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ABSTRACT

The recent development of foundation models for time series data has generated
considerable interest in using such models across a variety of applications. Al-
though foundation models achieve state-of-the-art predictive performance, their
calibration properties remain relatively underexplored, despite the fact that cali-
bration can be critical for many practical applications. In this paper, we investigate
the calibration-related properties of five recent time series foundation models and
two competitive baselines. We perform a series of systematic evaluations assess-
ing model calibration (i.e., over- or under-confidence), effects of varying predic-
tion heads, and calibration under long-term autoregressive forecasting. We find
that time series foundation models are consistently better calibrated than base-
line models and tend not to be either systematically over- or under-confident, in
contrast to the overconfidence often seen in other deep learning models.

1 INTRODUCTION

Prediction and modeling of time series data is ubiquitous in data analysis, with applications across
a broad range of fields including climate science (Mudelsee, 2014), energy forecasting (Deb et al.,
2017), healthcare (Crabtree et al., 1990), consumer behavior modeling (Goel et al., 2010), and fi-
nancial forecasting (Tsay, 2005). Traditional statistical approaches such as linear autoregressive
(AR) models and associated variants are well-established in the field (Hamilton, 1994; Hyndman
& Athanasopoulos, 2018); they have been supplemented in recent years by a variety of machine
learning approaches using richer model representations, including deep learning time series models
such as N-BEATS (Oreshkin et al., 2019) and Informer (Zhou et al., 2021).

A more recent trend is the emergence of time series foundation models (TSFMs) (Nie et al., 2023;
Liang et al., 2024). Unlike traditional statistical and machine learning approaches where models
are fitted to time series from a single source, TSFMs are general-purpose models trained on a broad
range of time series from various domains and are capable of zero-shot or few-shot forecasting on
any time series in principle (Ye et al., 2024; Liang et al., 2024). This is appealing to practitioners
in that only a single global model is required rather than retraining a new model for every time
series (Bommasani et al., 2021; Benidis et al., 2022).

With this increase of interest in TSFMs, it becomes important to understand and characterize the
calibration properties of such models. TSFMs, in general, produce conditional distributions over
potential future values, rather than just single point forecasts (e.g., the expected value of the time
series at a future time). This distributional information is important and useful in many applications.
In particular, it can be essential for decision-making (Gneiting et al., 2007; Petropoulos et al., 2022),
for example in downstream tasks such as anomaly detection (Menon & Williamson, 2018) and in
critical domains such as healthcare (Farah et al., 2014; Marlin et al., 2012). A natural question in
this context is: how well calibrated are TSFMs in terms of their conditional distributions, i.e.,
how well do the predicted probabilities match the observed data?

While the calibration properties of classification and regression models have received considerable
attention in machine learning in recent years (e.g., Guo et al. (2017); Song et al. (2019); Chung et al.
(2021)), the calibration properties of TSFMs remain relatively underexplored. To address this gap,
we perform an empirical study of TSFMs and baselines with respect to calibration-specific metrics.
Our systematic evaluation includes five state-of-the-art TSFMs and two well-established baseline
methods in terms of their zero-shot forecasts across six univariate time series datasets with different
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temporal granularities. We measure calibration properties through a comprehensive set of metrics,
such as Probabilistic Calibration Error (Dheur & Taieb, 2023; Kuleshov et al., 2018; Chung et al.,
2021), in the context of a variety of different aspects of conditional uncertainty in model predictions.

In general, TSFMs produce conditional distributions using two approaches: some models predict the
parameters of conditional density models (Rasul et al., 2023; Woo et al., 2024; Ansari et al., 2024a),
while others predict sets of conditional quantiles (Das et al., 2024; Auer et al., 2025; Wang et al.,
2025). To fully understand the calibration properties of TSFMs, we isolate the impact of different
prediction heads by training individual quantile and distribution heads for each of the TSFM base
architectures and then evaluate the effect of prediction heads on calibration performance.

Additionally, TSFMs vary in their approaches for long-term forecasting. For long-term forecast-
ing beyond the forecast horizon (the prediction length of a single forward-pass), many TSFMs rely
on autoregressive forecasting (Das et al., 2024; Ansari et al., 2024b; Cohen et al., 2025). Prior
works (Auer et al., 2025; Wang et al., 2025) have shown that using autoregressive forecasting can
have negative effects on model performance due to the reinitialization of the probabilistic forecast.
Solutions include multi-patch forecasting (Woo et al., 2024) where models can predict sequential
patches at a time, and stochastic autoregression which propagates probabilistic information to sub-
sequent forecasts as described in Section 3.2. In this context, it is important to understand how lim-
ited forecast horizons can affect calibration on long-term forecasts. To investigate this, we compare
TSFM calibration on long-term forecasting across varying forecast horizon lengths and autoregres-
sive implementations.

The primary contributions of our work are as follows:

• We conduct a first-of-its-kind systematic calibration study with five state-of-the-art founda-
tion models and two well-established baselines across six datasets from different domains1.

• We use three calibration-specific metrics to quantify the overall calibration error and over-
and under-confidence of prediction models; we analyze the calibration effects of various
distributional and quantile prediction heads; and we investigate the effect of different long-
range forecasting methods on calibration.

• We find that TSFMs are better calibrated than baseline models, tend to be neither system-
atically over- nor under-confident, are generally insensitive to the form of distributional
prediction head, and consistently competitive in both prediction and calibration.

2 BACKGROUND AND RELATED WORK

2.1 PROBABILISTIC TIME SERIES FORECASTING

Given a context of T observations y1:T for a time series, we evaluate the H-length forecasting
performance on the prediction yT+1:T+H | y1:T . We denote the median prediction as ŷ0.5t at each
t ∈ {T + 1, ..., T +H} for point estimates, and predicted quantiles ŷqt to assess the uncertainty and
calibration. The predicted quantiles are either produced directly by a multi-quantile prediction head
for each of the H future points, or can be computed from the predicted conditional density.

TSFMs can differ slightly in their approaches to data aggregation and functionality, but typically
they tokenize time series in patches of a predetermined length (Nie et al., 2023). We denote the
forecast horizon p as the number of future time steps a model can forecast in a single forward-
pass. When the desired forecast length H is greater than the model’s forecast horizon p, a simple
approach is to use autoregressive (AR) forecasting based on point estimates, where the model will
incorporate the previous forecasts ŷT+1:T+p into the observed context. The model then uses this
extended and shifted context y1+p:T+p to forecast the next set of patches ŷT+p+1:T+2p, recursively
until the desired forecast ŷT+1:T+H is reached (Ansari et al., 2024b; Cohen et al., 2025). Methods to
reduce the reliance on AR forecasting include extending the number of simultaneous output patches
in multi-patch forecasting (Woo et al., 2024), increasing output patch length (Das et al., 2024),
and incorporating missing-data masks to extend the context into the future (Auer et al., 2025). We
empirically compare these approaches for long-term forecasting in Section 4.4.

