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Abstract

Large language models (LLMs) frequently
generate inaccurate responses — this can be
particularly dangerous in sensitive areas like
medicine and healthcare. Current methods for
detecting hallucinations involve sampling an-
swers multiple times, making them computa-
tionally intensive. In this study, we introduce
HALLUCHECK, a novel hallucination detec-
tion module that identifies factual elements or
atomic facts within a text. HALLUCHECK oper-
ates on the premise that responses to questions
probing factual answers should be consistent
both within a single LLM and across differ-
ent LLMs. To improve system robustness, we
incorporate a token-probability-based double-
check mechanism. For hallucinated facts, in-
consistencies or a lack of model confidence dur-
ing generation will be evident. We evaluate our
detection module on fact-based datasets such
as NQ_Open, HotpotQA, and WebQ, by build-
ing upon open-source LLMs such as LLaMa-2
(7B)-Instruct and Mistral-7B-Instruct. Finally,
we compare the generated output with the cor-
rect answers to determine sentence-level AUC-
ROC scores for hallucination detection. Our
results demonstrate that HALLUCHECK can (i)
detect hallucinated facts and (ii) achieve sig-
nificantly higher AUC-ROC scores compared
to existing baselines that operate under similar
conditions, specifically those that do not utilize
external databases for hallucination detection.

1 Introduction

Large Language Models (LLMs) (like GPT-4 (Ope-
nAl et al., 2024), PALM (Chowdhery et al., 2022)
among others) are well known for their excellent
text generation capabilities and are at the forefront
of NLP research (Zhao et al., 2023). However,
these models often produce information that ap-
pears plausible but is actually factually incorrect
or nonsensical termed as hallucination (Xu et al.,
2024). Studies ((Ji et al., 2023), (Huang et al.,
2023)) have categorized hallucination in multiple
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Figure 1: Atomic fact-based hallucination detection
through the Fact Alignment check of our pipeline. Each
fact is used to generate a question and the fact is regen-
erated by prompting the question to the LLM.

ways. For example, Ji et al. (2023) state that hallu-
cinations can be of two types, (i) intrinsic (outputs
that contradict source information) and (ii) extrin-
sic (outputs that are left unverified from the source
information). Moreover, extrinsic hallucination is
approached with caution due to its unverifiable na-
ture, which heightens the risk from a factual safety
perspective (Ji et al., 2023). Another way to catego-
rize hallucination is in terms of faithful or factual
hallucinations (Huang et al., 2023). Factuality in
hallucination highlights the gap between generated
content and verifiable real-world facts, usually ap-
pearing as factual inconsistencies or fabrications.
On the other hand, faithfulness in hallucination
refers to the deviation of generated content from the
user instructions or the context provided by the in-
put, as well as a lack of self-consistency within the
generated content. As studied by Xu et al. (2024),
hallucinations in LLMs are inevitable. Therefore,
it is imperative to detect hallucinations when they
occur, in order to minimize misinformation from
reaching the user accessing the LLM.

Several methods for detecting hallucinations
have been developed, falling into one or more
of these categories. Traditional approaches in-



volve intrinsic uncertainty metrics to identify the
parts of the output sequence where the model
has the least confidence (Yuan et al., 2021; Fu
et al., 2023). However, metrics such as token-
probabilities or information about the model’s in-
ternal parameters might not be available to the user
while using closed-source models such as Chat-
GPT!, Gemini® etc. Other approaches include
accessing databases to verify the truthfulness of
facts (Thorne et al., 2018b; Guo et al., 2022). How-
ever, facts can only be evaluated in relation to the
knowledge contained within the database. The
veracity of the facts outside the database would
not be checked. Additionally, some hallucina-
tion detection pipelines are restricted to particular
tasks such as abstractive summarization (Maynez
et al.,, 2020), machine translation (Dong et al.,
2020) among others. More recently, hallucination
detection has been performed through sampling-
based approaches (Manakul et al., 2023; Miindler
et al., 2024). While Manakul et al. (2023) rely on
stochastic sampling, Miindler et al. (2024) check
for internal-contradiction in the output provided
by the model. Given the stochastic nature of the
approach, the hallucination metric tends to be in-
consistent and, therefore, unreliable. Furthermore,
sampling multiple responses is computationally ex-
pensive (Manakul et al., 2023) as well. Moreover,
internal-consistency addresses only the faithfulness
aspect of hallucination and does not account for
factual hallucinations.

