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Abstract

Existing MWP solvers employ sequence or bi-
nary tree to present the solution expression
and decode it from given problem descrip-
tion. However, such structures fail to handle
the variants that can be derived via mathemat-
ical manipulation, e.g., (a1 + a2) ∗ a3 and
a1∗a3+a2∗a3 can both be possible valid solu-
tions for a same problem but formulated as dif-
ferent expression sequences or trees. The mul-
tiple solution variants depicting different possi-
ble solving procedures for the same input prob-
lem would raise two issues: 1) making it hard
for the model to learn the mapping function
between the input and output spaces effectively,
and 2) wrongly indicating wrong when eval-
uating a valid expression variant. To address
these issues, we introduce a unified tree struc-
ture to present a solution expression, where the
elements are permutable and identical for all
the expression variants. We propose a novel
non-autoregressive solver, named MWP-NAS,
to parse the problem and deduce the solution
expression based on the unified tree. For eval-
uating the possible expression variants, we de-
sign a path-based metric to evaluate the partial
accuracy of expressions of a unified tree. The
results from extensive experiments conducted
on Math23K and MAWPS demonstrate the ef-
fectiveness of our proposed MWP-NAS. The
codes and checkpoints are available at: https:
//github.com/mengqunhan/MWP-NAS.

1 Introduction

Automatically solving math word problems (MWP)
is an important and fundamental task in Artifi-
cial Intelligence that has attracted a great deal of
research attention throughout the years (Bobrow,
1964; Wang et al., 2017; Zhang et al., 2020; Huang
et al., 2018). Figure 1 illustrates an MWP example
and its solutions. Given an input word problem de-
scription, the MWP solver needs to understand the
problem in natural language, figure out the math-
ematical logic underlying the problem, then for-

Problem: Dana earn $13 per hour, She worked 10 hours on
Saturday and 3 hours on Sunday, and spent $40 on Saturday.
How much money did Dana have?
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Figure 1: An MWP example with multiple reasonable
solutions and corresponding binary trees, but only one
unique output based on the unified MTree structure.

mulate the corresponding solution expression by
employing suitable mathematical operation sym-
bols (e.g., +,−,×, /) to link the relevant numbers
in the problem. Due to the complex reasoning in
text and expression, automatically solving math
word problems has always been considered as one
of the key testbeds for evaluating the intelligence
level of an AI agent (Charniak, 1969; Clark, 2015).

The approaches for automatically solving MWP
proposed by various researchers over the years can
be categorized into three stages: manual features
and rule-based at early stage, followed by facilitat-
ing quantitative reasoning with semantic parsing,
and the use of deep learning in recent years (Zhang
et al., 2019). Methods from the first two stages
did not work well as they were limited in their
capacity for feature representation and language
understanding. With the success of deep learning
in natural language understanding, a series of neu-
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ral solvers for MWP have been proposed recently
and achieved superior performance. Inspired by the
sequence to sequence modeling in machine transla-
tion, several works (Wang et al., 2017; Huang et al.,
2018; Wang et al., 2019) considered MWP as a se-
quence to sequence mapping problem, from natural
language to mathematical expression, and sequen-
tially generate the numbers and operators of the ex-
pression. However, such sequential representation
ignored the arithmetic properties of the expression.
As such, the binary tree was introduced to present
the expression and achieved tremendous progress
with Seq2Tree models (Xie and Sun, 2019; Shen
and Jin, 2020; Lin et al., 2021) and Graph2Tree
models (Zhang et al., 2020; Li et al., 2020). More
recently, the application of pre-trained language
models to MWP solving (Liang et al., 2022; Shen
et al., 2021) have led to new state-of-the-arts due to
the superior capacity and performance in language
modelling.

Most existing approaches learn to match exactly
the target expression and ignore the alternative ones
that can be derived by the arithmetic laws, e.g.,
commutative law, associative law, and distributive
law. As the example shown in Figure 1, we can
calculate the answer following either the rules of
income − expense or Saturday + Sunday re-
sulting in different expressions and binary trees.
However, translating the same problem description
to different expression variants is inconsistent with
the function mapping, which introduces output in-
determinacy and makes the model difficult to opti-
mize. Furthermore, the issue of variant expressions
may lead to problems in expression evaluation due
to possible false negatives and thus underestimation
of the performance of the methods.