1We will provide the full code base for reproducing our experiments and links to datasets in a GitHub
repository in the final version of our paper.
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Figure 1: Weighted Quantile Loss (WQL) calibration metric can be highly correlated with
point accuracy error (MASE). Results shown for WQL (left) and PCE (right) plotted against
MASE on the Glucose dataset used in our experiments. Background markers are results for each
model and each individual time series; larger centroids are medians across time series. On this
dataset, WQL incorrectly identifies ARIMA as the best calibrated model.

In TSFMs, patched time series are passed into a model-specific backbone, which translates the em-
beddings into a latent space as an input to the final projection block. These probabilistic predictions
can then be directly predicted as quantiles through a multi-headed projection block or a model can
use the latent activations to output the parameters to a distribution where the full densities can be
recovered. Some prediction heads can better represent different types of data, for instance negative
binomial would be well-suited for count data, while a Student’s t distribution would be appropriate
for a general continuous-valued time series. Furthermore, parameterizations of mixture of distri-
butions, as well as quantile heads, have also been proposed (Woo et al., 2024; Das et al., 2024;
Cohen et al., 2025) to allow for additional flexibility in terms of how TSFMs can model conditional
distributions. We evaluate these different projection blocks across a range of domains to identify if
certain heads are better calibrated for specific datasets in Section 4.3.

2.2 RELATED WORK ON CALIBRATION

Predictive calibration has long been recognized as a topic of importance in statistics and machine
learning (Brier, 1950; Gneiting et al., 2007). In recent years, a number of different studies have
investigated the calibration of deep learning models, and have shown that such models are often
systematically susceptible to overconfidence, for example in image classification with deep models
(Guo et al., 2017; Ye et al., 2023; Pinto et al., 2022) and in multiple question-answering tasks for
large language models (Jiang et al., 2021; Mielke et al., 2022; Xiong et al., 2024).

In the evaluation of time series forecasting models, calibration is also an important compo-
nent (Makridakis et al., 2022; Aksu et al., 2024; Das et al., 2024). One of the most commonly used
calibration metrics is the Continuous Ranked Probability Score (CRPS), which directly compares
the cumulative distribution function (CDF) of model predictions to the observed value’s CDF (Hers-
bach, 2000). Since computing CRPS can be intractable and some TSFMs only produce quantiles
rather than full conditional densities, the Weighted Quantile Loss (WQL) is also often used as a
discrete surrogate for CRPS (Woo et al., 2024; Aksu et al., 2024), defined as the pinball (or quantile)
loss scaled by the absolute sum of the true values. Another common calibration metric is Mean
Scaled Interval Score (MSIS) (Makridakis et al., 2020), which takes the mean difference in upper
and lower bound predictions and adds an error penalty when the true value lies outside the bounds.

Using these metrics, prior works have claimed that TSFMs are better calibrated than baseline meth-
ods like ARIMA and N-BEATS (Aksu et al., 2024; Ansari et al., 2024a; Auer et al., 2025). However,
Chung et al. (2021) proved that the metrics above (CRPS, WQL, MSIS) measure a combination of
both probabilistic calibration and sharpness (Gneiting et al., 2007), rather than calibration alone.
This combination can result in an imbalance in evaluation that can skew towards prioritizing predic-
tive sharpness (Chung et al., 2021). Figure 1 shows a concrete example of how PCE and WQL can
differ in practice: WQL can be highly correlated with Mean Absolute Scaled Error (MASE), while
PCE directly measures calibration. In the next section, we discuss calibration-focused metrics that
address this issue by focusing solely on measuring calibration.
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3 EXPERIMENTAL SETUP

3.1 METRICS

The first calibration metric we use is Probabilistic Calibration Error (PCE) (Kuleshov et al., 2018;
Dheur & Taieb, 2023):

PCE =
1

|Q|
∑
q∈Q

∣∣∣∣∣q − 1

H

T+H∑
t=T+1

1[yt ≤ ŷqt ]

∣∣∣∣∣ , (1)

where q ∈ Q = {0.1, 0.2, ..., 0.9} is the set of quantiles that we average over in our experiments.
Intuitively, PCE measures the differences between empirical and predicted CDFs with lower values
indicating better-calibrated models. PCE is lower-bounded by 0 and upper-bounded by 0.5 for the
case where predicted quantiles are always all above or below the observed value yt.

However, well-calibrated models are not sufficient to produce useful forecasts: a model could for
example always predict the marginal distribution, independent of the inputs. In this context, a met-
ric that specifically captures sharpness (the concentration of the predictive distributions) is also
important in an overall evaluation of calibration (Gneiting et al., 2007; Kuleshov et al., 2018). A
simple surrogate for sharpness is the width of a predicted confidence interval, e.g., where an 80%-
confidence interval is the interval between the symmetric qlow = 10% and qhigh = 90% quantile
predictions. We refer to this as Scaled Interval Width (SIW) where s is the confidence associated
with the interval (i.e., s = qhigh − qlow = 80% in the preceding example):

SIWs =
1

H

T+H∑
t=T+1

ŷ
qhigh
t − ŷqlow

t

yqhigh − yqlow
. (2)

Models with lower SIW values (i.e., tighter prediction intervals) are more confident in their predic-
tions, while models with larger SIW values (i.e., wider-spread predictions) are less confident.

We are also interested in whether a model is systematically miscalibrated in one direction or an-
other. To quantify this, we define the metric Centered Calibration Error (CCE) that compares the
amount of observed data in a predicted interval with the associated confidence s:

CCE =
1

|S|
∑
s∈S

s− 1

H

T+H∑
t=T+1

1
[
ŷqlow
t ≤ yt ≤ ŷ

qhigh
t

]
. (3)

A model’s over- or under-confidence can be identified by combining the direction of CCE and its
SIW. Positive CCE values indicate there is more observed data outside the predicted interval than
expected by the confidence level; together with a low SIW value, we can infer that a model is
overconfident. On the other hand, negative CCE values and larger SIW values imply that the model
is under-confident. For both CCE and SIW, we average over s ∈ {0.2, 0.4, 0.6, 0.8} in our analyses.

Finally, to assess the point accuracy of TSFMs (independently from any calibration error) we use
Mean Absolute Scaled Error (MASE) for the predicted median, scaling the Mean Absolute Error
(MAE) by a naive predictor (Hyndman & Athanasopoulos, 2018):

MASE =
1
H

∑T+H
t=T+1 |ŷ0.5t − yt|

1
H−1

∑T+H
t=T+2 |yt − yt−1|

. (4)

Note that for multi-step predictions (H > 1) that the MAE of the naive predictor in the denominator
is in effect using information “from the future,” with the result that the overall MASE may take
values greater than 1 even for useful models. The absolute values of MASE are not important, but
the relative MASE values across different predictors ŷ are what we will focus on.