In this work, we propose a fact-based halluci-
nation detection method for LLMs. The method
leverages the LLM’s output itself to identify factual
inconsistencies without relying on external knowl-
edge sources. It combines the model’s internal
consistency and confidence scores to assess factu-
ality without requiring repeated sampling of the
same response. The approach focuses on capturing
factual information within the LLM’s response and
dynamically regenerates queries based on these fac-
tual claims to verify their accuracy. Moreover, the
pipeline is customized for each response and does
not require any training, making it user-friendly
and enhances ease of use. We illustrate the use of
our approach via the example in Figure 1, where the
steps are highlighted to show how we perform the
Fact Alignment check to be able to detect hallucina-
tions of facts in the output at an atomic level. This
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method is evaluated on an open-domain question-
answering (QA) task where inputs to the LLM
lack any additional context. Finally, the perfor-
mance of this approach is compared to existing
self-check, self-consistency-based hallucination de-
tection baselines. We conducted our experiments
using the NQ Open (Kwiatkowski et al., 2019),
HotpotQA (Yang et al., 2018), and WebQA (Berant
et al., 2013) datasets, evaluating responses gener-
ated by open-source LLMs. As illustrated in Table
2, our method performs comparably to existing hal-
lucination detection baselines while being compu-
tationally less demanding. When built on Mistral-
7B (Jiang et al., 2023), we surpass other baselines
in AUC-ROC scores by 12% on NQ_Open and
by 8% on HotpotQA, while providing comparable
results on Web Questions. Similarly, for LLaMA2-
7B (Touvron et al., 2023) as the choice of our LLM,
we exceed other baselines by 7% on NQ_Open and
perform on par with them on HotpotQA and Web
Questions.

Our primary contribution is HALLUCHECK, a
novel hallucination detection module (c.f., Sec-
tion 3) that is based on the premise that questions
probing factual answers should provide consistent
responses. This consistency check leverages a to-
ken probability-based double-check mechanism.
Since HALLUCHECK does not require any training,
it can generalize well as evident in our experiments
on multiple combinations of datasets and LLMs
(c.f., Section 4). We empirically demonstrate across
such settings (c.f., Section 5) that HALLUCHECK
identifies factual elements or atomic facts within
a text with accuracy that is comparable with erst-
while sophisticated approaches. Further, we show
that we achieve significantly higher AUC-ROC
scores compared to existing baselines that do not
utilize external databases for hallucination detec-
tion.

2 Related Work

Hallucination in LLMs. Hallucinations are
an unwanted phenomenon occurring during text
generation by Natural Language Generation (NLG)
models. It refers to the erroneous or unfaithful
text generated by these models (Ji et al., 2023).
Recently, extensive research has been conducted
to discuss its principles and challenges (Huang
et al., 2023), analysis in various domains such as
multimodal LLMs (Bai et al., 2024) and visual
models (Liu et al., 2024), detection and mitigation
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techniques, efc. (Zhang et al., 2023b; Tonmoy
etal., 2024).

Detection of Hallucinations. Zhang et al.
(2023a) propose Semantic-Aware Cross-Check
Consistency (SAC?), which is a sampling-based
method aimed at addressing hallucinations at
the question and model levels, dealing with
self-consistency of model generation. Similarly,
Manakul et al. (2023) present SelfCheckGPT,
another sampling-based detection method for
fact-checking LL.Ms. It uses an LLLM to generate
stochastically similar outputs and scores the
similarity of sampled responses with the original
to self-check the LLM’s confidence over the
original generation. Such self-refining approaches
often rely on the target LMs themselves, which is
also demonstrated in Self-Refine (Madaan et al.,
2023), an iterative mitigation-based approach for
hallucinations.