To address the above issues, we propose to learn
the MWP solver based on a unified form of expres-
sion. Specifically, we eliminate the diversity of
expression variants and unify them to an identical
format with MTree structure (Wang et al., 2022).
Unlike having only two branches in binary tree,
MTree may contain multiple branches for each
node, as shown in Figure 1. Since the expression
diversity is mainly introduced by the computational
priority, MTree removes the / and − operators, and
introduces ×− and +/ to make all the operators
are with the same superiority and the child nodes
of the same parent are permutable. Based on such
MTree, Wang et al. (2022) design MTree codes
to represent and learn the mapping between prob-

lem and expression. However, such codes break
the mathematical relations between numbers (Jie
et al., 2022) and may lead to inferior performance.
Furthermore, the code dictionary has to be prede-
fined which limits the flexibility and may incur
the issue of out-of-vocabulary (OOV) during in-
ference. Motivated by the intuition of goal-driven
strategy for tree-structure decoding, we propose
a non-autoregressive MWP solver, MWP-NAS for
short, to integrate with goal-driven decoding based
on MTree. Specifically, our MWP-NAS first ob-
tains the semantic representation of problem text
via a neural language model, and uses it as the
initial goal for MTree decoding. As there exist mul-
tiple unordered child nodes for each parent, we em-
ploy a non-autoregressive Transformer to explore
the comprehensive interactions among the nodes
and predict them in parallel. For each sub-goal,
we recursively implement such non-autoregressive
decoding until all the child nodes are numbers. A
cross-goal attention strategy is devised to enable
the interactions between goals and make the de-
composed sub-goals more accurate. In MTree, as
each number could be applied in one of four forms:
{n,−n, 1

n ,−
1
n}, we design a simple classification

module to learn the form, which is jointly trained
with the non-autoregressive decoder. We also ob-
serve that under the current evaluation approaches,
the variants of the same expression would be re-
ported as wrong by expression evaluation, a.k.a
false negative, which may underestimate the ability
of the methods. Furthermore, we want to be able
to evaluate the ability of a solver not only from the
final expression, but also considering the partial
correctness of the sub-expressions. Towards this
end, we propose two MTree based evaluation met-
rics: 1) MTree Acc measuring the exact matching
accuracy of unified MTree, and 2) MTree IoU cal-
culating the intersection over union of MTree paths
between predicted and ground-truth expressions.

In summary, the main contributions of this paper
are as follows:

• We propose a novel non-autoregressive solver
for MWP, dubbed MWP-NAS, which imple-
ments a goal-driven non-autoregressive man-
ner to decompose the goal to sub-goals based
on the unified MTree structure. To enable in-
formation passing between goals for sub-goal
decomposition, we devise a novel cross-goal
attention to make the model leverage informa-
tion across goals.



• We design two metrics for expression eval-
uation based on MTree, to better assess the
effectiveness of MWP solvers.

• Extensive experiments are conducted on
Math23K and MAWPS, and the results
demonstrate that our MWP-NAS outperforms
all the SoTAs. We also compare several mile-
stone baselines evaluated by our MTree Acc
and IoU, and analyze the effectiveness of our
MTree-based metrics.

2 Related Works

2.1 MWP Solving

MWP solving has been attracting wide research
attention for a long time (Bobrow, 1964; Bakman,
2007; Kushman et al., 2014; Shi et al., 2015; Mitra
and Baral, 2016). Inspired by the superiority of
deep neural networks, deep learning based meth-
ods have dominated this area and achieved impres-
sive progress. Wang et al. (2017) first regarded
MWP as a sequence to sequence mapping problem,
and designed an RNN-based seq2seq model, GRU
encoder and LSTM decoder in specific, to sequen-
tially generate the numbers and operators of the ex-
pression. Based on the seq2seq model, Wang et al.
(2018b) and Huang et al. (2018) introduced deep re-
inforcement learning to MWP solving and achieved
promising performance. Robaidek et al. (2018)
also made an attempt to employ convolutional neu-
ral networks as encoder and decoder. Wang et al.
(2019) proposed to predict the expression template
and then fill the operator into the template by de-
signing a recursive neural network.

Subsequently, Xie and Sun (2019) proposed
a goal-driven expression tree generation strategy,
which recursively decomposes the current goal into
sub-goals via a top-down manner. The tree-based
expression template significantly improved the so-
lution accuracy. Zhang et al. (2020) introduced
Quantity Cell Graph and Quantity Comparison
Graph to enrich the problem representation, and de-
signed a Graph2Tree framework to learn the expres-
sion tree. Cao et al. (2021) applied Direct Acyclic
Graph (DAG) to represent the expression and de-
vised a Seq2DAG model, aggregating the numbers
and sub-expressions, to obtain the DAG of expres-
sion. Jie et al. (2022) started from deductive rea-
soning and regarded MWP solving as a complex
relation extraction problem, then proposed to learn
the relation between two quantities iteratively in a

bottom-up manner. Bin et al. (2023a) introduced
the reexamination process of human and devised a
model-agnostic pseudo-dual learning scheme to fur-
ther improve the performance. With the booming
of pre-trained language models (PLM), researchers
have been trying to strengthen the models with
PLM. Liang et al. (2022) built a number-aware
MWP-BERT with PLM to effectively learn the con-
textual number representation. Using the PLM as
encoder, e.g., BERT or RoBERTa, to extract prob-
lem text representation also significantly boosts the
MWP solving accuracy (Jie et al., 2022; Li et al.,
2022; Wang et al., 2022).