3.2 MODELS

Base Models We evaluate calibration properties of five TSFMs in terms of their zero-shot fore-
casts: Chronos-Bolt (Ansari et al., 2024a;b), TimesFM (Das et al., 2024), Moirai 2.0 (Woo et al.,
2024; Taha Aksu et al., 2025), TiRex (Auer et al., 2025), and YingLong (Wang et al., 2025). As
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baselines, we use ARIMA (Hyndman & Khandakar, 2008) and N-BEATS (Oreshkin et al., 2019)
to represent well-known parametric and neural time-series prediction alternatives to TSFMs. All
selected TSFMs have been pretrained on various large pretraining datasets and use a quantile pre-
diction head. Additionally, they all use transformers, except for TiRex which uses an xLSTM (Beck
et al., 2024) backbone. TimesFM, Moirai 2.0, and TiRex use a decoder-only architecture with a
casual attention mechanism, while Chronos-Bolt uses the encoder-decoder backbone from the T5
model (Raffel et al., 2020) and YingLong uses a bi-directional encoder-only architecture.

Autoregressive Methods Autoregressive (AR) forecasting is often necessary for models with a
limited forecast horizon for long-term forecasting. Each model implements AR forecasting slightly
differently. Chronos-Bolt and TimesFM use a naive point-based AR, where only the mean or me-
dian predictions are autoregressively added to the context. This method while simple is known
to significantly harm probabilistic forecasting due to the re-initialization of the context each itera-
tion (Auer et al., 2025). Improvements to the naive method typically require forecasting each time
step multiple times with different AR contexts to propagate probabilistic information across fore-
cast iterations: Moirai 2.0 implements a branching approach which autoregressively forecasts using
a separate context for each quantile. The Toto TSFM (Cohen et al., 2025) uses a trajectory approach
which produces n (usually ≫ |Q|) independent AR forecasts or trajectories, where each trajectory
is produced similarly to the point-based approach. Instead of adding the mean or median forecast to
the context, it adds a random sample from the predicted distribution at each time step. We explain
these methods in more detail in Appendix A.3. These AR methods trade off robustness for com-
putational efficiency, where the TimesFM and Chronos-Bolt approach only forecasts each time step
once, while the branching (Moirai 2.0) and trajectory approach (Toto) require |Q| and n forecasts
per time step respectively. In addition to comparing these AR methods, we evaluate how larger or
smaller forecast horizons affect calibration on long-term AR forecasting.

3.3 DATASETS

We selected evaluation datasets representing a range of tasks differing in time-step granularity, sea-
sonality, and forecasting difficulty across a variety of domains. To the best of our knowledge, these
datasets were not used in the training of the foundation models (except the M5 data for the Moirai 2.0
and YingLong models). Each dataset is split into a train and test set where the non-TSFMs, ARIMA
and N-BEATS, are trained independently on the train set, where hyperparameters are chosen by Au-
toARIMA and grid search respectively. All models are evaluated on the held-out test set. Table 1
summarizes the dataset statistics. Our results on each dataset are aggregated over multiple settings
(see Section 3.1), prediction steps, and all possible context-prediction combinations in the test set
for each time series, i.e., effectively generating many more time series forecasts than the number of
time series (see the last column in Table 1). Additional details are provided in Appendix A.2.

Table 1: Datasets used in calibration experiments.
# Time Series Granularity Time Steps per Series # Total Forecasts

Reviews 239 Hourly 13,000 360,490
Shopping (M5) 70 Daily 1,912 62,160
Glucose 16 5 Mins 1,686 13,840
Heart-Rate 6 Second 744 1,800
Crime 5 Daily 6574 4,110
Patents 83 Monthly 408 10,956

To evaluate the effect of different prediction heads for the TSFMs, we trained prediction heads using
a large diverse dataset that is comparable to those used in TSFM pretraining. Specifically, we se-
lected TSMixup from Ansari et al. (2024a) as it is independent of the six datasets we use to evaluate
the models. This allows the trained projection blocks to be an equivalent plug-in replacement to the
default quantile projection heads of the selected models.
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4 EXPERIMENTS

Based on the models, datasets, and metrics outlined above, we found that foundation models exhibit
competitive and often better point-forecasting performance compared to baselines, with the TSFMs
often having a lower MASE than N-BEATS and ARIMA (see Figure 2). The Glucose and Patents
datasets have significantly higher MASE numbers than the other datasets—this may be due to the
fact that for each of these datasets there appears to be little significant linear dependence beyond 1
or 2 lags (see partial autocorrelation plots in Figure 6 in Appendix B.4).

TSFMs also exhibit significantly better calibration performance than baseline models. We discuss
the main results on calibration in detail below. In the Appendix, we also include additional figures
and findings, where we discuss the empirical correlation of WQL, MSIS, and MASE, along with
details on the calibration of tail probabilities.
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Figure 2: TSFMs offer competitive point forecasting performance compared to the baseline
models, often having better accuracy than the baselines. y-axis: Mean Absolute Scaled Error
(MASE) measuring point accuracy error of the median prediction (lower is better), Glucose and
Patents use their own y-axis scale (on the right). The error bars are computed as the Standard Error
of the Mean (SEM) across timeseries.
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Figure 3: TSFMs are better calibrated than the baseline models and are not systematically
over- or under-confident. Top: Probabilistic Calibration Error (PCE) across datasets and models
using the default quantile projection block. (Patents PCE uses its own y-axis scale (on the right)).
Lower PCE values are better. Bottom: Centered Calibration Error (CCE) evaluating systematic
overconfidence (positive) or under-confidence (negative).
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4.1 ARE FOUNDATION MODELS WELL-CALIBRATED?

Previous works have indicated that TSFMs are well calibrated using CRPS, WQL, and MSIS (Aksu
et al., 2024; Auer et al., 2025), but as discussed in Section 3.1 and in Chung et al. (2021), these
metrics can be biased towards sharpness and accuracy rather than reflecting calibration per se. In
our experiments, we evaluate directly if TSFMs are well-calibrated, focusing on the PCE metric,
and we find that, yes, TSFMs are generally better calibrated than the baseline models of N-
BEATS and ARIMA: see top plot in Figure 3. For a general sense of scale, PCE values below
0.05 or 5% error relative to the quantiles can loosely be considered to be much better calibrated than
values larger than say 0.15, in the context of the range of PCE being between 0 and 0.5. The TSFMs
are in general close to or below 5% in PCE error, except for the relatively difficult Patents dataset
where all methods (TSFMs and baselines) have high calibration error. No single TSFM significantly
dominates in calibration performance over the others.

A natural additional question is how calibration performance is affected by how far in time a model
prediction is from the context. Naturally, as both TSFMs and baselines predict further into the
future, both the point accuracy (MASE) and calibration error (PCE) degrade (see Figures 7 and 8 in
the Appendix). However, calibration overall remains relatively stable with TSFMs achieving PCE
values close to or below 5% even 64 time-steps out (e.g., for Reviews, M5, and Crime data), unlike
the baseline models which have a consistently high PCE over all prediction lengths.

