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Abstract

Endpoint Detection and Response (EDR) sys-001
tems play a critical role in safeguarding enter-002
prises against sophisticated threats, particularly003
advanced persistent threats (APTs). However,004
detecting abnormal behaviors within long, com-005
plex and interdependent event sequences from006
EDR system log that remains a major challenge.007
Addressing these challenges, this paper intro-008
duces LcaLLM, an novel EDR log analytical009
framework leveraging the advanced capabilities010
of Large Language Models (LLMs) in under-011
standing and representing extensive sequential012
data. LcaLLM proposes three distinguished013
contributions: (1) a Latent Cross-Attention014
(LCA) model architecture meticulously de-015
signed to enhance the representation of long016
EDR event sequence, (2) an Event Semantic017
Alignment mechanism that enriches structured018
EDR logs with nuanced natural language ex-019
pressions, aligned with the input of language020
model for an improved interpretability, and021
(3) a Multi-Objective Loss Aggregation train-022
ing approach that enables the model to learn023
deep complex relationships among EDR events.024
We also release EDR47K-40F-v1.0, a large-025
scale EDR dataset comprising over 47K event026
records, covering 40 threat families and normal027
activities. The LcaLLM framework not only028
outperforms traditional methods but also sets029
new benchmarks in threat detection accuracy030
and classification precision, achieving 98.32%031
accuracy in threat identification and a 96.73%032
success rate in classifying threats across 40033
families. We further analyze the impact of034
latent size, layer depth, pooling strategies035
and robustness to dynamics. We open-source036
the dataset and code at: https://github.037
com/victorzhz19995/EDR_LcaLLM.038

1 Introduction039

In the rapidly evolving landscape of cybersecurity,040

the challenges in safeguarding organizations’ dig-041

ital assets have grown increasingly complex. As042

cyber threads become more sophisticated, tradi- 043

tional security measures such as firewalls and an- 044

tivirus software are no longer sufficient to provide 045

comprehensive protection against advanced persis- 046

tent threats (APTs), zero-day exploits, and other 047

modern attack vectors (Mei et al., 2021). Endpoint 048

Detection and Response (EDR) systems have been 049

developed as sophisticated tools that are designed 050

to gather extensive data from devices across an 051

enterprise network, providing deep insights into 052

potential intrusions and advanced threats (Hassan 053

et al., 2020). EDR solutions typically combine con- 054

tinuous monitoring and collection of data from end- 055

points with advanced analytics and automated re- 056

sponse capabilities to identify and neutralize threats 057

in real-time. Typically, these continuously col- 058

lected data provide rich textural information that 059

can be used to detect behavioral anomalies. 060

Traditional EDR systems predominantly rely 061

on heuristic/rule-based approaches (Kaur et al., 062

2024), or machine learning models(Kaur and Ti- 063

wari, 2021). Heuristic/rule-based approaches ofent 064

result in high false positive rates or fall to ac- 065

curately detect complex threats such as APT at- 066

tacks. These threats are highly sophisticated, de- 067

signed to be stealthy and adaptive, easily bypass- 068

ing static rule sets. Meanwhile, machine learning 069

models necessitate extensive feature engineering, 070

where the quality of the features significantly im- 071

pacts model performance. Large Language Mod- 072

els (LLM) could be the elixir for those dilemmas. 073

LLMs have shown significant capabilities in under- 074

standing and reasoning over textural data. These 075

models are pre-trained on vast datasets and can be 076

finetuned to downstream task with limited super- 077

vision. LLMs have already demonstrated success 078

in detecting and classifying various types of net- 079

work attacks, including DDoS attacks, man-in-the- 080

middle (MITM) attacks, botnet traffic and so on 081

(Wang et al., 2024b), (Piggott et al., 2023) (Moskal 082

et al., 2023). 083
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In this paper, we introduce the LcaLLM frame-084

