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Abstract

Endpoint Detection and Response (EDR) sys-
tems play a critical role in safeguarding enter-
prises against sophisticated threats, particularly
advanced persistent threats (APTs). However,
detecting abnormal behaviors within long, com-
plex and interdependent event sequences from
EDR system log that remains a major challenge.
Addressing these challenges, this paper intro-
duces LcalLLM, an novel EDR log analytical
framework leveraging the advanced capabilities
of Large Language Models (LLMs) in under-
standing and representing extensive sequential
data. LcalLM proposes three distinguished
contributions: (1) a Latent Cross-Attention
(LCA) model architecture meticulously de-
signed to enhance the representation of long
EDR event sequence, (2) an Event Semantic
Alignment mechanism that enriches structured
EDR logs with nuanced natural language ex-
pressions, aligned with the input of language
model for an improved interpretability, and
(3) a Multi-Objective Loss Aggregation train-
ing approach that enables the model to learn
deep complex relationships among EDR events.
We also release EDR47K-40F-v1.0, a large-
scale EDR dataset comprising over 47K event
records, covering 40 threat families and normal
activities. The LcaLLM framework not only
outperforms traditional methods but also sets
new benchmarks in threat detection accuracy
and classification precision, achieving 98.32%
accuracy in threat identification and a 96.73%
success rate in classifying threats across 40
families. We further analyze the impact of
latent size, layer depth, pooling strategies
and robustness to dynamics. We open-source
the dataset and code at: https://github.
com/victorzhz19995/EDR_LcaLLM.

1 Introduction

In the rapidly evolving landscape of cybersecurity,
the challenges in safeguarding organizations’ dig-
ital assets have grown increasingly complex. As

cyber threads become more sophisticated, tradi-
tional security measures such as firewalls and an-
tivirus software are no longer sufficient to provide
comprehensive protection against advanced persis-
tent threats (APTs), zero-day exploits, and other
modern attack vectors (Mei et al., 2021). Endpoint
Detection and Response (EDR) systems have been
developed as sophisticated tools that are designed
to gather extensive data from devices across an
enterprise network, providing deep insights into
potential intrusions and advanced threats (Hassan
et al., 2020). EDR solutions typically combine con-
tinuous monitoring and collection of data from end-
points with advanced analytics and automated re-
sponse capabilities to identify and neutralize threats
in real-time. Typically, these continuously col-
lected data provide rich textural information that
can be used to detect behavioral anomalies.

Traditional EDR systems predominantly rely
on heuristic/rule-based approaches (Kaur et al.,
2024), or machine learning models(Kaur and Ti-
wari, 2021). Heuristic/rule-based approaches ofent
result in high false positive rates or fall to ac-
curately detect complex threats such as APT at-
tacks. These threats are highly sophisticated, de-
signed to be stealthy and adaptive, easily bypass-
ing static rule sets. Meanwhile, machine learning
models necessitate extensive feature engineering,
where the quality of the features significantly im-
pacts model performance. Large Language Mod-
els (LLM) could be the elixir for those dilemmas.
LLMs have shown significant capabilities in under-
standing and reasoning over textural data. These
models are pre-trained on vast datasets and can be
finetuned to downstream task with limited super-
vision. LLMs have already demonstrated success
in detecting and classifying various types of net-
work attacks, including DDoS attacks, man-in-the-
middle (MITM) attacks, botnet traffic and so on
(Wang et al., 2024b), (Piggott et al., 2023) (Moskal
et al., 2023).
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In this paper, we introduce the LcalLLM frame-
work, which incorporates a novel Latent Cross-
Attention (LCA) model architecture designed to
enhance the contextualized representation of EDR
sequences inside log data and improve the under-
standing of complex inter-dependencies among
events. Currently LLMs typically rely on decoder-
only transformer architectures with casual attention
mask, which limits the model’s visibility to only
past tokens. This results in a "recency problem",
where the representation of the entire sequence
heavily depends on the <E(OS>-last token. The
LcalLLM framework addresses these challenges
through LCA module, which employs latent cross-
attention to effectively capture long-range depen-
dencies and reduce reliance on the last token. We
design three variations of the LCA-based model,
integrating LCA module at different positions of
the backbone model, and empirically evaluate their
impact on the sequence representation. Addition-
ally, to better align these structured logs with the
pre-training data of language models, the LcaLLM
framework incorporates an Event Semantic Align-
ment mechanism. It enriches the semantic meaning
of EDR events. Additionally, our framework intro-
duces a Multi-Objective Loss Aggregation method
that integrates objectives from both unsupervised
and supervised learning. This approach enables the
model to learn the nuanced semantics of EDR event
sequences while accurately identifying threats by
leveraging relevant contextual information. By
combining these techniques, LcaLLM not only cap-
tures the deep relationships between events but
also significantly enhances the detection of sophis-
ticated threats.