2.2 Non-Autoregressive Transformer

Non-Autoregressive Transformer (NAT) (Gu et al.,
2018) is proposed to accelerate the decoding pro-
cess in machine translation by generating all the
words in parallel. As pointed in (Gu et al., 2018),
however, NAT suffers from the multimodality prob-
lem and exhibits complete conditional indepen-
dence, resulting in severe repetition issue in gen-
erated texts and inferior generation performance.
To address these issues, many works have been
proposed to enhance the latent representations
by integrating an extra refinement process (Li
et al., 2019b; Guo et al., 2020), or design a semi-
autoregressive fashion (Mallinson et al., 2022;
Wang et al., 2018a). Besides, Huang et al. (2022)
introduced a directed acyclic transformer to capture
multiple translations and facilitate fast predictions
in NAT, demonstrating superior performance. In ad-
dition, Bin et al. (2023b) employed NAT for order-
ing problem which could benefit from the bi-lateral
dependencies modelling and avoid the repetition is-
sue by designing an exclusive loss, as well as outfit
generation (Ding et al., 2023)

Following (Wang et al., 2022), our work tries
to unify the expression using MTree and learn the
mapping function between problem text and MTree.
Wang et al. (2022) predefined a code dictionary
over the training set and may result in OOV and
poor generalization. To address these issues, we
propose a non-autoregressive decoder to learn the
MTree of expression with a goal-driven strategy.

3 Methodology

To handle multiple branches in MTree, we propose
a non-autoregressive solver, termed as MWP-NAS,
for the child nodes generation. As depicted on the
left of Figure 2, our MWP-NAS mainly consists



of a Problem Encoder and a Goal-Driven MTree
Generator to understand the problem and reason the
MTree structure of solution expression, which is
used to compute the final answer. To handle multi-
branch decoding in MTree generator, we devise a
novel non-autoregressive goal decomposer, shown
on the right side in Figure 2. All the details will be
introduced in the subsequent parts.

3.1 Preliminary of MTree
MTree is first introduced to MWP by (Wang et al.,
2022), to unify the expression tree structure. Given
an expression, we first transform it to a plain ex-
pression by removing the brackets with SymPy1,
an arithmetical Python package. The plain expres-
sion only contains numbers and four arithmetical
operators {+,−,×, /}2, where the operands of
{+,×} can be swapped while the ones for {−, /}
cannot. The unswappable operators also cannot
be applied in multi-branch tree because different
order of operands would lead to different results.
To tackle this issue, two new operators {×−,+/}
are introduced to replace {−, /}. ×− indicates
to get the opposite value of the product of mul-
tiple numbers, e.g., ×− with operands {2, 3} is
equal to −(2 × 3). +/ means calculating the re-
ciprocal for the sum of the operands, e.g., 1

2+3 for
operands {2, 3}. Finally, the operators for MTree
are {+,×,×−,+/}, where all of them are able
to handle multiple operands and the operands are
swappable. The summarized meanings of operators
are as follows:

• + (×) means the sum (product) of operands,
e.g., 1+ 2+ 3 and 1× 2× 3 for the operands
{1, 2, 3}.

• ×− (+/) means the opposite (reciprocal) of
the productive (sum) of the operands, e.g.,
−(1 × 2 × 3) and 1

1+2+3 for the operands
{1, 2, 3}.

Besides, to handle the different forms of numbers,
e.g., negative numbers and fractions, MTree also
introduces four types of variants {n, 1

n ,−n,− 1
n}

to denote them, as the example shown in Figure 2.

3.2 Problem Encoder
Given a math word problem, we first employ a neu-
ral language model to convert the discrete words

1https://www.sympy.org/
2For the operations beyond these four arithmetical oper-

ators, such as ab, we follow the processing in (Wang et al.,
2022) to convert it to multiple times product.

to compact problem representation, and decode the
problem representation to MTree, as shown on the
left of Figure 2. Two kinds of language models are
commonly used in previous works: the recurrent
neural networks (RNN-based), e.g., LSTM or GRU,
and the pre-trained language models (PLM-based),
e.g., BERT or RoBERTa. Inspired by the supe-
rior representation ability of PLM, recent works
tend to employ PLMs as problem encoder. We
follow (Jie et al., 2022; Wang et al., 2022) im-
plementing RoBERTa-base (Liu et al., 2019) or
BERT (Devlin et al., 2019) to extract the prob-
lem representation. Specifically, given the problem
S = {w1, w2, ..., wn}, containing numerical val-
ues V = {v1, v2, ..., vm}, we concatenate a [CLS]
and [SEP] at the beginning and end of the problem
text, respectively. Then the output of [CLS] is em-
ployed as the entire problem representation. The
problem encoding process could be formulated as:

Es, EV = PLM([CLS];S; [SEP ]), (1)

where Es is the output of [CLS] for the entire prob-
lem representation, and EV denotes the contextual
representations of numbers. We also finetune the
PLMs during training to make the learned repre-
sentations better fit the MWP task.

