Compress & Cache: Vision token compression for
efficient generation and retrieval

Adrian Bulat*!'2  Yassine Ouali*'  Georgios Tzimiropoulos'3
!Samsung Al Cambridge  2Technical University of lasi  2QMUL

Abstract

This work aims to compress the vision tokens of an LVLM into a representation
that is simultaneously suitable for (a) generative and (b) discriminative tasks, (c) is
nearly lossless, and (d) storage-efficient. To this end, we propose C&C, a novel
compression method that leverages the LVLM itself for task-agnostic visual token
compression. Unlike prior methods that perform token reduction on-the-fly, our
approach offloads computation to a dedicated, upfront indexing stage, effectively
decoupling compression from generation. This enables learning more powerful
representations for generation during inference. At the core of C&C is a “double-
forward pass” training strategy. During the first forward pass, the LLM (of the
LVLM) creates a bottleneck by compressing the dense visual tokens into a few
summary tokens. Subsequently, the second forward pass processes the language
instruction(s) alongside the summary tokens, used as a direct replacement for the
image ones. The training of C&C is guided by two key losses: an autoregressive
loss applied after the second pass that provides a direct optimization objective for
reconstructing the original information flow, and a contrastive loss applied after the
first pass to bolster the representational strength of the summary tokens, particularly
for discriminative tasks. Moreover, we propose stage-specific adapters for further
enhancing performance. C&C produces highly informative compressed represen-
tations. An in-depth ablation study confirms the efficacy of our approach. For
generative tasks, we achieve a 2x higher compression rate without compromising
capabilities, setting a new state-of-the-art. For discriminative tasks, we establish
new state-of-the-art results on image retrieval and compositionality benchmarks.

1 Introduction

Large Vision Language Models (LVLMs) are LLMs [8, 19] that, in addition to text, are capable of
integrating and processing visual information as input context [24]. Being able to reason across both
vision and language, they are suitable for a wide range of use cases such as image captioning, VQA,
and multimodal chatbots. A key bottleneck for their efficient deployment is the large number of input
visual tokens, which often dominate the sequence length compared to the language instruction(s).
Recent efforts to improve their efficiency have primarily focused on on-the-fly token compression [27,
47, 3, 16]. These approaches aim to prune or dynamically condense visual tokens during the online
inference process for a given input image and query. While beneficial for single-pass efficiency, these
methods operate without a dedicated upfront compression or caching stage and thus limit the capacity
of the compressor. Moreover, in the context of retrieval-augmented generation (RAG), they are not
aligned with a typical RAG setting, whereby the image and documents are available a priori.

In this work, we explore a different paradigm for LVLM visual token compression that leverages
offline processing and caching. Instead of performing token reduction during every inference step,
we propose to perform a computationally more intensive compression step once for a given image
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to generate a small set of general-purpose summary tokens. These summary tokens are cached and
then used directly for subsequent inference queries (i.e. online processing, RAG). See Fig. 1. This
decoupling of compression and generation allows for a more powerful and versatile representation to
be learned during the offline caching phase. Importantly, the representations learned are also suitable
for discriminative tasks (i.e. retrieval), unlike all prior works, which focus solely on generation.

To this end, we propose Compress and Cache (C&C), a novel token compression approach constructed
to support the decoupled indexing (caching) and generation stages. Our core methodological insight
and contribution is that the LVLM itself can be adapted to perform the necessary visual compression,
leveraging a newly proposed “double-forward pass” training strategy. Specifically, the first forward
pass through the LVLM functions as the offline compression phase: trainable summary tokens are
processed alongside the image tokens and a predefined prompt guiding the general-purpose visual
compression, creating an information bottleneck. The second forward pass simulates the online
inference phase: instead of passing the image, the produced summary tokens and the language
instruction are fed into the LLM (of the LVLM) for optimization with next-token prediction loss.

A second methodological contribution of ours is to optimize the summary tokens not just for au-
toregressive generation, but also for discriminative tasks (e.g. image-text retrieval). This is achieved
through the incorporation of a contrastive loss applied on the summary tokens, after the first forward
pass. A significant finding is that this contrastive loss not only enables discriminative capabilities but
also proves beneficial for improving the accuracy of the generative tasks.
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Figure 1: Different paradigms for compressing the visual tokens in LVLMs: (a) LLaVA (baseline) [34]:
all vision tokens are used; (b) Adaptive token processing (e.g. [4]): the vision tokens are pruned
dynamically within each LLM layer. It requires all vision tokens (hence, storage inefficient); (c)
Direct vision token compression (e.g. [47]): a separate module is learned separately or jointly with
the vision encoder; (d) Query-dependent token compression (e.g. [27]): the compression depends
on the LLM features of each query; (e) Our setting: the LVLM itself produces the compressed
representations, trading-off offline processing with superior compression performance.

Overall, we make the following contributions:

* We introduce C&C, a novel two-staged method that leverages the LVLM itself for token compres-
sion. C&C employs a novel “double-forward pass” training strategy to learn a compact visual
representation in the form of condensed summary tokens during an offline phase. The summary
tokens are then cached and later used for efficient online inference. C&C effectively disentangles
compression from generation, allowing for learning powerful compressed representations.

* We show that the summary tokens learned by C&C are effective for both generation and dis-
criminative tasks, such as image-text retrieval. We achieve this dual capability by incorporating a
contrastive loss along the autoregressive cross-entropy loss during training. This combined loss is
shown to be crucial not only for discrimination but also for enhanced generative performance.

* For generative tasks, C&C achieves a 2x higher compression rate compared to prior methods with-
out compromising capabilities, setting a new state-of-the-art. For discriminative tasks, our method
establishes new state-of-the-art results on key image retrieval and compositionality benchmarks.
For Visual RAG, we outperform the state-of-the-art VisSRAG retriever with a 3.8 smaller model,
and almost match the uncompressed baseline for generation, despite using 24 x fewer tokens.



2 Related work

Token compression/reduction in LVLMs: While achieving remarkable multimodal capabilities,
LVLMs [35, 34, 56, 65, 55, 2, 30, 7] often face significant computational cost, largely due to
the LLM having to process a substantial number of visual tokens (e.g. 576 in [34]). To alleviate
this, recent research has focused on reducing the number of visual tokens fed as input into the
LLM [27,47, 59, 3, 16]. These works operate under an on-the-fly paradigm, performing the reduction
during inference (see Fig. | for a conceptual comparison). Various strategies have been proposed:
PruMerge [47] and [64] use training-free heuristics based on spatial token similarities with the global
token or with the text query, while methods like [29] and Matryoshka-style techniques [3, 16, 7]
train specific modules (e.g., attention layers or convolutions) to learn fixed compressed or nested
representations. Other methods implement dynamic token reduction within the LLM layers [55, 4] or
condition the reduction on the language query [27]. [57] adapts the attention pattern of the LVLM to
store the visual information as part of a compressed KV representation, incurring high storage costs.
QueCC [27] conditions its token selection on an LLM-produced embedding derived from the user
query, a design that requires recomputation of the visual token reduction for every new instruction.