Miindler et al. (2023) analyze self-contradiction
in instruction-tuned LMs by employing two sep-
arate LLMs for text generation and contradiction
analysis for hallucination detection. Their method
achieves significant results across various LLMs
for their own synthetically LLM-generated text de-
scription dataset, providing valuable insights into
addressing inconsistencies in the generated text.

Honovich et al. (2022) introduce TRUE, an
evaluation of factual consistency measures on
pre-existing texts manually annotated for factual
consistency. Their study employs a range of
metrics, including n-gram-based, model-based,
and NLI-based evaluations, conducted on the
FEVER dataset (Thorne et al., 2018a). Similarly,
among techniques with additional benchmarks, Liu
et al. (2022) propose a reference-free, token-level
method for detecting hallucinations. The work is
supported by a novelly- curated Hallucination De-
tection dataset (HaDes), with raw web text being
perturbed and then annotated by humans to design
it for hallucination detection as a classification task.

Finetuning of LLMs is another aspect that can
improve hallucination detection and factual out-
put generation. Tian et al. (2023) propose a sim-
ple method for optimizing language models in
long-form text generation without human annota-
tion for improving the factuality of LLMs. They
demonstrate how learning from automatically pro-
duced factuality preference rankings—created us-
ing their method or by using current retrieval sys-

tems—significantly increases the factuality.

A few other detection approaches deal with in-
ternal state analysis in LLMs. Azaria and Mitchell
(2023) suggest a method to assess the veracity of
outputs and detect hallucinations by passing the
internal states/activations of an LLM through a
trained classifier to output its probabilities of truth-
fulness. Similarly, some algorithms such as Decod-
ing by Contrasting Layers (Chuang et al., 2023)
are developed to handle differences between out-
put token probabilities in the final states or hidden
intermediate states of LLMs for detecting halluci-
nations while also proposing it further as a mitiga-
tion strategy. Shi et al. (2023) propose a similar
decoding strategy that appends question-based in-
puts with external context and then deals with the
output token probability differences for detection
and, subsequently, mitigation. These approaches
do not specifically deal with the contextual infor-
mation in the inputs, which are utilized by other
detection approaches to aid in dealing with factual
information. Context, in several cases, plays out as
a major factor in improving hallucination detection
baselines.

3 HalluCheck

Our proposed method, HALLUCHECK, aims to
tackle the occurrence of factual hallucinations in
Large Language Models (LLMs). HALLUCHECK
identifies hallucinations through the utilization of
only the text provided for which hallucination has
to be detected.

To check whether a piece of text, A, generated
by an LLM M is hallucinated, we start with the
assumption that the generated text is correct. We
then generate questions that can be answered based
on the information in .4. Subsequently, we employ
the LLLM to answer the questions and see if the
answers match the information in .4, a mismatch
indicating hallucinations. The initial step is to
identify the factual components within a sentence.
According to Kai et al. (2024), factual information
in a sentence is typically conveyed through specific
parts of speech, viz., nouns, pronouns, cardinal
numbers, and adjectives. This information can
be extracted by performing part-of-speech (POS)
tagging on the sentence. Mathematically, given
A, we perform coreferencing and decompose A
into sentences S1,S52,...,Sn, where N is the
total number of sentences, such that Zfil S; = A.
Each sentence is tagged to extract atomic facts



a;j, where ¢ € {1,..., N} and j depends on the
number of tagged entities in a sentence. The
tagging can be either POS-based or NER-based, as
discussed in Section 6.1.3. For example, given the
original sentence “Sachin Tendulkar has played
for the Indian Cricket Team. He has played
from 1989-2014.”, in Figure 1 the atomic facts
consist of a = [a1; = Sachin Tendulkar, a12 =
Indian Cricket Team, ag; = 1989-2014].

_ DATE [DATE
[COUNTRY) MISC 1978 2022

Argentina won the World Cup in 1978 , 1986, and 2022 .