Furthermore, we constructed a log-based
EDR47K-40F-v1.0 dataset, which is the first and
currently largest EDR dataset wih rich textural in-
formation on system level. It comprises over 47K
EDR samples covering 40 threat families as well
as normal activities. To support future research and
advance Al-driven log analysis, we have made this
dataset publicly available. Our contributions are as
follows:

* We propose a novel model architecture with a
Latent Cross-Attention (LCA) module that en-
hances contextualized representation of EDR
event sequences by capturing long-range de-
pendencies. We evaluate three LCA variants
to assess their impact on sequence modeling.

* We introduce a multi-objective loss aggrega-

tion strategy that enables the model to learn
semantic event patterns across diverse threat
families and effectively detect threats

* We perform extensive evaluations across vari-
ous architectures and training strategies in the
challenging domain of EDR threat analysis,
showing our LcalLLM framework outperforms
existing baselines.

* We publicly release EDR47K-40F-v1.0, a
large-scale dataset with over 40,000 EDR sam-
ples spanning 40 threat categories, providing a
foundational resource for advancing Al-based
log analytics research.

2 Background

EDR systems continuously monitor and log system-
level events, generating telemetry data that cap-
tures detailed behavioral information like registry
modification, configuration changes, and other
relevant system activities (Arfeen et al., 2021).
These rich textual logs are analyzed to uncover
insights into endpoint behavior and potential secu-
rity breaches. Traditional approaches have applied
machine learning algorithms such as Random For-
est, Naive Bayes, and SVM to log analysis (Revathi
and Malathi, 2013). More recently, deep learning
models like RNN, GRU, and LSTM have achieved
notable performance in intrusion detection due to
their ability to model sequential data (Radhi Hadi
and Saher Mohammed, 2022). However, the ef-
fectiveness of both traditional and deep learning
approaches heavily relies on handcrafted features
such as TF-IDF and N-gram representations (Sharif
et al., 2024). As EDR log volumes grow and attack
patterns become more sophisticated, these methods
face scalability challenges and require extensive
feature engineering—an effort-intensive process
dependent on domain expertise. This highlights
the need for more intelligent, adaptive solutions
capable of automatically learning meaningful rep-
resentations from raw log data.

Pretrained language models (PLM) offer strong
transfer learning capabilities and can be finetuned
for wide range of downstream tasks. BERT-based
architectures have demonstrated effectiveness in
encoding textual inputs into meaningful represen-
tations. Telemetry data are often treated textual
logs and transformed into token sequences com-
patible with language models. Ahmood Sharif
et al. (Sharif et al., 2024) pretrained a RoBERT-



style model using masked language modeling and
later fine-tuned it on small labeled datasets for spe-
cific detection tasks. However, a key limitation
of BERT-based models is their restricted context
length—typically limited to 512 tokens. This poses
challenges when processing long EDR logs. To mit-
igate this constraint, Amit Portnoy et al. (Portnoy
et al., 2024) proposed a sliding window approach,
where each log is divided into approximately 80
segments. Each window’s representation, captured
via the CLS token, is passed through a bidirec-
tional LSTM classification head. While effective in
extending coverage, this method introduces infor-
mation fragmentation by processing subsequences
independently, rather than maintaining global con-
text. Recent advances in large language models
(LLMs), however, have dramatically increased con-
text length limits—supporting up to 128K tokens or
more (Qwen et al., 2025), (Ding et al., 2024). These
extended-context models enable holistic process-
ing of long EDR logs while preserving contextual
coherence, thereby overcoming prior limitations
and enabling richer sequence representation.

3 Method
3.1 Aligning EDR log to Natural Language

LLMs have already demonstrated remarkable ca-
pabilities in natural language processing. To lever-
age these capabilities, our first objective is to align
sequential EDR log events with natural langauge
representation. Some previous work have studied
to reduce the semantic discrepancy between textual
and temporal data modality to LLMs through di-
rect prompting (Xue and Salim, 2023) (Xie et al.,
2023) and aligning (Jin et al., 2024) (Liu et al.,
2024) (Tang et al., 2024). The direct prompting
constructs summarized prompts. The later requires
fine-tuning and new design of the loss objectives.
However, neither approach is well-suited to EDR
logs due to their unique characterisitics temporal
dependency, sparse and structured. EDR logs
consist of sequences of timestamped events that
reflect chronological activity, such as a "file write"
following a "file open". Preserving this temporal or-
der during preprocessing is critical. A typical EDR
log sample may contain over 5,000 events, but only
10-15% are typically relevant for threat detection,
making the date highly sparse. Each event is struc-
tured as attribute-value pairs (illustrated at Figure
1), capturing detailed properties like file paths, or
registry values. Summarization risks losing critical

levent': {'action_time': '1727083820', 'action_type': 'process_c
freate’, 'child_process_birth_time': 1727083813, 'child_process
| build_name": 'File Folder', 'child_process_catid": 41, 'child_p
[rocess_file_size': 309880, 'child_process_file_version'": '1.00',
[child_process_id': 4344, 'child_process_integrity': 'High', 'chi

o action time.  Id_process md5': '94de9016e0d862ee544656¢1b...
event': {*action_time’: ... 7 ,
event’:{’action_time’: ...

event’: {’action_time’: ...