work, which incorporates a novel Latent Cross-085

Attention (LCA) model architecture designed to086

enhance the contextualized representation of EDR087

sequences inside log data and improve the under-088

standing of complex inter-dependencies among089

events. Currently LLMs typically rely on decoder-090

only transformer architectures with casual attention091

mask, which limits the model’s visibility to only092

past tokens. This results in a "recency problem",093

where the representation of the entire sequence094

heavily depends on the <EOS>-last token. The095

LcaLLM framework addresses these challenges096

through LCA module, which employs latent cross-097

attention to effectively capture long-range depen-098

dencies and reduce reliance on the last token. We099

design three variations of the LCA-based model,100

integrating LCA module at different positions of101

the backbone model, and empirically evaluate their102

impact on the sequence representation. Addition-103

ally, to better align these structured logs with the104

pre-training data of language models, the LcaLLM105

framework incorporates an Event Semantic Align-106

ment mechanism. It enriches the semantic meaning107

of EDR events. Additionally, our framework intro-108

duces a Multi-Objective Loss Aggregation method109

that integrates objectives from both unsupervised110

and supervised learning. This approach enables the111

model to learn the nuanced semantics of EDR event112

sequences while accurately identifying threats by113

leveraging relevant contextual information. By114

combining these techniques, LcaLLM not only cap-115

tures the deep relationships between events but116

also significantly enhances the detection of sophis-117

ticated threats.118

Furthermore, we constructed a log-based119

EDR47K-40F-v1.0 dataset, which is the first and120

currently largest EDR dataset wih rich textural in-121

formation on system level. It comprises over 47K122

EDR samples covering 40 threat families as well123

as normal activities. To support future research and124

advance AI-driven log analysis, we have made this125

dataset publicly available. Our contributions are as126

follows:127

• We propose a novel model architecture with a128

Latent Cross-Attention (LCA) module that en-129

hances contextualized representation of EDR130

event sequences by capturing long-range de-131

pendencies. We evaluate three LCA variants132

to assess their impact on sequence modeling.133

• We introduce a multi-objective loss aggrega-134

tion strategy that enables the model to learn 135

semantic event patterns across diverse threat 136

families and effectively detect threats 137

• We perform extensive evaluations across vari- 138

ous architectures and training strategies in the 139

challenging domain of EDR threat analysis, 140

showing our LcaLLM framework outperforms 141

existing baselines. 142

• We publicly release EDR47K-40F-v1.0, a 143

large-scale dataset with over 40,000 EDR sam- 144

ples spanning 40 threat categories, providing a 145

foundational resource for advancing AI-based 146

log analytics research. 147

2 Background 148

EDR systems continuously monitor and log system- 149

level events, generating telemetry data that cap- 150

tures detailed behavioral information like registry 151

modification, configuration changes, and other 152

relevant system activities (Arfeen et al., 2021). 153

These rich textual logs are analyzed to uncover 154

insights into endpoint behavior and potential secu- 155

rity breaches. Traditional approaches have applied 156

machine learning algorithms such as Random For- 157

est, Naive Bayes, and SVM to log analysis (Revathi 158

and Malathi, 2013). More recently, deep learning 159

models like RNN, GRU, and LSTM have achieved 160

notable performance in intrusion detection due to 161

their ability to model sequential data (Radhi Hadi 162

and Saher Mohammed, 2022). However, the ef- 163

fectiveness of both traditional and deep learning 164

approaches heavily relies on handcrafted features 165

such as TF-IDF and N-gram representations (Sharif 166

et al., 2024). As EDR log volumes grow and attack 167

patterns become more sophisticated, these methods 168

face scalability challenges and require extensive 169

feature engineering—an effort-intensive process 170

dependent on domain expertise. This highlights 171

the need for more intelligent, adaptive solutions 172

capable of automatically learning meaningful rep- 173

resentations from raw log data. 174

Pretrained language models (PLM) offer strong 175

transfer learning capabilities and can be finetuned 176

for wide range of downstream tasks. BERT-based 177

architectures have demonstrated effectiveness in 178

encoding textual inputs into meaningful represen- 179

tations. Telemetry data are often treated textual 180

logs and transformed into token sequences com- 181

patible with language models. Ahmood Sharif 182

et al. (Sharif et al., 2024) pretrained a RoBERT- 183

2



style model using masked language modeling and184

later fine-tuned it on small labeled datasets for spe-185

cific detection tasks. However, a key limitation186

of BERT-based models is their restricted context187

length—typically limited to 512 tokens. This poses188

challenges when processing long EDR logs. To mit-189

igate this constraint, Amit Portnoy et al. (Portnoy190

et al., 2024) proposed a sliding window approach,191

where each log is divided into approximately 80192

segments. Each window’s representation, captured193

via the CLS token, is passed through a bidirec-194

tional LSTM classification head. While effective in195

extending coverage, this method introduces infor-196

mation fragmentation by processing subsequences197

independently, rather than maintaining global con-198

text. Recent advances in large language models199

(LLMs), however, have dramatically increased con-200

text length limits—supporting up to 128K tokens or201

more (Qwen et al., 2025), (Ding et al., 2024). These202

extended-context models enable holistic process-203

ing of long EDR logs while preserving contextual204

coherence, thereby overcoming prior limitations205

and enabling richer sequence representation.206

3 Method207

3.1 Aligning EDR log to Natural Language208

LLMs have already demonstrated remarkable ca-209

pabilities in natural language processing. To lever-210

age these capabilities, our first objective is to align211

sequential EDR log events with natural langauge212

representation. Some previous work have studied213

to reduce the semantic discrepancy between textual214

and temporal data modality to LLMs through di-215

rect prompting (Xue and Salim, 2023) (Xie et al.,216

2023) and aligning (Jin et al., 2024) (Liu et al.,217

2024) (Tang et al., 2024). The direct prompting218

constructs summarized prompts. The later requires219

fine-tuning and new design of the loss objectives.220

However, neither approach is well-suited to EDR221

logs due to their unique characterisitics temporal222

dependency, sparse and structured. EDR logs223

consist of sequences of timestamped events that224

reflect chronological activity, such as a "file write"225

following a "file open". Preserving this temporal or-226

der during preprocessing is critical. A typical EDR227

log sample may contain over 5,000 events, but only228

10-15% are typically relevant for threat detection,229

making the date highly sparse. Each event is struc-230

tured as attribute-value pairs (illustrated at Figure231

1), capturing detailed properties like file paths, or232

registry values. Summarization risks losing critical233

Figure 1: EDR events are in json format. Each EDR
sample consists of many EDR events with various action.
Each event is formed by multiple key-value pairs.