Figure 2: NER tagged sentence. As can be seen, the
atomic facts required in the sentence are Argentina, the
World Cup, and the years (1978, 1986, and 2022)

After identifying the atomic facts, the next step
involves verifying whether each fact is hallucinated
within the context of the sentence. Unlike previous
methodologies that assign a hallucination score to
each sentence, HALLUCHECK focuses on atomic
facts, thereby enhancing explainability by pinpoint-
ing the exact parts of a sentence that are halluci-
nated and providing reasons for this determination,
as detailed in Section ??. Specifically, for each
atomic fact a;; given sentence S;, a corresponding
question g;; is generated (using a T5-based fine-
tuned model), with a;; as the target answer and
S, as the context, expressed as ¢;; = Q(a;;]5;),
where Q represents the question generation module.
In Figure 1 each atomic fact provides one question
g = [q11 = Question 1, ¢12 = Question 2, ¢13 =
Question 3]. These questions are then evaluated
by the LLM M’ at a low temperature to ensure
response consistency (refer to Section ??). Note
that M’ may not be the same as M as detailed in
section 6.1.2.

The responses from M’ yield regenerated facts
fij» which are subsequently checked for consis-
tency with a;;. The f for figure 1 being f = [fi1 =
Sachin Tendulkar, f15 = India, fo; = 1989-2012].
It should also be noted that the number of atomic
facts varies per sentence based on factual content
present per sentence. Therefore, the number of
questions generated also varies. Loosely speaking,
this approach allows us to break down the infor-
mation in a sentence into discrete elements. This
approach assumes that the LLM’s answers will be
consistent for factual information when sampled at
a low temperature.

If f;; and a;; are not consistent (as is the case
of fo1 in figure 1), then a;; is tagged as halluci-
nated. In the second scenario, while generating f;;,
we also record the probabilities associated with its
generation. Given that f;; and a;; are consistent
(f11, f1o in figure 1), we hypothesize that the prob-
abilities used to generate f;; can serve as a proxy
for a;;. Let p;; refer to the token probabilities of
fij. For each f;;, a Kolmogorov—Smirnov test is
performed between the top-5 tokens (heuristically
chosen) to check whether f;; has indeed been sam-
pled from a non-uniform distribution. If it is indeed
sampled from a non-uniform distribution, then a;;
is tagged as non-hallucinated; otherwise, halluci-
nated.

The final hallucination score for a sentence .S;
is calculated by averaging the individual scores of
a;; present in it to give a probability of how likely
a sentence has been hallucinated.

4 Task and Datasets

Open-domain Question Answering. Open-
domain question answering (QA) is a task where
large language models (LLMs) are particularly sus-
ceptible to factual hallucinations, especially when
no external context or information is provided for
the input questions. In such scenarios, if the LLM
lacks the correct information within its parameters
and pretraining data for the specific inputs, it is
likely to generate factually inaccurate answers, re-
sulting in hallucinations.

Datasets. To evaluate our approach, we utilize
three publicly available datasets curated for open-
domain QA tasks. These tasks are designed to
answer factual questions from a large knowledge
corpus without providing any explicit evidence.

e Natural Questions (NQ)-open dataset
(Kwiatkowski et al., 2019): The NQ-Open
task, introduced by Lee et al. (2019), is an
open-domain question-answering benchmark
derived from the Natural Questions dataset.
Its objective is to generate an English answer
string in response to an English input question,
with all questions answerable using content
from English Wikipedia. The validation split
of this dataset comprises 3,610 samples featur-
ing open-domain questions (unsupported by
any explicit evidence) across a wide range of
topics, along with their factual answers. We
use these questions as inputs for the LLM to
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generate answers, upon which our detection
approach will be applied.

* HotpotQA (Yang et al., 2018): HotpotQA is
a question-answering dataset that features nat-
ural, multi-hop questions and provides strong
supervision for supporting facts. Due to the
nature of the dataset, the LLM responses ne-
cessitate multiple hops, resulting in the gener-
ation of numerous facts. Consequently, verify-
ing the correctness of each generated fact be-
comes essential. For our experimentation, we
employ the validation split of this dataset, sim-
ilar to NQ-open, which contains 7,405 ques-
tion samples. Therefore, responses were gen-
erated from both LLaMA2-7B and Mistral-7B
models to check for hallucinations.

