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ABSTRACT

Recent research has revealed a trade-off between the robustness against adver-
sarial attacks and backdoor attacks. Specifically, with the increasing adversarial
robustness obtained through adversarial training, the model easily memorizes the
malicious behaviors embedded in poisoned data and becomes more vulnerable to
backdoor attacks. Meanwhile, some studies have demonstrated that adversarial
training can somewhat mitigate the effect of poisoned data during training. This
paper revisits the trade-off and raises a question whether adversarial robustness
really implies backdoor vulnerability. Based on thorough experiments, we find
that such trade-off ignores the interactions between the perturbation budget of
adversarial training and the magnitude of the backdoor trigger. Indeed, an ad-
versarially trained model is capable of achieving backdoor robustness as long as
the perturbation budget surpasses the trigger magnitude, while it is vulnerable to
backdoor attacks only for adversarial training with a small perturbation budget.
To always mitigate the backdoor vulnerability, we propose an adversarial-training
based detection strategy and a general pipeline against backdoor attacks, which
consistently brings backdoor robustness regardless of the perturbation budget.

1 INTRODUCTION

Recently, deep neural networks (DNNs) have achieved great success in computer vision (He et al.,
2016), natural language processing (Devlin et al., 2019), and gaming agents (Silver et al., 2016).
Since DNNs are gradually deployed in many safety-critical applications such as autonomous driving
(Ding et al., 2019) and smart healthcare (Ali et al., 2020), the security threats to them have aroused
tremendous attention (Papernot et al., 2018; Pitropakis et al., 2019; Hu et al., 2021). Among them,
adversarial attacks and backdoor attacks are remarkably dangerous. For example, it is well known
that DNNs are inherently vulnerable to adversarial examples (Szegedy et al., 2014; Goodfellow et al.,
2015), i.e., natural inputs superimposed with intentional and human-imperceptible perturbations to
lead to misclassification even with high confidence. Meanwhile, DNNs may learn some backdoor
behaviors (Gu et al., 2017; Chen et al., 2017), i.e., always predicting a target label in the presence of
a predefined trigger pattern, from poisoned samples hidden in training data (Goldblum et al., 2020)
collected from Internet.

Since DNN-based systems may face security threats at any time, e.g., backdoor attacks in training
time and adversarial attacks in testing time, it is urgent to obtain robustness against all potential
attacks. We illustrate both types of threats with a toy example in Figure 1. Unfortunately, Weng et al.
(2020) indicated there exists a trade-off between adversarial robustness and backdoor robustness.
Specifically, with the increasing adversarial robustness, adversarially trained DNNs easily memorize
the backdoor behaviors embedded in poisoned data and become more vulnerable to backdoor attacks
compared to the normally trained ones. However, recent studies indicated that adversarial training
(AT) can mitigate the impact from some malicious or corrupted data, which seems to conflict with
such a trade-off. For example, Peri et al. (2020) claimed that adversarially trained feature extractors
yield robust features resistant against clean-label data poisoning attacks such as feature collision
attacks (Shafahi et al., 2018) and convex polytope attacks (Zhu et al., 2019) in the transfer learning.
Zhu et al. (2021) indicated that AT encourages DNNs to be locally constant in the neighborhood of
correct data and prevents them from memorizing the corrupted labels. Thus, this paper raises the
following questions: Does adversarial robustness really imply backdoor vulnerability? If not, under
what condition will the trade-off exist?
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Figure 1: A toy example to illustrate the security threats when encountered with backdoor attacks
and adversarial attacks. An adversary performs backdoor attacks by planting a predefined trigger (a
checkerboard pattern at the bottom right) in a small portion of training samples in bird class. The
test samples will be wrongly classified as birds whenever the presence of the trigger. Meanwhile, the
adversary performs adversarial attacks by adding imperceptible perturbations to mislead the model
to classify the ship picture as the airplane class.