informaiton, and full alignment training introduces 234

excessive computatioanl overhead. 235

To bridge the semantic gap without compromis- 236

ing detail or efficiency, we propose a lightweight 237

textual alignment method. We observe that 238

many EDR attributes use abbreviated forms (e.g., 239

"PPID", "zero_day_op"), which can lead to am- 240

biguity and hinder model understanding. To ad- 241

dress this, we expand abbreviations into fully de- 242

scriptive terms (e.g. "Parent Process ID", "zero 243

day operation"). This improves interpretability and 244

leverages the domain-agnostic knowledge acquired 245

by LLMs during pre-training. Furthermore, not all 246

attributes are equally relevant for threat analysis. 247

By consulting security experts, we identified and re- 248

moved unimportant attributes, reducing the average 249

context length of EDR logs by approximately 63%. 250

This selective pruning ensures efficient processing 251

while retaining semantically rich, task-relevant in- 252

formation. 253

3.2 Large Language Model with Latent 254

Cross-Attention (LCA) module 255

LLMs are typically based on the decoder-only ar- 256

chitecture of vanilla Transformers with causual at- 257

tention, which restricts token interactions by allow- 258

ing each token at position i to only see preceding 259

tokens 0, 1, · · · , i − 1. This limits model’s abil- 260

ity to capture global contextual information across 261

the entire input sequence, leading to recency bias, 262

where the sequence embedding disproportionately 263

depends on the last token, diminishing the influence 264

of earlier tokens. 265

Sentence embeddings aim to encode variable- 266

length sentences into fixed-dimensional vectors 267
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that preserve semantic similarity through distance268