The proposed C&C fundamentally differs from these prior works by operating under an offline
compression and caching paradigm (rather than on-the-fly token reduction), making it ideal for RAG
and on-device deployment. Specifically, C&C performs an upfront compression step to generate a
task-agnostic, cached summary representation of the image using a newly proposed “double-forward
pass” training strategy that leverages the whole LVLM for compression. C&C offers several key
advantages. Firstly, it decouples the compression step from online inference, allowing for a more
sophisticated offline compression process. Secondly, C&C’s summary tokens are optimized (via a
contrastive loss) to support both generative and discriminative tasks. This dual capability is a key
distinction. Finally, C&C achieves state-of-the-art results surpassing query-dependent methods like
QueCC without incurring the computational cost of recomputing visual tokens for every new query.

Discriminative LVLMs: Very recently, a series of works [20, 21, 17] have explored the task of
converting LVLMs into discriminative models. For example, [17] directly aligns a pretrained LLM
with a pretrained CLIP vision encoder. E5-V [20] through text-only contrastive training converts
a generative LVLM into a discriminative one, while [21] expands it to multi-modal retrieval. One
major limitation of these works is the loss of generative abilities post-adaptation. In this work, we
address this very issue, creating a unified model that excels at both generative and discriminative
tasks, surpassing recently proposed LVLM adaptations for image-text retrieval and compositionality.

3 Method

3.1 Preliminaries

We implement C&C on top of LLaVA-1.5 [34], leaving all architectural components unchanged. The
LLaVA model consists of a pretrained CLIP vision encoder ¢(.), a projection matrix W, and an
LLM f(.). The input image X, is passed to CLIP to produce vision embeddings H, = ¢(X,)W.
The language embeddings H, are obtained from the input language instruction X,. Finally, the
concatenated vision and language embeddings are passed to the LLM to compute the answer (output)
embeddings H, = f(H,; H,), which is decoded to the corresponding answer (output) sequence
Xa.

Although autoregressive in nature, recently, it was shown that the model can be run in discriminative
mode, producing image-text embeddings for matching & la CLIP [20]. Using the prompt X,
“summarize the above image in one word” (or similar), the image embedding is produced as e, =
H,[-1], H, = f(Hy; H,) (H, is the language embedding of X ). Analogously, and given a text
query Xgyery, the text embedding is constructed as e, = Hy[—1], Hy = f(Hguery, Hp) Hguery
is the embedding of a X y¢,,). The image-text similarity is computed as s = cos_sim(e,, e;).

3.2 Double forward bottleneck algorithm

Assuming a fixed LVLM architecture, its inference cost is defined by the input sequence length,
which turns out to be dominated by the length (number) k of the vision embeddings H, € RF*,
For a LLaVA model, £k = 576, which is significantly higher than the typical text query length
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Figure 2: C&C training pipeline: A first forward pass from the LLM creates a bottleneck by
condensing the visual information into a small number of visual summary tokens. Then, using
the same LLM with shared weights, a second forward pass processes the language instruction(s)
alongside the summary tokens for training with a next-token prediction loss LR (see Sec. 3.2). A
contrastive loss Lgjsc, applied after the first pass, further boosts the representation strength, especially
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for discriminative tasks (see Sec. 3.3). Trainable components are marked with O Note, that different
LoRA adapters are used depending on the stage: compression or generation.

and answer [27]. In this work, our goal is to derive a compressed visual token representation
HS € R %4 where k' < k without compromising the model’s accuracy. Importantly, besides
improving subsequent runs, a small sequence length also opens the path to offline pre-processing,
whereby one can pre-compute, cache, and re-use the compressed representation H, without having
to process the original image again.

Departing from all previous approaches for token compression/reduction, we take a totally different
path by proposing to leverage the LVLM itself (i.e. the LLM of the LVLM) to self-compress
the visual tokens. Our motivation for this is multifold. Firstly, LLMs have already excelled at text
summarization [63, 36], hence, we propose to utilize them for image summarization (i.e. compression).
However, as summarization with text, due to quantization (i.e., tokenization), is inefficient with
respect to the sequence length, we instead perform this summarization in a continuous latent space.
Secondly, the LLM of the LVLM has already been recently utilized to compute discriminant image-
text embeddings [20]. However, these embeddings cannot be used for generation. To this end, we
propose a “double-forward pass” training strategy whereby visual summary tokens at the output
of the model are directly trained to highly compress visual information for both generation and
discrimination. See Fig. 2 for an overview.

More specifically, given an input image X,,, we introduce the summary tokens i.e. learnable input

embeddings H,. € R* *? which evolve into the compressed vision embeddings HS € R* %% after a
first forward pass from the LLM of the LVLM:

[;a;aHf}] :f(Hv§Hp§Hr)a (1)

where H), are the embeddings of the prompt X, “Summarize the image in a few words.”. Clearly,
during this pass, H, interact with both H,, and H,,. As the transformed embeddings H, are query-
agnostic, for subsequent instructions/queries, the LLM simply takes as input HS instead of H,,.

To learn the compressed representation H¢, during training, we perform a second forward pass from
the LLM of the LVLM where this time only HY and the language instructions/embeddings are passed
to the LLM. An autoregressive loss is applied at the output of the second forward pass:

L

Lar ==Y log (po(@i|H;, Xy <i, Xa i) , ()
i=1
where 0 are the trainable parameters, X, «; and X, -; are the query and, respectively, answer tokens
located before the current predicted token x;. H, is obtained from Eq. |. Note that the weights of
LLM are shared between the two forward passes. The flow of gradients through HS results in a single
model that can both compress and generate answers by looking solely at the compressed tokens.

Intuitively, our algorithm can also be interpreted as a form of implicit chain-of-thought in the
latent space [12], with the LLM “rephrasing” the content of the vision sequence in a condensed
manner for itself. Notably, while the input and output spaces of the LLM are not perfectly aligned,
they are sufficiently close to resulting in good alignment of the compressed representations in just



a few hundred iterations, making the whole training process efficient. That is, the compressed
representations simultaneously lie in the input and output space of the LVLM.

3.3 Discriminative adaptation

Because the compressed representations in C&C lie simultaneously in both the input and output space
of the LVLM (unlike previous approaches), this enables us to directly leverage them for CLIP-like
discrimination in a zero-shot manner, as detailed in Sec. 3.1. However, in this case, the discriminant
performance is suboptimal as there is no explicit loss to encourage the separability of concepts.
To address this, and create a unified compressed representation suitable for both generative and
discriminative tasks, we also propose to apply a contrastive loss over HY, at the output of the first
forward pass. Importantly, this loss also turns out to enhance the generative ability of the model
thanks to learning a better underlying representation.

Given a dataset consisting of paired image-text samples, the contrastive loss, for a given batch

containing B elements, is defined as:
b

1 exp(sy") exp(s™")
Lase =7 Y (—log 2 —log ——--t2), 3)
B k=1 Zj exp(sy™) Zj exp(sy™)
where s¥7 = cos_sim(e”, e]) computes the cosine similarity between the k-th image and the j-th
caption. e, = % > H¢ and, e; = % > HY, respectively. HY is computed analogously to HS
(Eq. 1), except that it encodes textual data instead of visual, i.e. Hf = f(Hgyyery, Hp, H,). HY is
only used as part of the discriminative loss.