This paper revisits the trade-off between adversarial robustness and backdoor robustness to answer
the questions. We conduct extensive experiments across different settings (including varying poi-
soning rates and types, trigger shapes and sizes, and architectures) and find that such a trade-off
ignores the intersection between the perturbation budget of AT (e.g., the maximum perturbation size
ε in the l∞ threat model) and the magnitude of the trigger (e.g., the transparency of a predefined
trigger). The trade-off only occurs when the perturbation budget of AT is relatively small and the
magnitude of the trigger is large enough. In fact, as long as the perturbation budget of AT surpasses
the trigger magnitude, AT can prevent models from learning the backdoor behaviors from poisoned
data and improve backdoor robustness. Further, to ensure backdoor robustness regardless of the
perturbation budgets in AT, we explore the geometric property of training data when AT results in
backdoor vulnerability (smaller perturbation budgets). We find it requires more steps to generate
adversarial example from poisoned data using projected gradient descent (PGD) to fool the model,
which indicates that poisoned data are farther away from the decision boundary than clean data. In-
spired by such findings, we propose a novel backdoor detection method termed PGD defense, which
effectively distinguishes between poisoned data and clean data. In conclusion, the contributions of
this paper can be summarized as follows:

• We empirically demonstrate that the trade-off claim between backdoor and adversarial robustness
is not strictly correct and investigate the specific conditions under which adversarial training will
benefit or hurt backdoor robustness.

• We propose a backdoor detection method enlightened with the geometric property of training
data in adversarial training and demonstrate the proposed method in comparison to other baseline
detection methods.

• We propose a general pipeline of adversarial training against backdoor attacks and achieve both
high adversarial and backdoor robustness at the same time .

2 BACKGROUND

2.1 ADVERSARIAL TRAINING

We consider a K-class classification problem on the d-dimensional input space and denote fθ :

Rd → {0, 1}K as the target function to be optimized. Given a dataset D = {(xi, yi)}ni=1 and a loss
function L (usually the cross entropy loss), AT optimizes the adversarial loss which is defined as the
worst case in the lp-ball centered at the original training data. The learning objective is

min
θ

n∑
i=1

max
x′i∈Bp(xi,ε)

L(fθ(x
′
i), yi), (1)
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in which Bp(xi, ε) :=
{
x′i ∈ Rd : ||x′i − xi||p ≤ ε

}
. To approximately solve the inner maximization

problem, Madry et al. (2018) adopted PGD on the negative loss function:

x
(t)
i = ΠBp(x

(t−1)
i ,ε)

[
x
(t−1)
i + β · sign(5xL(fθ(x

(t−1)
i ), yi))

]
, (2)

where Π denotes the projection onto the convex set Bp(x(t−1)i , ε), β is the step size of each iteration
step and t is the current iteration step.

A corpus of follow-up work has been proposed to improve the standard AT from their own perspec-
tives and demonstrated the effectiveness (Zhang et al., 2019; Qin et al., 2019; Carmon et al., 2019;
Zhang et al., 2020; Wu et al., 2020). Also, another stream of works explored the potential benefits
of AT beyond lp-ball robustness (Peri et al., 2020; Kim et al., 2020; Salman et al., 2020; Xie et al.,
2020; Kireev et al., 2021; Zhu et al., 2021). Our work belongs to the second category. Specifically,
we study how we can benefit backdoor robustness using AT.

2.2 BACKDOOR ATTACK

Accessible to the benign samples used for model training, an adversary performs backdoor attacks
by poisoning a small portion of training data so that the presence of a backdoor trigger will elicit the
model’s specific predictions as the adversary expects (Goldblum et al., 2020). The poisoned sample
x̃ is generated according to the following formula:

x̃ = (1−m)� [(1− α)x+ α · p] +m� x, (3)

where � is the element-wise multiplication, p ∈ Rd is the predefined trigger pattern, m ∈ {0, 1}d
is a binary mask deciding the trigger injecting region and α ∈ (0, 1] is a transparency parameter
concerned with the visibility of the trigger pattern.