metrics. They have been widely adopted in down-269

stream tasks (Gupta et al., 2023; Khan et al.,270

2020; Wang and Koopman, 2017). Traditional ap-271

proaches rely on high-quality labeled datasets and272

contrastive learning strategies to enhance embed-273

ding quality by pulling similar sentences closer274

and pushing dissimilar ones apart. Encoder-based275

models such as BERT (Devlin et al., 2019) and276

RoBERTa (Liu et al., 2019) are commonly used due277

to their bidirectional attention mechanism, which278

enables richer contextual understanding, and their279

ability to produce high-dimensional embeddings280

that mitigate anisotropy through large-scale scaling.281

Despite these advantages, recent studies show that282

decoder-only LLMs can also achieve strong perfor-283

mance on text embedding benchmarks (Wang et al.,284

2024a), likely due to their massive pretraining data,285

multi-stage alignment processes, and extended con-286

text lengths. Nevertheless, they still face challenges287

related to recency bias (Lee et al., 2025), where the288

final <EOS> token dominates the sentence repre-289

sentation.290

In this work, we propose a new LLM architec-291

ture that incorporates the Latent Cross-Attention292

module to obtain better expressive EDR embed-293

ding. We explore the structural variation of apply-294

ing the LCA module at different positions of the295

backbone LLM. In Figure 2, we illustrate three296

different structures (Bottom-LCA, Top-LCA, and297

Weigthed-LCA) that apply the cross-attention pool-298

ing on the hidden states of decoder-only LLM to299

obtain better expressive EDR embedding . Take the300

Figure 2(b) Bottom-LCA for example, it uses the301

output of the last layer from decoder-only LLM to302

form the query Q ∈ RDl∗Dd , and trainable latent303

matrix M to form K,V ∈ RDs∗Dd after multi-304

plying the attention weights Wk,Wv, where Dl is305

the sequence length, Dd is the model hidden di-306

mension, and Ds the latent dimension size. The307

computation of cross-attention layer is very similar308

to normal attention computation:309

Ocross−attention = Softmax(QKT )V (1)310

, and then followed by a regular feedforward layer.311

Intuitively, K,V , produced by linear transforma-312

tion of latent matrix M , can be viewed as an EDR313

dictionary, which is trained to encapsulate informa-314

tion about all threat families. The query matrix Q,315

on the other hand, is decoded from the current EDR316

sample and serves as a query to search this EDR317

dictionary. This intuition also applies to Figure 318

2(a), albeit with a different conceptual depths. In 319

Figure 2(a), the LCA module is placed at a lower 320

level of the LLM, which enforces the latent matrix 321

to capture shallow concepts, such as syntactic fea- 322

tures of EDR sequences. In contrast, Figure 2(c) 323

introduces learnable weights applied to the hidden 324

states of transformer layers. It is widely accepted 325

that lower layers of an LLM tend to extract syn- 326

tactic features of the input sequence, while upper 327

layers focus on extracting semantic features. This 328

design aims to aggregate information from differ- 329

ent levels of the LLM, thereby providing a more 330

fine-grained representation of EDR sequences by 331

leveraging the multi-layered hierarchical features 332

produced during the model’s processing. 333

3.3 EDR sequence embedding tuning 334

To enforce LLM to learn the semantic of EDR 335

log samples, we introduce the triplet objective into 336

our learning objectives. Contrastive learning has 337

been widely used in training sentence embedding 338

model (Gao et al., 2021). For each training batch, 339

it consists of a sentence s, a relative / positive doc- 340

ument s+, and a set of irrelevant/negative docu- 341

ments s− = {s−1 , s
−
2 , · · · , s−n }. The training objec- 342

tive commonly utilizes the InfoNCE loss (van den 343

Oord et al., 2018), which learns the similarities 344

between query and positive document and differ- 345

ences between query and a batch of negative docu- 346

ments. However, EDR sample has a large number 347

of events that can easily go beyond 8K amount of 348

tokens. Creating a batch of negative samples can 349

be very expensive. Triple loss can be viewed as a 350

special case of contrastive learning. Each data sam- 351

ple consists of an anchor sentence Sa, a positive 352

sentence Sp and negative sentence Sn. In natural 353

language, the positive sentence can be a rewritten 354

sentence and expresses the same semantic meaning 355

as the anchor sentence, and the negative sentence 356

could be a totally different sentence on semantic 357

meaning. In our case, we form the positive sample 358

through injecting "noise" into anchor sample and 359

the negative sample from other threat samples or 360

normal samples. The objective of triple loss tunes 361

the model such that the distance between Sa and 362

Sp is smaller than the distance between Sa and Sp, 363

illustrated at equation (2). 364

Ltriplet = ReLU (cos(a, p)− cos(a, n) + ϵ) , (2) 365
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Figure 2: Structural exploration of the Latent Cross-Attention (LCA) LLM architecture. Figure (a) Bottom-LCA:
feeds the output of LCA to LLM. Figure (b) Top-LCA: feeds the output of LLM as the input of LCA module. Figure
(c) Weighted-LCA: combines all hidden states of each transformer layer with a learnable weights and then feed to
LCA module.

where a = πθ,M (Sa), p = πθ,M (Sp), and n =366

πθ,M (Sn). || · || is a distance measurement (i.e.367

cosine distance in our case), πθ,M (Sa/p/n) is the368

a sentence embedding outputted by model π with369

parameters of θ and latent matrix M . ϵ is the mar-370

gin that measures that πθ,M (Sp) is at least ϵ closer371

to πθ,M (Sa) than πθ,M (Sn). The triple loss objec-372

tive also enforces the model to learn the semantic373

difference between EDR threats and capture the374

semantic meaning of the EDR log in the model’s375

parameters.376

3.4 Robust threats classification tuning377

One of model’s expected capabilities is to correctly378

detect the threat family from EDR log. The naive379

approach is to fine-tune LLM as a "giant" classi-380

fier. The output embedding layer is a linear trans-381

formation layer that maps the model’s last hidden382

states to vocabulary size. Instead of mapping to383

vocabulary size, the output linear layer maps to the384

number of classes. We use the first token outputted385

by model as the threat classification results. We use386

the cross-entropy loss objective on the first token387

and aim to algin it as a multi-class classification388

problem. The LLM encodes the input EDR log and389

classifies into corresponding thread family. The390

cross-entropy aims to tune the model to be able to391

generate the correct threat family.392

LCE(S) = argmin(θ,M)

|V |∑
i=1

yi ∗ log(πθ,M (ŷi|S))

