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Abstract

Large language models (LLMs) frequently001
generate inaccurate responses – this can be002
particularly dangerous in sensitive areas like003
medicine and healthcare. Current methods for004
detecting hallucinations involve sampling an-005
swers multiple times, making them computa-006
tionally intensive. In this study, we introduce007
HALLUCHECK, a novel hallucination detec-008
tion module that identifies factual elements or009
atomic facts within a text. HALLUCHECK oper-010
ates on the premise that responses to questions011
probing factual answers should be consistent012
both within a single LLM and across differ-013
ent LLMs. To improve system robustness, we014
incorporate a token-probability-based double-015
check mechanism. For hallucinated facts, in-016
consistencies or a lack of model confidence dur-017
ing generation will be evident. We evaluate our018
detection module on fact-based datasets such019
as NQ_Open, HotpotQA, and WebQ, by build-020
ing upon open-source LLMs such as LLaMa-2021
(7B)-Instruct and Mistral-7B-Instruct. Finally,022
we compare the generated output with the cor-023
rect answers to determine sentence-level AUC-024
ROC scores for hallucination detection. Our025
results demonstrate that HALLUCHECK can (i)026
detect hallucinated facts and (ii) achieve sig-027
nificantly higher AUC-ROC scores compared028
to existing baselines that operate under similar029
conditions, specifically those that do not utilize030
external databases for hallucination detection.031

1 Introduction032

Large Language Models (LLMs) (like GPT-4 (Ope-033

nAI et al., 2024), PALM (Chowdhery et al., 2022)034

among others) are well known for their excellent035

text generation capabilities and are at the forefront036

of NLP research (Zhao et al., 2023). However,037

these models often produce information that ap-038

pears plausible but is actually factually incorrect039

or nonsensical termed as hallucination (Xu et al.,040

2024). Studies ((Ji et al., 2023), (Huang et al.,041

2023)) have categorized hallucination in multiple042

Figure 1: Atomic fact-based hallucination detection
through the Fact Alignment check of our pipeline. Each
fact is used to generate a question and the fact is regen-
erated by prompting the question to the LLM.

ways. For example, Ji et al. (2023) state that hallu- 043

cinations can be of two types, (i) intrinsic (outputs 044

that contradict source information) and (ii) extrin- 045

sic (outputs that are left unverified from the source 046

information). Moreover, extrinsic hallucination is 047

approached with caution due to its unverifiable na- 048

ture, which heightens the risk from a factual safety 049

perspective (Ji et al., 2023). Another way to catego- 050

rize hallucination is in terms of faithful or factual 051

hallucinations (Huang et al., 2023). Factuality in 052

hallucination highlights the gap between generated 053

content and verifiable real-world facts, usually ap- 054

pearing as factual inconsistencies or fabrications. 055

On the other hand, faithfulness in hallucination 056

refers to the deviation of generated content from the 057

user instructions or the context provided by the in- 058

put, as well as a lack of self-consistency within the 059

generated content. As studied by Xu et al. (2024), 060

hallucinations in LLMs are inevitable. Therefore, 061

it is imperative to detect hallucinations when they 062

occur, in order to minimize misinformation from 063

reaching the user accessing the LLM. 064

Several methods for detecting hallucinations 065

have been developed, falling into one or more 066

of these categories. Traditional approaches in- 067
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volve intrinsic uncertainty metrics to identify the068