Based on the primary backdoor attack, several improvements have been proposed to enhance the
effectiveness and stealthiness, such as invisible backdoor attacks (Chen et al., 2017; Turner et al.,
2019; Alayrac et al., 2019; Saha et al., 2020; Ning et al., 2021) and sample-specific attacks (Nguyen
& Tran, 2020; Li et al., 2020b). To the best of our knowledge, all these works adopt standard
training to obtain victim models. Our work intends to investigate the effect of adversarial training
on backdoor attacks.

2.3 BACKDOOR DEFENSE

One family of approaches to alleviate backdoor attacks is identifying backdoor models with trigger
reconstruction (Wang et al., 2019a; Chen et al., 2019; Guo et al., 2019; Wang et al., 2020). These
methods draw inspirations from the observations that the perturbation cost for perturbing an image
to the target class is the smallest out of all labels. Another strategy tackles the threat by removing
backdoor behavior from the already trained victim models, such as pruning neurons that are dormant
on clean inputs (Liu et al., 2018) or fine-tuning the model on a clean dataset (Chen et al., 2021; Liu
et al., 2021).

In this paper, we mainly focus a more direct strategy to eliminate backdoor attacks by identifying
and removing the triggered data in training samples. The simplest way to achieve this is outlier
detection in the input space (Steinhardt et al., 2017; Diakonikolas et al., 2019). While these methods
are effective in low-dimensional domains, they may fail in complex domains, e.g., an image for a
pixel space can not convey enough semantic information (Goldblum et al., 2020). Recent works
have explored the latent feature representations and improve the detection performance. Chen et al.
(2018) analyzed the neural activation and proposed a clustering method to identify the corrupted
inputs. Tran et al. (2018) utilized the spectral signatures from learned representations to detect and
remove the poisoned data. We will show that our work leads to a novel detection strategy based on
AT.
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3 EVALUATION OF BACKDOOR VULNERABILITY UNDER AT

In this section, we conduct extensive experiments to explore how adversarial training (AT) impacts
on backdoor robustness. Here, we consider the common cases where the adversary only has access
to poison some training data1, and the poisoning paradigm can be found in Eq. (3).

The Limitations of Previous Research. Although Weng et al. (2020) indicated a trade-off between
adversarial robustness and backdoor robustness, their findings are only based on experiments which
perform adversarial training with a fixed perturbation budget (ε = 8/255 on CIFAR-10 under l∞)
and a fixed magnitude of the trigger (the trigger transparency 1.0). Note that the perturbation budget
of AT represents the prediction invariance level within the neighbour of clean data, while the magni-
tude of the trigger represents the perturbation size applied to natural data to lead to misclassification
by the adversary. Thus, the intersection between them matters in robustness obtained after training.

(a) Clean (b) 3× 3 checker-
board (α = 0.2)

(c) 3× 3 checker-
board (α = 1.0)

(d) 3 × 3 random
(α = 0.2)

(e) 3 × 3 random
(α = 1.0)

(f) 2 × 2 checker-
board (α = 0.2)

(g) 2× 2 checker-
board (α = 1.0)

(h) Blended (α =
0.05)

(i) Blended (α =
0.2)

(j) Label consis-
tent

Figure 2: Examples of poisoned images in bird class. (a) is the original image. (b)–(j) are the
poisoned ones with different types of triggers.

Experimental Settings. To explore the intersection between the perturbation budget and the trig-
ger magnitude, we use varying perturbation budget ε of AT from 2/255 to 16/255, and varying
transparency α from 0.2 to 1.0. Besides, we train models in common settings: The normally and
adversarially trained ResNet-18 (He et al., 2016) models are obtained using an SGD optimizer with
the momentum 0.9, the weight decay 5 × 10−4, and the initial learning rate 0.1 which is divided
by 10 at the 60-th and 90-th epochs. To craft adversarial examples, we apply PGD attack, where
the step size is 2/255 and the number of steps is 10. To inject backdoor behaviors, we apply the
clean label setting, where only data belonging to the target class are poisoned, following Weng et al.
(2020) and the trigger pattern is a 3× 3 checkerboard as shown in Figure 9. The target label is class
2 (bird) and the poisoning rate is 5% (250/5000). For simplicity, we refer to this as the basic setting.