3.3 Goal-Driven MTree Generator
Expression tree decoding has been well explored in
MWP solving, e.g., sequential decoding with pos-
torder traversal and goal-driven decomposing. Mo-
tivated by the intuition and success of goal-driven
decomposing (Xie and Sun, 2019), we implement
the MTree generator following the top-down de-
composition with a goal-driven mechanism. Specif-
ically, we utilize the problem representation (Es

in Equation 1) as the root goal of the MTree, then
recursively generate the sequence of sub-goals with
the top-down fashion, until the sub-goal is not an
operand. The sub-goals are categorized as an ex-
plicit token, e.g., operand or operator, by measuring
the similarity between sub-goals and candidates.
The candidate representations are defined as:

Ec =


EV , if it is a number
Eop, if it is an operator
Econ, if it is a constant
EN , if it is the special token Nb

(2)

where EV is the encoder output in Equation 1, and
other E∗ are learned embedding. Nb is a special to-
ken indicating the end and number of branches of a

https://www.sympy.org/


+

× -40 ×

13 10 13 3

Problem: Dana earns $ N1(13) per hour,
She worked N2(10) hours on Saturday and
N3(3) hours on Sunday, and spent $ N4(40)
on Saturday. How much money did Dana
have?

Non-Autoregressive Goal DecomposerProblem Encoder

Goal-Driven MTree Generator

initial goal

sub-goals

…
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Multi-head Self-attention

Pointer Network
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Figure 2: The overall pipeline of our MWP-NAS, which consists of a problem encoder and a goal-driven MTree
generator. To implement top-down decomposing, we devise a non-autoregressive goal decomposer (shown on
the right side) to implement the multi-branch decomposition.

goal, which will be detailed in next section. Unlike
the binary tree where the left and right branches are
ordered, the multiple branches (may more than two
branches) of our MTree are unordered. Different
from (Xie and Sun, 2019) generating left and right
sub-goals with different modules, we need to treat
all the sub-goals the same and generate them with
an identical module.

3.4 Non-Autoregressive Goal Decomposer
Towards this end, we design a novel non-
autoregressive goal decomposer (NAGD) to han-
dle the unordered multi-branch decomposing as se-
quence generation, based on the non-autoregressive
Transformer (Gu et al., 2018). The pipeline of our
proposed NAGD is illustrated on the right in Fig-
ure 2. Given the goal representation Eg, the NAGD
first integrates it with every positional embedding
via element-wise sum, and the fused representation
is denoted as Ep. Following (Vaswani et al., 2017),
we embed positions with sine and cosine functions:

pi,2j = sin(i/100002j/dk), (3)

pi,2j+1 = cos(i/100002j/dk), (4)

where i denotes the position and j is the j-th di-
mension in pi. To explore relative information and
dependencies between positions, we implement a
multi-head self-attention as:

Ẽp = MHAtt(EpW̃Q, EpW̃K , EpW̃V ), (5)

where W̃Q, W̃K , and W̃V are learned mapping
matrices. To make the communications between
sub-goals available, we propose cross-goal atten-
tion to implement the self-attention of positions.
As the example shown in Figure 3(b), when we de-
compose the left “×” node, we also peek at the in-
formation of nodes “−40” and another “×”, while
the vanilla attention (shown in Figure 3(a)) only
capture the information in the left “×” node. For
the leaf node −40, we attach dummy child nodes
to pass the information to other child nodes. Note
that the dummy nodes are only used for cross-goal
interaction, and would not be used for loss com-
putation. Through such cross-goal attention, the
sub-goals could interact with each other and avoid
duplicate decomposition.

We then connect the positions and token candi-
dates by a multi-head inter-attention block, which
employs Ẽp as Q, and learns K and V from candi-
dates, as:

Êp = softmax(
Ẽp(EcŴK)T√

dk
)(EcŴV ), (6)

where Ec is the representation of target candidates
defined in Equation 2. Finally, the contextual rep-
resentation Êp could be used to select the most
relevant candidates, e.g., operands or operators, via
a pointer network (Vinyals et al., 2015). The prob-
ability of position i to choose the j-th candidate is
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Figure 3: Illustration of vanilla multi-head self-attention
(a), and our proposed cross-goal attention (b). MHAtt
means multi-head self-attention.

formulated as:

ωij = uT tanh(Wpe
p
i +Wbe

c
j), (7)

Ptri = softmax(ωi), (8)

where W∗ are learned parameters, and u is a col-
umn weight vector. epi and ecj are the representa-
tions of i-th position and candidate j. Ptri is the
probabilistic distribution across all the candidates
for i-th position.

To calculate the loss between predictions and
ground-truths, we need to align the positions and
the ground-truth sub-goals. We therefore define a
pseudo order for ground-truth tokens of each goal.
The operators are ahead, followed by the constants
and operands in the problem. For the example in
Figure 2, the pseudo order of ground-truth sub-
goals for node + is [×,×,−40]. Besides, vanilla
non-autoregressive Transformer (Gu et al., 2018)
implements fertility prediction to decide the decod-
ing length. In our NAGD, we set a max length as
8 for all the samples, because more than 99% sam-
ples in the datasets are with MTree branches less
than 8. Meanwhile, we also append a special token
Nb at the end of sub-goals (similar with the <END>
token in machine translation) to indicate the num-
ber of branches for the current goal decomposing,
and the loss and prediction after the Nb would be
ignored during training and inference, respectively.