parts of the output sequence where the model069

has the least confidence (Yuan et al., 2021; Fu070

et al., 2023). However, metrics such as token-071

probabilities or information about the model’s in-072

ternal parameters might not be available to the user073

while using closed-source models such as Chat-074

GPT1, Gemini2 etc. Other approaches include075

accessing databases to verify the truthfulness of076

facts (Thorne et al., 2018b; Guo et al., 2022). How-077

ever, facts can only be evaluated in relation to the078

knowledge contained within the database. The079

veracity of the facts outside the database would080

not be checked. Additionally, some hallucina-081

tion detection pipelines are restricted to particular082

tasks such as abstractive summarization (Maynez083

et al., 2020), machine translation (Dong et al.,084

2020) among others. More recently, hallucination085

detection has been performed through sampling-086

based approaches (Manakul et al., 2023; Mündler087

et al., 2024). While Manakul et al. (2023) rely on088

stochastic sampling, Mündler et al. (2024) check089

for internal-contradiction in the output provided090

by the model. Given the stochastic nature of the091

approach, the hallucination metric tends to be in-092

consistent and, therefore, unreliable. Furthermore,093

sampling multiple responses is computationally ex-094

pensive (Manakul et al., 2023) as well. Moreover,095

internal-consistency addresses only the faithfulness096

aspect of hallucination and does not account for097

factual hallucinations.098

In this work, we propose a fact-based halluci-099

nation detection method for LLMs. The method100

leverages the LLM’s output itself to identify factual101

inconsistencies without relying on external knowl-102

edge sources. It combines the model’s internal103

consistency and confidence scores to assess factu-104

ality without requiring repeated sampling of the105

same response. The approach focuses on capturing106

factual information within the LLM’s response and107

dynamically regenerates queries based on these fac-108

tual claims to verify their accuracy. Moreover, the109

pipeline is customized for each response and does110

not require any training, making it user-friendly111

and enhances ease of use. We illustrate the use of112

our approach via the example in Figure 1, where the113

steps are highlighted to show how we perform the114

Fact Alignment check to be able to detect hallucina-115

tions of facts in the output at an atomic level. This116
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method is evaluated on an open-domain question- 117

answering (QA) task where inputs to the LLM 118

lack any additional context. Finally, the perfor- 119

mance of this approach is compared to existing 120

self-check, self-consistency-based hallucination de- 121

tection baselines. We conducted our experiments 122

using the NQ Open (Kwiatkowski et al., 2019), 123

HotpotQA (Yang et al., 2018), and WebQA (Berant 124

et al., 2013) datasets, evaluating responses gener- 125

ated by open-source LLMs. As illustrated in Table 126

2, our method performs comparably to existing hal- 127

lucination detection baselines while being compu- 128

tationally less demanding. When built on Mistral- 129

7B (Jiang et al., 2023), we surpass other baselines 130

in AUC-ROC scores by 12% on NQ_Open and 131

by 8% on HotpotQA, while providing comparable 132

results on Web Questions. Similarly, for LLaMA2- 133

7B (Touvron et al., 2023) as the choice of our LLM, 134

we exceed other baselines by 7% on NQ_Open and 135

perform on par with them on HotpotQA and Web 136

Questions. 137

Our primary contribution is HALLUCHECK, a 138

novel hallucination detection module (c.f., Sec- 139

tion 3) that is based on the premise that questions 140

probing factual answers should provide consistent 141

responses. This consistency check leverages a to- 142

ken probability-based double-check mechanism. 143

Since HALLUCHECK does not require any training, 144

it can generalize well as evident in our experiments 145

on multiple combinations of datasets and LLMs 146

(c.f., Section 4). We empirically demonstrate across 147

such settings (c.f., Section 5) that HALLUCHECK 148

identifies factual elements or atomic facts within 149

a text with accuracy that is comparable with erst- 150

while sophisticated approaches. Further, we show 151

that we achieve significantly higher AUC-ROC 152

scores compared to existing baselines that do not 153

utilize external databases for hallucination detec- 154

tion. 155

2 Related Work 156

Hallucination in LLMs. Hallucinations are 157

an unwanted phenomenon occurring during text 158

generation by Natural Language Generation (NLG) 159

models. It refers to the erroneous or unfaithful 160

text generated by these models (Ji et al., 2023). 161

Recently, extensive research has been conducted 162

to discuss its principles and challenges (Huang 163

et al., 2023), analysis in various domains such as 164

multimodal LLMs (Bai et al., 2024) and visual 165

models (Liu et al., 2024), detection and mitigation 166
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techniques, etc. (Zhang et al., 2023b; Tonmoy167

