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Abstract

Climate models are limited by heavy computational costs, often producing outputs
at coarse spatial resolutions, while many climate change impact studies require
finer scales. Statistical downscaling bridges this gap, and we adapt the probabilistic
U-Net for this task, combining a deterministic U-Net backbone with a variational
latent space to capture aleatoric uncertainty. We evaluate four training objectives,
afCRPS and WMSE–MS-SSIM with three settings for downscaling precipitation
and temperature from 16× coarser resolution. Our main finding is that WMSE–MS-
SSIM performs well for extremes under certain settings, whereas afCRPS better
captures spatial variability across scales.

1 Introduction

Climate change is amplifying hazards like heatwaves, extreme weather, and floods, with escalating
economic and social impacts [1]. Most impact studies require ensembles of high-resolution climate
projections, but regional climate models even though they are capable of providing fine-scale variables
via dynamic downscaling are computationally expensive, making such ensembles scarce [2]. To
circumvent these computational costs, there is growing interest in emulators; statistical models
designed to perform downscaling with far less computational power and memory. Many recent
emulators leverage advances in deep learning, which offer the flexibility to capture complex spatial
patterns [3, 4, 5, 6]. Generative models may be better suited than purely deterministic models,
which are often trained with MSE and tend to produce overly smoothed downscaled fields while
missing extreme events [7]. Traditional stochastic weather generators struggled to scale over full
spatial domains [8], motivating the use of deep learning approaches such as Generative Adversarial
Networks [9], conditional normalizing flows [10], and diffusion models [11] for climate downscaling.

In this work, we introduce the probabilistic U-Net to climate downscaling. Like the standard U-Net,
the probabilistic U-Net was originally developed for medical image segmentation [12]. Given the
widespread use of U-Nets for downscaling [7], it is valuable to assess their probabilistic variant in
this context. In particular, we focus on selecting the most suitable training objective to enhance
local-scale variability, avoiding the smoothing effect of MSE and to improve the reproduction of
extreme events, which are critical when studying meteorological hazards. We consider daily total
precipitation and minimum/maximum temperaturesdownscaled from data at 16× coarser resolution.

Contributions The key contributions of this work are: (i) the first application of the prob-
abilistic U-Net to climate downscaling, and (ii) an optimized training objective that bet-
ter captures extremes and fine-scale variability. The implementation is publicly available at
github.com/MaryamAlipourH/prob-unet-climate-downscaling.
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2 Background

U-Net Backbone We cast downscaling as supervised image-to-image translation using a four-level
U-Net patterned on the StyleGAN/EDM backbone [13, 14]. The encoder halves spatial resolution
four times, doubling the channel count from 64 to 256, while the decoder mirrors this process with
nearest-neighbour up-sampling followed by 3×3 convolutions. Each encoder level uses two residual
blocks and each decoder level uses three, with skip connections concatenating matching scales.
Since the U-Net requires matching input–output resolution, we upsample low-resolution fields with
nearest-neighbor interpolation to avoid smoothing and artifacts. The network predicts the residual
between this interpolated field and the true high-resolution target field.

Probabilistic U-Net A generative model is obtained by wrapping the deterministic U-Net backbone
within the Probabilistic U-Net framework [12]. A prior network produces P (z|X) from the input
alone, while a posterior network produces Q(z|X,Y ) when the high-resolution target is available;
both distributions are axis-aligned Gaussians. During training, we draw z ∼ Q(z|X,Y ), broadcast it
to a feature map, concatenate it to the final U-Net activations, and pass the result through three 1×1

convolutions to obtain the prediction Ŷ . The loss

L = CE(Y, Ŷ ) + γKL
(
Q(z|X,Y ) ∥P (z|X)

)
(1)

follows Eq. (4) of [12], where CE denotes the cross-entropy loss used for the segmentation task, and
KL denotes the Kullback–Leibler divergence; the weight γ is adapted after a short warm-up phase.
At inference time, we sample latent vectors from P (z|X), yielding an ensemble of high-resolution
realisations that satisfy the learned distribution. The probabilistic U-Net architecture for statistical
downscaling is shown in Fig. 3 (see Appendix).