{'event: {'action_time': '1727083862', 'action_type": 'process_cr
eate’, 'child_process_birth_time': 1727083818, 'child_process_b
ild_name': 'Xinfeng_Jxc10', ‘child_process_catid': 3, 'child_pr
event’: {"action_time”: ... [ocess_file_size': 13590528, 'child_process_file_version': '2024.
1016.5012', 'child_process_id': 704, 'child_process_integrity":

'High', 'child_process_md5": '4360d8cc6f5d0c033d33£5702b...
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Figure 1: EDR events are in json format. Each EDR
sample consists of many EDR events with various action.
Each event is formed by multiple key-value pairs.

informaiton, and full alignment training introduces
excessive computatioanl overhead.

To bridge the semantic gap without compromis-
ing detail or efficiency, we propose a lightweight
textual alignment method. @ We observe that
many EDR attributes use abbreviated forms (e.g.,
"PPID", "zero_day_op"), which can lead to am-
biguity and hinder model understanding. To ad-
dress this, we expand abbreviations into fully de-
scriptive terms (e.g. "Parent Process ID", "zero
day operation"). This improves interpretability and
leverages the domain-agnostic knowledge acquired
by LLMs during pre-training. Furthermore, not all
attributes are equally relevant for threat analysis.
By consulting security experts, we identified and re-
moved unimportant attributes, reducing the average
context length of EDR logs by approximately 63%.
This selective pruning ensures efficient processing
while retaining semantically rich, task-relevant in-
formation.

3.2 Large Language Model with Latent
Cross-Attention (LCA) module

LLMs are typically based on the decoder-only ar-
chitecture of vanilla Transformers with causual at-
tention, which restricts token interactions by allow-
ing each token at position ¢ to only see preceding
tokens 0,1,---,7 — 1. This limits model’s abil-
ity to capture global contextual information across
the entire input sequence, leading to recency bias,
where the sequence embedding disproportionately
depends on the last token, diminishing the influence
of earlier tokens.

Sentence embeddings aim to encode variable-
length sentences into fixed-dimensional vectors



that preserve semantic similarity through distance
metrics. They have been widely adopted in down-
stream tasks (Gupta et al.,, 2023; Khan et al.,
2020; Wang and Koopman, 2017). Traditional ap-
proaches rely on high-quality labeled datasets and
contrastive learning strategies to enhance embed-
ding quality by pulling similar sentences closer
and pushing dissimilar ones apart. Encoder-based
models such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) are commonly used due
to their bidirectional attention mechanism, which
enables richer contextual understanding, and their
ability to produce high-dimensional embeddings
that mitigate anisotropy through large-scale scaling.
Despite these advantages, recent studies show that
decoder-only LLMs can also achieve strong perfor-
mance on text embedding benchmarks (Wang et al.,
2024a), likely due to their massive pretraining data,
multi-stage alignment processes, and extended con-
text lengths. Nevertheless, they still face challenges
related to recency bias (Lee et al., 2025), where the
final <O S> token dominates the sentence repre-
sentation.

In this work, we propose a new LLM architec-
ture that incorporates the Latent Cross-Attention
module to obtain better expressive EDR embed-
ding. We explore the structural variation of apply-
ing the LCA module at different positions of the
backbone LLM. In Figure 2, we illustrate three
different structures (Bottom-LCA, Top-LCA, and
Weigthed-LCA) that apply the cross-attention pool-
ing on the hidden states of decoder-only LLM to
obtain better expressive EDR embedding . Take the
Figure 2(b) Bottom-LCA for example, it uses the
output of the last layer from decoder-only LLM to
form the query Q € R”'*P4_and trainable latent
matrix M to form K,V € RPs*Pd after multi-
plying the attention weights Wy, W,,, where D is
the sequence length, D, is the model hidden di-
mension, and D, the latent dimension size. The
computation of cross-attention layer is very similar
to normal attention computation:

Ocross—attention = Softmaz (QKT) V (1)

, and then followed by a regular feedforward layer.
Intuitively, K, V, produced by linear transforma-
tion of latent matrix M, can be viewed as an EDR
dictionary, which is trained to encapsulate informa-
tion about all threat families. The query matrix @),
on the other hand, is decoded from the current EDR
sample and serves as a query to search this EDR

dictionary. This intuition also applies to Figure
2(a), albeit with a different conceptual depths. In
Figure 2(a), the LCA module is placed at a lower
level of the LLM, which enforces the latent matrix
to capture shallow concepts, such as syntactic fea-
tures of EDR sequences. In contrast, Figure 2(c)
introduces learnable weights applied to the hidden
states of transformer layers. It is widely accepted
that lower layers of an LL.M tend to extract syn-
tactic features of the input sequence, while upper
layers focus on extracting semantic features. This
design aims to aggregate information from differ-
ent levels of the LLM, thereby providing a more
fine-grained representation of EDR sequences by
leveraging the multi-layered hierarchical features
produced during the model’s processing.