As a control experiment, we also evaluated the calibration performance of TSFMs on two synthetic
datasets, one with pure IID noise yt = ϵ and the other a noisy first-order linear process yt =
αyt−1 + (1 − α)ϵ, with ϵ ∼ N (0, 1) and α = 0.9. For these datasets the question of interest is
whether TSFMs might overfit (for either calibration or point prediction) relative to a baseline like
ARIMA (which in principle can be perfect on these datasets). As shown in the lower right two plots
in Figure 9 in the Appendix, the TSFMs do not overfit (they perform well on both MASE and PCE).
ARIMA does well on MASE but is not as well-calibrated (PCE) (nor is N-BEATS) as the TSFMs.

In summary, while past works have shown that TSFMs perform well on WQL and CRPS metrics
(e.g., Aksu et al. (2024); Ansari et al. (2024a); Auer et al. (2025)), as we discussed earlier (see Figure
1 and further in Appendix B.2), WQL alone is not necessarily a reliable indicator of calibration
performance. Our results provide direct confirmation that TSFMs tend to be well-calibrated.

4.2 ARE FOUNDATION MODELS SYSTEMATICALLY BIASED IN MISCALIBRATION?

For image and text modalities, deep models are well-known to often be overconfident (Ye et al.,
2023; Xiong et al., 2024; Kapoor et al., 2024). In the context of time series, it is natural to ask if
TSFMs similarly exhibit systematic biases, either towards over- or under-confidence.

To answer this, we evaluated the CCE metric across datasets and models. The lower plot in Figure 3
shows the directionality of model confidence. Except for the Patents dataset, where all models are
overconfident, we find that TSFMs tend not to be systematically over- or under-confident. In
contrast, N-BEATS and ARIMA are consistently under-confident As shown in Figure 12 in the Ap-
pendix, the interval width (SIW) and centered calibration (CCE) tend to have a negative correlation:
models with wider confidence intervals tend to have a smaller CCE or are under-confident.

It is noteworthy that TSFMs are not systematically overconfident, in the way that foundation models
from the text and image domains tend to be. This can likely be explained by the fact that TSFMs are
being directly trained with a calibration-aware loss (i.e., trained to minimize WQL), while text and
image models are trained to minimize reconstruction or classification error.

4.3 HOW DO PREDICTION HEADS AFFECT CALIBRATION?

A major design choice of TSFMs is selecting a suitable prediction head. Multiple approaches have
been presented in the literature, including quantile prediction heads (the default choice for all TSFMs
in our experiments), parametric distribution heads (e.g., Lag-Llama (Rasul et al., 2023) with Stu-
dent’s t), categorical distribution heads (e.g., Chronos (Ansari et al., 2024a)), and semi-parametric
mixture heads such as Toto (Cohen et al., 2025) and Moirai 1.0 (Woo et al., 2024) which use a variety
of components such as Gaussian, Student’s t, log-normal, and negative-binomial distributions.
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Figure 4: Gaussian prediction heads are under-confident and are in most cases outperformed
by the other prediction heads. Calibration properties of various prediction heads with Centered
Calibration Error (CCE) on the x-axis and Probabilistic Calibration Error (PCE) on the y-axis. Large
positive CCE values indicate overconfident predictions, while large negative CCE values show
under-confidence. Background markers are the results for each head (shape) with each backbone
model (color), while the larger gray centroids are the mean results across models.

An important question is whether the form of a prediction head for a model affects its calibration
performance? To address this question, we used the latent information produced by each pretrained
TSFM backbone and trained different prediction heads (using TSMixup) for each, specifically: a
Gaussian distribution, a Student’s t distribution, and a mixture distribution containing a Gaussian,
Student’s t, log-normal, and a Laplace distribution. We also retrained a separate quantile projection
head on TSMixup as a control to compare against and found that the trained projection heads cor-
rectly learn the latent information of the original foundation model with the trained quantile heads
having equivalent forecasting performance as the original quantile head.

We then evaluated all combinations of models and prediction heads using the PCE and CCE metrics.
As shown in Figure 4, the quantile, Student’s t, and mixture distribution heads have very similar
calibration error across all datasets, indicating that there is no significant advantage for any of the
three over the others. On the other hand, the Gaussian distribution’s calibration results are
significantly worse than the other heads. In particular, the Gaussian heads are consistently under-
confident with CCE scores (x-axis of Figure 4), always lower than the other heads. This under-
confidence also translated to consistently higher calibration error. We speculate that the limited
expressiveness of the Gaussian distribution results in poor calibration while the more expressive
distributions are better calibrated without suffering from overfitting issues.

4.4 HOW DO AR METHODS AFFECT CALIBRATION IN LONG-TERM FORECASTING?

It is well known that autoregressive (AR) models can deteriorate when making long-term predictions
when the desired forecast length H is much longer than the model’s forecast horizon p (Auer et al.,
2025). Different approaches to AR forecasting have been proposed, with different tradeoffs in terms
of how errors accumulate and how much computational effort is involved. An important question
from a calibration perspective is how do the different AR forecasting methods affect calibration
performance? To investigate this, we evaluated how calibration properties of TSFMs vary as a
function of horizon length p and AR method. We focused primarily on the Chronos-Bolt, TimesFM,
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Figure 5: For long-term AR forecasting, increasing the horizon length and using the trajectory
AR method produces better calibrated forecasts. The figure compares Probabilistic Calibration
Error (PCE) for long-term forecasting using autoregression on the y-axis with AR prediction horizon
on the x-axis. The color of the line depicts the model used and the line style indicates the AR method.
The pink and blue dashed horizontal lines are the PCE for TiRex and Yinglong without using AR.

and Moirai 2.0 models in these experiments given that TiRex and YingLong model architectures
allow for long-term forecasting natively without requiring AR.

For both the trajectory and branching AR methods, the predictions with a shorter forecast horizon
p have poorer calibration. This is more pronounced in the branching method, where forecasts with
horizon lengths of 16 have notably worse PCE than with 64 or 128 as shown in Figure 5. The tra-
jectory AR approach has generally lower PCE than the branching method when comparing with the
same forecast horizon. The explanation for this becomes more clear when viewing CCE from Fig-
ure 16 in the Appendix with respect to these methods. All autoregressive TSFMs are consistently
overconfident in long-term forecasting. While both methods show that shorter forecast horizons
results in more confident forecasts, the CCE values for the branching method are often greater than
0.15 for horizon lengths of 16 and 32. This overconfidence reduces steeply as the horizon length
increases thus reducing overall calibration error. Although the trajectory method can be more com-
putationally expensive than the branching approach, our results indicate that the trajectory method
is better calibrated for long-term forecasting. The non-AR approaches of TiRex and YingLong are
significantly more efficient than both AR methods, and they tend to be better calibrated and were
not significantly over- or under-confident. Future work in long-term forecasting should prioritize
models with longer forecast horizons and alternatives to AR-based approaches.

5 CONCLUSION

Understanding the calibration properties of TSFMs closes a gap in the literature, which has primarily
focused to date on point accuracy. Calibration is crucial, however, to accurately quantify the inherent
uncertainties associated with time-series forecasting.