¢ Web Questions (Berant et al., 2013): This
dataset comprises 6,642 question/answer
pairs, with questions designed to be answer-
able using Freebase, a comprehensive knowl-
edge graph. The questions predominantly fo-
cus on a single named entity. For our exper-
imentation, we use the test set, which com-
prises approximately 2,000 samples. As this
dataset contains samples without context, it is
specifically used for open-domain QA.

S Experiments

Models Used. The generative LLMs used to
generate responses for our dataset are Mistral-
7B-Instruct (Jiang et al., 2023) and LLaMA2-7B
(Touvron et al., 2023), which are state-of-the-art
open-source models at the time of dataset creation.
To obtain the responses, we set the temperature

Model Name % Atomic Facts/Output

NQ-Open HotpotQA Web Questions
Mistral-7B 27.53% 13.10% 21.61%
LLaMA2-7B 10.23% 10.22% 8.4%

Table 1: Factuality in generated outputs, highlighted by
the percentage of average atomic facts per total gener-
ated tokens for each of the samples in the three datasets.

to 0.0. Our primary focus is on utilizing LLMs
that are robust in text generation and have been
pretrained on extensive datasets, enabling them to
perform well on open-domain question-answering
tasks in settings without external context.

Experimentation details. @ The models uti-
lized are open-source, with their associated
model weights accessible for inference via the
Huggingface web platform?. Baseline implemen-
tations utilized identical models (Mistral-7B and
LLaMA2-7B) and datasets to present comparative
outcomes. For SAC? (Zhang et al., 2023a), we
compute the question-level consistency SAC3-Q
score and employ predetermined thresholds to
discern the presence of hallucinated outputs. The
other baselines are used in the same setting for
the evaluation on the datasets. Our methodology
involves assessing diverse decoding methodologies
(see Section 6.1.1). Additionally, we integrate
outcomes from experiments employing the verifier
LLM LLaMAZ2-7B-Inst (Touvron et al., 2023) as a
complementary measure to identify hallucinatory
content in the responses generated by Mistral-7B.
Metrics for Analysis. The experiments using the
baselines and our approach are analyzed as binary

3https ://huggingface.co/models
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classification tasks for hallucination detection,
to classify the original output text generated by
the LLM for each instance in the datasets. We
compare the baselines with our approach (see
Table 2) and report the AUC-ROC and Average
Precision scores on the three datasets used for
open-domain Question-Answering. AUC-ROC
accounts for both the True Positive and True
Negative Rates, providing a balanced view of the
model’s ability to distinguish between the two
classes. Average Precision is particularly useful
in such a hallucination detection task, where the
positive class (i.e., hallucinated text) is more
important as it emphasizes performance on the
positive class, especially in imbalanced datasets.

6 Results

We test our pipeline on factual datasets mentioned
in Section 4. The results for the classification of
hallucinated texts have been formulated in Table
2. We see that our models outperform the current
best self-consistency-based hallucination detection
frameworks in the NQ_Open dataset. For the Hot-
potQA dataset, HaDeS has slightly better Avg. pre-
cision. Overall, Alignment solely is a strong signal
for detecting hallucinations occurring in the mod-
els. Fact Alignment Check (w/ Greedy Decoding):
This baseline refers to only checking the consis-
tency of the model, ignoring the confidence on
which the regenerated facts were generated from.
This method is completely black-box taking into
account none of the model’s internal parameters ei-
ther during the original generation of the answer or
during regeneration. This model is the best overall,
giving competitive precision results compared to
other hallucination detection frameworks.

6.1 Study of different parameters utilized in
the pipeline

6.1.1 Decoding strategies

Regardless of how the original response, subject to
hallucination assessment, was generated, we exam-
ine the variations in regenerated factual responses
when decoding strategies are varied. The following
decoding strategies were utilized:

1. Greedy Decoding: Greedy decoding involves
selecting the token from the vocabulary V
with the highest conditional probability. This
suggests prioritizing atomic facts for which
the model has the highest immediate confi-
dence.