et al., 2024).168

169

Detection of Hallucinations. Zhang et al.170

(2023a) propose Semantic-Aware Cross-Check171

Consistency (SAC3), which is a sampling-based172

method aimed at addressing hallucinations at173

the question and model levels, dealing with174

self-consistency of model generation. Similarly,175

Manakul et al. (2023) present SelfCheckGPT,176

another sampling-based detection method for177

fact-checking LLMs. It uses an LLM to generate178

stochastically similar outputs and scores the179

similarity of sampled responses with the original180

to self-check the LLM’s confidence over the181

original generation. Such self-refining approaches182

often rely on the target LMs themselves, which is183

also demonstrated in Self-Refine (Madaan et al.,184

2023), an iterative mitigation-based approach for185

hallucinations.186

Mündler et al. (2023) analyze self-contradiction187

in instruction-tuned LMs by employing two sep-188

arate LLMs for text generation and contradiction189

analysis for hallucination detection. Their method190

achieves significant results across various LLMs191

for their own synthetically LLM-generated text de-192

scription dataset, providing valuable insights into193

addressing inconsistencies in the generated text.194

Honovich et al. (2022) introduce TRUE, an195

evaluation of factual consistency measures on196

pre-existing texts manually annotated for factual197

consistency. Their study employs a range of198

metrics, including n-gram-based, model-based,199

and NLI-based evaluations, conducted on the200

FEVER dataset (Thorne et al., 2018a). Similarly,201

among techniques with additional benchmarks, Liu202

et al. (2022) propose a reference-free, token-level203

method for detecting hallucinations. The work is204

supported by a novelly- curated Hallucination De-205

tection dataset (HaDes), with raw web text being206

perturbed and then annotated by humans to design207

it for hallucination detection as a classification task.208

Finetuning of LLMs is another aspect that can209

improve hallucination detection and factual out-210

put generation. Tian et al. (2023) propose a sim-211

ple method for optimizing language models in212

long-form text generation without human annota-213

tion for improving the factuality of LLMs. They214

demonstrate how learning from automatically pro-215

duced factuality preference rankings—created us-216

ing their method or by using current retrieval sys-217

tems—significantly increases the factuality. 218

A few other detection approaches deal with in- 219

ternal state analysis in LLMs. Azaria and Mitchell 220

(2023) suggest a method to assess the veracity of 221

outputs and detect hallucinations by passing the 222

internal states/activations of an LLM through a 223

trained classifier to output its probabilities of truth- 224

fulness. Similarly, some algorithms such as Decod- 225

ing by Contrasting Layers (Chuang et al., 2023) 226

are developed to handle differences between out- 227

put token probabilities in the final states or hidden 228

intermediate states of LLMs for detecting halluci- 229

nations while also proposing it further as a mitiga- 230

tion strategy. Shi et al. (2023) propose a similar 231

decoding strategy that appends question-based in- 232

puts with external context and then deals with the 233

output token probability differences for detection 234

and, subsequently, mitigation. These approaches 235

do not specifically deal with the contextual infor- 236

mation in the inputs, which are utilized by other 237

detection approaches to aid in dealing with factual 238

information. Context, in several cases, plays out as 239

a major factor in improving hallucination detection 240

baselines. 241

3 HalluCheck 242

Our proposed method, HALLUCHECK, aims to 243

tackle the occurrence of factual hallucinations in 244

Large Language Models (LLMs). HALLUCHECK 245

identifies hallucinations through the utilization of 246

only the text provided for which hallucination has 247

to be detected. 248

To check whether a piece of text, A, generated 249

by an LLMM is hallucinated, we start with the 250

assumption that the generated text is correct. We 251

then generate questions that can be answered based 252

on the information in A. Subsequently, we employ 253

the LLM to answer the questions and see if the 254

answers match the information in A, a mismatch 255

indicating hallucinations. The initial step is to 256

identify the factual components within a sentence. 257

According to Kai et al. (2024), factual information 258

in a sentence is typically conveyed through specific 259

parts of speech, viz., nouns, pronouns, cardinal 260

numbers, and adjectives. This information can 261

be extracted by performing part-of-speech (POS) 262

tagging on the sentence. Mathematically, given 263

A, we perform coreferencing and decompose A 264

into sentences S1, S2, . . . , SN , where N is the 265

total number of sentences, such that
∑N

i=1 Si = A. 266

Each sentence is tagged to extract atomic facts 267
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aij , where i ∈ {1, . . . , N} and j depends on the268

number of tagged entities in a sentence. The269

tagging can be either POS-based or NER-based, as270

discussed in Section 6.1.3. For example, given the271

original sentence “Sachin Tendulkar has played272

for the Indian Cricket Team. He has played273

from 1989-2014.”, in Figure 1 the atomic facts274

consist of a = [a11 = Sachin Tendulkar, a12 =275

Indian Cricket Team, a21 = 1989-2014].276

277

Figure 2: NER tagged sentence. As can be seen, the
atomic facts required in the sentence are Argentina, the
World Cup, and the years (1978, 1986, and 2022)