In this paper, we evaluated the calibration properties of current leading TSFMs and found that they
are consistently well-calibrated relative to the N-BEATS and ARIMA baselines. Unlike the base-
lines, which are under-confident, the TSFMs show no signs of systematic over- or under-confidence
in short-term forecasting. When replacing the projection heads of the TSFMs, the Gaussian pre-
diction head results in consistently under-confident forecasts across the different model backbones,
while other distribution and quantile heads are all well-calibrated without significant differences. For
long-term forecasting using autoregression, having larger prediction horizons and using the trajec-
tory AR approach over the branching method decrease calibration error and reduces overconfidence.

A limitation of our study is that our evaluations only considered TSFMs for zero-shot univariate
time series and calibration relative to a fixed set of quantiles q ∈ {0.1, . . . , 0.9}. As such, worth-
while extensions of our work could be to investigate calibration in the context of fine-tuning, to
extend multivariate data, and to examine higher-resolution quantiles. Another important practical
direction for future investigation is how distribution shift and non-stationarity may affect the calibra-
tion performance of both TSFMs and baselines, given the well-known sensitivity of the calibration
performance of deep classification models to distribution shift (Ovadia et al., 2019).
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A APPENDIX

A.1 LLM USAGE STATEMENT

LLMs were used by the authors as a tool to assist in producing code for experiments. LLMs were
not used to aid in the writing of the paper or during research ideation.

A.2 ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

We report the default experiment parameters used in the main paper results in the following table,
where the train/test split size varies by dataset, with train sets containing approximately 700 time
steps per time series:

Table 2: Experimental setup details per dataset.
Prediction Context Seasonality Train/test split

Length (H) Size (T ) (ARIMA only)

Reviews 64 512 24 2020-01-31 23:00
Shopping (M5) 64 512 7 2015-04-23
Glucose 64 512 1 2020-02-16 12:43
Heart-Rate 64 128 1 2000-01-01 00:04:59
Crime 64 512 7 2015-01-01
Patents 64 128 1 2004-01-01

Prediction length is fixed at 64 time steps across all datasets for short-term forecasting experiments
while long-term forecasting experiments used a desired forecast length of 256 time steps.

Baseline models (N-BEATS and ARIMA) use the training data (dates before train/test split column)
for parameter selection and training. The train/test split was determined based on the minimal size
of the train set for training N-BEATS and ARIMA models, limited by time series length. Models
forecast the first 64 time steps of the test set using the end of the training set as the context. The
forecast date and non-AR context are then shifted by the stride, forecasting an additional 64 time-
steps. The models forecast repeatedly until the end of the time series. For a stride d ∈ {1, 4, 8}
dependent on time series length, the first forecast predicts ŷT+1:T+H |y1:T while the second forecast
is shifted by the stride to ŷT+1+d:T+H+d|y1+d:T+d.

Seasonality is a hyperparameter for the ARIMA models, used for initialization. We limit the max lag
(context) for the ARIMA model to 64 for all datasets. We train an ARIMA model with AutoARIMA
on the train set and then use the selected hyperparameters to train the models for evaluation. We train
a new ARIMA model each time we shift the context.

For N-BEATS we perform a grid search on a variety of hyperparameters (see Table 3) using the
training data and select the model with the lowest WQL on the same data. Quantile loss outperforms
normal distribution loss on all datasets. When forecasting with distribution loss in N-BEATS, we
use the default 100 samples. We train a single N-BEATS model on each dataset, training across
multiple time series and reuse the same learned parameters each time we shift the context.

Table 3: N-BEATS hyperparameter grid search space.
Hyperparameter Search Space

Epochs {100, 1000}
Learning Rate {0.001, 0.0001}
Early Stop Patience Steps {-1, 2}
Number of Blocks {(1,1,1), (3,3,3)}
Validation Check Steps {10, 100}
Loss Function {Normal Distribution Loss, Quantile Loss}

We describe the AR methods in depth in the next section and used n = 100 as the number of
trajectories for the trajectory AR method. When sampling from the quantile heads in the trajec-
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tory method, we linearly interpolate between the quantiles to convert the quantile heads into to a
continuous distribution.

A.3 AUTOREGRESSIVE METHODS

The naive AR method used by TimesFM and Chronos-Bolt adds only the median or mean forecasts
to the context. For example if the desired forecast length is H = 256 and the model’s forecast
horizon is p = 64, the model will generate a probabilistic forecast ŷT+1:T+64 given the observed
context y1:T . To make the next 64-step forecast, it adds the mean or median forecast, derived from
ŷT+1:T+64, to the original context. The result is a shifted context y65:T+64 containing a mix of
observed values and forecasted values. The model can then use the shifted context to produce the
forecasts for ŷT+65:T+128. This process is repeated until all 256 probabilistic forecasts have been
completed, and the quantiles can be obtained directly from the probabilistic forecasts.

The branching approach from Moirai 2.0 is different in that it requires the model to forecast the
same time steps multiple times. The first 64 time steps is normal, relying only on the observed
contexts and producing |Q| quantile forecasts ŷqT+1:T+64, where q ∈ Q. The context is duplicated
or branched into |Q| new extended contexts, where each context is extended by the forecasts at a
specific quantile. The next 64 steps ŷqT+65:T+128 is forecasted using all |Q| contexts, which requires
running the model |Q| times independently, once for each of the |q| contexts. Because the model
has been run |Q| times and each time the model produces |Q| quantiles, there will be a total of
|Q|2 forecasts for each time step. Rather than increasing the number of contexts exponentially from
|Q| to |Q|2, the |Q|2 quantile forecasts at each time step are aggregated back down to a set of |Q|
quantile predictions. This is done by taking the Q quantile of the |Q|2 forecasts (for each time step).
These aggregated quantiles become the returned quantile forecasts and are used to extend and shift
the corresponding |Q| contexts.

The Toto TSFM (Cohen et al., 2025) uses a trajectory-based AR method where the model generates
n independent AR forecasts or trajectories. Each trajectory is produced similarly to the naive method
where a single point forecast (at each time step in p) is added to the context for AR. However, instead
of using the mean or median, the model samples from the predicted density and uses the samples as
the point forecast (one sample for each time step). The model will create n independent trajectories
each with separate contexts. The final quantile forecasts are produced by taking the quantiles of the
n trajectories at each time step independently.

A.4 MODELS

We primarily selected models with diverse backbones that were state-of-the-art on the GIFT-EVAL
benchmark as of the time of writing (Aksu et al., 2024) and pre-trained on time series datasets.