2. Beam Decoding: Beam decoding repre-
sents an enhancement over greedy decoding.
In Beam decoding, a parameter known as
beam_size determines the number of tokens
with the highest conditional probabilities con-
sidered at each time step t. For our experi-
ments, we considered the beam size to be 5.

Greedy decoding improves the detection of hal-
lucinations during fact regeneration compared to
beam search. This advantage likely arises because
greedy decoding prioritizes immediate model con-
fidence. Consequently, decoding strategies that
improve the factuality of the models are likely to
do better in the pipeline (Li et al., 2023). As a
result, when generating atomic facts, it maximizes
confidence at each step as can be seen in Table 3.
This is further corroborated by the findings of Lee
et al. (2023), which indicate that greedy decoding
is more factual. Greedy decoding selects the word
with the highest probability, thereby minimizing
randomness and maximizing the utilization of the
language model’s parametric knowledge. However,
this decoding strategy does sacrifice generation di-
versity and quality.

6.1.2 Evaluator LLMs

We focus on model-level self-consistency as ex-
amined by Zhang et al. (2023a), employing dif-
ferent models of approximately the same size to
generate responses for the datasets. This cross-
verification uses different LLMs to leverage their
diverse knowledge bases for the same factual query.
Since the questions probe for factual knowledge,
any deviation between the original fact and the re-
generated fact indicates hallucination due to the
lack of consistency between the models’ answers.
However, as shown in Table 2, cross-evaluation
performs comparably to fact alignment, suggesting
that alignment with the same LLM is preferable
to using a different LLM. The original LL.M used
for generating responses was Mistral-7B, while the
verifier LLM was LLaMA2-7B.

6.1.3 Tagging of atomic-facts

Kai et al. (2024) suggests that factual information
in a sentence can be identified using POS tagging.
In our pipeline, we also incorporate NER tagging,
as it identifies tags that contain the most factual
information, specifically ’'NNP’ or "NNPS’. We se-
lected the tags "NNP’, "NNPS’, ’CD’, and 'RB’ to
be considered atomic facts. Additionally, we sam-
pled random tokens from the sentence, ensuring



Model NQ Open

HotpotQA WebQA

Mistral-7B LLaMA2-7B

Mistral-7B LLaMA2-7B Mistral-7B LLaMA2-7B

AUC-ROC AP AUC-ROC AP AUC-ROC AP AUC-ROC AP AUC-ROC AP AUC-ROC AP

SelfCheckGPT (Manakul et al., 2023) 0.46 0.79 0.52 0.88

0.54 0.83 0.51 0.82 0.72 0.89 0.54 0.83

SAC? (Zhang et al., 2023a) 0.54 0.83 0.56 0.89 0.53 0.83 0.54 0.82 0.51 0.78 0.51 0.82
HaDes (Liu et al., 2022) 0.55 0.84 0.49 0.92 0.48 0.92 0.51 0.85 0.56 0.86 0.58 0.88
HALLUCHECK (Fact alignment) 0.67 0.88 0.63 091 0.56 0.84 0.54 0.83 0.67 0.86 0.61 0.85
HALLUCHECK (Cross Eval) 0.61 0.85 0.56 0.89 0.51 0.82 0.53 0.83 0.65 0.84 0.6 0.85

Table 2: Model Evaluation Metrics for NQ Open, HotpotQA, and Web Questions. AP refers to the average precision
obtained while varying the threshold. We compare HalluCheck in the same settings as the baselines to report the
results, with Mistral-7B-Inst and LLaMa2-7B-Inst as the base models. Results for HalluCheck are provided when
using Fact Alignment check, and where LLaMa2-7B-Inst and correspondingly Mistral-7B-Inst are used as Cross

evaluator models.

Model Decoding NQ Open HotpotQA WebQA
Method

Mistral-7B Greedy 0.64 0.53 0.66

Mistral-7B Beam 0.56 0.53 0.60

LLaMA2-7B Greedy 0.54 0.51 0.51

LLaMA2-7B Beam 0.53 0.51 0.52

Table 3: The AUC-ROC scores of Mistral and LLaMA
models using different decoding strategies for fact re-
generation on three datasets.

the number of sampled tokens equaled the number
of NER tags present. Our results show that NER
outperforms both POS tagging and random token
sampling in identifying which tokens contribute to
the factuality of a sentence or paragraph.