3.4 Opverall training loss and data

The final model is trained using both losses, autoregressive and discriminative/contrastive:

ﬁTotal = EAR + Edisc~ 4
At a given iteration, depending on the sampled training data, the applicable losses are used. That is,
for conversational data sampled from the LLaVA-665k dataset, we apply £ar. For data sampled
from CC3M, we apply Lygisc. If a conversational sample also has a caption associated with it, both
losses are applied within the same iteration. For efficiency, the sampler will group together such
cases. This also ensures that we have sufficiently large batches for contrastive training. The sampler
aims for a 1:1 ratio between discriminative and autoregressive.

3.5 Stage-specific adaptation

To enable efficient adaptation, we train our models using LoRA [14] adapters which restrict the
weight updates to a low-rank representation, AW = BA, AW € R¥*™ B € R¥" and A € R"™™,
with 7 << min(d, m). Although this works well, we use stage-specific adapters to further enhance
the plasticity of the LVLM. We distinguish two stages that correspond to the two forward passes used
during training: compression, which summarizes H,, into H¢, and generation, which produces X,

v

given HY, and X,,. Depending on the stage, different LoORA adapter weights A and B are used.

4 Results

4.1 Generative and Discriminative results with LLaVA-1.5

Implementation details: Our model is LLaVA-1.5 [34], consisting of a ViT-L@336px vision
encoder [44] and Vicuna LLM [6] decoder/compressor. Unless otherwise stated, the models are
trained for 10,000 iterations, using a batch size of 1024, AdamW [38] with no weight decay and
a learning rate of 2e — 4 decayed to O using a cosine scheduler. All other layers remain frozen
except for the LoRA adapters (rank = 64, o = 128). At a given iteration, depending on the loss (i.e.
autoregressive or discriminative), we sample a batch either from LLaVA-665K [34] (for generative)
or from CC3M [48] (for discriminative). The sampling ratio between the two is 1:1. The training
runs were performed on 24 AMD MI300X GPUs using pytorch [43] and deepspeed [45].

Generative benchmarks: Following [34], we evaluate our approach on a diverse collection of
datasets, mainly: GQA [18], MMB [37], MME [32], POPE [31], SQA [39], TextVQA [50],



Table 1: Comparison with various token reduction methods on vision-language understanding.

Method #Tokens GQA MMB MME POPE SQA TextVQA VisWiz VQAv2
LLAVA-1.5 [34] 576 620 643 15107 859  66.8 58.2 50.0 78.5
PruMerge [47] ~32 57.2 60.9 13503 763 685 56.0 45.2 72.0
TokenPacker [29] 36 59.6 628 14409 833 710 53.2 50.2 75.0
Matryoshka Multi. [3] 36 60.3 64.8 - 85.5 - - 52.8 -
Matryoshka Query [16] 36 58.8 63.4 14163 819 66.8 - 51.0 73.7
QueCC [27] 36 60.5 62.5 14420 845 70.6 533 50.1 75.8
C&C (Ours) 32 61.6 646 14721 859 685 55.8 53.1 77.1
TokenPacker [29] 16 58.9 62.7 1378.8 837 68.1 52.5 50.5 74.4
Matryoshka Query [16] 16 576 619 14085 80.8 675 - 49.8 71.1
QueCC [27] 16 59.0 622 14080 834 70.7 51.3 47.7 74.5
C&C (Ours) 16 61.0 644 14700 85.6 67.7 54.2 49.8 76.5
TokenPacker [29] 4 562 615 13476 81.7 68.5 49.2 45.7 70.5
Matryoshka Query [16] 4 53.0 565 1176.1 776  65.1 - 494 64.1
QueCC [27] 4 56.5 62.1 13903 81.8 68.6 48.7 45.0 70.6
C&C (Ours) 4 58.6 633 1403.0 843 677 52.5 51.6 74.5

Table 2: Zero-shot text-image retrieval accuracy on Flickr30K, COCO and nocaps.

image retrieval text retrieval

Method Flickr30K COCo nocaps Flickr30K CoCo nocaps
R@] R@10 R@! R@10 R@! R@l0 R@] R@l10 R@! R@l0 R@l! R@I0
Contrastive approaches
CLIP (ViT-L) [44] 67.3 93.3 37.0 71.5 48.6 85.7 87.2 99.4 58.1 87.8 70.0 96.2
BLIP (ViT-L) [25] 70.0 95.2 48.4 83.2 62.3 93.4 75.5 97.7 63.5 92.5 72.1 97.7
BLIP2 (ViT-L) [26] 74.5 97.2 50.0 86.1 63.0 93.8 86.1 99.4 63.0 93.1 74.4 98.3
OpenCLIP (ViT-G/14) [46] 77.8 96.9 48.8 81.5 63.7 93.2 91.5 99.6 66.3 91.8 81.0 98.7
OpenCLIP (ViT-BigG/14) [46] 79.5 97.1 51.3 83.0 65.1 93.5 92.9 97.1 67.3 92.6 82.3 98.8
EVA-02-CLIP (ViT-E/14+) [51] 78.8 96.8 51.1 82.7 64.5 929 93.9 99.8 68.8 92.8 83.0 98.9
EVA-CLIP [52] 80.3 97.2 52.0 82.9 65.3 93.2 94.5 99.7 70.1 93.1 83.5 98.6
LVLM-based approaches
LLaVA-1.5-7B [34] 59.6 89.3 344 69.6 46.9 83.3 65.6 92.3 35.6 70.5 52.1 88.1
E5-V (LLaVA-1.5-7B) [20] 76.7 96.9 48.2 82.1 62.0 93.0 86.6 99.0 57.4 88.4 71.9 97.0
VLM2Vec (Mistral-7B) [21] 80.1 97.3 52.0 85.6 65.9 94.5 90.3 99.6 68.2 93.2 79.2 98.5
C&C (Ours) (LLaVA-1.5-7B) 83.8 98.5 56.8 86.6 70.2 96.1 943 99.9 72.9 94.4 85.7 99.5

VisWiz [11] and VQAV2 [10]. To ensure fairness, in all cases, we fully align the test-time set-
tings and processing with [34]. In addition to this, we also evaluate our approach for captioning on
MS-COCO [33], Flickr30k [58] and NoCaps [1], comparing it to token reduction methods that have
models openly available. See supplementary material for results on TextCaps [49].

When comparing our approach with the state-of-the-art token reduction methods for visual-language
understanding, as the results from Tab. | show, we set a new best result, outperforming prior works
using 2.25x fewer tokens (16 vs 36). Our results for 32 and even 16 tokens nearly match the
uncompressed LlaVA [34] baseline.

Similarly, when evaluated for zero-shot captioning (Tab. 3), our approach matches LLaVA’s accuracy,
significantly outperforming prior methods. This suggests that the proposed approach encodes more
information in its compressed tokens. We note that LLaVA saw some MS-COCO images during
training; hence, the MS-COCO evaluation is not fully zero-shot for all methods listed.

Discriminative benchmarks: We evaluate our model on a diverse set of retrieval benchmarks:
Flicr30k [58], MS-COCO [33], NoCaps [1] and SugarCrepe [ 3], against state-of-the-art two-tower
independent models. The last one measures the compositional capabilities of the model, an area
where CLIP and CLIP-like models tend to underperform.