TimesFM TimesFM (Das et al., 2024) uses a decoder-only stacked transformer architecture,
and provides probabilistic predictions at pre-trained fixed quantile heads. The training objec-
tive combines mean squared error (MSE) and quantile loss Hyndman & Athanasopoulos (2018);
Gneiting et al. (2007). The model is trained with larger output patches than inputs, and thus
able to make joint predictions of forecast quantiles over lengths H ≤ 128. We use the
timesfm-2.0-500m-pytorch version for our experiments. 2

Moirai 2.0 Moirai 2.0 (Taha Aksu et al., 2025) is a recent update on Moirai 1.0 (Woo et al., 2024)
transitioning from an encoder-based transformer that uses a mixture distribution projection head
to a decoder-only backbone with a quantile head. Moirai 2.0 is implemented using AR with multi-
patch forecasting support. In our experiments, we used a patch size of 16 and set the model to jointly
predict 4 patches at a time for a max prediction horizon of 64. We use the moirai-2.0-R-small
version for our experiments. 3

2TimesFM checkpoint on Hugging Face: https://huggingface.co/google/timesfm-2.0-
500m-pytorch.

3Moirai 2.0 checkpoint on Hugging Face: https://huggingface.co/Salesforce/moirai-2.
0-R-small
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Chronos-Bolt Chronos-Bolt (Ansari et al., 2024b) is a foundation model with an backbone from
the T5 family of encoder-decoder language models Raffel et al. (2020). Real-valued time se-
ries is tokenized into fixed vocabularies via scaling and quantization. Unlike its predecessor
Chronos (Ansari et al., 2024a) which used a categorical prediction head forecasting the tokenized
patches within a set vocabulary, Chronos-Bolt directly predicts quantiles using an output patch
length of 64. We use the chronos-bolt-base version for our experiments. 4

TiRex TiRex (Auer et al., 2025) deviates from most TSFMs by using an xLSTM (Beck et al.,
2024) decoder-only backbone. They apply contiguous patch masking during pretraining to allow
for long-term forecasting without the need for AR. For long-term forecasts at inference time, TiRex
pads and shifts the context so that the model does not need to condition on previous forecasts. Their
implementation allows for multi-patch accelerated roll-out by using the forecasts at multiple patches
in single forward pass, rather than only using a single patch before padding the context. We use the
base TiRex version for our experiments and set the accelerated roll-out to 4 patches with patch size
of 32. 5

YingLong YingLong (Wang et al., 2025) employs a bi-directional U-net encoder-only transformer
backbone. This enables the model to use delayed chain-of-thought reasoning by forecasting beyond
the desired forecast length. The desired forecast can then condition on both the observed context and
the future delayed chain-of-thought for more accurate predictions. We use the YingLong 110m
version for our experiments and use an extended forecast horizon of 2048. 6

N-BEATS N-BEATS (Oreshkin et al., 2019) is a deep neural architecture that has been designed
for the purposes of time series predictions. Similarly to TimesFM, N-BEATS jointly forecasts the
entire prediction horizon in a single forward pass.

ARIMA We use Nixtla’s StatsForecast implementation of AutoARIMA (Hyndman &
Khandakar, 2008) to automatically select the optimal ARIMA parameters for each time series on
the training set. The model is then refit on all earlier data before each forecast on sthe evaluation
set. The ARIMA implementation uses Kalman filters to recursively predict the mean and variance.
Quantiles are computed by fitting a normal distribution to the forecasts and using the inverse CDF
(PPF) with the appropriate z-scores.

A.5 PREDICTION HEADS

To evaluate the impact the prediction head has on calibration, we replaced the default quantile pro-
jection heads of each model with a fine-tuned version of each head we tested. To train each head,
we cached the embeddings outputted by each model’s backbones and used them as the input to each
of the heads. Specifically, we trained an independent quantile, Gaussian, Student’s t, and mixture
distribution head. For the mixture head we replicate the Moirai 1.0 (Woo et al., 2024) prediction
head using a Gaussian, Student’s t, log-normal, and replace Negative-Binomial with the Laplace
distribution due to issues related to model convergence during training.

A.6 DATASETS

We evaluate models on three human behavior datasets: (i) a Reviews dataset consisting of hourly
counts of Amazon product reviews (Hou et al., 2024) and Google Places reviews (Li et al., 2022),
(ii) a modified Shopping (M5) dataset (Makridakis et al., 2022) consisting of the daily number of
products being sold at different locations, and (iii) an NYC Crime report dataset (New York City
Police Department, 2025) aggregating daily crime occurrences.

For the Reviews ensemble dataset, we aggregated Amazon Hou et al. (2024) and Google Li et al.
(2022) reviews by product and location category and sampled 239 of the most abundant categories

4Chronos-Bolt checkpoint on Hugging Face: https://huggingface.co/amazon/chronos-
bolt-base

5TiRex checkpoint on Hugging Face: https://huggingface.co/NX-AI/TiRex
6YingLong checkpoint on Hugging Face: https://huggingface.co/qcw2333/YingLong_

110m
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from the ensemble. We binned the event data as count data at an hourly granularity and trimmed the
dataset to the most active time range from 2020-01-01 08:00:00 to 2021-06-25 23:00.

We aggregated the daily Shopping (M5) Makridakis et al. (2022) dataset to reduce sparsity by
binning each product by their product department and store ID, totaling 70 time series.

We aggregated the NYC Crime reports dataset New York City Police Department (2025) by number
of daily reports and cutoff the dataset to only include reports between the years 2006 and 2023. We
split the dataset into time series based on borough.

Many datasets used in training TSFMs are related to human behavior and natural phenomena that
exhibit periodic trends (e.g., 24-hour effects). As noted in Gu et al. (2025), the strong predictive
accuracy of foundation models on many of the datasets used in machine learning evaluations does
not necessarily translate into high predictive accuracy in applications such as vital sign forecasting
in healthcare. To analyze model performance on datasets that differ in this respect from the pre-
training data, we further included datasets for Glucose Level (Cho et al., 2023) and Heart Rate
prediction (Peng et al., 1999).

The Glucose Cho et al. (2023) dataset measures interstitial glucose concentration of 16 subjects over
the course of 10 days. We used the Dexcom G6 dataset measuring interstitial glucose concentration
(mg/dL) every 5 minutes.

The meditative Heart-Rate dataset Peng et al. (1999) records heart-rate of 14 volunteers during
a 10-minute metronomic breathing meditation session, where it is recorded as relative time since
the start of the meditation session. However, some foundation models (TimesFM) require and use
timestamps for forecasting so we mapped the Heart-Rate dataset to start at 2000-01-01 00:00:00 and
last 10 minutes.

To evaluate models on coarser time granularities, we also use the Patents dataset (Marco et al., 2015)
which counts the number of US patents filed per month from 1981 to 2014. We removed sparse time
series, aggregated by patent field and category, and filtered out timeseries with a minimum value of
less than 100.

Additional dataset statistics can be found in the partial autocorrelation plots in Figure 6. We did not
evaluate the AR experiments on the Heart-Rate and Patents dataset as they did not contain enough
data to accurately assess long-term forecasting calibration.