3.1 DOES AT REALLY IMPLY BACKDOOR VULNERABILITY?

Figure 3(a) visualizes how the attack success rate (ASR) varies with respect to different perturbation
budget ε in the basic setting, where ASR is the ratio of triggered samples that are misclassified as
the target label, indicating the backdoor vulnerability. The corresponding clean accuracies can be
found in Appendix B.

Small Perturbation Budget Strengthens Backdoor Vulnerability. In Figure 3(a), for the fixed
trigger transparency α = 0.6 (the blue line), as long as the perturbation budget of AT is not too large

1There are also some scenarios where the adversary can control the whole training process (Li et al., 2020a;
Pang et al., 2020), which only occurs in outsourcing training in untrustworthy third parties or pretrained models
from unknown sources.
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(0 ≤ ε ≤ 8/255), the ASR always increases when we adversarially train models on the poisoned
training set. This is consistent with the findings in previous research (Weng et al., 2020), that is,
we obtain adversarial robustness at the cost of the drop in backdoor robustness. It is interesting
that within this range with small budgets (≤ 8/255), the ASR continues to increase when we use
slightly larger budgets. For an extremely small transparency α = 0.2 (the red line), we still can
observe similar trends within a smaller range (ε < 0.05/255) as shown in Figure 4(b). Overall, we
can always find small budgets of AT strengthens backdoor vulnerability.

Large Perturbation Budget Mitigates Backdoor Vulnerability. Here, we enlarge the perturbation
budgets. When the perturbation budget exceeds a certain threshold (ε = 8/255 for α = 0.6),
AT significantly decreases ASR and improves the backdoor robustness in Figure 3(a). This is the
neglected part by previous research (Weng et al., 2020). In addition, the larger the budget is, the
more robust (against backdoor attacks) the model is. For an extremely large transparency α = 0.8
or 1.0, we are still able to decrease the ASR to a low value with a much larger perturbation budget
(ε = 24/255) as shown in Figure 4(a).

An Intuitive Understanding on the Intersection. As indicated in Ilyas et al. (2019), the adversari-
ally trained model learns robust features (predictive and robust) and ignores the non-robust features
(predictive yet brittle). Since the backdoor trigger is usually difficult to modify by small adversarial
perturbations, it can be regarded as a robust feature. As a result, AT helps model learn the backdoor-
related feature. Besides, the normally trained model relies on both robust and non-robust features,
while the adversarially trained model only relies on robust features, letting the backdoor-related ro-
bust feature contributes more in AT. However, as the perturbation budget exceeds some threshold
and is able to modify the trigger pattern, the backdoor trigger becomes a non-robust feature instead.
Thus, AT hinders the model from learning the backdoor-related feature.

3.2 THE CONSISTENCY OF THE EXPERIMENTAL RESULTS

To verify whether the phenomenon above is common, we conduct experiments across different
settings, including poisoning rates (see Figures 3(b)–3(c)), poisoning types (see Figure 3(f)), trigger
patterns (see Figure 3(d)), trigger sizes (see Figure 4(b)), architectures (see Figure 3(g)) and target
classes (see Figure 3(h)). Besides, we also explore the interactions between AT and other advanced
backdoor attacks including the blended backdoor attack (Chen et al., 2017) and the label-consistent
attack (Turner et al., 2019) in Figures 4(c)–4(d). Specifically, the blended backdoor attack blends
benign data with a predefined Gaussian noise pattern, while the label consistent attack leverages the
adversarial perturbations to improve the attack efficiency. We find: (i) AT is able to strengthen the
backdoor vulnerability when the perturbation budget is small; (ii) as long as the perturbation budget
exceeds a specific threshold, AT always prevents models from learning the backdoor behaviors and
consistently improves the backdoor robustness, which is neglected by previous research (Weng et al.,
2020). More details about the experimental settings can be found in Appendix A.