As Tab. 2 shows, we match and outperform several state-of-the-art contrastive models including
larger models, i.e. EVA-CLIP (8B vs. 7.06B), despite using 3 orders of magnitude fewer samples for
training (2,700M for EVA-CLIP vs. ~3M for ours). A similar trend can be observed when evaluated
for compositionality on SugarCreppe (Tab. 4). Interestingly, models derived from LVLMs (e.g., E5-V
and ours) demonstrate superior compositionality. This suggests that the LVLM in discriminative
mode inherits the strong vision-language understanding of the underlying generative model.



Table 3: Comparison with various token reduc- Table 4: Comparison with state-of-the-art on the
tion/compression methods on image captioning SugarCrepe compositionality benchmark.
in terms of CIDEr score. See supplimentary ma-
terial for results using additional metrics.

Method Params (B) Replace Swap Add

Contrastive approaches

T — NegCLIP [61] 0.15 850 753 858
Method # Tokens Flickr30K COCO nocaps CLIP (ViT-L) [44] 043 795 613 749
LLAVA-1.5 [34] 576 81.2 1154 1053 BLIP (ViT-L) [25] 0.23 824 717 886
- — BLIP2 (ViT-L) [26] 117 857 638 89.9
PruMerge [47] ~32 36.3 663 586 OpenCLIP (ViT-G/14) [46] 137 844 671 868
Matryoshka Multi. [3] 36 68.7 1022 93.6 OpenCLIP (ViT-BigG/14) [46] 2.54 86.5 689 884
Matryoshka Query [16] 36 69.5 1013 90.0 EVA-02-CLIP (ViT-E/14+) [51] 5.04 86.6  70.7 879
C&C (Ours) 32 78.9 131 1059 EVA-CLIP [52] 8.22 859 704 867
Matryoshka Query [16] 16 65.2 99.2 90.0 LVLM-based approaches
C&C (Ours) 16 782 12.0 1047 LLaVA-1.5-7B [34] 7.06 81.9 599 647
Matryoshka Query [16] 4 47.5 81.0 63.2 E5-V (LLaVA-1.5-7B) [20] 7.06 88.0 635 908
C&C (Ours) 4 745 1114 1034 VLM2Vec (Mistral-7B) [21] 73 893 677 917
C&C (Ours) (LLaVA-1.5-7B) 7.06 9.1 779 942

4.2 Visual RAG results with LLaVA-OneVision

Our method offers distinct advantages for Vision-based RAG, stemming from its upfront indexing
step and a unified representation for both retrieval and generation. This allows us to use a single
model, in contrast to prior methods, which require separate models for retrieval and generation.
Below, we compare our approach with the state-of-the-art following the protocol of VisRAG [60].

Implementation details: Since LLaVA-1.5 model is not suitable for high-resolution image analysis,
we adopted the improved LLaVA-OneVision-0.5B [23]. We keep the previous hyperparameters fixed,
changing only the training data to reflect the nature of the task and model. In particular, for the
generative objective, we use the same collection of vision-language datasets encompassing 3.2M
samples introduced in [23] and previously used to train the LLaVA-OneVision model that we start
from. For the discriminative objective, to allow for fair comparisons, we use the same data as in [60].

Comparison with state-of-the-art: We report results on all datasets from [60] (i.e. ArxivQA [28],
ChartQA [40], DocVQA [54], InfoVQA [41], PlotQA [42], SlideVQA [53]), first in terms of retrieval
and then in terms of retrieval-augmented generation (RAG). For retrieval, as Tab. 11 shows, despite
using a 3.8x smaller model, capable of performing generation too, we match and outperform the
state-of-the-art VisSRAG-Ret [60]. For RAG evaluation, for the generator we consider the following
options: MiniCPM-V 2.6 [15], LLaVA-OV-0.5B (original), and our C&C (based on LLaVA-OV-
0.5B). For the retriever: VisSRAG-Ret [60] and C&C. Notice that in our case, we use the same model
for both generation and retrieval. We report in Tab. 6 all combinations formed by them. Our approach
gets close to the original LLaVA-OV-0.5B model, using 24 x fewer vision tokens. Furthermore, for
larger generators (MiniCPM-V 2.6), our improved retriever translates into better RAG performance.

Table 5: Overall retrieval performance in MRR@ 10. Corresponding Recall @ 10 performance can be
found in the supplementary material. All prior methods results are taken from [60].

Model #Param. ArxivQA ChartQA DocVQA InfoVQA PlotQA  SlideVQA  Average
MiniCPM (OCR) [15] 2.72B 58.43 77.74 72.54 83.45 64.78 91.74 74.78
MiniCPM (Captioner) [15] 2.72B 56.15 74.06 67.57 81.22 55.43 84.27 69.78
SigLIP [2023] 0.88B 59.16 81.34 64.60 74.59 61.32 89.08 71.68
ColPali [2024] 2.92B 72.50 73.49 82.79 81.15 55.32 93.99 76.54
VisRAG-Ret [60] 3.43B 75.11 76.63 75.37 86.37 62.14 91.85 7791
C&C (Ours) 0.89B 74.63 87.04 74.79 86.40 68.73 90.99 80.38

Table 6: Overall generation performance in accuracy (%) using two retrievers: VisRAG-Ret and
C&C (Ours). Our variant uses a LLaVA-0V-0.5B model and compresses each patch from 768 to 32
tokens. Note that unlike prior works, our model can perform both retrieval and generation.

Generator Retriever ArxivQA  ChartQA  DocVQA InfoVQA PlotQA  SlideVQA  Average
MiniCPM-V 2.6 VisRAG-Ret 66.67 46.88 54.31 63.34 47.57 50.54 54.89
MiniCPM-V 2.6 C&C (Ours) 66.42 54.69 53.33 64.19 49.19 50.71 56.42
LLaVA-OV-0.5B  VisRAG-Ret 46.81 31.25 24.72 38.01 21.06 33.21 32.51
C&C (Ours) VisRAG-Ret 46.32 34.38 22.92 30.91 23.26 28.04 30.97
LLaVA-OV-0.5B  C&C (Ours) 45.83 34.38 25.00 38.18 21.18 32.68 32.88

C&C (Ours) C&C (Ours) 45.93 39.06 22.50 30.24 22.92 28.39 31.49

5 Ablation studies & analysis

Impact of each loss function: As detailed in Secs. 3.2 and 3.3, our models are trained using two
losses: one autoregressive, applied after the second forward pass, and one contrastive, applied



Table 7: Effect of generative and discriminative Table 8: Single vs. stage-specific LoRA v.s
losses for generation (MMB, MME, TextVQA) full finetuning for generation (MMB, MME,

and retrieval (Flickr30K, MS-COCO). TextVQA) and retrieval (Flickr30K, MS-COCO).
Text Flicki30K MS-COCO Text Flickr30K MS-COCO
Method — MMB MME v\ o1 T T2 12T Method MMB MME o0 o1 T T2 12T

Discrim. 46.2 6243 135 843 948 563 732 Fine-tuning 643 1413.1 529 83.1 940 562 70.4
Generative  64.1 1420.1 542 61.3 76.0 339 47.0 Single LoRA 643 1410.5 51.8 83.8 941 56.5 69.9
Both 64.4 1470.0 542 838 944 56.8 70.2 Stage LoORA  64.4 1470.0 542 83.8 944 56.8 70.2

over the compressed tokens, after the first pass. In Tab. 7, we report results for the LLaVA model
evaluated using 16 tokens on generative and discriminative tasks. Intuitively, training solely with the
discriminative loss (1st row) results in degraded generative performance, as no alignment between
the input and output space of the LLM is performed. Moreover, discriminative losses applied over
short captions tend to focus on coarse details, missing out on finer-grained details. Conversely,
applying only the generative loss (2nd row) results in degraded retrieval abilities, as no loss explicitly
encourages concept separation. We note that the longer the training scheduler is, the more pronounced
these degradations are for the two cases.