Both synthetic noise datasets were generated as a single time series with length 4367 and the
train/test split at 1440. The IID noise time series was generated using yt = ϵ and the noisy first-order
linear process yt = αyt − 1 + (1 − α)ϵ where α = 0.9 and ϵ is drawn from the standard normal
distribution N (0, 1).
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Figure 6: Partial Autocorrelation Plots: Glucose and Patents datasets have limited number of
lags with significant partial autocorrelation while having large correlation at the first lag. The
naive model is well suited for these two datasets which would explain the poor point forecasting
performance (MASE). The specific time-series from each dataset used to generate the plots were
selected based on having approximately median MASE scores in that dataset.
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B ADDITIONAL RESULTS AND FIGURES

B.1 BASE FINDINGS

We include additional figures and findings for each of the experiments below. Table 4 shows the
short-term calibration and accuracy scores of each model across all of the datasets.

In Figure 11, we show that across time series in the same dataset, the model point accuracy, MASE,
are not correlated with model calibration. However, across datasets as in Figure 9, we see a strong
correlation between TSFM, MASE, and PCE with a correlation coefficient of 0.90. This relationship
does not always hold. For example, despite the TSFMs having poor point accuracy on the Glucose
dataset, worse than a naive predictor with MASE greater than 1.0, they are still well calibrated with
PCE less than 0.05. We note that for multi-step predictions (H > 1) that the MAE of the naive
predictor in the denominator of MASE is in effect using information “from the future,” with the
result that the overall MASE may take values greater than 1 even for useful models. In Figures 7
and 8, as the TSFMs predict further into the future, not surprisingly the forecasts become both less
accurate and less calibrated. We see exceptions in Reviews where the TSFMs remain equally well
calibrated up to a forecast length of 64. However, unlike the TSFMs, the baseline models have a
consistently high PCE over all prediction lengths.

The TSFMs are not consistently over- nor under-confident (see Figures 3 and 12). However among
the TSFMs, YingLong is more confident with tighter intervals compared to the other TSFMs, with
some indication of overconfidence on Heart-Rate and Patents datasets.
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Figure 7: TSFM point accuracy gets increasingly worse the further out the model forecasts
Mean Absolute Scaled Error (MASE) as a function of prediction length across the six datasets. The
dashed horizontal line is the MASE of the naive predictor (yt = yt−1) as a reference.
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Table 4: Calibration evaluation results. Best results are highlighted in bold, and second best results
are underlined.

Foundation Models Baselines

Chronos-Bolt Moirai 2.0 TimesFM TiRex YingLong N-BEATS ARIMA

MASE

Reviews 0.717 0.748 0.720 0.710 0.823 1.416 1.211
Shopping (M5) 0.785 0.727 0.753 0.743 0.835 0.791 0.854
Glucose 6.362 5.986 6.051 5.841 6.041 7.326 5.958
Heart-Rate 1.119 1.118 1.104 1.096 1.257 1.335 1.120
Crime 0.741 0.759 0.759 0.740 0.761 0.767 0.829
Patents 11.896 10.639 12.193 12.510 21.297 22.814 14.534
IID Noise 0.706 0.705 0.707 0.708 0.709 0.926 0.704
Linear Process 2.491 2.417 2.210 2.325 2.322 2.790 2.166

PCE

Reviews 0.015 0.013 0.012 0.012 0.014 0.061 0.176
Shopping (M5) 0.033 0.045 0.036 0.031 0.052 0.108 0.131
Glucose 0.036 0.033 0.050 0.031 0.042 0.092 0.141
Heart-Rate 0.063 0.051 0.052 0.048 0.077 0.121 0.204
Crime 0.023 0.035 0.023 0.021 0.014 0.103 0.168
Patents 0.176 0.154 0.206 0.192 0.259 0.242 0.247
IID Noise 0.009 0.008 0.004 0.012 0.010 0.072 0.122
Linear Process 0.033 0.015 0.008 0.022 0.021 0.138 0.122

CCE

Reviews -0.012 0.007 0.004 -0.013 -0.024 -0.040 -0.351
Shopping (M5) 0.002 0.000 0.005 -0.026 0.051 -0.203 -0.259
Glucose -0.011 -0.050 -0.038 -0.027 0.034 -0.172 -0.280
Heart-Rate -0.061 -0.008 0.001 -0.037 0.105 -0.243 -0.411
Crime -0.030 -0.020 -0.001 -0.041 0.015 -0.207 -0.337
Patents 0.028 0.046 0.089 0.069 0.201 0.322 0.031
IID Noise 0.007 -0.008 0.007 -0.012 0.016 0.111 -0.244
Linear Process 0.006 -0.020 0.002 -0.021 0.044 0.256 -0.244

SIW

Reviews 0.198 0.204 0.180 0.195 0.248 0.573 1.138
Shopping (M5) 0.240 0.231 0.241 0.260 0.233 0.538 0.644
Glucose 0.996 0.972 1.001 0.911 0.761 1.727 1.967
Heart-Rate 0.716 0.605 0.585 0.653 0.496 1.416 2.174
Crime 0.278 0.276 0.261 0.290 0.246 0.553 0.852
Patents 0.108 0.096 0.088 0.086 0.091 0.049 0.092
IID Noise 0.991 1.035 0.999 1.051 0.977 1.118 2.026
Linear Process 1.107 1.164 0.985 1.110 0.930 0.629 1.942

WQL

Reviews 56.732 59.070 56.929 56.141 65.569 98.865 128.830
Shopping (M5) 59.558 55.129 57.137 56.454 63.402 56.402 63.618
Glucose 61.234 57.926 58.157 56.564 58.398 64.942 56.257
Heart-Rate 19.410 19.332 18.967 19.011 21.812 22.679 27.851
Crime 39.293 40.129 40.198 39.426 40.409 37.809 47.707
Patents 22.549 20.958 24.341 24.435 45.050 47.238 25.886
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Figure 8: TSFM calibration gets increasingly worse the further out the model forecasts Proba-
bilistic Calibration Error (PCE) as a function of prediction length across the six datasets. PCE values
below the dashed horizontal line (y = 0.05) can be considered to be well-calibrated.
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Figure 9: Aggregated across each dataset TSFMs have a correlation between point accuracy
(MASE) and calibration (PCE). Probabilistic calibration error (PCE) versus point-forecast accu-
racy (MASE) averaged over all time series in each dataset.
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Figure 10: TSFMs are well calibrated on synthetic datasets while ARIMA is under-confident
predicting higher variance (SIW). Plots calibration and accuracy metrics as a function of horizon
length for synthetic datasets.
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Figure 11: TSFMs are better calibrated than the baselines. Within each dataset, there is no
correlation between MASE and PCE. Probabilistic calibration error (PCE) versus point-forecast
accuracy (MASE) across the six datasets. Each dot represents model performance on an individual
time series; larger centroids being the average over all time series in a dataset. PCE values below
0.05 (dotted horizontal line) are well-calibrated while MASE values less than 1.0 (dotted horizontal
line) are better than the naive predictor. MASE values greater than 1.0 can still be a useful model
due to the naive model using information “from the future.”
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Figure 12: TSFMs tend to be neither over/under-confident overall. Models with larger SIW,
wider confidence intervals, were more under-confident. Centered Calibration Error (CCE)
versus Scaled Interval Width (SIW) across the six datasets. Each dot represents model performance
on an individual time series; larger centroids being the average over all time series in a dataset.
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B.2 COMPARISON WITH ADDITIONAL METRICS

