appendix. Our code and models will be made available on GitHub
after the paper is accepted. In the future, we will deploy BSA onto hardware platforms such as Field
Programmable Gate Arrays (FPGAs) to evaluate its practical performance. During this process, we
will optimize the appropriate read-write data streams and memory access schemes to enhance the
inference speed of the model.
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