Finally, combining the two losses (3rd row) results in the best performance across the board. Notice
that the two losses are complementary when applied jointly and boost the model’s accuracy on both
sets of benchmarks.

LLaVA-1.5-78 Attention Assigned to Visual Tokens by
3" 1 H Generated Tokens

i Top Layers
= Y I“ A_A...LJ.AJ.U.AMJIUJU

Bottom Layers

Attention Assigned to Visual Attention Assigned to
Tokens by Compression Tokens Compression Tokens by

Generated Tokens
Top Layers

L M .h M

o 3

3 o 2
Visual Tokens Compression Tokens

Figure 4: Visualization of attention weights assigned to the 576 visual tokens and the 32 compressed
tokens. On the left, we show the cumulative weights assigned to each visual token by the generated
tokens for the base model. For C&C, on the right, we first display the per-visual-token weights
assigned by the summary tokens during the 1% forward pass for compression. We then show the
weights assigned to the compressed tokens by the generated ones during the 2" forward pass.

70 3
Visual Tokens

Single vs. stage-specific LoRA vs. full fine- — Stage LoRA-Stage 1 —— Stage LoRA-Stage 2 === Single LoRA
tuning: Herein, we compare the effect of train- 1° Attention - K projection

ing using (a) a single shared LoRA adapter, (b)

stage-specific adapters, as proposed in Sec. 3.5, 6

and (c) full fine-tuning. We present the results £ 7 Attention - Q projection

of these choices in Tab. 8. The best results are %

obtained using the stage-specific adapters. The £ s

fine-tuning run suffers from overfitting to some § Attontion -V orotectt

extent, and its larger training cost makes opti- ! emon-Yprose g

mization more difficult.

Fig. 3 further solidifies the need for stage- " s 1 2 2

specific LoRAs, as the optimal representations Layer

required during compression (first forward pass) Figure 3: The norm of the learned LoRA weights
vs downstream inference (second forward pass) adjustment AW = BA for a model trained with
are different, especially for earlier layers. either a single LoRA or stage-specific LoRAs.

Double forward vs single forward: To showcase the importance of our “double-forward pass”
training strategy, we conducted the following experiment: instead of using the LLM itself to compress
the vision summary tokens, we use the CLIP vision encoder only. In this case, the loss is directly
applied after the LLM, as in LLaVA, using a single forward pass. As shown in Tab. 9, this baseline
(1st row) vs ours (2nd row) performs significantly worse.



How does the model’s behavior change? To shed light on the changes the model undergoes to
act as a self-compressor, we analyze the attention patterns before and after our fine-tuning. The
results of this visual analysis are presented in Fig. 4. Looking on the left side, we can observe
that LLaVA exhibits a sparse attention pattern across all layers, particularly early on. In contrast,
during self-compression, our model attends to all visually important parts of the image, having a
significantly denser attention pattern at all layers. Intuitively, in the first case, as the model has
access to all tokens, during generation, the model can peek back at the vision tokens as needed. In
contrast, during compression, the LLM must ensure that all visually important details are stored
in the compressed representation. Finally, on the right-most part of the figure, we showcase the
attention pattern between the generated tokens and the compressed representation obtained during
text generation from compressed representations. We observe that early and late summary tokens
generally receive higher attention weights.

Efficiency analysis: Unlike prior Table 9: Double vs single forward pass for generation (MMB,

works that perform the compression  MME, TextVQA) and retrieval (Flickr30K, MS-COCO).
on-the-fly, our approach offloads the

compression cost to a dedicated up- Text Flickr30K MS-COCO
front indexing stage. This disentagle-  Method MMB MME  yoa Tor 2T T2 I2T

ment allows for a more expensive and  ~ T T T T 00T 531 662

highly accurate compressor thatis run  poyple fwd (Ours) 644 14700 542 83.8 944 56.8 702
ahead of time. This scenario is aligned

with RAG and on-device deployment, where most images from a gallery can be indexed overnight.
While we note that some of the methods we compare with could be run offline too (i.e. [16, 3]), they
(a) don’t make this distinction, (b) have significantly worse accuracy, and (c) produce representations
unsuitable for retrieval.

With this in mind, in Fig. 5 we re- Indexing Phase Generation Phase
port the FLOPs count for a series 4000 4000

of state-of-the-art methods during the
indexing (caching) and generation
phase. The FLOPs count is esti-

3000

w
S
=3
=3

2000 2000

FLOPs x 10™9

mated as in [22, 27] under the fol- 1000 1000

lowing setting: only the prefilling ol , . / .

FLOPs are captured, all token com- N & S IR N & JERIR
- N\ i o K\ N o>

pression methods use 16 tokens, the S & Gy

LLaVA-1.5 baseline uses all 576 to- « ¥

kens, for QueCC, which performs Figure 5: FLOPs estimate for various methods for the index-
query-dependent compression, we as- ing and generation phase.

sume an average query length of 25 tokens. As the figure shows, our method is the only one to
leverage a slower but highly accurate compressor during an indexing phase with a compute cost simi-
lar to running the baseline model. During generation, our approach is the fastest as it directly loads
the cached tokens, bypassing the need to recompute the vision tokens using the vision encoder and a
compression module. In contrast, the current state-of-the-art approach, QueCC [27], requires nearly
2x more FLOPs due to the dependency on the user query/instruction for compression. Moreover,
from a storage point of view, in [27], all V (576) tokens must be stored or, alternatively, recomputed
if an image from the database is queried again.

Limitations and broader impact: As our work reduces the inference cost, it allows the deployment
of highly performant LVLMs and RAG systems on-device, reducing costs and democratizing the use
of AL In terms of limitations, our work builds on top of existing pre-trained LVLMs. As our goal is
to explicitly preserve their characteristics, any potential biases present in the original data and model
are likely to propagate to ours too. Therefore, we recommend caution before deploying such models.
Moreover, while the proposed method is well-suited for on-device deployment and RAG systems, it’s
less so for scenarios that don’t allow for offline preprocessing and caching.