3.3 EDR sequence embedding tuning

To enforce LLM to learn the semantic of EDR
log samples, we introduce the triplet objective into
our learning objectives. Contrastive learning has
been widely used in training sentence embedding
model (Gao et al., 2021). For each training batch,
it consists of a sentence s, a relative / positive doc-
ument sT, and a set of irrelevant/negative docu-
ments s~ = {s],S5, -, s, }. The training objec-
tive commonly utilizes the InfoNCE loss (van den
Oord et al., 2018), which learns the similarities
between query and positive document and differ-
ences between query and a batch of negative docu-
ments. However, EDR sample has a large number
of events that can easily go beyond 8K amount of
tokens. Creating a batch of negative samples can
be very expensive. Triple loss can be viewed as a
special case of contrastive learning. Each data sam-
ple consists of an anchor sentence S, a positive
sentence S, and negative sentence S,,. In natural
language, the positive sentence can be a rewritten
sentence and expresses the same semantic meaning
as the anchor sentence, and the negative sentence
could be a totally different sentence on semantic
meaning. In our case, we form the positive sample
through injecting "noise" into anchor sample and
the negative sample from other threat samples or
normal samples. The objective of triple loss tunes
the model such that the distance between S, and
Sp is smaller than the distance between S, and .S,
illustrated at equation (2).

Liipler = ReLU (cos(a,p) — cos(a,n) +€), (2)
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Figure 2: Structural exploration of the Latent Cross-Attention (LCA) LLM architecture. Figure (a) Bottom-LCA:
feeds the output of LCA to LLM. Figure (b) Top-LCA: feeds the output of LLM as the input of LCA module. Figure
(c) Weighted-LCA: combines all hidden states of each transformer layer with a learnable weights and then feed to

LCA module.

where a = g (Sq), p = mom(Sp), and n =
7o,m(Sn). || - || is a distance measurement (i.e.
cosine distance in our case), 7 r1(Sq/p/n) 1S the
a sentence embedding outputted by model 7 with
parameters of 6 and latent matrix M. € is the mar-
gin that measures that mg 5/ (.Sp) is at least e closer
to g, a7 (S ) than g a7 (Sy). The triple loss objec-
tive also enforces the model to learn the semantic
difference between EDR threats and capture the
semantic meaning of the EDR log in the model’s
parameters.

3.4 Robust threats classification tuning

One of model’s expected capabilities is to correctly
detect the threat family from EDR log. The naive
approach is to fine-tune LLLM as a "giant" classi-
fier. The output embedding layer is a linear trans-
formation layer that maps the model’s last hidden
states to vocabulary size. Instead of mapping to
vocabulary size, the output linear layer maps to the
number of classes. We use the first token outputted
by model as the threat classification results. We use
the cross-entropy loss objective on the first token
and aim to algin it as a multi-class classification
problem. The LLM encodes the input EDR log and
classifies into corresponding thread family. The
cross-entropy aims to tune the model to be able to
generate the correct threat family.

\4
Lop(S) = argming > yi* log(monr(7ilS))

i=1
(3)

y; is the ground truth token id, threat family in
our case. S = [eg,e1,€2, - ,e,_1] is the EDR
input event sequence with length n. e; o<;<y 18 an
EDR log event. my s (;|S) is the probability of the
threat class outputted by model 7 with parameters
6 and latent matrix M. |V/| is the total number of
threat classes.

To enforce model learning and classify threat
classes based on the semantic information of EDR
events, we use aggregated loss by merging triplet
loss and cross-entropy loss. In real scenarios,
many non-related events often exist between threat-
related events. The positive sample is constructed
by imputing various non-related events between
the threat-related events. The positive sample can
also be utilized as training samples that have the
same threat class as the anchor sample. The aggre-
gated loss (I;,4;) for latent cross-attention LLM is
computed as followings:

‘Ctotal = Etriplet(saa Spa Sn)+£CE(Sa)+£CE(Sp)
“)
, where liriplet (Sa, Sp, Sn) is the triplet loss with
anchor, positive and negative EDR sequence,
lcr(Sa), lor(Sp) are the cross-entropy loss of an-
chor and positive sample. g s denotes the model
7 with parameters # and latent matrix M. The 6
and M will be tuned based on the multi-objective
loss. The loss of positive sample allows model
to learn from noise and improve the robustness of
threat classification. The learning objective of ag-
gregate loss enables the model to classify threat
families under noisy conditions based on the se-



mantic meaning of EDR events.