(3)393

yi is the ground truth token id, threat family in 394

our case. S = [e0, e1, e2, · · · , en−1] is the EDR 395

input event sequence with length n. ei,0≤i<n is an 396

EDR log event. πθ,M (ŷi|S) is the probability of the 397

threat class outputted by model π with parameters 398

θ and latent matrix M . |V | is the total number of 399

threat classes. 400

To enforce model learning and classify threat 401

classes based on the semantic information of EDR 402

events, we use aggregated loss by merging triplet 403

loss and cross-entropy loss. In real scenarios, 404

many non-related events often exist between threat- 405

related events. The positive sample is constructed 406

by imputing various non-related events between 407

the threat-related events. The positive sample can 408

also be utilized as training samples that have the 409

same threat class as the anchor sample. The aggre- 410

gated loss (ltoal) for latent cross-attention LLM is 411

computed as followings: 412

Ltotal = Ltriplet(Sa, Sp, Sn)+LCE(Sa)+LCE(Sp)
(4) 413

, where ltriplet(Sa, Sp, Sn) is the triplet loss with 414

anchor, positive and negative EDR sequence, 415

lCE(Sa), lCE(Sp) are the cross-entropy loss of an- 416

chor and positive sample. πθ,M denotes the model 417

π with parameters θ and latent matrix M . The θ 418

and M will be tuned based on the multi-objective 419

loss. The loss of positive sample allows model 420

to learn from noise and improve the robustness of 421

threat classification. The learning objective of ag- 422

gregate loss enables the model to classify threat 423

families under noisy conditions based on the se- 424

5



mantic meaning of EDR events.425

4 Experiments426

4.1 Dataset427

Large-scale EDR dataset with covering various428

threat families is essential for training and validat-429

ing algorithms. However, the open release of EDR430

datasets are scarce (Sharif et al., 2024) (Alsaheel431

et al., 2021), (Zengy et al., 2022), and (Dong et al.,432

2023). To alleviate the urgen needs of open large-433

scale EDR dataset, we constructed EDR47K-40F-434

v1.0, a total amount of 47,537 EDR log samples435

with covering 40 threat families. For the raw EDR436

log, we first perform Event semantic Alignment to437

enrich EDR samples with more semantic meaning.438

We split the dataset into train set (40,405) and test-439

set (7,132), while ensuring the each threat family440

also split as the same ratio. The introduction of441

our EDR log collection process and EDR47K-40F-442

v1.0 dataset are provided at Appendix A.1.443

We propose the following three approaches for444

introducing noise into EDR samples to construct445

the positive training sample, aimed at enhancing446

the model’s robustness: 1. Imputation. We im-447

pute extra non-related events between each threat-448

related events . 2. Swap. For each EDR log sample,449

we randomly swap the events to break the depen-450

dency 3. Shuffle. Each EDR event is a structured451

attribute-value pairs. We randomly shuffle the order452

of attributes at each event. We present the detailed453

data augmentation at Appendix A.2.454

4.2 Experimental Setup455

We use Qwen2.5 3B Instruct (Qwen et al., 2024) as456

the backbone model. Qwen2.5 model series have457

achieved the state-of-the-art performance in vari-458

ous benchmarks. We conduct our experiments on459

two nodes with 16 NVIDIA H100 80GB GPUs.460

We select the 32K context length to ensure that461

we can maximize the coverage of events in each462

EDR sample, while balancing the training costs.463

We implemented our latent cross-attention with464

flash-attention 2 to obtain a higher training effi-465

ciency (Dao, 2024). We comprehensively evalu-466

ated our framework from two perspectives: model467

architecture and training approaches. For model468

architecture, we first compare the LCA model with469

traditional model architectures in EDR practices.470

We implemented the LCA module with one latent471

cross-attention layer and one transformer layer. We472

conducted the comparison experiments with the tra-473

ditional machine learning and deep leanring mod- 474

els (details of implementation are presented at Ap- 475

pendix A.3). 476

Our evaluation metrics include binary classifica- 477

tion evaluation with accuracy, threat recall (sensi- 478

tivity), false positive rate (false alarm), and multi- 479

class classification accuracy for identifying specific 480

threat families. Table 1 depicts the performance of 481

traditional approaches and variational latent cross- 482

attention LLM modules trained and evaluated with 483

EDR47K-40F-v1.0 dataset. The binary classifica- 484

tion is evaluated by an additional test dataset con- 485

sisting of 5000 samples, each labeled only as attack 486

or non-attack. This additional dataset is designed 487

to assess the model’s performance in distinguishing 488

between malicious and benign activities. 489

Table 1 shows that models with the Latent Cross- 490

Attention (LCA) module outperform traditional 491

approaches, highlighting the LCA’s effectiveness 492

in learning deep intrinsic relationship matrices 493

among threat families and integrating this knowl- 494

edge via cross-attention on EDR sequences. Top 495

and Weighted LCA models excel across all metrics, 496

suggesting that LLM works better as extracting 497

textual features and integrated with the intrinsic 498

knowledge by LCA module. However, Weighted 499

LCA underperforms due to potential noise from lin- 500

early combining outputs of all layers, which may 501

demand more training data. Conversely, Bottom 502

LCA introduces latent features at early stages, pos- 503

sibly diluting positional information and hindering 504

competitive performance. 505

We then compared three training strategies: 506

cross-entropy loss, dual-stage training, and multi- 507

objective loss aggregation. Dual-stage training in- 508

volves unsupervised contrastive learning followed 509

by supervised classification. We aimed to de- 510

termine how multi-objective loss affects train- 511

ing—whether it hinders convergence or enhances 512

performance. Experiments using Qwen 3B and 513

Top-LCA models, selected for their superior per- 514

formance, revealed that multi-objective loss aggre- 515

gation yields the best results by effectively leverag- 516

ing positive and negative samples, leading to more 517

directed gradients. As shown in Table 2, introduc- 518

ing additional loss objectives consistently improves 519

performance, with multi-objective loss providing 520

balanced enhancements across all metrics and en- 521

suring a more stable training process. These ex- 522

periments were conducted both with and without 523

the LCA module to demonstrate the generalization 524
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Table 1: The evaluation of traditional approaches and variational latent cross-attention LLM modules in detecting
threats and threat families among 40 threat families and white EDR log. For decoder-only based models, we applied
the <EOS>-last pooling to obtain the sequence embedding representation. We applied the multi-objective loss
aggregation on all the models except the TF-IDF + DT. TF-IDF is a statistical measurement for textural feature
exaction. We present the evaluation results of each threat family at Append A.3

Avg. Accuracy Threat Accuracy Recall False Positive Rate Model name

0.8021 0.9114 0.8992 0.0764 TF-IDF + DT
0.8345 0.9302 0.9324 0.0720 Bi-LSTM
0.8622 0.9338 0.9596 0.0920 BERT + LSTM
0.9353 0.9672 0.9680 0.0336 Qwen2.5 3B
0.9577 0.9784 0.9784 0.0232 Qwen2.5 3B (Bottom LCA)
0.9673 0.9832 0.9868 0.0204 Qwen2.5 3B (Top LCA)
0.9604 0.9786 0.9996 0.0424 Qwen2.5 3B (Weighted LCA)

Table 2: The impact of different training strategies to model’s performance: 1⃝cross-entropy loss, 2⃝dual-stage
training and 3⃝multi-objective loss aggregation