After predicting the token of each sub-goal, we
need to indicate the type ({n, 1

n ,−n,− 1
n} men-

tioned in Section 3.1) for predicted operands. We
design a simple MLP for type classification, and
employ focal loss to mitigate the issue of imbal-
anced classes. The loss is finally integrated with
pointer loss to jointly train the whole MWP-NAS.

4 Evaluation

Most existing works employ expression accuracy
and value accuracy to evaluate and compare the
performance of MWP methods (Xie and Sun, 2019;
Wang et al., 2017; Jie et al., 2022). Value accuracy
measures the accuracy of the final answer, but fails
to evaluate the validity of the solving procedure.
Expression accuracy tries to address this issue and
measure the exact matching accuracy between pre-
dicted and ground-truth expression, and results in
much lower performance due to the diverse variants
of the same solution expression. Obviously, the ex-
pression accuracy should be the same as value accu-
racy in theory, or slightly lower for some exception
cases. The ideal metric to evaluate the expression
should be capable of handling the reasonable vari-
ants of solution expressions. In other words, all
the variants derived from the gold expression with
arithmetic rules would lead to the gold answer, and
should be considered as true.

However, it is hard to include all the variants
and conduct an exhaustive evaluation. Based on
the uniqueness of MTree in expression variants,
we propose MTree Accuracy and MTree IoU to
evaluate the expression accuracy more accurately.
Specifically, following existing expression accu-
racy to verify the exact matching accuracy on the
whole tree, MTree accuracy measures the match-
ing accuracy between predicted and gold unified
MTrees. While such evaluation on the whole ex-
pression tree fails to measure the partial correct-
ness of expressions, which is also an important
way to evaluate the ability of solvers, as well as
humans. For example, given the example in Fig-
ure 1, 13× (10 + 3) + 40 and (13× 10 + 3− 40)
are two false expressions, and the former one only
uses the wrong operation “+” for the expense, but
all the items are correct. While the latter applies
incorrect calculation of income on Sunday, which
should obtain a lower score. To this end, we pro-
pose MTree IoU to calculate the accuracy of paths
connecting root and leaves to measure the partial
correctness of expressions. MTree IoU first trans-
forms the predicted and ground-truth expressions
to MTrees, then constructs root-leaf path sets Pp

and Pg for them, respectively. Inspired by the eval-
uation in object detection (Ren et al., 2015), we
calculate the Intersection over Union (IoU) as:

MTreeIoU =
|Pp ∩ Pg|
|Pp ∪ Pg|

, (9)



where | · | denotes the size of the set. The over-
all MTree IoU of test set is averaged over all the
test samples. Note that there may exist duplicate
paths in an MTree due to the duplicate numbers
and multiple usages, such as the number “13” in
Figure 1 is used multiple times in the MTree. We
treat such duplicate paths as different paths in the
IoU calculation, because if the solver only predicts
one of them, it should not be totally correct. In our
codes, we actually use ‘List’ as the type of Pp and
Pg in Equation 9, rather than ‘Set’ that may ignore
the duplicated paths.

5 Experiments

5.1 Datasets

To evaluate the effectiveness of the proposed MWP-
NAS and metrics, we conduct extensive experi-
ments on Math23K and MAWPS, and compare
with SoTAs. Math23K (Wang et al., 2017) con-
tains 23162 arithmetical problems. For fair com-
parison, we use the splits following (Wang et al.,
2022; Zhang et al., 2020), resulting in 21162, 1000,
and 1000 for training, validation, and test, respec-
tively. MAWPS (Koncel-Kedziorski et al., 2016) is
a much smaller MWP dataset, which contains 2373
samples. We follow (Wang et al., 2022) to prepro-
cess for MTree and obtain 2163 samples. Due to its
small size, following previous works (Zhang et al.,
2020; Jie et al., 2022), we conduct 5-fold cross-
validation on MAWPS, resulting in 433 samples
for four folds and 431 samples for another fold. We
report the averaged results across five folds.3

5.2 Experimental Settings

We implement the proposed MWP-NAS with Py-
Torch and conduct experiments with an NVIDIA
RTX A6000 GPU. The maximum size of MTree
branch is set as 8, because more than 99% sam-
ples in the datasets have fewer than 8 child nodes.
We fine-tune the pre-trained language models, i.e.,
RoBERTa/BERT-base, during training and initial-
ize the global learning rate as 2e−5 and 5e−5 for
Math23K and MAWPS, respectively. The hidden

3In the main part of (Jie et al., 2022), the authors imple-
ment a different training setting, combining training and
validation sets for training, and run five times with different
random seeds for averaging on Math23K. The 5-fold split of
MAWPS also has two different settings: the split in (Wang
et al., 2022) and others. For fair and comprehensive compar-
isons, we implement our MWP-NAS on these two splittings,
and term them as Reasoner Split and SUMC Split in Table 1.
The main experiments (including the ablations) are based on
SUMC split.