Training Objectives In the context of downscaling, the CE loss in (1) is not well suited. Although
MSE is a straightforward alternative, it is known to fail to capture extreme values. Furthermore,
because the model is generative, a loss that promotes ensemble diversity is preferable. For these
reasons, we evaluate two alternative losses. The first, termed WMSE-MS-SSIM, is a weighted loss
designed to better capture heavy rainfall events [15]:

Lλ(Y, Ŷ ) =
λ

N

N∑
i=1

w(Yi)(Yi − Ŷi)
2 + (1− λ)(MS− SSIM(Y, Ŷ )), (2)

where w(Yi) = min
{
αeβYi , 1

}
, MS-SSIM is the so-called multi-scale structural similarity measure,

and λ, α and β are hyperparameters. The second loss function, called almost fair CRPS (afCRPS),
was designed to train a generative model for weather forecasting [16]:

afCRPSη

(
{Ŷi1, . . . , ŶiM}, Yi

)
=

1

M

M∑
j=1

|Ŷij − Yi| −
1− ϵ

M(M − 1)

∑
1≤j<k≤M

|Ŷij − Ŷik|, (3)

with M the number of simulations generated by the model for a given sample i, ϵ = 1−η
M , and η is

an hyperparameter. We assess four losses for training the Probabilistic U-Net: WMSE–MS-SSIM
(2), with α = 0.007 and β = 0.048 fixed at their tuned values, and (i) λ set to 1 (WMSE only), (ii) 0
(MS-SSIM only), or (iii) the tuned value 0.158 [15]; and (iv) afCRPS (3), with η = 0.95 as in [16].

3 Experiments

ClimEx Daily Meteorological Data: We use one member of the ClimEx ensemble of dynamically
downscaled simulations [2] over southern Quebec and the Canadian Maritimes at 0.11° (≈ 12km)
resolution, considering total precipitation (in mm) and minimum/maximum temperatures (in ◦C).
The high-resolution domain has 128× 128 grid cells; low-resolution data are obtained by averaging
16× 16 blocks, yielding an 8× 8 grid. Training used 1960–1990, validation 1990–1997, and testing
1998–2005, avoiding the period when the RCP8.5 scenario begins. For the estimation of return levels,
we extend the test set to 30 years in order to capture a complete cycle of climate variability.
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Experimental Setup: Two physical constraints are enforced through re-parametrization: precipita-
tion is kept non-negative using the softplus function log(1 + ex+c) (c = 10−7), and Tmax ≥ Tmin

is ensured by applying it to Tmax − Tmin. All performance metrics and losses are computed after
converting predictions back to physical units. We trained the model for 10 epochs with batch size of
32. The latent space was set to a dimension of 16. During training, the Kullback–Leibler divergence
term in (1) was gradually scaled to control its relative contribution to the total loss.

3.1 Qualitative Evaluation

Return Levels Return level curves are often used by practitioners to assess the probability of
extreme events, and they can therefore be used to evaluate the ability of downscaling methods to
reproduce such events. For a given grid cell, the T -year return level can be defined as the quantile of
the distribution of annual maxima associated with exceedance probability 1/T [17]. We construct
return level curves with 95% confidence bands using the ground truth (i.e., the target test data) by
fitting a Generalized Extreme Value distribution to the annual maxima at each grid cell and applying
a parametric bootstrap to obtain the confidence bands. Empirical return levels from 5 predictions of
the probabilistic U-Net over the test period are then superimposed for comparison, and the match
is considered good if the empirical return levels lie within the confidence bands for at least 95% of
points. Fig. 2 (precipitation) and Fig. 5 in the Appendix (maximum/minimum temperatures) show the
results for two grid cells. Among the three WMSE–MS-SSIM variants, the tuned setting (λ = 0.158)
performs best, while the afCRPS variant tends to overshoot extremes.
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Figure 1: Precipitation return levels for four training objective variants at two grid cells.

Log-Frequency Histograms Because return level curves are pixelwise, we further assess distri-
butional fidelity using log-frequency histograms across all pixels. Fig. 2 (left) shows the results for
precipitation. The λ = 1 variant (WMSE) substantially underestimates high-intensity precipitation,
failing to capture extremes. In contrast, λ = 0 (MS-SSIM) and λ = 0.158 better reproduce the
observed tail behavior, closely matching the ground truth. The afCRPS variant, however, tends to
overestimate extreme events, consistent with its performance in the return level analysis. Fig. 6 in the
Appendix shows that minimum and maximum temperature histograms align well with the ground
truth across all training objective variants, with only minor deviations at the extremes. This suggests
that temperature distributions are relatively insensitive to the choice of training objective, whereas
precipitation extremes remain challenging.

Power Spectral Density (PSD) We evaluate spatial scale fidelity using the azimuthally averaged
PSD, which quantifies the distribution of variance across spatial scales. We focus on fine-scale
variability, which statistical downscaling often fails to capture.

P (k) =
〈 ∣∣X̂(k)

∣∣2 〉 with |k| = k, (4)

The PSD quantifies how variance is distributed across spatial scales, with low k representing synoptic
patterns and high k fine-scale variability.