Tagging NQ Open HotpotQA WebQA
NER 0.67 0.56 0.67
POS 0.62 0.52 0.61
Random 0.58 0.56 0.49

Table 4: The AUC-ROC scores of Mistral models using
different tagging strategies for identifying atomic facts
in the sentence.

6.1.4 Effects of changing threshold

For additional evaluation, we use threshold-based
analysis to classify the averaged scores of each
sample, i.e. for different thresholds between 0 and
1, we classify the output as hallucinated if the score
lies above the threshold. We use this to plot pre-
cision values in Figure 4 for the different settings
of our approach. The results indicate a gradual
increase for each of the settings on all 3 datasets
as the threshold increases between 0 and 1. We
observe that Fact Alignment performs consistently
better than the other settings, indicating that align-
ment without probability check performs better in
hallucination detection.

6.2 Comparison with Baselines

We compare the results obtained when testing the
baselines on the datasets with those obtained from
our experimented approaches. Our methods (with
Greedy and Beam decoding or LLaMa2-7B as
a cross evaluator) outperform the baselines, pri-
marily because our approach relies directly on a
factuality-based check whether the target LLM con-
tains the correct factual information in its original
outputs. As opposed to this, the baselines tend to
use stochastic sampling-based approaches, which
do not directly compare the pinpointed facts in the
outputs to regenerated answers, and hence our ap-
proach performs well on these open-domain QA
datasets where generated outputs are concise and
compact. In such cases, pinpointed fact-checking
is a simpler and more direct way of detecting hallu-
cinations.

7 Strengths

Consistent Scoring of Samples. In contrast to
previous stochastic methods for hallucination de-
tection (Manakul et al., 2023), our approach does
not depend on the randomness or multiple outputs
of the LLM. Consequently, our scores remain con-
sistent across multiple runs of the same sample.
Furthermore, our method avoids generating mul-
tiple responses from the same LLM for the same
, instead concentrating on extracting diverse facts
from sentences. This results in lower computa-
tional overhead compared to previous approaches.

Explainability of Scores. We provide fact-level
scoring, enabling users to discern which specific
facts are hallucinated and which are not. Further-
more, because our pipeline operates on fine-grained
facts rather than entire sentences, we provide a level
of explainability absent in previous approaches
such as Zhang et al. (2023a), clarifying the rea-
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Figure 4: Precision values at varying thresholds (ranging from 0.2 to 0.8) of hallucination classification on generated
outputs of the three datasets by Mistral-7B, for each of our HALLUCHECK-based experiments. We observe that the
Fact Alignment Greedy significantly outperforms others across all thresholds.

sons behind tagging a sentence as hallucinated.

No Training Required. Our approach operates
on a general framework applicable to any sentence,
rather than being tailored to specific datasets or
sentence types. The number of generated ques-
tions is determined by the factual content within
the sentence, rather than being selected heuristi-
cally. Moreover, our approach provides users with
a rapid assessment of whether the information gen-
erated by the LLM is factual.

Ease of use. Our approach does not rely on
access to any API and requires only the model’s
output (which needs to be verified) and the LLM
used to generate the response. This allows our
method to function on the same device where the
response was generated, whether through a web
interface, API or a model running on a local device.

8 Conclusions

In this work, we propose HALLUCHECK, a novel
fact-based hallucination detection pipeline, and
compare it to existing approaches. We evaluate our
method on three factuality measurement datasets,
providing the first comparison between existing fac-
tual hallucination detection methods. Our findings
reveal that despite being less computationally ex-
pensive and not requiring any training, our method
performs on par with other approaches.

9 Limitations

We also analyze scenarios where our model fails to
correctly categorize the output. Take for example
the following question from HotpotQA:

Question: Which of the office buildings used
to staff the White House used to be known as the
State, War, and Navy Building?