4 Experiments

4.1 Dataset

Large-scale EDR dataset with covering various
threat families is essential for training and validat-
ing algorithms. However, the open release of EDR
datasets are scarce (Sharif et al., 2024) (Alsaheel
etal., 2021), (Zengy et al., 2022), and (Dong et al.,
2023). To alleviate the urgen needs of open large-
scale EDR dataset, we constructed EDR47K-40F-
v1.0, a total amount of 47,537 EDR log samples
with covering 40 threat families. For the raw EDR
log, we first perform Event semantic Alignment to
enrich EDR samples with more semantic meaning.
We split the dataset into train set (40,405) and test-
set (7,132), while ensuring the each threat family
also split as the same ratio. The introduction of
our EDR log collection process and EDR47K-40F-
v1.0 dataset are provided at Appendix A.1.

We propose the following three approaches for
introducing noise into EDR samples to construct
the positive training sample, aimed at enhancing
the model’s robustness: 1. Imputation. We im-
pute extra non-related events between each threat-
related events . 2. Swap. For each EDR log sample,
we randomly swap the events to break the depen-
dency 3. Shuffle. Each EDR event is a structured
attribute-value pairs. We randomly shuffle the order
of attributes at each event. We present the detailed
data augmentation at Appendix A.2.

4.2 Experimental Setup

We use Qwen?2.5 3B Instruct (Qwen et al., 2024) as
the backbone model. Qwen2.5 model series have
achieved the state-of-the-art performance in vari-
ous benchmarks. We conduct our experiments on
two nodes with 16 NVIDIA H100 80GB GPUs.
We select the 32K context length to ensure that
we can maximize the coverage of events in each
EDR sample, while balancing the training costs.
We implemented our latent cross-attention with
flash-attention 2 to obtain a higher training effi-
ciency (Dao, 2024). We comprehensively evalu-
ated our framework from two perspectives: model
architecture and training approaches. For model
architecture, we first compare the LCA model with
traditional model architectures in EDR practices.
We implemented the LCA module with one latent
cross-attention layer and one transformer layer. We
conducted the comparison experiments with the tra-

ditional machine learning and deep leanring mod-
els (details of implementation are presented at Ap-
pendix A.3).

Our evaluation metrics include binary classifica-
tion evaluation with accuracy, threat recall (sensi-
tivity), false positive rate (false alarm), and multi-
class classification accuracy for identifying specific
threat families. Table 1 depicts the performance of
traditional approaches and variational latent cross-
attention LLM modules trained and evaluated with
EDR47K-40F-v1.0 dataset. The binary classifica-
tion is evaluated by an additional test dataset con-
sisting of 5000 samples, each labeled only as attack
or non-attack. This additional dataset is designed
to assess the model’s performance in distinguishing
between malicious and benign activities.

Table 1 shows that models with the Latent Cross-
Attention (LCA) module outperform traditional
approaches, highlighting the LCA’s effectiveness
in learning deep intrinsic relationship matrices
among threat families and integrating this knowl-
edge via cross-attention on EDR sequences. Top
and Weighted LCA models excel across all metrics,
suggesting that LLM works better as extracting
textual features and integrated with the intrinsic
knowledge by LCA module. However, Weighted
LCA underperforms due to potential noise from lin-
early combining outputs of all layers, which may
demand more training data. Conversely, Bottom
LCA introduces latent features at early stages, pos-
sibly diluting positional information and hindering
competitive performance.

We then compared three training strategies:
cross-entropy loss, dual-stage training, and multi-
objective loss aggregation. Dual-stage training in-
volves unsupervised contrastive learning followed
by supervised classification. We aimed to de-
termine how multi-objective loss affects train-
ing—whether it hinders convergence or enhances
performance. Experiments using Qwen 3B and
Top-LCA models, selected for their superior per-
formance, revealed that multi-objective loss aggre-
gation yields the best results by effectively leverag-
ing positive and negative samples, leading to more
directed gradients. As shown in Table 2, introduc-
ing additional loss objectives consistently improves
performance, with multi-objective loss providing
balanced enhancements across all metrics and en-
suring a more stable training process. These ex-
periments were conducted both with and without
the LCA module to demonstrate the generalization



Table 1: The evaluation of traditional approaches and variational latent cross-attention LLM modules in detecting
threats and threat families among 40 threat families and white EDR log. For decoder-only based models, we applied
the <E'O.5>-last pooling to obtain the sequence embedding representation. We applied the multi-objective loss
aggregation on all the models except the TF-IDF + DT. TF-IDF is a statistical measurement for textural feature
exaction. We present the evaluation results of each threat family at Append A.3

Avg. Accuracy  Threat Accuracy Recall False Positive Rate Model name
0.8021 09114 0.8992 0.0764 TF-IDF + DT
0.8345 0.9302 0.9324 0.0720 Bi-LSTM
0.8622 0.9338 0.9596 0.0920 BERT + LSTM
0.9353 0.9672 0.9680 0.0336 Qwen2.5 3B
0.9577 0.9784 0.9784 0.0232 Qwen2.5 3B (Bottom LCA)
0.9673 0.9832 0.9868 0.0204 Qwen2.5 3B (Top LCA)
0.9604 0.9786 0.9996 0.0424 Qwen2.5 3B (Weighted LCA)