4 AT-BASED DETECTION FOR POISONED DATA

As mentioned above, AT is only able to prevent models from learning backdoor behaviors when
the perturbation budget is large enough. Unfortunately, AT strengthens backdoor vulnerability with
small budgets instead, which brings severe security threats to practical scenarios. In this section, we
try to propose an efficient defense strategy in the latter situation.

Differently from ST, the inner-loop optimization of AT generates adversarial data by maximizing the
adversarial loss with PGD iterations. Thus the number of PGD steps is crucial for both the training
samples and final models. One category of works has been devoted to investigating the effect of
PGD steps on the model’s convergence (Wang et al., 2019b) and robustness (Zhang et al., 2020;
2021), while another work utilized the PGD steps to determine whether a sample is difficult or easy
to learn for current models (Zhang et al., 2021; Zhu et al., 2021). Inspired by this, we investigate
the number of steps required to successfully attack poisoned samples (i.e., fooling DNN to predict
different from the annotation) during AT.

We apply the minimum number of steps for a successful attack to investigate the geometric property
of training data: Given a model (that might be a checkpoint during training) and a sample, we count
the minimum number of steps required to make DNN predict different from its annotation without
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Figure 3: Attack success rates of adversarially and normally trained models. ε = 0 means standard
training. (a) is the results of basic settings. (b) and (c) are the results with varying poison rates. (d)
and (e) are the results with different triggers. (f) is the result with poisoning samples not restricted
to the target class. (g) is the result when replacing the ResNet-18 with VGG16 network (Simonyan
& Zisserman, 2014). (h) is the result when replacing the target bird class with ship class.
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Figure 4: (a) and (b) are the comparisons with larger or smaller budget ε in basic settings. (c) and
(d) are the results of blended attacks and label-consistent attacks.

any lp norm restriction, i.e., ‖x − x′‖p ≤ ε2, since we want every sample from training data to be
attacked successfully after several steps. The detailed description is in Algorithm 1.

Algorithm 1 The Minimum Number of Steps

Input:
training data D = {(xi, yi)}ni=1, evaluation step size β, loss function L, classifier fθ;

Output:
PGD steps {τi}ni=1;

1: for (xi, yi) ∈ D do
2: τi ← 0;
3: while f(xi) = yi do
4: xi ← Π[0,1]d [xi + β · sign(5xL(fθ(xi), yi))] ;
5: τi ← τi + 1;
6: end while
7: end for
8: return {τi}ni ;

Experimental Settings for Minimum Number of Steps. We adopt the basic attack in Eq. (3) with
α = 1.0 and the 3 × 3 checkerboard trigger. We poison 10% of samples (500 images) belonging

2We still project the generated image into the valid pixel space [0, 1]d.
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(a) ε = 8/255, α = 1.0 (backdoor robustness ↓)
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(b) ε = 12/255, α = 1.0 (backdoor robustness ↓)
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(c) ε = 8/255, α = 0.2 (backdoor robustness ↑)
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(d) ε = 8/255, α = 0.2, blended attacks (backdoor robustness ↑)

Figure 5: The density statistics of PGD steps for clean and poisoned samples.

to the class “bird” (class 2) with the trigger. Other settings for adversarial training are the same as
the basic setting in Section 3. With the fixed step size 2/255, we record and visualize the minimum
number of steps to successfully attack the input sample as shown in Figures 5(a) and 5(b). We find
that when AT (ε = 8/255, 12/255) strengthens the memorization of distinct triggers (α = 1.0), the
minimum number of steps to attack poisoned samples are significantly larger than those to attack
clean samples. This is because, in our opinion, the adversarially trained model memorizes trigger
pattern better, which brings more difficulties to craft an adversarial examples based on them to fool
the model. Moreover, after several epochs (e.g., 10 epochs), this phenomenon exists across the
entire training process. Meanwhile, we also find that when AT mitigates backdoor vulnerability,
the minimum number of PGD steps is unable to identifying poisoned samples (see Figures 5(c) and
5(d)) anymore. Fortunately, adversarial training can mitigate indistinct backdoor triggers as shown
in Section 3. More experiments about the minimum number of steps can be found in Appendix D.