As mentioned in the main paper, WQL, MSIS, and CRPS are common metrics for evaluating model
calibration. Weighted Quantile Loss (WQL) is an approximation of Continuous Ranked Probability
Score (CRPS) defined as the pinball (or quantile) loss pq scaled by the absolute sum of the true
values:

pq(yt, ŷ
q
t ) =

{
2 · (1− q) · (ŷqt − yt) if ŷqt ≥ yt
2 · q · (yt − ŷqt ) if ŷqt < yt

(5)

WQL =
1∑T+H

t=T+1 |yt|

T+H∑
t=T+1

∑
q

pq(yt, ŷ
q
t ) (6)

However, as described in Chung et al. (2021), CRPS and WQL, measure a combination of prob-
abilistic calibration and sharpness Gneiting et al. (2007). This combination leads to an imbalance
often skewing to prioritize predictive sharpness Chung et al. (2021).

Mean Scaled Interval Score (MSIS) is a scaled version of Mean Interval Score (MIS) which is the
mean difference in upper and lower bound prediction penalized with the error when the true value
lies outside the bounds:

MSIS =
1

MAEn

1

H

H∑
t=T+1

(Us
t − Ls

t )

+
2

1− s
(Ls

t − yt)1[yt < Ls
t ]

+
2

1− s
(yt − Us

t )1[yt > Us
t ]

(7)

MSIS has the same limitations being a measure of interval size with a penalty term for observed
values outside the interval Gneiting et al. (2007); Hyndman & Athanasopoulos (2018); Gneiting &
Raftery (2007). We find that these metrics were highly correlated to MASE in Figure 14. Therefore,
when using these metrics to evaluate calibration, their values result in a measure of sharpness and
accuracy that diverge from a measurement of calibration (see Figure 13). For example, if we evaluate
calibration using WQL or MSIS, we would incorrectly conclude that ARIMA is equally or better
calibrated than the best foundation models on the Glucose dataset as in Figure 1 and 13.
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Figure 13: WQL and MSIS incorrectly imply that N-BEATS and ARIMA are well calibrated
on some datasets, while PCE indicates they are always poorly calibrated. Top: Probabilis-
tic Calibration Error (PCE) across datasets and models using the default quantile prediction head,
Patents PCE uses the right y-axis scale. Upper Middle: Weighted Quantile Loss (WQL) measuring
a combination of sharpness and calibration. Lower Middle: Mean Scaled Interval Score (MSIS)
where Glucose and Patents use right y-axis scale. Bottom: Mean Absolute Scaled Error (MASE)
measuring point accuracy of median prediction, Glucose and Patents use the right y-axis scale.
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Figure 14: WQL and MSIS are often highly correlated with MASE across time series within
a dataset WQL (left), MSIS (middle), and PCE (right) compared to MASE where each dot is the
performance of an individual time series.
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B.3 TAIL FORECASTING

In downstream tasks such as Anomaly Detection, calibration at the tail ends of probabilistic predic-
tions is more important than at the body of a predictive distribution. We evaluate the tailed calibra-
tion with a modified PCE and CCE that only considers the 0.1 and 0.9 quantile predictions rather
than averaging over all the quantiles or confidence intervals. The Tailed PCE (TPCE) and Tailed
CCE (TCCE) values are not directly comparable to their aggregate values as their scales could be
slightly offset. Models that are in general overconfident with positive CCEs tend to be have an ex-
aggerated overconfidence and miscalibration at the tails. The opposite is true with under-confident
models, having improved calibration at the tails while their under-confidence CCE is capped and
reduced by being at the tail. In Figure 15, we find that YingLong which is overconfident with overly
tight confidence intervals, are relatively poorer at the tails of the distribution compared to the other
models, while ARIMA sees a relative improvement. For the TSFM models that are neither over nor
under-confident, their calibration looks to be improved with very minor calibration error. Promising
future work should evaluate tailed calibration with quantiles further on the tail than 0.1 or 0.9 such
as 0.001 or 0.999.
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Figure 15: Tailed Calibration Error (TPCE) is generally smaller than Calibration Error (PCE)
while Tailed Over-/Under-Confidence (TCCE) grows for overconfident models and reduces for
under-confident models. Comparison of model calibration on the entire probabilistic distribution
versus calibration of the tail-ends of the distribution (0.1 and 0.9).
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B.4 ADDITIONAL FINDINGS FOR AR FORECASTING

In this section, we elaborate on two key issues that arise when using short horizons in autoregressive
time series forecasting models (TSFMs). Compounding errors degrade accuracy, and block-wise
independence introduces bias in the input for future predictions.

1. Autoregressive errors compound. When forecasting multiple time points autoregressively,
each predicted value is fed back as input for predicting subsequent points. Even small errors
in early predictions can accumulate over the horizon, leading to progressively degraded
forecasts.

2. Independent block modeling introduces bias. TSFMs model a block of L future time points
as independent given past context:

p(xi, . . . , xi+L−1|x<i) ≈
i+L−1∏
j=i

p(xj |x<i).

While convenient for training, this ignores any intra-block dependencies. During autore-
gressive rollouts, the next block of predictions is conditioned on samples from the previous
block. Because the sampled block does not preserve the true joint dependencies, the model
sees a biased context, resulting in a shift in the marginal distribution of later time points.
This bias is larger for longer blocks L (since then there are fewer biased inputs) and van-
ishes as L → 1 (where each time point is predicted independently in an autoregressive
manner).

16 32 64 128

−0.05

0.00

0.05

0.10

0.15

O
ve

r-
/U

n
d

er
-C

on
fi

d
en

ce
(C

C
E

) Reviews

16 32 64 128

0.0

0.1

0.2

Shopping (M5)

16 32 64 128

Step Size (Horizon Length)

0.0

0.1

0.2

0.3

O
ve

r-
/U

n
d

er
-C

on
fi

d
en

ce
(C

C
E

) Crime

16 32 64 128

Step Size (Horizon Length)

0.0

0.2

Glucose

Chronos-Bolt — Branch

Chronos-Bolt — Trajectory

Moirai 2.0 — Branch

Moirai 2.0 — Trajectory

TimesFM — Branch

TimesFM — Trajectory

TiRex — non-AR

YingLong — non-AR

Figure 16: TSFMs are consistently overconfident on long-term forecasting. The magnitude of
the over confidence decreases with longer horizon lengths and when using the trajectory AR
method. The figure compares Centered Calibration Error (CCE) for long-term forecasting using
autoregression on the y-axis with AR prediction horizon on the x-axis. The color of the line depicts
the model used and the line style indicates the AR method. The pink and blue dashed horizontal
lines are the CCE for TiRex and Yinglong without using AR.
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