6 Conclusions

In this work, we introduced C&C, a novel LVLM visual token compression approach that uses the
LVLM itself to compress the visual information in a task-agnostic manner, which is trained using a



new “double-forward pass” training strategy. This results in a compressed visual representation that
is simultaneously suitable for (a) generative and (b) discriminative tasks, (c) is nearly lossless, and (d)
is storage-efficient. Performance-wise, for generative tasks, we offer a 2x higher compression rate
without compromising the generative capabilities, setting a new state-of-the-art. For discriminative
tasks, we also set a new state-of-the-art result on image retrieval and compositionality.
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the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15



Answer: [NA] .
Justification: No theoretical results are included.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .
Justification: All implementation details are listed in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: No code is provided alongside the submission, however all details are provided
to allow for full reproducibility.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: They are detailed as part of the results section (Section 4) and supplementary
material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the cost of conducting the experiments no statistical significance is
reported.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: We provide the amount and type of GPUs used to conduct the experiments in
Section 4.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes] .
Justification: The work conducted is in full compliance with the ethics guideliness.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .
Justification: Yes, included in a separate paragraph, right before conclusions.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: We do not train any models from scratch. Instead we finetune existing model
with the goal of mantaining their original behaviour unchanged while increasing their
efficiency.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: All datasets and tools used are appropiately cited throughout the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: No new assets are introduced.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The work conducted does not involve crowdsourcing nor research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: Not applicable.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .
Justification: No LLM were used to help develop this work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Additional results and comparisons

Results for larger LLaVA-1.5 models: In the main manuscript, we conduct experiments using a
LLaVA-1.5 (7B) model. Herein, we validate how our approach behaves when using a larger model,
i.e.aLLaVA-1.5 (13B). As the results from Table 10 show, the proposed method nearly matches the
full LLaVA model’s accuracy using only 16 and even 4 tokens in this case, too.

Table 10: Token compression performance on vision-language understanding tasks using a LLaVA-
1.5 13B model.

Method #Tokens GQA MMB MME POPE SQA TextVQA VisWiz VQAv2
LLAVA-1.5 [34] 576 63.3 67.7 1531.0 86.2 71.6 61.3 53.6 80.0
C&C (Ours) 32 62.2 67.6 1465.1 85.3 72.5 59.6 54.0 78.7
C&C (Ours) 16 61.8 67.3 1473.5 85.0 72.4 57.5 54.2 78.4
C&C (Ours) 4 59.9 66.4 1390.1 84.4 71.1 53.6 52.7 75.9

Visual RAG results with Larger LLaVA-OneVision models In addition to the Visual RAG results
from the main manuscript, which use a 0.5B LLaVA-OV skew, herein we report results for a larger
7B model (i.e. LLaVA-OV-7B). As shown in Table 11 and 12, for retrieval, our approach outperforms
prior works in terms of both MRR@ 10 and Recall@ 10, showing good scaling with respect to the
model size and establishing a new state-of-the-art result.

Table 11: Overall retrieval performance in terms of MRR@10. All prior methods results are taken
from [60].

Model #Param. ArxivQA ChartQA DocVQA InfoVQA PlotQA SlideVQA  Average
MiniCPM (OCR) [15] 2.72B 58.43 71.74 72.54 83.45 64.78 91.74 74.78
MiniCPM (Captioner) [15] 2.72B 56.15 74.06 67.57 81.22 55.43 84.27 69.78
SigLIP [2023] 0.88B 59.16 81.34 64.60 74.59 61.32 89.08 71.68
ColPali [2024] 2.92B 72.50 73.49 82.79 81.15 55.32 93.99 76.54
VisRAG-Ret [60] 3.43B 75.11 76.63 75.37 86.37 62.14 91.85 7791
C&C (LLaVA-0V-0.5B) (Ours) 0.89B 74.63 87.04 74.79 86.40 68.73 90.99 80.38
C&C (LLaVA-0V-7B) (Ours) 7.0B 83.65 90.56 85.77 91.97 71.41 95.07 86.41
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Table 12: Overall retrieval performance in terms of Recall@10. All prior methods results are taken
from [60].

Model #Param. ArxivQA ChartQA DocVQA InfoVQA PlotQA SlideVQA  Average
MiniCPM (OCR) [15] 2.72B 69.36 88.89 87.14 94.15 90.61 96.85 87.83
MiniCPM (Captioner) [15] 2.72B 69.00 85.71 84.26 94.29 84.24 93.08 85.10
SigLIP [2023] 0.88B 73.90 92.06 83.08 93.04 89.57 94.15 87.63
ColPali [2024] 2.92B 82.72 88.89 94.75 94.43 80.30 97.21 89.72
VisRAG-Ret [60] 3.43B 87.25 90.48 91.20 97.08 89.80 97.39 92.20
C&C (LLaVA-0V-0.5B) (Ours) 0.89B 84.64 92.06 91.71 97.21 93.51 96.67 92.97
C&C (LLaVA-0V-7B) (Ours) 7.0B 93.38 98.41 96.45 98.75 94.67 98.47 96.69

Additional discriminative comparisons with other token-summarization approaches. We note
that our approach is the only one that compresses the vision tokens into a representation suitable for
both generative and discriminative tasks, requiring no additional forward passes. However, herein,
for completeness, we evaluate on our suite of discriminative tasks the current state-of-the-art token
compression models that offered pretrained models. This is achieved by following the zero-shot setup
described in the main manuscript in Section 3.1 and [20]. Unsurprisingly, as the results from Table 13
and 14 show, our approach significantly surpasses the other methods we compare with.

Table 13: Zero-shot text-image retrieval accuracy on Flickr30K, COCO and nocaps. Only our
approach is specialised for both retrieval and generation, hence, except for our method, all other
results are in a zero-shot manner following the protocol described in the main manuscript in Section
3.1 and [20].

image retrieval text retrieval
Method Tokens Flickr30K COCO nocaps Flickr30K COCO nocaps
R@l R@I0 R@1 R@I0 R@l R@I0 R@! R@10 R@l R@I10 R@l R@I0

LLaVA-1.5-7B [34] 576 59.6 89.3 34.4 69.6 46.9 83.3 65.6 923 35.6 70.5 52.1 88.1
PruMerge [47] 18 347 67.9 184 479 25.8 62.7 383 743 19.8 49.9 28.2 65.2
Matryoshka Multi. [3] 16 57.9 88.5 34.1 69.7 45.5 832 63.8 91.7 36.4 72.5 48.0 86.2
Matryoshka Query [16] 16 53.6 85.9 29.8 65.4 40.5 80.0 594 90.3 34.1 69.6 45.4 84.7
C&C (Ours) 16 83.8 98.5 59.0 88.6 72.3 96.5 94.3 99.9 729 94.4 85.7 99.5

Table 14: Comparison on the SugarCrepe compositionality benchmark.

Replace Swap Add
Method Tokens ypicct  Auribute  Relation  Object  Attribute  Object  Attribute
LLaVA-1.5-7B [34] 576 880 816 761 609 588 670 624
PruMerge [47] 18 880 744 697 625 573  8l4 660
Matryoshka Multi. [3] 16 903 814 8.1 702 679 757 758
Matryoshka Query [16] 16 83 814 792 706 647 738 736
C&C (Ours) (LLaVA-1.5-7B)  7.06  98.1 895 827 718 781 953 931

Additional zero-shot image captioning evaluations: In addition to the evaluation from the main
manuscript, herein, we evaluate our approach for zero-shot captioning on TextCaps [49], a dataset
for image captioning with reading comprehension. As the results from Table 15 show, we generally
match the full-tokens LLaVA’s model performance. Importantly, our results remain stable as the
number of compressed tokens decreases.

In-depth evalution results for captioning: In the main manuscript we report results for image
captioning solely in terms of CIDEr score. For completeness, in Table 16 we also report Bleu@4
(B@4), METEOR (MET.), and ROUGE. The conclusions hold across all metrics.