Table 1: Performance comparison with baselines. ♢
means the results referred from (Wang et al., 2022) .
♠ means the results based on SUMC split. ♣ indicates
the results of the data split in (Jie et al., 2022), which
implements a 5-fold CV train-test setting for Math23K
(we call it Reasoner Split).

Model Math23K MAWPS
Seq2Seq (Wang et al., 2017) 58.1 59.5
T-RNN (Wang et al., 2019) 66.9 66.8

GROUP-ATT (Li et al., 2019a) 69.5 76.1
GTS (Xie and Sun, 2019) 75.6 82.6

Graph2Tree (Zhang et al., 2020) 77.4 83.7
NeuralSymbolic (Qin et al., 2021) 75.7 -

HMS (Lin et al., 2021) 76.1 80.3
NUMS2T (Wu et al., 2021) 78.1 -
BERT-Tree (Li et al., 2022) 82.4 -

SAU-Solver (Qin et al., 2020) 76.2♢ 75.5♢

UniLM (Dong et al., 2019) 77.5♢ 78.0♢

DeductReasoner (Jie et al., 2022) 84.3♠ 86.0♠

DeductReasoner (Jie et al., 2022) 85.1♣ 91.2♣

SUMC-Solver (Wang et al., 2022) 82.5 82.0
MWP-NAS (SUMC Split) 84.8♠ 86.7♠

MWP-NAS (Reasoner Split) 86.1♣ 91.4♣

size of our non-autoregressive goal decomposer is
768 for every layer. We run 1000 and 2000 epochs
on Math23K and MAWPS for training, and choose
the checkpoints with the best performance on vali-
dation set for test.

5.3 Comparisons with Baselines

We first evaluate and analyze the effectiveness of
our proposed non-autoregressive solver for MTree
by comparing its performance with the state-of-the-
arts. Here we only compare the accuracy of the fi-
nal answer and leave the expression accuracy evalu-
ation in the next section, because of two points: (1)
The expression generated by our MWP-NAS based
on MTree could be written as multiple reasonable
expression variants, which is hard to evaluate the
expression accuracy, and (2) only a few numbers of
previous works reported the expression accuracy,
it would be many N/A in the comparison. As the
results shown in Table 1, our proposed MWP-NAS
outperforms all the baselines and sets a new state-
of-the-art on both datasets, which demonstrates the
effectiveness and superiority of our method. As
the only two methods based on MTree, the SUMC-
Solver employs codes prediction of leaf node to re-
construct the expression tree, which performs much
lower than our MWP-NAS. The reason might be
that the code prediction of leaf nodes makes the
nodes independent and break the arithmetical re-
lation between the nodes. While our MWP-NAS
implementing attention mechanism is able to ex-
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Figure 4: Several cases of our MWP-NAS with MTree structure. G and P indicate the Ground truth and Prediction,
respectively. We merge the ground truth and prediction for correct predictions, i.e., (a) and (b), and illustrate a
failure case in (c).

Table 2: The results of ablation study of cross-goal
attention on Math23K and MAWPS.

Model Math23K MAWPS
w/o Cross-Goal Attention 84.1 86.1
with Cross-Goal Attention 84.8 86.7

plore and capture the relations between numbers,
and yield better results. Besides, we also note De-
ductReasoner (Jie et al., 2022), implementing com-
plex relation modeling and deductive reasoning,
performs very close to our work for both data split
settings, which may imply that introducing the de-
ductive reasoning to MTree structure would bring
some new insights.

5.4 Effectiveness of Cross-Goal Attention

We also conduct ablation studies to investigate
the effectiveness of the proposed cross-goal atten-
tion, and show the results in Table 2. The results
demonstrate that equipped with our cross-goal at-
tention, our model gains significant improvement,
e.g., from 84.1 to 84.8 on Math23K. This suggests
that with such a cross-goal attention mechanism,
the information belonging to different goals could
be passed and aggregated. Such cross-goal infor-
mation integration apparently improves the accu-
racy of single-goal decomposition and benefits the
expressiveness of the model overall.

5.5 Analysis on Different Branch Numbers

In MWP solving, complex problems always con-
tain more operands and result in more branches in
MTree. To investigate the performance on different
difficult problems, we test and compare the value
accuracy with different branch numbers. We first
define the branch number of an MTree as the max-
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Figure 5: Performance comparison on different branch
numbers of MTree.

imum number of branches in it. For example, the
branch number of the MTree in Figure 1 is three,
because the “+” node is the one with the most
branches in it and has three branches. The experi-
mental results are illustrated in Figure 5. From the
results, we can observe that our MWP-NAS outper-
forms the SUMC-Solver at all the branch numbers,
and exhibits remarkable boosting at larger branch
numbers, which means that our MWP-NAS works
better than SUMC-Solver for more complicated
problems. Besides, with the branch number in-
creasing, both methods show a decreasing trend for
value accuracy, which exhibits more inferior perfor-
mance for more difficult problems and is consistent
with our common sense.