Table 2: The impact of different training strategies to model’s performance: (Dcross-entropy loss, @)dual-stage

training and G@)multi-objective loss aggregation

Avg. Accuracy Threat Accuracy Recall  False Positive Rate Model name
0.8789 0.8874 0.9676 0.1928 Qwen2.5 3B with (Dcross-entropy loss
0.9145 0.9376 0.9680 0.0928 Qwen2.5 3B with Q)dual-stage training
0.9353 0.9672 0.9680 0.0336 Qwen2.5 3B with @)multi-objective loss aggregation
0.8970 0.9212 0.9684 0.1260 Qwen2.5 3B Top LCA with (Dcross-entropy loss
0.9471 0.9726 0.9840 0.0416 Qwen2.5 3B Top LCA with @dual-stage training
0.9673 0.9832 0.9868 0.0204 Qwen2.5 3B Top LCA with )multi-objective loss aggregation

capabilities of our proposed methods.

4.3 Ablation Study

We conduct all ablation studies on Top LCA model
architecture with multi-objective loss aggregation
training approaches.

The impact of LCA module. We hypothesized
that the latent matrices M form a latent space that
captures intrinsic relationships among EDR threat
families, tuned progressively through backpropa-
gation during training. This latent space functions
as a knowledge base for EDR log, with the LLM
acting as an encoder to extract features from log
samples. We investigated whether the size of this
latent matrix and the number of layers in the LCA
module influence the model’s ability to represent
EDR sequences.

The number of layers in the LCA module sig-
nifies varying levels of information processing. A
single layer within the LCA module can be inter-
preted as performing latent attention-based pooling.
Conversely, two or more layers operate as a in-
formation fusion mechanism, integrating diverse
features and relations from EDR samples and la-
tent space. To evaluate the impact of the number
of layers in LCA module, we maintained a fixed
dimensionality D, = 2048 while varying the num-
ber of layer L within the LCA module. Table 3
show that latent matrix size has minimal impact

on threat detection performance but positively af-
fects threat family recognition—higher dimensions
M allow to encode more discriminative features.
However, increasing the number of LCA layers pro-
vided no significant gains, due to the model already
has many attention layers.

The impact of pooling methods. To evaluate
the impace of different pooling methods, we con-
ducted experiments comparing <FOS>-last, mean,
self-attention, and weighted-mean pooling meth-
ods. We demonstrated the performance of different
pooling methods in Table 4. The weighted-mean
pooling outperformed mean pooling, <FO.S>-last
pooling and self-attention pooling in most metrics.
This performance difference can be attributed to
the <F'OS5>-1ast methods’ heavily depends on the
last token’s embedding, which introduces a recency
bias, while mean pooling dilutes important token
information by averaging all token embeddings.
The LCA module and LLM already have many
attention-based layers, the self-attention pooling
does not provide additional improvement for se-
quence representation, and even slightly reduce the
performance (same as the number of layers in LCA
module).

Robustness to EDR sequence length. EDR
events often span long time periods, with sophisti-
cated threats interspersed among numerous normal
activities, creating complex and variable tempo-



Table 3: The evaluations of different latent matrix sizes and number of layers in LCA module on model’s performance
in EDR threats identification and classification. For latent matrix M € RP+*P¢_ D, must be consistent with model
hidden size. We varied D; to explore the impact of latent matrix: M with sizes of 128 x 2048, 896 * 2048, 2048 x*
2048, 5120 * 2048, 8196 * 2048. We also evaluated the different number of layers (L) in LCA module.

Avg. Accuracy  Threat Accuracy Recall  False Positive Rate  Model name
0.9644 0.9818 0.9908 0.0272 R128+2048
0.9658 0.9836 0.9928 0.0256 RB96%2048
0.9673 0.9832 0.9868 0.0204 R2048+2048
0.9782 0.9866 0.9992 0.0260 RP120%2048
0.9785 0.9860 0.9964 0.0244 RB196x2048
0.9644 0.9742 0.9716 0.0232 L=1
0.9673 0.9832 0.9868 0.0204 L=2
0.9668 0.9828 0.9820 0.0164 L=3
0.9641 0.9738 0.9723 0.0248 L=4

Table 4: The evaluations of <E(OS>-last, mean, and weighted mean pooling methods on model’s performance.
We select the 2-layer bottom LCA model with latent matrix M € R?048+2048 We applied the multi-objective loss

aggregation training approach for all the pooling methods.