After identifying the atomic facts, the next step278

involves verifying whether each fact is hallucinated279

within the context of the sentence. Unlike previous280

methodologies that assign a hallucination score to281

each sentence, HALLUCHECK focuses on atomic282

facts, thereby enhancing explainability by pinpoint-283

ing the exact parts of a sentence that are halluci-284

nated and providing reasons for this determination,285

as detailed in Section ??. Specifically, for each286

atomic fact aij given sentence Si, a corresponding287

question qij is generated (using a T5-based fine-288

tuned model), with aij as the target answer and289

Si as the context, expressed as qij = Q(aij |Si),290

whereQ represents the question generation module.291

In Figure 1 each atomic fact provides one question292

q = [q11 = Question 1, q12 = Question 2, q13 =293

Question 3]. These questions are then evaluated294

by the LLM M′ at a low temperature to ensure295

response consistency (refer to Section ??). Note296

thatM′ may not be the same asM as detailed in297

section 6.1.2.298

The responses fromM′ yield regenerated facts299

fij , which are subsequently checked for consis-300

tency with aij . The f for figure 1 being f = [f11 =301

Sachin Tendulkar, f12 = India, f21 = 1989-2012].302

It should also be noted that the number of atomic303

facts varies per sentence based on factual content304

present per sentence. Therefore, the number of305

questions generated also varies. Loosely speaking,306

this approach allows us to break down the infor-307

mation in a sentence into discrete elements. This308

approach assumes that the LLM’s answers will be309

consistent for factual information when sampled at310

a low temperature.311

If fij and aij are not consistent (as is the case 312

of f21 in figure 1), then aij is tagged as halluci- 313

nated. In the second scenario, while generating fij , 314

we also record the probabilities associated with its 315

generation. Given that fij and aij are consistent 316

(f11, f12 in figure 1), we hypothesize that the prob- 317

abilities used to generate fij can serve as a proxy 318

for aij . Let pij refer to the token probabilities of 319

fij . For each fij , a Kolmogorov–Smirnov test is 320

performed between the top-5 tokens (heuristically 321

chosen) to check whether fij has indeed been sam- 322

pled from a non-uniform distribution. If it is indeed 323

sampled from a non-uniform distribution, then aij 324

is tagged as non-hallucinated; otherwise, halluci- 325

nated. 326

The final hallucination score for a sentence Si 327

is calculated by averaging the individual scores of 328

aij present in it to give a probability of how likely 329

a sentence has been hallucinated. 330

4 Task and Datasets 331

Open-domain Question Answering. Open- 332

domain question answering (QA) is a task where 333

large language models (LLMs) are particularly sus- 334

ceptible to factual hallucinations, especially when 335

no external context or information is provided for 336

the input questions. In such scenarios, if the LLM 337

lacks the correct information within its parameters 338

and pretraining data for the specific inputs, it is 339

likely to generate factually inaccurate answers, re- 340

sulting in hallucinations. 341

Datasets. To evaluate our approach, we utilize 342

three publicly available datasets curated for open- 343

domain QA tasks. These tasks are designed to 344

answer factual questions from a large knowledge 345

corpus without providing any explicit evidence. 346

• Natural Questions (NQ)-open dataset 347

(Kwiatkowski et al., 2019): The NQ-Open 348

task, introduced by Lee et al. (2019), is an 349

open-domain question-answering benchmark 350

derived from the Natural Questions dataset. 351

Its objective is to generate an English answer 352

string in response to an English input question, 353

with all questions answerable using content 354

from English Wikipedia. The validation split 355

of this dataset comprises 3,610 samples featur- 356

ing open-domain questions (unsupported by 357

any explicit evidence) across a wide range of 358

topics, along with their factual answers. We 359

use these questions as inputs for the LLM to 360
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Figure 3: Pipeline of the HALLUCHECK approach, with NER tagging of outputs followed by the comparison-based
Fact Alignment check and additional probability-based check, for tagging hallucinations.