5.6 Illustration with MTree Structure
To comprehensively probe the proposed MWP-
NAS, we also visualize several solving cases with
MTree structure, as illustrated in Figure 4. We ob-
serve that our MWP-NAS is capable of generating
accurate MTree structure, even for the complex



Table 3: Evaluation comparison with our proposed MTree Acc and MTree IoU. We reproduce and evaluate all the
results based on the released codes.

Model Exp Acc Val Acc MTree Acc MTree IoU
Seq2Seq (Wang et al., 2017) 51.7 58.3 58.2 62.99

GTS (Xie and Sun, 2019) 64.4 75.7 75.3 82.77
Graph2Tree (Zhang et al., 2020) 66.0 77.4 76.9 83.53
DeductReasoner (Jie et al., 2022) 76.4 84.3 83.6 88.86
SUMC-Solver (Wang et al., 2022) - 82.9 82.4 87.26

MWP-NAS (Ours) - 84.8 83.8 89.73

Problem: The fruit shop sells bananas, oranges and pineapples for a total of 150 kg on Sunday, of which bananas are 27.5 kg, and
the number of oranges sold is 3.6 times that of bananas. How many kilograms of pineapples are sold in the fruit shop on Sunday?
Ground-Truth Expression: DeductReasoner: Exp Acc: ✘ (False) MTree Acc: ✔ (True)150 27.5 3 27.5− × − 150 27.5 27.5 3− − ×

Problem: There are 36 chickens, and the number of ducks is twice that of chickens. How many chickens and ducks are there?
Ground-Truth Expression: DeductReasoner: Exp Acc: ✘ (False) MTree Acc: ✔ (True)(1 2) 36+ × 36 2 36× +

Figure 6: Examples evaluated by Exp Acc and our proposed MTree Acc, predicted with DeductReasoner. Traditional
Exp Acc fails to capture the same mathematical semantics with different expressions, while our MTree Acc
successfully handles this.

arithmetic expressions. For example, as shown in
Figure 4(b), it could easily capture the composi-
tion between 5 and 4. From the exemplar shown
in Figure 4(c), we note our MWP-NAS may fail to
predict right type for operands, which may because
the optimization objectives of number type is an
extra loss. This also motivates us keep exploration
of this direction for further improvements.

5.7 Evaluation on MTree Metrics
To study the effectiveness of our proposed MTree-
based metrics, we implement 5 representative
MWP methods with the open source codes and
compare them with our MWP-NAS with more met-
rics on Math23K. The comparison results are illus-
trated in Table 3. As aforementioned, the expres-
sion accuracy should be consistent with the value
accuracy, while it is much lower than value accu-
racy in practice. The MTree accuracy measures the
performance by transforming the ground-truth ex-
pression and prediction to the unified MTree struc-
ture, demonstrating slightly lower than the value
accuracy. We visualize several examples in Fig-
ure 6 to check whether the predicted expression is
right and indicated as wrong by expression accu-
racy. We observe that MTree accuracy is able to
handle different variants derived from ground-truth,
e.g., commutative law for the first case and distribu-
tive law for the second one in Figure 6. We have
also checked the samples (only six samples in test
set) failed by MTree accuracy but the final value is
right, and found that three of them are annotated

wrong ground-truth expressions, and two of them
give the wrong expression but result in the gold an-
swers. For the MTree IoU, it further evaluates the
expressions with local paths, and is able to assess
the partial correctness of an expression.

6 Conclusion

We presented a novel non-autoregressive MWP
solver (MWP-NAS) based on the unified MTree
structure. Our proposed MWP-NAS implements
a goal-driven manner for multi-branch decompo-
sition to generate the MTree of expressions. We
devised a cross-goal attention strategy to pass in-
formation between goals during goal decomposing.
We have also designed two metrics based on MTree
for better expression evaluation. Experiments con-
ducted on Math23K and MAWPS demonstrated
the effectiveness of our approach and metrics.
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8 Limitations

To obtain the MTree, we need first to sim-
plify and expand the original expression using
sympy.simplify and sympy.expand of SymPy
package. Some cases (about 0.2 percent, i.e., 2
cases in test set) are failed to automatically trans-
form to MTree, due to the expression unification.
We discard them during training and use the origi-
nal form as ground-truth for test evaluation. This
makes our reported performance decrease by 0.2
percent. Therefore, automatically unifying the ex-
pressions could be a small issue and limitation of
our work. Besides, with the blooming of large
language models (LLMs), we only conducted ex-
periments with some relatively small models, i.e.,
BERT and RoBERTa, for fair comparison, and ig-
nored the integration of MTree and LLMs at the
moment, which also could be a limitation of our
work and will be explored in the future.
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A Appendix

A.1 Refine the MTree Structure
In this part, we attempt to provide an under-mature
refinement for MTree structure and hope to encour-
age more research attention and insights on unify-
ing the expression representation. As mentioned in



Table 4: Results and comparisons with preliminary re-
fined MTree (RefMTree).