Avg. Accuracy Threat Accuracy Recall False Positive Rate Model name

0.8789 0.8874 0.9676 0.1928 Qwen2.5 3B with 1⃝cross-entropy loss
0.9145 0.9376 0.9680 0.0928 Qwen2.5 3B with 2⃝dual-stage training
0.9353 0.9672 0.9680 0.0336 Qwen2.5 3B with 3⃝multi-objective loss aggregation

0.8970 0.9212 0.9684 0.1260 Qwen2.5 3B Top LCA with 1⃝cross-entropy loss
0.9471 0.9726 0.9840 0.0416 Qwen2.5 3B Top LCA with 2⃝dual-stage training
0.9673 0.9832 0.9868 0.0204 Qwen2.5 3B Top LCA with 3⃝multi-objective loss aggregation

capabilities of our proposed methods.525

4.3 Ablation Study526

We conduct all ablation studies on Top LCA model527

architecture with multi-objective loss aggregation528

training approaches.529

The impact of LCA module. We hypothesized530

that the latent matrices M form a latent space that531

captures intrinsic relationships among EDR threat532

families, tuned progressively through backpropa-533

gation during training. This latent space functions534

as a knowledge base for EDR log, with the LLM535

acting as an encoder to extract features from log536

samples. We investigated whether the size of this537

latent matrix and the number of layers in the LCA538

module influence the model’s ability to represent539

EDR sequences.540

The number of layers in the LCA module sig-541

nifies varying levels of information processing. A542

single layer within the LCA module can be inter-543

preted as performing latent attention-based pooling.544

Conversely, two or more layers operate as a in-545

formation fusion mechanism, integrating diverse546

features and relations from EDR samples and la-547

tent space. To evaluate the impact of the number548

of layers in LCA module, we maintained a fixed549

dimensionality Ds = 2048 while varying the num-550

ber of layer L within the LCA module. Table 3551

show that latent matrix size has minimal impact552

on threat detection performance but positively af- 553

fects threat family recognition—higher dimensions 554

M allow to encode more discriminative features. 555

However, increasing the number of LCA layers pro- 556

vided no significant gains, due to the model already 557

has many attention layers. 558

The impact of pooling methods. To evaluate 559

the impace of different pooling methods, we con- 560

ducted experiments comparing <EOS>-last, mean, 561

self-attention, and weighted-mean pooling meth- 562

ods. We demonstrated the performance of different 563

pooling methods in Table 4. The weighted-mean 564

pooling outperformed mean pooling, <EOS>-last 565

pooling and self-attention pooling in most metrics. 566

This performance difference can be attributed to 567

the <EOS>-last methods’ heavily depends on the 568

last token’s embedding, which introduces a recency 569

bias, while mean pooling dilutes important token 570

information by averaging all token embeddings. 571

The LCA module and LLM already have many 572

attention-based layers, the self-attention pooling 573

does not provide additional improvement for se- 574

quence representation, and even slightly reduce the 575

performance (same as the number of layers in LCA 576

module). 577

Robustness to EDR sequence length. EDR 578

events often span long time periods, with sophisti- 579

cated threats interspersed among numerous normal 580

activities, creating complex and variable tempo- 581
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Table 3: The evaluations of different latent matrix sizes and number of layers in LCA module on model’s performance
in EDR threats identification and classification. For latent matrix M ∈ RDs∗Dd , Dd must be consistent with model
hidden size. We varied Ds to explore the impact of latent matrix: M with sizes of 128 ∗ 2048, 896 ∗ 2048, 2048 ∗
2048, 5120 ∗ 2048, 8196 ∗ 2048. We also evaluated the different number of layers (L) in LCA module.

Avg. Accuracy Threat Accuracy Recall False Positive Rate Model name

0.9644 0.9818 0.9908 0.0272 R128∗2048

0.9658 0.9836 0.9928 0.0256 R896∗2048

0.9673 0.9832 0.9868 0.0204 R2048∗2048

0.9782 0.9866 0.9992 0.0260 R5120∗2048

0.9785 0.9860 0.9964 0.0244 R8196∗2048

0.9644 0.9742 0.9716 0.0232 L = 1
0.9673 0.9832 0.9868 0.0204 L = 2
0.9668 0.9828 0.9820 0.0164 L = 3
0.9641 0.9738 0.9723 0.0248 L = 4

Table 4: The evaluations of <EOS>-last, mean, and weighted mean pooling methods on model’s performance.
We select the 2-layer bottom LCA model with latent matrix M ∈ R2048∗2048. We applied the multi-objective loss
aggregation training approach for all the pooling methods.

