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ABSTRACT

Unsupervised anomaly detection using deep learning has garnered significant re-
search attention due to its broad applicability, particularly in medical imaging
where labeled anomalous data are scarce. While earlier approaches leverage gen-
erative models like autoencoders and generative adversarial networks (GANs),
they often fall short due to overgeneralization. Recent methods explore various
strategies, including memory banks, normalizing flows, self-supervised learning,
and knowledge distillation, to enhance discrimination. Among these, knowledge
distillation, particularly reverse distillation, has shown promise. Following this
paradigm, we propose a novel scale-aware contrastive reverse distillation model
that addresses two key limitations of existing reverse distillation methods: in-
sufficient feature discriminability and inability to handle anomaly scale varia-
tions. Specifically, we introduce a contrastive student-teacher learning approach
to derive more discriminative representations by generating and exploring out-of-
normal distributions. Further, we design a scale adaptation mechanism to softly
weight contrastive distillation losses at different scales to account for the scale
variation issue. Extensive experiments on benchmark datasets demonstrate state-
of-the-art performance, validating the efficacy of the proposed method. The code
will be made publicly available.

1 INTRODUCTION

The automatic detection of anomalies in medical images is a crucial yet challenging task. Find-
ing abnormalities early through screening enables timely intervention and improves patient out-
comes (Cai et al., 2023). However, designing robust algorithms for this task is difficult due to the
variability in anomalous anatomy across patients. Moreover, obtaining annotated data with verified
anomalous samples is often prohibitively expensive and time-consuming (Cai et al., 2023; Schlegl
et al., 2019). Consequently, there is a pressing need for unsupervised anomaly detection methods
capable of recognizing anomalies without relying on labeled abnormal training data.

Early efforts utilize generative models such as autoencoders and generative adversarial networks
(GANs) (Schlegl et al., 2019; Jiang et al., 2019; Han et al., 2021a; Shvetsova et al., 2021). These
models are trained to learn feature representations exclusively from normal images. Abnormalities
can then be detected by determining if test images lie outside the manifold of the learned represen-
tations, or by comparing original and generated images in pixel space. The underlying hypothesis is
that a generative model trained on normal samples can accurately reconstruct anomaly-free regions
well but struggles with anomalous ones. Nevertheless, this does not always hold, and generative
models often overgeneralize, that is, they tend to generalize too well, thereby risking the reconstruc-
tion of abnormal regions (Gong et al., 2019).

To address this issue, some approaches introduce memory banks that store representative normal
patterns to help control model generalization (Gong et al., 2019). At test time, images are directly
compared to the memory banks to identify anomalies. In addition, several studies use normalizing
flows (Rudolph et al., 2021; Yu et al., 2021; Gudovskiy et al., 2022). A normalizing flow models
a target distribution as an invertible transformation of a base distribution (e.g., Gaussian) in latent
space. In the context of anomaly detection, the flow is trained to maximize the likelihood of normal

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

patterns, and the likelihood cannot be simultaneously increased for all images. By doing so, it as-
signs positive density only to normal samples and, in particular, does not generalize to anomalous
ones. Concurrently, self-supervised learning (Jing & Tian, 2021) has catalyzed the development of
unsupervised anomaly detection algorithms (Li et al., 2021; Sohn et al., 2021; Schlüter et al., 2022).
Existing self-supervised learning-based methods typically follow one of two paradigms: one-stage
or two-stage approaches. In the one-stage approach, a model is trained to detect artificially synthe-
sized anomalies and then directly applied to detect real abnormalities. The two-stage approach, on
the other hand, first learns self-supervised representations through a pretext task on normal data and
subsequently constructs a one-class classifier based on the learned representations. However, these
methods still exhibit limited discriminative capabilities in real-world medical anomaly detection and
incur heavy computational overheads.

Knowledge distillation from pre-trained models presents another promising approach for unsuper-
vised anomaly detection (Salehi et al., 2021). This methodology typically employs a teacher-student
paradigm, where the teacher is an encoder network pre-trained on a large-scale dataset (e.g., Ima-
geNet), and the student network has a similar or identical architecture. The key insight is that the stu-
dent is exposed only to anomaly-free images during knowledge distillation, leading to discrepancies
between features of the teacher and student networks when encountering anomalies during infer-
ence. Knowledge distillation-based approaches reconstruct features of pre-trained encoders rather
than raw pixels, as features provide more informative representations and yield superior results. To
further enhance the discriminative capability of the teacher-student framework, various strategies are
explored. For example, Bergmann et al. (2020) ensemble several student networks trained on nor-
mal images at different scales, while Salehi et al. (2021) and Wang et al. (2021) leverage multi-level
feature alignment. Deng & Li (2022) propose an interesting reverse distillation model that adopts
a heterogeneous teacher-student framework, comprising a teacher encoder and a student decoder.
This method distills knowledge from the pre-trained teacher network into the student network in a
reverse direction, achieving better performance.