generate answers, upon which our detection361

approach will be applied.362

• HotpotQA (Yang et al., 2018): HotpotQA is363

a question-answering dataset that features nat-364

ural, multi-hop questions and provides strong365

supervision for supporting facts. Due to the366

nature of the dataset, the LLM responses ne-367

cessitate multiple hops, resulting in the gener-368

ation of numerous facts. Consequently, verify-369

ing the correctness of each generated fact be-370

comes essential. For our experimentation, we371

employ the validation split of this dataset, sim-372

ilar to NQ-open, which contains 7,405 ques-373

tion samples. Therefore, responses were gen-374

erated from both LLaMA2-7B and Mistral-7B375

models to check for hallucinations.376

• Web Questions (Berant et al., 2013): This377

dataset comprises 6,642 question/answer378

pairs, with questions designed to be answer-379

able using Freebase, a comprehensive knowl-380

edge graph. The questions predominantly fo-381

cus on a single named entity. For our exper-382

imentation, we use the test set, which com-383

prises approximately 2,000 samples. As this384

dataset contains samples without context, it is385

specifically used for open-domain QA.386

5 Experiments387

Models Used. The generative LLMs used to388

generate responses for our dataset are Mistral-389

7B-Instruct (Jiang et al., 2023) and LLaMA2-7B390

(Touvron et al., 2023), which are state-of-the-art391

open-source models at the time of dataset creation.392

To obtain the responses, we set the temperature393

Model Name % Atomic Facts/Output

NQ-Open HotpotQA Web Questions

Mistral-7B 27.53% 13.10% 21.61%
LLaMA2-7B 10.23% 10.22% 8.4%

Table 1: Factuality in generated outputs, highlighted by
the percentage of average atomic facts per total gener-
ated tokens for each of the samples in the three datasets.