Model Val Acc MTree Acc MTree IoU
SUMC-Solver 82.9 82.4 87.26

-RefMTree 79.8 79.5 86.99
MWP-NAS 84.8 83.8 89.73

-RefMTree 84.3 83.4 89.71

Section 3.1, in the design of original MTree (Wang
et al., 2022), there needs to introduce additional
indicator to denote the form of numerical values,
{n, 1

n ,−n,− 1
n} in specific. We observe that it is

possible to omit the form indicator with the new
operators {×−,+/}. Rethinking the operation for
×−, it calculates the opposite value of the prod-
uct of the operands. Suppose we have only one
operand n for ×−, the result could be −n. Similar
transformations also can be implemented to obtain
1
n with +/, and − 1

n with the sequential combina-
tion of +/ and ×−. With such modification, the
MTree in Figure 2 only needs to revise “-40” to “40”
and add an internal node ×− between 40 and the
root. We also conduct several preliminary experi-
ments with the refined MTree (we call it RefMTree)
on Math23K. The experimental settings are the
same as the ones in Section 5.2, except for remov-
ing the type classifier of MWP-NAS and the form
code of SUMC-Solver. From the results shown
in Table 4, we observe that all the performances
are decreased, which suggests that such simple and
naive modification for MTree refinement is far from
good enough. We also note that our MWP-NAS
decreases slightly, while the SUMC-Solver gets sig-
nificant performance drop. We assume it may be
that MTree refinement changed the format of path
codes of SUMC, and led to inferior results. Though
the additional internal nodes deepen the MTree and
make our MWP-NAS to predict the MTree more
difficult, MWP-NAS still benefits from removing
the type classifier and yields slightly lower results.
In summary, the simple refinement of MTree does
not work well for both MTree-based methods, and
encourages us to keep the exploration in future.

A.2 Complementary Experimental Results

MWP solving is a fundamental task for evaluating
the reasoning ability of language models, there-
fore there exist many benchmark datasets, such as
Math23K (Wang et al., 2017), MAWPS (Koncel-
Kedziorski et al., 2016), MathQA (Amini et al.,

2019), MATH (Hendrycks et al., 2021), AS-
Div (Miao et al., 2020), and SVAMP (Patel et al.,
2021). To comprehensively evaluate the effective-
ness of our proposed MWP-NAS, we also con-
duct complementary experiments on more datasets,
MathQA and SVAMP 4 in specific5. The results
are reported in Table 5, from which we observe
that the comparison results across different meth-
ods show inconsistency on two datasets, even ex-
hibiting significant contradictions for some compar-
isons. For example, GROUP-ATT (Li et al., 2019a)
outperforms Graph2Tree (Zhang et al., 2020) on
MathQA by 0.9, but shows remarkable perfor-
mance decrease, i.e., 15.0, on SVAMP. We also
observe that our MWP-NAS outperforms almost
all the baselines on these datasets, except for the
Graph2Tree (Zhang et al., 2020) on SVAMP. This
may come from the graph representations, e.g.,
Quantity Cell Graph and Quantity Comparison
Graph, which are good at handling the problem
variants in SVAMP dataset. When we go beyond
this aspect, comparing with the strong baseline De-
ductReasoner (Jie et al., 2022), our MWP-NAS
substantially outperforms it and achieves the state-
of-the-art performance, which further verifies the
effectiveness of out proposed MWP-NAS.

Table 5: Performance comparison with baselines on
two extra datasets, MathQA and SVAMP. ♠ means the
results referred from (Li et al., 2022), and ♣ indicates
the results referred from (Jie et al., 2022), otherwise
from the original paper.

Model MathQA SVAMP
Seq2Seq (Wang et al., 2017) - -
T-RNN (Wang et al., 2019) - -

GROUP-ATT (Li et al., 2019a) 70.4♠ 21.5♣

GTS (Xie and Sun, 2019) - 30.8♣

Graph2Tree (Zhang et al., 2020) 69.5♣ 36.5♣

NeuralSymbolic (Qin et al., 2021) - -
HMS (Lin et al., 2021) - -

NUMS2T (Wu et al., 2021) - -
BERT-Tree (Li et al., 2022) 73.8♣ 32.4♣

SAU-Solver (Qin et al., 2020) - -
UniLM (Dong et al., 2019) - -

DeductReasoner (Jie et al., 2022) 80.6 35.3
SUMC-Solver (Wang et al., 2022) - -

MWP-NAS 81.2 35.5

4For MAWPS and SVAMP, we use BERT-base as the prob-
lem encoder.

5We do not include the results on these two datasets in the
main part because only a few baselines conducted experiments
on them. Similarly, we did not conduct experiments on the
other datasets due to the less baselines on them. Therefore
we only regard these results as a complementary to the main
results reported in Table 1.