Avg. Accuracy  Threat Accuracy  recall  false positive rate Model name
0.9673 0.9832 0.9868 0.0204 <EOS>-last
0.9774 0.9874 0.9988 0.0240 mean
0.9658 0.9812 0.9840 0.0288 self-attention
0.9760 0.9880 0.9996 0.0236 weighted-mean

ral patterns. To evaluate our model’s robustness
under such realistic conditions, we test it on elon-
gated EDR sequences by injecting additional nor-
mal events between threat-related ones. The num-
ber of inserted events follows a normal distribution
with parameters ;o (mean) and o (standard devia-
tion), which we vary to assess performance under
increasing sequence length and event-spacing ran-
domness. We evaluate Qwen2.5 3B, Bottom-LCA,
Top-LCA, and Weighted-LCA models. Increasing
1 tests the model’s ability to handle longer con-
texts, while varying o simulates irregular event
spacing, mimicking real-world noise and uncer-
tainty. As shown in Figure 6, all models experience
performance degradation with longer sequences,
but LCA-based models demonstrate significantly
greater resilience to both sequence elongation and
random event distribution. This indicates their su-
perior capability in capturing long-range dependen-
cies and maintaining accuracy under noisy tempo-
ral structures.

5 Conclusion

In this paper, we propose LcalLLM, a novel frame-
work for detecting malicious behaviors in endpoint
detection and response (EDR) logs using large lan-
guage models. LcalLLM introduces a latent cross-
attention module that addresses the "recency"” prob-

Figure 3: The number of imputed noise events among
threat-related events to the performance of model’s per-
formance. We study the impact of =3, 5,7, 9 with ¢
=3 (left), and p =5 with 0 = 1, 3,5, 7 (right).
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lem and overcomes limitations of causal masking
in decoder-only LLMs. It also presents the capabili-
ties of better capturing complex event relationships
and an Event Semantic Alignment mechanism to
bridge the gap between raw EDR logs and nat-
ural language inputs. These innovations enable
superior performance in both threat detection and
threat family classification. To advance research in
this domain, we introduce EDR47K-40F-v1.0, the
largest publicly available EDR dataset with over
47,000 samples across 40 threat families. Our work
represents a significant step toward more effective,
Al-driven endpoint security solutions. Future ef-
forts will focus on expanding the dataset’s scale
and diversity, as well as exploring efficient context-
length extension techniques.



6 Limitations

Our EDR logs were collected using a kernel-based
sandbox environment designed to simulate real end-
point conditions. Despite this, the real world en-
compasses hundreds of known threats and numer-
ous unknown ones. While the LcaLLM frame-
work shows excellent performance in detecting
and recognizing threats from our current dataset,
its generalization capabilities need further eval-
uation. Specifically, more diverse datasets and
comprehensive experiments are required to assess
LcalLLM’s effectiveness in identifying potential un-
known threats beyond the discovered threat fami-
lies. This will ensure that the model remains robust
and adaptable to the evolving threat landscape.
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A Appendix
A.1 EDR Log Collection

We developed a program to continuously monitor
real-time system activities, including random reg-
istry modifications, file creation or deletion on sen-
sitive location, suspicious network requests, and
so on. To be more elaborate, we setup multiple
isolated environments for emulating Windows 10
system configurations with typical enterprise in-
tranet setups and commonly used applications. We
simulate comprehensive attack scenarios such as
malware injection, privilege escalation, and lateral
movement. These simulated attacks are executed
using automated scripts along with injected mal-
ware samples, generating a significant volume of
system event data.

To gather raw data, we utilize the Win-
dows kernel callback mechanism. This data
is subsequently transmitted to a user-space pro-
gram through memory-mapped files and high-
performance pipelines, ensuring real-time storage
in JSON format. To uphold data integrity and en-
able real-time processing, our method employs a
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The histogram of avg. number of events for each threat familiy in EDR47K-40F-v1.0
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Figure 4: The average number of events in each EDR sample across the 40 collected threat families within the
sandbox environment. We classify the EDR event sequence to its corresponding threat family based on the behavior

of events.

highly efficient non-paged memory pool at the ker-
nel level for caching events, which markedly re-
duces context-switching overhead. Furthermore,
we have introduced a ring buffer to streamline data
transmission, effectively preventing potential event
loss or bottlenecks. We list the average number
of events in each EDR sample across 40 collected
threat families after Event Semantic Alignment at
Figure 4. We observe the number of events are
varying across different threat families.

A.2 EDR log Augmentation

We present the details of constructing positive train-
ing samples, aiming to improve the robustness of
model in understanding the complex and dynamic
patterns inside EDR event sequence. We proposed
three data augmentation approaches including im-
putation, swap and shuffle and randomly applied to
EDR sample with the probability weight [0.4, 0.2,
0.4]. We set a low probability for swap, due to it
may break the attack chain, which will make the
threat loss its semantic meaning. Assume we have
an EDR event sequence S = [eg, €1, ,€n_1],
which contains only threat-related events.
Imputation. We define a probability pimpute
that random number of normal events will be im-
puted between ¢;, e; events, where 0 < 4,5 <
n,j 7 4+ 1 including the beginning and the
end. We set pimpute = 0.7 and the number of
events will be imputed is randomly chose between
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[1, Linasz — len(S)], where Ly,q, (set to 128) the
max number of events for EDR sequence and
len(S) is current number of events in the sequence.
If len(S) is larger than L, ., then it will perform
other two approaches with probability of [0.3, 0.7].