In-depth evalution results for captioning: In the main manuscript we report results for image
captioning solely in terms of CIDEr score. For completeness, in Table 16 we also report Bleu@4
(B@4), METEOR (MET.), and ROUGE. The conclusions hold across all metrics.

B Additional ablation studies and analyses

What do the compressed tokens encode? The compressed representation gradually encodes, from
left to right, coarser to finer-grained concepts. This effect can be observed in Fig. 6, where, as the

22



Table 15: Comparison with various token compression methods on TextCaps dataset for image
captioning in terms of BLEU-4 (B @4), CIDEr score, METEOR (MET.) and ROUGE-L.

Method Tokens B@4 CIDEr MET. ROUGE
LLAVA-1.5 [34] 576 27.1 90.4 21.9 46.2
PruMerge [47] ~32 17.6 62.8 17.0 39.7
Matryoshka Multi. [3] 36 25.1 94.8 23.0 46.3
Matryoshka Query [16] 36 21.0 70.0 19.9 42.6
C&C (Ours) 32 26.5 90.6 22.4 46.1
Matryoshka Query [16] 16 20.1 62.5 19.3 41.7
C&C (Ours) 16 26.4 90.5 22.5 46.3
Matryoshka Query [16] 4 15.2 42.0 16.5 37.4
C&C (Ours) 4 254 86.1 22.0 45.7

Table 16: Comparison with various token reduction/compression methods on image captioning.

Flickr30K COCO nocaps
Method # Tokens
B@4 CIDEr MET. ROUGE B@4 CIDEr MET. ROUGE B@4 CIDEr MET. ROUGE

LLAVA-1.5 [34] 576 30.6 81.2 25.0 534 329 1154 2717 56.3 429 1053 289 59.8
PruMerge [47] ~32 18.5 36.3 15.7 40.2 18.5 66.3 18.8 44.9 259 586 20.0 478
Matryoshka Multi. [3] 36 254 68.7 24.1 49.9 277 1022 272 533 36.8 93.6 28.0 56.5
Matryoshka Query [16] 36 264 695 23.1 50.0 28.0 1013 262 52.7 362 90.0 26.8 55.8
C&C (Ours) 32 30.0 789 25.2 52.9 315 1131 279 55.6 4.5 1059 292 59.6
Matryoshka Query [16] 16 248 652 227 49.0 276 992 26.0 52.5 362 90.0 26.8 558
C&C (Ours) 16 29.0 782 25.3 52.7 31.0 1120 279 55.4 4.0 1047 293 59.5
Matryoshka Query [16] 4 20.1 475 19.8 44.5 232 810 23.0 48.6 284 632 21.1 49.5
C&C (Ours) 4 284 745 24.8 51.8 311 1114 279 55.4 411 1034 290 59.1

Table 17: Comparison with state-of-the-art on the SugarCrepe compositionality benchmark.

Method Params (B) Replace Swap Add
Object  Attribute Relation Object Attribute  Object  Attribute
Contrastive approaches
NegCLIP [61] 0.15 92.7 85.9 76.5 75.2 75.4 88.8 82.8
CLIP (ViT-B) [44] 0.15 90.9 80.1 69.2 61.4 64.0 712 68.8
CLIP (ViT-L) [44] 0.43 94.1 79.2 65.2 60.2 62.3 78.3 715
BLIP (ViT-L) [25] 0.23 96.5 81.7 69.1 66.6 76.8 92.0 85.1
BLIP2 (ViT-L) [26] 1.17 97.6 81.7 77.8 62.1 65.5 92.4 87.4
OpenCLIP (ViT-G/14) [46] 1.37 95.8 85.0 72.4 63.0 71.2 91.5 82.1
OpenCLIP (ViT-BigG/14) [46] 2.54 96.6 87.9 74.9 62.5 75.2 922 84.5
EVA-02-CLIP (ViT-E/14+) [51] 5.04 97.1 88.5 74.2 67.3 74.1 91.8 839
EVA-CLIP [52] 8.22 96.4 86.6 74.8 66.1 74.6 91.3 82.0
LVLM-based approaches
LLaVA-1.5-7B [34] 7.06 88.0 81.6 76.1 60.9 58.8 67.0 62.4
ES5-V (LLaVA-1.5-7B) [20] 7.06 95.8 86.6 81.6 62.9 64.0 93.5 88.0
VLM2Vec (Mistral-7B) [21] 73 97.2 89.0 81.7 62.9 72.5 94.7 88.6
C&C (Ours) (LLaVA-1.5-7B) 7.06 98.1 89.5 82.7 77.8 78.1 95.3 93.1

number of tokens increases, the caption generated correctly captures more elements present in the
photo, importantly reducing hallucinations. This effect is also corroborated in Fig. 7. There, we mask
out different groups of (4 and 8) tokens, quantitatively measuring the impact of this: earlier tokens
induce larger drops in performance (e.g. masking the first 8 tokens reduces performance by 10%).
However, the performance does not drop to (near) 0, which suggests that there is also some degree of
redundancy. The observed behavior can largely be attributed to the causal attention masking used by
the LVLM, which encourages a directional information distribution.

Full-attention vs causal: Vicuna, and hence LLaVA, much like the rest of the generative LLMs,
employs causal attention masking in order to restrict the past states from attending the future
ones. While necessary for autoregressive modeling, it’s unclear why it would be for vision token
compression, too, as there is no preferential direction for image processing. Hence, herein, we explore
the effect of changing the attention pattern from causal to bidirectional (i.e. full) attention for the
compression forward pass, while keeping it causal for the subsequent answer generation ones. In this
instance, the stage (i.e. compression vs generative) specific LoORAs also take the role of adjusting
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Prompt: Generate a detailed caption of the image. Fwd2Bot

#Token = 32

In the image, there are two dogs, one adult and one
puppy, playing together in a grassy area. The adult dog
is positioned on the left side of the image, while the
puppy is on the right. The adult dog is larger and has a
black and white coat, while the puppy is smaller and has
a black and white coat with a blue collar. Both dogs are
running towards each other, indicating a playful
interaction between them. The background of the image
is a wooden fence, providing a natural setting for the
dogs' playtime.

LLaVA-1.5-7B #Token = 16

SRR NN RNENEEN]

In the image, there are two dogs in a grassy area. The
larger dog, which is brown and white, is standing on the
N . Er . left side of the image. The smaller dog, which is black
right side. Both dogs appear to be enjoying their time and white, is stand?ng on the right sid% of the image.
outdoors. In the background, there is a fence visible, ! M " . 2
likely marking the boundary of the field. The scene Both dogs are looking in the same direction, possibly at

. something off-camera. The larger dog appears to be
captures the playful and energetic nature of the dogs 3 ing tc?wards the smaller dc?g cregting a sense of
as they run and interact with each other. movement in the scene. !

The image features a dog and a puppy running
together in a grassy field. The dog is positioned on
the left side of the image, while the puppy is on the

#Token =4

In the image, there are two dogs, one black and white and the other brown and white, playing together in a
grassy field. The black and white dog is positioned on the left side of the image, while the brown and white dog
is on the right. They are both facing each other, engaged in a playful interaction. The field they are in is lush and
green, providing a perfect environment for their playtime.