to 0.0. Our primary focus is on utilizing LLMs 394

that are robust in text generation and have been 395

pretrained on extensive datasets, enabling them to 396

perform well on open-domain question-answering 397

tasks in settings without external context. 398

399

Experimentation details. The models uti- 400

lized are open-source, with their associated 401

model weights accessible for inference via the 402

Huggingface web platform3. Baseline implemen- 403

tations utilized identical models (Mistral-7B and 404

LLaMA2-7B) and datasets to present comparative 405

outcomes. For SAC3 (Zhang et al., 2023a), we 406

compute the question-level consistency SAC3-Q 407

score and employ predetermined thresholds to 408

discern the presence of hallucinated outputs. The 409

other baselines are used in the same setting for 410

the evaluation on the datasets. Our methodology 411

involves assessing diverse decoding methodologies 412

(see Section 6.1.1). Additionally, we integrate 413

outcomes from experiments employing the verifier 414

LLM LLaMA2-7B-Inst (Touvron et al., 2023) as a 415

complementary measure to identify hallucinatory 416

content in the responses generated by Mistral-7B. 417

Metrics for Analysis. The experiments using the 418

baselines and our approach are analyzed as binary 419

3https://huggingface.co/models

5

https://huggingface.co/models


classification tasks for hallucination detection,420

to classify the original output text generated by421

the LLM for each instance in the datasets. We422

compare the baselines with our approach (see423

Table 2) and report the AUC-ROC and Average424

Precision scores on the three datasets used for425

open-domain Question-Answering. AUC-ROC426

accounts for both the True Positive and True427

Negative Rates, providing a balanced view of the428

model’s ability to distinguish between the two429

classes. Average Precision is particularly useful430

in such a hallucination detection task, where the431

positive class (i.e., hallucinated text) is more432

important as it emphasizes performance on the433

positive class, especially in imbalanced datasets.434

6 Results435

We test our pipeline on factual datasets mentioned436

in Section 4. The results for the classification of437

hallucinated texts have been formulated in Table438

2. We see that our models outperform the current439

best self-consistency-based hallucination detection440

frameworks in the NQ_Open dataset. For the Hot-441

potQA dataset, HaDeS has slightly better Avg. pre-442

cision. Overall, Alignment solely is a strong signal443

for detecting hallucinations occurring in the mod-444

els. Fact Alignment Check (w/ Greedy Decoding):445

This baseline refers to only checking the consis-446

tency of the model, ignoring the confidence on447

which the regenerated facts were generated from.448

This method is completely black-box taking into449

account none of the model’s internal parameters ei-450

ther during the original generation of the answer or451

during regeneration. This model is the best overall,452

giving competitive precision results compared to453

other hallucination detection frameworks.454

6.1 Study of different parameters utilized in455

the pipeline456

6.1.1 Decoding strategies457

Regardless of how the original response, subject to458

hallucination assessment, was generated, we exam-459

ine the variations in regenerated factual responses460

when decoding strategies are varied. The following461

decoding strategies were utilized:462

1. Greedy Decoding: Greedy decoding involves463

selecting the token from the vocabulary V464

with the highest conditional probability. This465

suggests prioritizing atomic facts for which466

the model has the highest immediate confi-467

dence.468

2. Beam Decoding: Beam decoding repre- 469

sents an enhancement over greedy decoding. 470

In Beam decoding, a parameter known as 471

beam_size determines the number of tokens 472

with the highest conditional probabilities con- 473

sidered at each time step t. For our experi- 474

ments, we considered the beam size to be 5. 475

Greedy decoding improves the detection of hal- 476

lucinations during fact regeneration compared to 477

beam search. This advantage likely arises because 478

greedy decoding prioritizes immediate model con- 479

fidence. Consequently, decoding strategies that 480

improve the factuality of the models are likely to 481

do better in the pipeline (Li et al., 2023). As a 482

result, when generating atomic facts, it maximizes 483

confidence at each step as can be seen in Table 3. 484

This is further corroborated by the findings of Lee 485

et al. (2023), which indicate that greedy decoding 486

is more factual. Greedy decoding selects the word 487

with the highest probability, thereby minimizing 488

randomness and maximizing the utilization of the 489

language model’s parametric knowledge. However, 490

this decoding strategy does sacrifice generation di- 491

versity and quality. 492

6.1.2 Evaluator LLMs 493

We focus on model-level self-consistency as ex- 494

amined by Zhang et al. (2023a), employing dif- 495

ferent models of approximately the same size to 496

generate responses for the datasets. This cross- 497

verification uses different LLMs to leverage their 498

diverse knowledge bases for the same factual query. 499

Since the questions probe for factual knowledge, 500

any deviation between the original fact and the re- 501

generated fact indicates hallucination due to the 502

lack of consistency between the models’ answers. 503

However, as shown in Table 2, cross-evaluation 504

performs comparably to fact alignment, suggesting 505

that alignment with the same LLM is preferable 506

to using a different LLM. The original LLM used 507

for generating responses was Mistral-7B, while the 508

verifier LLM was LLaMA2-7B. 509

6.1.3 Tagging of atomic-facts 510

Kai et al. (2024) suggests that factual information 511

in a sentence can be identified using POS tagging. 512

In our pipeline, we also incorporate NER tagging, 513

as it identifies tags that contain the most factual 514

information, specifically ’NNP’ or ’NNPS’. We se- 515

lected the tags ’NNP’, ’NNPS’, ’CD’, and ’RB’ to 516

be considered atomic facts. Additionally, we sam- 517

pled random tokens from the sentence, ensuring 518
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Model NQ Open HotpotQA WebQA

Mistral-7B LLaMA2-7B Mistral-7B LLaMA2-7B Mistral-7B LLaMA2-7B

AUC-ROC AP AUC-ROC AP AUC-ROC AP AUC-ROC AP AUC-ROC AP AUC-ROC AP

SelfCheckGPT (Manakul et al., 2023) 0.46 0.79 0.52 0.88 0.54 0.83 0.51 0.82 0.72 0.89 0.54 0.83
SAC3 (Zhang et al., 2023a) 0.54 0.83 0.56 0.89 0.53 0.83 0.54 0.82 0.51 0.78 0.51 0.82
HaDes (Liu et al., 2022) 0.55 0.84 0.49 0.92 0.48 0.92 0.51 0.85 0.56 0.86 0.58 0.88

HALLUCHECK (Fact alignment) 0.67 0.88 0.63 0.91 0.56 0.84 0.54 0.83 0.67 0.86 0.61 0.85
HALLUCHECK (Cross Eval) 0.61 0.85 0.56 0.89 0.51 0.82 0.53 0.83 0.65 0.84 0.6 0.85

Table 2: Model Evaluation Metrics for NQ Open, HotpotQA, and Web Questions. AP refers to the average precision
obtained while varying the threshold. We compare HalluCheck in the same settings as the baselines to report the
results, with Mistral-7B-Inst and LLaMa2-7B-Inst as the base models. Results for HalluCheck are provided when
using Fact Alignment check, and where LLaMa2-7B-Inst and correspondingly Mistral-7B-Inst are used as Cross
evaluator models.

Model Decoding
Method

NQ Open HotpotQA WebQA

Mistral-7B Greedy 0.64 0.53 0.66
Mistral-7B Beam 0.56 0.53 0.60

LLaMA2-7B Greedy 0.54 0.51 0.51
LLaMA2-7B Beam 0.53 0.51 0.52

Table 3: The AUC-ROC scores of Mistral and LLaMA
models using different decoding strategies for fact re-
generation on three datasets.

the number of sampled tokens equaled the number519

of NER tags present. Our results show that NER520

outperforms both POS tagging and random token521

sampling in identifying which tokens contribute to522

the factuality of a sentence or paragraph.523

Tagging NQ Open HotpotQA WebQA

NER 0.67 0.56 0.67
POS 0.62 0.52 0.61
Random 0.58 0.56 0.49

Table 4: The AUC-ROC scores of Mistral models using
different tagging strategies for identifying atomic facts
in the sentence.