Answer provided by Mistral-7B-Instruct: The
office building used to staff the White House that
was once known as the State, War, and Navy Build-
ing is now known as the Eisenhower Executive
Office Building. This building was constructed
in 1952 and was named after President Dwight D.
Eisenhower. It was originally built to house the ex-
ecutive branch of the U.S. government, including
the White House staff. The building was designed
by architects Cass Gilbert and James A. Moore.
We make the following observations:

1. Although the Eisenhower Executive Office
Building is factually correct, our pipeline cat-
egorizes the entire paragraph as hallucinated.
This discrepancy arises because our model
identifies the fact ‘1952’ as hallucinated be-
cause of the building’s actual construction pe-
riod between 1871 and 1888. This contrasts
with the golden output from HotpotQA, which
does not flag the answer as hallucinated. How-
ever, due to the presence of other hallucinated
facts, our pipeline assigns a hallucinated tag
to the paragraph.

. At times, generated questions may be vague,
such as “Who was the building named af-
ter?” This ambiguity can result in inaccuracies
when regenerating facts, which subsequently
lead to tagging the answer as hallucinated.

The first error can be mitigated if the relevant
fact to examine is known a priori. As for the sec-
ond, developing an improved, finetuned reverse
question-answering system can help in mitigation
of such errors.
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A Models and Implementations

A.1 SelfCheckGPT (Manakul et al., 2023)

One of the first papers to counter zero-resource hal-
lucination detection, we compare SelfCheckGPT
MQAG scores present in Table 2. We set the num-
ber of questions per sentence to be 5. The scoring
method selected was Bayes with Alpha. Both 3;
and 3 were set to 0.95.

A.2 SAC3 (Zhang et al., 2023a)

As discussed above, for using SAC? as one of
the baselines, we evaluate it using the instruction
finetuned model version of Mistral-7B. We calcu-
late the question-level consistency score (SAC3-Q)
which is highlighted in the original study as a score
describing the cross-check consistency between
2 types of QA pairs, i) the original question and
generated answer as a pair and ii) a number of se-
mantically similar generated questions along with
their answers as pairs. For feasibility in accordance
with our available computational resources, we ex-
perimented with 2 generated perturbated QA pairs.
This number can be increased or varied to check
for different comparisons, but Zhang et al. (2023a)
suggest that using between 2 to 5 perturbed ques-
tions per data sample yields similar quantitative
results.

A.3 HabDes (Liu et al., 2022)

HabDeS is a novel token-free hallucination detec-
tion dataset for free-form text generation. For the
dataset creation, raw text from web data is per-
turbed with out-of-box BERT model. Human an-
notators are then employed to assess whether the
perturbed text spans are hallucinations given the
original text. The final model is a binary classifier
for detecting hallucinated/non-hallucinated text.

B Pseudocode for the algorithm proposed
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Algorithm 1 Hallucination detection score
1: procedure CALCULATESCORE(A, M)

2: Perform coreferencing on A and break it
into sentences S1,S2,..., 5N

3: Set Score(S;) to0fori e {1,---,N}.

4: fori < 1to N do

5: Tag each sentence S; with NER entities

to extract atomic facts a;; for j entities

6 for all a;; in S; do

7: ¢i5 = Q(aij|Si)

8: fij = M'(aij)

9: if align(fij, (17;]') then

10: Tag a;; as O (consistent)
11: for token wj ;i in f;; do
12:

sijk = logitScore(w j [vocab(M”))

where:
¢ [s:58] = [vocab(A)
* w;; € vocab(M).
* logitScores : vocab(M') — R

13: Compute normalized-
probabilities of top-5 tokens:

eSijk
p(wijk) = m, fork=1,2,...,5
14: if p; ;5 ~ Uniform then
15: Tag a;j as 1
16: break
17: end if
18: end for
19: else
20: Tag a;; as 1 (hallucinated)
21: end if
22: Score(a;j) < Tag of a;; (0 or 1)
23: Score(S;) <« Score(S;) +
Score(a;j)
24: end for
25: Score(S;) « % >
Normalize score by number of entities
26: end for

27: return [Score(Sy), Score(Ss2), ..., Score(Sy)]
28: end procedure

12