Figure 6: Captioning with variable number of summary tokens.

the attention pattern and information flow. Analyzing the results from Table 18 we can observe
performance gains for discriminative tasks and degradation for generative ones. This suggests that a
direct finetuning under a different attention pattern is suboptimal, likely requiring a pre-alignment
step. Moreover, the LoRA adapters may limit the ability of the model to shift its attention pattern.
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Figure 7: The relative importance of different subsets of visual tokens. We show the mean over the
VL understanding tasks when masking specific subsets of the compressed visual tokens.

Table 18: Compression with Bidirectional vs Causal attention for generation (MMB, MME, TextVQA)
and retrieval (Flickr30K, MS-COCO).

Flickr30K ~ MS-COCO
T2 RT T2I I2T

Bidirectional ~ 60.2  1310.1 48.4 836 948 579 722
Causal 64.4  1470.0 542 838 944 568 702

Method MMB MME  TextVQA

Finetuning checkpoint choice: The natural starting point for our approach is the LLaVA model
itself. However, for completeness, we also try to directly finetune from the Vicuna LLM itself.
As the results from Table 19 show, starting from a model already optimized for vision-language
understanding results in a notable performance boost. To compensate for this, likely, a longer training
scheduler is needed and potentially a full model finetuning, as in LLaVA.

Robustness to noisy inputs: Following [5] we evaluate our approach under a various set of perturba-
tions, e.g: zoom blur, elastic transformation, pixelation, JPEG compression, shot noise, brightness
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Table 19: Impact of the pre-trained checkpoint for generation (MMB, MME, TextVQA) and retrieval
(Flickr30K, MS-COCO).

Flickr30K MS-COCO
T2I 12T T2I 12T

Vicuna 60.3  1296.3 48.2 81.2 925 543 674
LLaVA 644  1470.0 54.2 83.8 944 568 702

Method MMB MME  TextVQA

jitter, contrast jitter, Gaussian noise, etc. For brevity, we include in Table 20 the results in terms
of relative performance drop on a subset of them. Notice that both approaches, with and without
compression, have similar robustness strength.

Latency measurements: In the main manuscript we reported FLOPs estimates because the timings
themselves are subject to the specific implementation and underlying hardware architecture. For
completeness, we benchmark the LLaVA-1.5 7B model on a RTX 4090 GPU. Each result is averaged
over 100 runs following a warm-up period. Original LLaVA model cost: 0.0587 sec/image (out
of which 0.00353 sec spent for the vision encoder); Caching cost: 0.0584 sec/image; Online C&C
cost (16 tokens): 0.00158 sec/image; Online C&C cost (4 tokens): 0.000406 sec/image; Caching
cost + Online C&C (16 tokens): 0.0599 sec/image; Caching cost + Online C&C (4 tokens): 0.0588
sec/image. Our approach is significantly faster once the embeddings are cached and comparable with
the LLaVA baseline during caching.

C Additional details regarding the test-time inference

In Fig. 8, we depict the test-time inference flow for generative and discriminative tasks. The first step
compresses the given image X, into its compressed representation H,. This representation is then
stored in a database. Note that while HY, can be computed on the fly, too, the scenario we are mostly
interested in is pre-indexing, whereby the image representations are computed offline ahead of time.

Once stored, we can directly operate on this compressed representation for both generative and
discriminative tasks. For generative tasks, the same LLM used for compression takes as input a user-
provided instruction and the compressed image representation, producing an answer autoregressively
(Fig. 8, top-right corner). For discriminative tasks, in order to measure the text-to-image similarity,
4 la CLIP, and again using the same LLLM, we pass the user query (image description) to the LLM,
producing a set of embeddings. We can measure the similarity between the given image description
by taking the cosine similarity between the sum of the precomputed compressed vision tokens and
the text embeddings newly produced by the LLM (Fig. 8, left side).

Generation

Retrieval

Language instruction

. Compression
Tent summary iokona :
tsummary oers (D)) : Database with (Typically run offline)

precomputed
summaries
Image prompt
Image tokens
_Summary tokens

Summary tokens:

Vision
Encoder

Figure 8: Test-time inference, depicting: compression (lower-right), generation (upper-right), and
discrimination (left). Notice that in all cases we use the same LLM. The compressed embeddings are
suitable for both sets of tasks and are generally expected to be pre-computed offline.
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Table 20: Relative accuracy drop under various noise types across different datasets.

Noise type MMB MME POPE SQA TextVQA realworldQA
Zoom Blur (baseline) 20.45 0.0 0.0 7.31 0.0 17.15
Zoom Blur (compressed) 16.91 0.0 0.0 6.70 0.0 13.44
Snow (baseline) 11.04 0.0 0.0 2.51 0.0 7.73
Snow (compressed) 10.79 0.0 0.0 2.23 0.0 12.50
Defocus Blur (baseline) 12.50 0.0 0.0 3.17 0.0 7.49
Defocus Blur (compressed) 11.81 0.0 0.0 2.09 0.0 12.72
Blank Image (baseline) 73.38 4221 4342 952 90.14 22.95
Blank Image (compressed) 7245 4187 4332 1145 89.31 24.82
Saturate (baseline) 0.16 0.0 0.0 1.70 0.0 2.90
Saturate (compressed) 0.73 0.0 0.0 1.26 0.0 0.45
Elastic Transform (baseline) 5.52 0.0 0.0 2.36 0.0 3.62
Elastic Transform (compressed) 4.52 0.0 0.0 0.42 0.0 491
Pixelate (baseline) 8.44 1.99 9.00 0.89 68.08 13.77
Pixelate (compressed) 7.58 2.52 9.35 3.35 67.93 11.64
Spatter (baseline) 7.47 4.94 1.94 1.18 12.26 6.52
Spatter (compressed) 4.96 1.75 241 0.77 8.39 7.81
Speckle Noise (baseline) 10.88 3.01 3.29 2.36 15.24 8.21
Speckle Noise (compressed) 11.66  0.37 3.48 1.89 14.30 10.04
JPEG Compression (baseline) 2.60 -0.89 2.24 0.0 5.68 4.83
JPEG Compression (compressed) 1.60 1.80 2.82 -0.63 3.72 4.48
Shot Noise (baseline) 12.66 3.46 4.69 1.62 16.83 9.18
Shot Noise (compressed) 1152 2.01 4.57 0.35 16.27 10.05
Impulse Noise (baseline) 12.01 4.64 4.35 1.99 16.30 8.21
Impulse Noise (compressed) 9.04 5.74 4.79 0.77 14.74 9.60
Brightness (baseline) 3.90 0.0 0.0 0.66 0.0 3.62
Brightness (compressed) 292 0.0 0.0 -0.07 0.0 -0.45
Contrast (baseline) 3.08 3.06 2.11 1.55 4.63 5.80
Contrast (compressed) 5.10 2.66 1.70 0.14 4.12 6.25
Gaussian Noise (baseline) 12.01 4.58 4.75 1.92 15.33 7.97
Gaussian Noise (compressed) 12.24 4.37 4.81 0.28 13.82 7.05
Motion Blur (baseline) 12.34 4.33 5.73 3.03 0.0 6.76
Motion Blur (compressed) 12.10 4.58 6.10 2.51 0.0 8.28
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