PGD Defense. Here, we propose a detection strategy termed PGD defense. As discussed above,
samples required more steps are believed to be poisoned and should be filtered out before fed into
the final training. Specifically, we first adversarially train a model based on untrusted samples until
a predefined epoch (T epoch) as the warm-up phase. Then we calculate and record the minimum
number of steps to attack each training sample with the current model. Following previous backdoor
detection works (Tran et al., 2018; Chen et al., 2018), we remove 1.5p ·n (p is the poison rate and n
is the number of total samples) samples with the largest PGD steps. The whole procedure of PGD
defense is summarized in Algorithm 2.
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To demonstrate the effectiveness, we compare the proposed PGD defense with other detection meth-
ods: PCA defense (Tran et al., 2018) and clustering defense (Chen et al., 2018). In PGD defense, we
use ε = 8/255 in AT in the warm-up phase with T = 20 and β = 2/255 to evaluate PGD steps. All
the baseline methods are executed based on the official open-source implementations with default
parameters. In experiments, we varied the poison rate and transparency parameter to observe the
detection results under different conditions. Table 1 shows the detection results in various settings,
from which we find that PGD defense achieves comparable performance to state-of-the-art detection
methods.

Algorithm 2 PGD defense.

Input:
training data D = {(xi, yi)}ni=1, perturbation size ε, loss function L, batch size B, evaluation
step size β, poison rate p, warm-up epoch T , classifier fθ;

Output:
Purified training data D′;

1: θ ← θ0, t← 0;
2: while t < T do
3: Sample a mini-batch data {xi, yi}Bi=1 from D;
4: Compute adversarial data {x̃i, yi}Bi=1 according to Eq. (2);
5: Update θ ← θ − 1

B

∑B
i=15θL(fθ(x̃i), yi);

6: t← t+ 1;
7: end while
8: Compute the PGD steps {τi}ni with fθ and β according to Algorithm 1;
9: D′ ← D \{1.5p · n samples with greatest τi values};

10: return D′;

Table 1: The comparison of detection results with other baseline detection methods. “732/750”
means 732 poisoned samples are removed among total 750 poisoned samples.

Poison rate α PCA defense Clustering defense PGD defense
20% 1.0 1000/1000 1000/1000 1000/1000
15% 1.0 750/750 750/750 732/750
10% 1.0 500/500 500/500 500/500
5% 1.0 250/250 250/250 217/250
20% 0.8 1000/1000 1000/1000 1000/1000
15% 0.8 749/750 748/750 747/750
10% 0.8 500/500 500/500 500/500
5% 0.8 132/250 85/250 170/250

The Pipeline of Adversarial Training against Backdoor Attacks. To tackle both the adversarial
and backdoor risks, we propose a two-phase pipeline of adversarial training against backdoor attacks
regardless of the trigger magnitude. In the first phase, we first use AT to acquire a detection model
and then apply PGD defense to remove the poisoned samples. In the second phase, we retrain
the purified training set with AT to achieve both high adversarial and backdoor robustness. We
explain the rationality of such design: if AT strengthens backdoor attacks, the poisoned samples
are effectively removed in the first phase and if not, adversarial retraining will mitigate backdoor
vulnerability in the second phase although a small portion of benign samples are wrongly removed
in the first phase.