Swap. We randomly select a pivot event ¢;, 2 <
7 < n. Then, there is a probability p; that e; will
be firstly exchanged with e;_1, and a probability
p; that the pivot event will be exchanged with e;_».
We set the p; and p; as 0.3 and 0.15.

Shuffle. Each EDR event is a structured
attribute-value pairs. The order of these keys are
not meaningful. To make model neglect the or-
der of attributes, we randomly shuffle the order of
attributes at each event.

A.3 Baseline Approach Details

TF-IDF + Decision Tree (DT) depends on the
features extracted from EDR logs. The textual fea-
tures such as term frequency-inverse document fre-
quence (TF-IDF) are commonly used as the EDR
log feature representations (Zhang et al., 2016),
(Sharif et al., 2024). For fair comparison, we pro-
duced these features with Qwen’s tokenizer and
apply the Decsion Tree classification algorithm as
the baseline result.

CNN + Bi-LSTM has been proven to be effec-
tive in identifying attacks in long-spanning high-
dimensional sequence data (Karat et al., 2024). The
convolution neural network reduces the dimension



Table 5: The precision of classifying the EDR logs for each threat family. The label (name) of each threat is based

on the log behavior patterns.

Malware Family Precision Malware Family Precsion

Worm.Win32.Gamarue 0.9940 Trojan.Win32.Brontok 0.9889
Trojan.Win32.VB 0.9889 Backdoor.Win32.GhOst 0.9889
Win32_Trojan.Agentb 0.9389 Trojan.Win32.FakeAlert 0.9770
Worm.Win32.Sfone 0.9556 Win32_Trojan.AutoHotKey 0.9056
Trojan.Win32.FakeAlert 0.9770 Trojan.Win32.FakeAlert 0.9770
Trojan.Ransom.Win32.GandCrab  0.9722 Backdoor.Win32.Nitol 1.0000
Worm.Win32.Autolt 1.0000 Trojan.Win32.Downloader 0.9944
Worm.Win32.Sytro 0.9556 Trojan.Win32.VBKrypt 0.9944
Backdoor.Win32.Zegost 0.9944 Win32_Worm.Lightmoon 0.9611
Trojan.Win64.CoinMiner 0.9944 Trojan.Win32.Save 1.0000
Win32_Backdoor.Rbot 0.9056 Worm.Win32.FakeFolder 0.8278
Trojan.Win32.Pincav 0.9389 Backdoor.Win32.Berbew 0.8944
Trojan.Win32.Vundo 0.9934 Win32_Worm.Brontok 0.9833
Worm.Win32.Scar 1.0000 Backdoor.Win32.Ahuy 0.9389
Worm.Win32.Picsys 1.0000  Win32_TrojanDownloader.Upatre ~ 0.9278
Win32_Worm.Nugel 0.9556 Backdoor.Win32.Agent 0.9500
Trojan.Downloader.Win32.Waski 1.0000 white_list 0.9832
Trojan.Win32.Agent 0.9278 Worm.Win32.Rungbu 1.0000
Win32_Trojan.Flystudio 0.9389 Trojan.Win32.StartPage 0.9556
Trojan.Win32.Delf 1.0000 Backdoor.Win32.Wabot 0.9667
Trojan.Win32.Wecod 1.0000 Trojan.Win32.Injuke 1.0000

of the input sequence and the bidirectional LSTM  cision scores below 0.9. Specifically,

model is capable of capturing the dependencies in
sequential data. We adopted the Qwen’s embed-
ding layer within the LSTM model.

Bert + LSTM, proposed by (Portnoy et al.,
2024), encode the EDR log sample with sliding
window approach. For the classification head, they
attach a bidirectional LSTM layer of each window
[C'LS] token. We experimented with different num-
ber of layers of LSTM model and report the optimal
performance.

Qwen2.5 3B can be easily transformed to a clas-
sification model by modifying the output size of
"Im_head" layer from vocabulary size to number of
threat families. We also add two extra transformer
layers in Qwen2.5 3B instruct model to keep the
model size as the same as LCA-based models.

A.4 Evaluation Results Details

We present detailed classification results for the
model’s performance on EDR logs across 40 threat
families in Table 5. The model achieves a precision
score exceeding 0.9 for the majority of threat
families. However, "Worm.Win32.FakeFolder"
and "Backdoor.Win32.Berbew" have pre-
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"Worm.Win32.FakeFolder" is frequently mis-
classified as "Win32_Worm.Lightmoon", while
some "Backdoor.Win32.Berbew" samples are
classified as "Trojan.Win32.VB". Upon closer
examination of the misclassified log samples, it
was observed that these threats exhibit similar
behavior patterns, leading to confusion. For
instance, both "Worm.Win32.FakeFolder" and
"Win32_Worm.Lightmoon" involve attack events
primarily categorized as "CreateProcess", "Pe-
FileWritten", and "LoadImage". This similarity in
behavioral characteristics makes it challenging for
the model to accurately distinguish between them.