6.1.4 Effects of changing threshold524

For additional evaluation, we use threshold-based525

analysis to classify the averaged scores of each526

sample, i.e. for different thresholds between 0 and527

1, we classify the output as hallucinated if the score528

lies above the threshold. We use this to plot pre-529

cision values in Figure 4 for the different settings530

of our approach. The results indicate a gradual531

increase for each of the settings on all 3 datasets532

as the threshold increases between 0 and 1. We533

observe that Fact Alignment performs consistently534

better than the other settings, indicating that align-535

ment without probability check performs better in536

hallucination detection.537

6.2 Comparison with Baselines 538

We compare the results obtained when testing the 539

baselines on the datasets with those obtained from 540

our experimented approaches. Our methods (with 541

Greedy and Beam decoding or LLaMa2-7B as 542

a cross evaluator) outperform the baselines, pri- 543

marily because our approach relies directly on a 544

factuality-based check whether the target LLM con- 545

tains the correct factual information in its original 546

outputs. As opposed to this, the baselines tend to 547

use stochastic sampling-based approaches, which 548

do not directly compare the pinpointed facts in the 549

outputs to regenerated answers, and hence our ap- 550

proach performs well on these open-domain QA 551

datasets where generated outputs are concise and 552

compact. In such cases, pinpointed fact-checking 553

is a simpler and more direct way of detecting hallu- 554

cinations. 555

7 Strengths 556

Consistent Scoring of Samples. In contrast to 557

previous stochastic methods for hallucination de- 558

tection (Manakul et al., 2023), our approach does 559

not depend on the randomness or multiple outputs 560

of the LLM. Consequently, our scores remain con- 561

sistent across multiple runs of the same sample. 562

Furthermore, our method avoids generating mul- 563

tiple responses from the same LLM for the same 564

, instead concentrating on extracting diverse facts 565

from sentences. This results in lower computa- 566

tional overhead compared to previous approaches. 567

Explainability of Scores. We provide fact-level 568

scoring, enabling users to discern which specific 569

facts are hallucinated and which are not. Further- 570

more, because our pipeline operates on fine-grained 571

facts rather than entire sentences, we provide a level 572

of explainability absent in previous approaches 573

such as Zhang et al. (2023a), clarifying the rea- 574
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Figure 4: Precision values at varying thresholds (ranging from 0.2 to 0.8) of hallucination classification on generated
outputs of the three datasets by Mistral-7B, for each of our HALLUCHECK-based experiments. We observe that the
Fact Alignment Greedy significantly outperforms others across all thresholds.