Fig. 2 (right) and Fig. 7 (in the Appendix) show PSDs for precipitation and minimum/maximum
temperatures, respectively. For precipitation, the WMSE variant (λ = 1) exhibits spectral smoothing
and underestimates variance at higher radial wavenumbers. The MS-SSIM variant (λ = 0) better
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Figure 2: Ground truth versus four training objectives for precipitation: log-frequency histograms
(left) and power spectral density (right).

recovers small scales, while the afCRPS model provides the closest match to the observed spectrum
across scales. In contrast, temperature fields are well reproduced spectrally by all variants, with only
minor deviations at high wavenumbers.

3.2 Quantitative Evaluation

Table 1 mirrors the qualitative trends: none of the variants dominates across all metrics, but different
losses emphasize different aspects of skill. Notably, afCRPS improves CRPS overall and excels on
temperature MAE while nearest-neighbor interpolation serves as a baseline reference.

Table 1: CRPS and MAE for the probabilistic U-Net trained with four different loss functions.

Loss fn CRPS MAE

pr (mm/day) Tmin (◦C) Tmax (◦C) pr (mm/day) Tmin (◦C) Tmax (◦C)

afCRPS 0.94 ± 0.74 0.68 ± 0.20 0.62 ± 0.12 1.35 ± 1.09 0.90 ± 0.28 0.75 ± 0.17
λ = 0 1.07 ± 0.85 0.86 ± 0.28 0.68 ± 0.14 1.29 ± 1.00 1.06 ± 0.31 0.88 ± 0.16
λ = 1 1.13 ± 0.90 0.78 ± 0.26 0.59 ± 0.14 1.19 ± 0.94 0.94 ± 0.27 0.74 ± 0.15
λ = 0.158 1.06 ± 0.84 0.85 ± 0.27 0.66 ± 0.14 1.27 ± 0.98 1.05 ± 0.30 0.85 ± 0.16
NN – – – 1.51 ± 1.14 1.76 ± 0.60 1.30 ± 0.30

4 Conclusion

We demonstrate the successful application of the probabilistic U-Net to climate downscaling, offering
potential advantages over its deterministic counterpart, including uncertainty quantification and
latent-space interpretability.

Our experiments highlight that no single loss function fully addresses the dual challenges of capturing
extremes and fine-scale variability in statistical downscaling. For extremes, MS-SSIM (λ = 0)
proved most effective, closely reproducing observed return levels and tail behavior. For small-scale
variability, afCRPS provided the best match to the observed spectra, though it tended to overestimate
extremes. This trade-off suggests that combining afCRPS with MS-SSIM may offer a more balanced
solution. Quantitative metrics further reinforced this complementarity: afCRPS achieved the lowest
CRPS and strong overall accuracy, while MS-SSIM variants better represented precipitation extremes
despite higher aggregate error.

For impact studies, especially in hydrology, both local-scale variability and extreme events drive risk
assessment. Reliable downscaling requires not only accurate averages but also realistic extremes and
spatial detail. By exploring loss functions that balance these objectives, probabilistic deep learning
models like the Probabilistic U-Net can become valuable tools for climate change impact assessments.
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A Supplementary Material
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Figure 3: Probabilistic U-Net architecture for statistical downscaling, showing the prior and posterior
networks, the U-Net backbone, and the latent variable fusion during (a) training and (b) inference.

Figure 4: From left to right: the coarse-resolution input, three sampled high-resolution realizations
from the model (out of an arbitrarily large ensemble), and the ground-truth high-resolution field. This
figure illustrates how the probabilistic U-Net generates diverse yet physically consistent realizations.
While the large-scale precipitation pattern is reproduced across all predictions, variability appears in
regions of higher intensity, reflecting the model’s stochastic sampling of fine-scale structures. This
ensemble spread is precisely what enables the model to represent uncertainty in extremes that a
deterministic baseline would smooth out.
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Figure 5: Minimum (left panel) and maximum (right panel) temperature return levels for four training
objective variants at two grid cells.

60 40 20 0 20
Tasmin (°C)

0

2

4

6

8

10

12

14

Lo
g-

Fr
eq

ue
nc

y

40 20 0 20 40
Tasmax (°C)

Ground truth = 0 = 1 = 0.158 afCRPS

Figure 6: Log-frequency histograms of ground truth versus four training objectives for maximum
(left) and minimum (right) temperature.
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Figure 7: Power spectral density of ground truth versus four training objectives for maximum (left)
and minimum (right) temperature.
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