Avg. Accuracy Threat Accuracy recall false positive rate Model name

0.9673 0.9832 0.9868 0.0204 <EOS>-last
0.9774 0.9874 0.9988 0.0240 mean
0.9658 0.9812 0.9840 0.0288 self-attention
0.9760 0.9880 0.9996 0.0236 weighted-mean

ral patterns. To evaluate our model’s robustness582

under such realistic conditions, we test it on elon-583

gated EDR sequences by injecting additional nor-584

mal events between threat-related ones. The num-585

ber of inserted events follows a normal distribution586

with parameters µ (mean) and σ (standard devia-587

tion), which we vary to assess performance under588

increasing sequence length and event-spacing ran-589

domness. We evaluate Qwen2.5 3B, Bottom-LCA,590

Top-LCA, and Weighted-LCA models. Increasing591

µ tests the model’s ability to handle longer con-592

texts, while varying σ simulates irregular event593

spacing, mimicking real-world noise and uncer-594

tainty. As shown in Figure 6, all models experience595

performance degradation with longer sequences,596

but LCA-based models demonstrate significantly597

greater resilience to both sequence elongation and598

random event distribution. This indicates their su-599

perior capability in capturing long-range dependen-600

cies and maintaining accuracy under noisy tempo-601

ral structures.602

5 Conclusion603

In this paper, we propose LcaLLM, a novel frame-604

work for detecting malicious behaviors in endpoint605

detection and response (EDR) logs using large lan-606

guage models. LcaLLM introduces a latent cross-607

attention module that addresses the "recency" prob-608

Figure 3: The number of imputed noise events among
threat-related events to the performance of model’s per-
formance. We study the impact of µ = 3, 5, 7, 9 with σ
= 3 (left), and µ = 5 with σ = 1, 3, 5, 7 (right).

lem and overcomes limitations of causal masking 609

in decoder-only LLMs. It also presents the capabili- 610

ties of better capturing complex event relationships 611

and an Event Semantic Alignment mechanism to 612

bridge the gap between raw EDR logs and nat- 613

ural language inputs. These innovations enable 614

superior performance in both threat detection and 615

threat family classification. To advance research in 616

this domain, we introduce EDR47K-40F-v1.0, the 617

largest publicly available EDR dataset with over 618

47,000 samples across 40 threat families. Our work 619

represents a significant step toward more effective, 620

AI-driven endpoint security solutions. Future ef- 621

forts will focus on expanding the dataset’s scale 622

and diversity, as well as exploring efficient context- 623

length extension techniques. 624
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6 Limitations625

Our EDR logs were collected using a kernel-based626

sandbox environment designed to simulate real end-627

point conditions. Despite this, the real world en-628

compasses hundreds of known threats and numer-629

ous unknown ones. While the LcaLLM frame-630

work shows excellent performance in detecting631

and recognizing threats from our current dataset,632

its generalization capabilities need further eval-633

uation. Specifically, more diverse datasets and634

comprehensive experiments are required to assess635

LcaLLM’s effectiveness in identifying potential un-636

known threats beyond the discovered threat fami-637

lies. This will ensure that the model remains robust638

and adaptable to the evolving threat landscape.639
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A Appendix 814

A.1 EDR Log Collection 815

We developed a program to continuously monitor 816

real-time system activities, including random reg- 817

istry modifications, file creation or deletion on sen- 818

sitive location, suspicious network requests, and 819

so on. To be more elaborate, we setup multiple 820

isolated environments for emulating Windows 10 821

system configurations with typical enterprise in- 822

tranet setups and commonly used applications. We 823

simulate comprehensive attack scenarios such as 824

malware injection, privilege escalation, and lateral 825

movement. These simulated attacks are executed 826

using automated scripts along with injected mal- 827

ware samples, generating a significant volume of 828

system event data. 829

To gather raw data, we utilize the Win- 830

dows kernel callback mechanism. This data 831

is subsequently transmitted to a user-space pro- 832

gram through memory-mapped files and high- 833

performance pipelines, ensuring real-time storage 834

in JSON format. To uphold data integrity and en- 835

able real-time processing, our method employs a 836
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Figure 4: The average number of events in each EDR sample across the 40 collected threat families within the
sandbox environment. We classify the EDR event sequence to its corresponding threat family based on the behavior
of events.