sons behind tagging a sentence as hallucinated.575

No Training Required. Our approach operates576

on a general framework applicable to any sentence,577

rather than being tailored to specific datasets or578

sentence types. The number of generated ques-579

tions is determined by the factual content within580

the sentence, rather than being selected heuristi-581

cally. Moreover, our approach provides users with582

a rapid assessment of whether the information gen-583

erated by the LLM is factual.584

Ease of use. Our approach does not rely on585

access to any API and requires only the model’s586

output (which needs to be verified) and the LLM587

used to generate the response. This allows our588

method to function on the same device where the589

response was generated, whether through a web590

interface, API or a model running on a local device.591

8 Conclusions592

In this work, we propose HALLUCHECK, a novel593

fact-based hallucination detection pipeline, and594

compare it to existing approaches. We evaluate our595

method on three factuality measurement datasets,596

providing the first comparison between existing fac-597

tual hallucination detection methods. Our findings598

reveal that despite being less computationally ex-599

pensive and not requiring any training, our method600

performs on par with other approaches.601

9 Limitations602

We also analyze scenarios where our model fails to603

correctly categorize the output. Take for example604

the following question from HotpotQA:605

606

Question: Which of the office buildings used607

to staff the White House used to be known as the608

State, War, and Navy Building?609

Answer provided by Mistral-7B-Instruct: The 610

office building used to staff the White House that 611

was once known as the State, War, and Navy Build- 612

ing is now known as the Eisenhower Executive 613

Office Building. This building was constructed 614

in 1952 and was named after President Dwight D. 615

Eisenhower. It was originally built to house the ex- 616

ecutive branch of the U.S. government, including 617

the White House staff. The building was designed 618

by architects Cass Gilbert and James A. Moore. 619

We make the following observations: 620

1. Although the Eisenhower Executive Office 621

Building is factually correct, our pipeline cat- 622

egorizes the entire paragraph as hallucinated. 623

This discrepancy arises because our model 624

identifies the fact ‘1952’ as hallucinated be- 625

cause of the building’s actual construction pe- 626

riod between 1871 and 1888. This contrasts 627

with the golden output from HotpotQA, which 628

does not flag the answer as hallucinated. How- 629

ever, due to the presence of other hallucinated 630

facts, our pipeline assigns a hallucinated tag 631

to the paragraph. 632

2. At times, generated questions may be vague, 633

such as “Who was the building named af- 634

ter?” This ambiguity can result in inaccuracies 635

when regenerating facts, which subsequently 636

lead to tagging the answer as hallucinated. 637

The first error can be mitigated if the relevant 638

fact to examine is known a priori. As for the sec- 639

ond, developing an improved, finetuned reverse 640

question-answering system can help in mitigation 641

of such errors. 642
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A Models and Implementations 945

A.1 SelfCheckGPT (Manakul et al., 2023) 946

One of the first papers to counter zero-resource hal- 947

lucination detection, we compare SelfCheckGPT 948

MQAG scores present in Table 2. We set the num- 949

ber of questions per sentence to be 5. The scoring 950

method selected was Bayes with Alpha. Both β1 951

and β2 were set to 0.95. 952

A.2 SAC3 (Zhang et al., 2023a) 953

As discussed above, for using SAC3 as one of 954

the baselines, we evaluate it using the instruction 955

finetuned model version of Mistral-7B. We calcu- 956

late the question-level consistency score (SAC3-Q) 957

which is highlighted in the original study as a score 958

describing the cross-check consistency between 959

2 types of QA pairs, i) the original question and 960

generated answer as a pair and ii) a number of se- 961

mantically similar generated questions along with 962

their answers as pairs. For feasibility in accordance 963

with our available computational resources, we ex- 964

perimented with 2 generated perturbated QA pairs. 965

This number can be increased or varied to check 966

for different comparisons, but Zhang et al. (2023a) 967

suggest that using between 2 to 5 perturbed ques- 968

tions per data sample yields similar quantitative 969

results. 970

A.3 HaDes (Liu et al., 2022) 971

HaDeS is a novel token-free hallucination detec- 972

tion dataset for free-form text generation. For the 973

dataset creation, raw text from web data is per- 974

turbed with out-of-box BERT model. Human an- 975

notators are then employed to assess whether the 976

perturbed text spans are hallucinations given the 977

original text. The final model is a binary classifier 978

for detecting hallucinated/non-hallucinated text. 979

B Pseudocode for the algorithm proposed 980
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Algorithm 1 Hallucination detection score
1: procedure CALCULATESCORE(A,M)
2: Perform coreferencing on A and break it

into sentences S1, S2, . . . , SN

3: Set Score(Si) to 0 for i ∈ {1, · · · , N}.
4: for i← 1 to N do
5: Tag each sentence Si with NER entities

to extract atomic facts aij for j entities
6: for all aij in Si do
7: qij = Q(aij |Si)
8: fij =M′(qij)
9: if align(fij , aij) then

10: Tag aij as 0 (consistent)
11: for token wijk in fij do
12:

sijk = logitScore(wijk|vocab(M′))

where:
• |sijk| = |vocab(M′)|
• wijk ∈ vocab(M′).

• logitScores : vocab(M′)→ R
13: Compute normalized-

probabilities of top-5 tokens:

p(wijk) =
esijk∑5

m=1 e
sijm

, for k = 1, 2, . . . , 5

14: if pijk ∼ Uniform then
15: Tag aij as 1
16: break
17: end if
18: end for
19: else
20: Tag aij as 1 (hallucinated)
21: end if
22: Score(aij)← Tag of aij (0 or 1)
23: Score(Si) ← Score(Si) +

Score(aij)
24: end for
25: Score(Si)← Score(Si)

|entities in Si| ▷
Normalize score by number of entities

26: end for
27: return [Score(S1), Score(S2), . . . , Score(SN )]
28: end procedure
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