Comparisons with Adversarial Training and Standard Training. The evaluation criteria include
three aspects: the clean accuracy (available for normal usage), adversarial accuracy (the ability
to defend adversarial attack) and attack success rate (the ability to defend backdoor attack). We
conducted experiments using basic attacks (Eq. (3)) with α = 1.0 (distinct triggers) an α = 0.2
(indistinct triggers) to ensure the practicality of the proposed pipeline when we know nothing about
the backdoor attacks. The first and second phase in the pipeline both adopt ε = 8/255 adversarial
training. The adversarial accuracy is evaluated with ε = 8/255 PGD attacks. The results are summa-
rized in Figure 7. We observe that although AT obtains higher adversarial robustness compared with
ST, AT strengthens backdoor vulnerability when the trigger magnitude is large (α = 1.0). For our
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Figure 6: The pipeline of adversarial training against backdoor attacks.
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Figure 7: Experimental results of standard training, adversarial training and our pipeline.

pipeline, we find that when the trigger magnitude is large (α = 1.0), the first phase of the pipeline
can effectively remove the poisoned samples and when the trigger magnitude is small (α = 0.2), the
second phase of the pipeline can completely mitigate backdoor behaviors although the first phase is
ineffective. Therefore our pipeline achieves high adversarial and backdoor robustness at the same
time. More results can be found in Appendix C.

5 CONCLUSION

In this work, we delved into the interactions between adversarial training and backdoor attacks. We
first challenged the trade-off between adversarial and backdoor robustness and conducted compre-
hensive experiments to investigate the conditions under which the trade-off occurs. We found that
adversarial training indeed mitigates backdoor attacks as long as the perturbation budget suppresses
the trigger distinctness. Then we focused on the circumstances that adversarial training strengthens
backdoor attacks and leverage the number of PGD steps for successful attacks to detect poisoned
samples. Finally, we proposed a general pipeline of adversarial training against backdoor attacks
regardless of the trigger pattern.
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ETHICS STATEMENT

We have known that DNNs are usually built by harvesting data from unverified sources and thus
the adversary may perform poisoning based attacks. Our work considers one stream of extensively
studied attacks named as backdoor attacks and propose a general adversarial training based pipeline
against backdoor attacks. Our method will benefit both backdoor and adversarial robustness and we
hence do not find any potential harmful insights for the whole society. Also, the datasets used in our
experiments are public and do not involve privacy or copyright concerns.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments, we have uploaded the source code as a zip file.
Almost all the experiments can be reproduced with the code except the baseline backdoor detection
methods which can be executed with the authors’ open source implementations. Besides, we also
include the running commands and required packages.
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A MORE IMPLEMENTATION DETAILS ON BACKDOOR ATTACKS

Experiments on blended attacks. We generate a random trigger pattern r ∈ [0, 1]d with the same
size as the original image and then blend both with a mixing weight α. We train a ResNet-18 model
with poisoning 5% samples in bird class and vary α from 0.05 to 0.2 . Other training details such as
epochs and learning rates are the same as basic settings.

Experiments on label-consistent attacks. We first train a robust ResNet-18 model with AT. We
set the perturbation bound ε = 8/255 and step size 2/255. The total epochs is 120 and the initial
learning rate is 0.1 which is divide by 10 in epoch 60 and 90. Then we add the adversarial perturba-
tions generated by the robust model to the original images with PGD attacks. To execute stealthier
attacks, we perturb the original pixel with the backdoor trigger amplitude 16/255 (Turner et al.,
2019). Other details such as poison rates and the final training procedures are the same as basic
settings.

B CLEAN ACCURACIES OF THE VICTIM MODELS

We visualize the clean accuracies involved in our experiments in Figure 8 (corresponds to Figure 3).
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Figure 8: Clean accuracies of adversarially and normally trained models.

C MORE EXPERIMENTS ABOUT THE PROPOSED PIPELINE
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Figure 9: More experiments with our proposed pipeline.
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D MORE DENSITY STATISTICS OF PGD STEPS WITH ADVERSARIAL
TRAINING.

We also compute the PGD steps in more cases and the statistics of clean and poisoned samples are
always distinguishable whenever the backdoor attacks are strengthened (see Figure 10).
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(a) ε = 8/255, α = 1.0, poison rate=15% (backdoor robustness ↓)
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(b) ε = 8/255, α = 1.0, poison rate=20%, (backdoor robustness ↓)
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Figure 10: The density statistics of PGD steps for clean and poisoned samples.

14