highly efficient non-paged memory pool at the ker-837

nel level for caching events, which markedly re-838

duces context-switching overhead. Furthermore,839

we have introduced a ring buffer to streamline data840

transmission, effectively preventing potential event841

loss or bottlenecks. We list the average number842

of events in each EDR sample across 40 collected843

threat families after Event Semantic Alignment at844

Figure 4. We observe the number of events are845

varying across different threat families.846

A.2 EDR log Augmentation847

We present the details of constructing positive train-848

ing samples, aiming to improve the robustness of849

model in understanding the complex and dynamic850

patterns inside EDR event sequence. We proposed851

three data augmentation approaches including im-852

putation, swap and shuffle and randomly applied to853

EDR sample with the probability weight [0.4, 0.2,854

0.4]. We set a low probability for swap, due to it855

may break the attack chain, which will make the856

threat loss its semantic meaning. Assume we have857

an EDR event sequence S = [e0, e1, · · · , en−1],858

which contains only threat-related events.859

Imputation. We define a probability pimpute860

that random number of normal events will be im-861

puted between ei, ej events, where 0 ≤ i, j <862

n, j = i + 1 including the beginning and the863

end. We set pimpute = 0.7 and the number of864

events will be imputed is randomly chose between865

[1, Lmax − len(S)], where Lmax (set to 128) the 866

max number of events for EDR sequence and 867

len(S) is current number of events in the sequence. 868

If len(S) is larger than Lmax, then it will perform 869

other two approaches with probability of [0.3, 0.7]. 870

Swap. We randomly select a pivot event ei, 2 ≤ 871

i < n. Then, there is a probability pi that ei will 872

be firstly exchanged with ei−1, and a probability 873

pj that the pivot event will be exchanged with ej−2. 874

We set the pi and pj as 0.3 and 0.15. 875

Shuffle. Each EDR event is a structured 876

attribute-value pairs. The order of these keys are 877

not meaningful. To make model neglect the or- 878

der of attributes, we randomly shuffle the order of 879

attributes at each event. 880

A.3 Baseline Approach Details 881

TF-IDF + Decision Tree (DT) depends on the 882

features extracted from EDR logs. The textual fea- 883

tures such as term frequency-inverse document fre- 884

quence (TF-IDF) are commonly used as the EDR 885

log feature representations (Zhang et al., 2016), 886

(Sharif et al., 2024). For fair comparison, we pro- 887

duced these features with Qwen’s tokenizer and 888

apply the Decsion Tree classification algorithm as 889

the baseline result. 890

CNN + Bi-LSTM has been proven to be effec- 891

tive in identifying attacks in long-spanning high- 892

dimensional sequence data (Karat et al., 2024). The 893

convolution neural network reduces the dimension 894
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Table 5: The precision of classifying the EDR logs for each threat family. The label (name) of each threat is based
on the log behavior patterns.

Malware Family Precision Malware Family Precsion
Worm.Win32.Gamarue 0.9940 Trojan.Win32.Brontok 0.9889

Trojan.Win32.VB 0.9889 Backdoor.Win32.Gh0st 0.9889
Win32_Trojan.Agentb 0.9389 Trojan.Win32.FakeAlert 0.9770

Worm.Win32.Sfone 0.9556 Win32_Trojan.AutoHotKey 0.9056
Trojan.Win32.FakeAlert 0.9770 Trojan.Win32.FakeAlert 0.9770

Trojan.Ransom.Win32.GandCrab 0.9722 Backdoor.Win32.Nitol 1.0000
Worm.Win32.AutoIt 1.0000 Trojan.Win32.Downloader 0.9944
Worm.Win32.Sytro 0.9556 Trojan.Win32.VBKrypt 0.9944

Backdoor.Win32.Zegost 0.9944 Win32_Worm.Lightmoon 0.9611
Trojan.Win64.CoinMiner 0.9944 Trojan.Win32.Save 1.0000
Win32_Backdoor.Rbot 0.9056 Worm.Win32.FakeFolder 0.8278
Trojan.Win32.Pincav 0.9389 Backdoor.Win32.Berbew 0.8944
Trojan.Win32.Vundo 0.9934 Win32_Worm.Brontok 0.9833

Worm.Win32.Scar 1.0000 Backdoor.Win32.Ahuy 0.9389
Worm.Win32.Picsys 1.0000 Win32_TrojanDownloader.Upatre 0.9278
Win32_Worm.Nuqel 0.9556 Backdoor.Win32.Agent 0.9500

Trojan.Downloader.Win32.Waski 1.0000 white_list 0.9832
Trojan.Win32.Agent 0.9278 Worm.Win32.Rungbu 1.0000

Win32_Trojan.Flystudio 0.9389 Trojan.Win32.StartPage 0.9556
Trojan.Win32.Delf 1.0000 Backdoor.Win32.Wabot 0.9667

Trojan.Win32.Wecod 1.0000 Trojan.Win32.Injuke 1.0000

of the input sequence and the bidirectional LSTM895

model is capable of capturing the dependencies in896

sequential data. We adopted the Qwen’s embed-897

ding layer within the LSTM model.898

Bert + LSTM, proposed by (Portnoy et al.,899

2024), encode the EDR log sample with sliding900

window approach. For the classification head, they901

attach a bidirectional LSTM layer of each window902

[CLS] token. We experimented with different num-903

ber of layers of LSTM model and report the optimal904

performance.905

Qwen2.5 3B can be easily transformed to a clas-906

sification model by modifying the output size of907

"lm_head" layer from vocabulary size to number of908

threat families. We also add two extra transformer909

layers in Qwen2.5 3B instruct model to keep the910

model size as the same as LCA-based models.911

A.4 Evaluation Results Details912

We present detailed classification results for the913

model’s performance on EDR logs across 40 threat914

families in Table 5. The model achieves a precision915

score exceeding 0.9 for the majority of threat916

families. However, "Worm.Win32.FakeFolder"917

and "Backdoor.Win32.Berbew" have pre-918

cision scores below 0.9. Specifically, 919

"Worm.Win32.FakeFolder" is frequently mis- 920

classified as "Win32_Worm.Lightmoon", while 921

some "Backdoor.Win32.Berbew" samples are 922

classified as "Trojan.Win32.VB". Upon closer 923

examination of the misclassified log samples, it 924

was observed that these threats exhibit similar 925

behavior patterns, leading to confusion. For 926

instance, both "Worm.Win32.FakeFolder" and 927

"Win32_Worm.Lightmoon" involve attack events 928

primarily categorized as "CreateProcess", "Pe- 929

FileWritten", and "LoadImage". This similarity in 930

behavioral characteristics makes it challenging for 931

the model to accurately distinguish between them. 932
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