In this paper, we approach the problem of unsupervised anomaly detection through the lens of re-
verse distillation. We identify two key limitations of the reverse distillation model. First, knowledge
distillation alone is insufficient to provide discriminative representations to the student network.
Second, we observe that anomalies vary in size, posing a challenge to scale-equalizing knowledge
distillation models. To address these issues, we propose a scale-aware contrastive reverse distillation
model. Our contributions are threefold:

• We propose a contrastive student-teacher learning method within the reverse distillation
paradigm, aimed at deriving discriminative representations by generating and exploring
out-of-normal data distributions.

• To address the scale variation issue, we propose a scale adaptation mechanism that learns
to softly weight contrastive representation distillation at each scale.

• We evaluate the proposed approach on three datasets from different imaging modalities: X-
ray, MRI, and dermoscopy. Experimental results demonstrate state-of-the-art performance
across all datasets.

2 METHODOLOGY

2.1 PRELIMINARY

First, we revisit the original reverse distillation model for anomaly detection as proposed by Deng
& Li (2022). It consists of three components: 1) a fixed pre-trained encoder serving as the teacher
to extract feature maps from an input image; 2) a bottleneck fusing multi-scale features from the
encoder into a joint representation; and 3) a decoder acting as the student to reconstruct feature
maps at each scale from the joint representation.

Let sim(a, b) = aTb/ ∥a∥ ∥b∥ denote the dot product between ℓ2 normalized a and b (i.e., cosine
similarity), and uk and vk be feature maps from the k-th layer of the teacher encoder and student
decoder, respectively. For knowledge transfer in the model, the following loss is used:

L =
∑
k

1

Ck

∑
h

∑
w

1− sim(uk,h,w,vk,h,w) , (1)
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Figure 1: Illustration of the proposed framework during training. It comprises two distinct encoding
pathways: 1) a “clean” teacher encoder followed by a bottleneck, a scale adaptation mechanism, and
a student decoder, and 2) a “noisy” teacher encoder. The two teacher encoders share weights but
process different inputs: the clean teacher receives normal data, whereas the noisy teacher processes
synthesized anomalies. We employ contrastive reverse distillation by pushing the student’s recon-
structed features closer to feature representations from the clean teacher and farther from those of
the noisy teacher. The scale adaptation module generates input-specific scale weights used in this
process.

where Ck is a normalization constant, and (h,w) enumerates all integral spatial locations in feature
maps uk and vk. After training the teacher encoder and student decoder on normal data only, they
align to represent normal patterns in a similar way. For normal test samples that conform to patterns
observed during training, the student’s representations closely match the teacher’s, leading to low
vector-wise cosine similarity losses. Conversely, for anomalous samples, the student decoder fails
to properly reconstruct the teacher’s feature maps due to having learned only normal patterns.

2.2 CONTRASTIVE REVERSE DISTILLATION

2.2.1 NETWORK ARCHITECTURE AND LOSS

One limitation of the approach proposed by Deng & Li (2022) is that the teacher only sees normal
data, i.e., in-distribution examples, during training and does not attempt to explore potential out-of-
distribution representations. This may result in a lack of discrimination for anomalies in real-world
scenarios. To address this, we propose a novel paradigm called contrastive reverse distillation for
anomaly detection (see Figure 1). It introduces a second teacher encoder, termed “noisy” teacher,
which can synthesize plausible out-of-normal representations to serve as anomalous instances. The
resulting model contains two distinct encoding pathways: one is a “clean” teacher encoder followed
by a bottleneck and a student decoder as described in Section 2.1, and the other is the noisy teacher
encoder. The two teacher encoders share weights but take different images as input—the clean
teacher sees normal data while the noisy teacher sees synthesized anomalies.

Formally, let x represent a normal training image, x′ = g(x) be a synthesized abnormal image, and
ϕ refer to the output of the bottleneck, i.e., a multi-scale representation of x. We denote feature
maps from the k-th layer of the clean teacher encoder, noisy teacher encoder, and student decoder
as uk = f(x), zk = f(x′), and vk, respectively, where f(·) indicates the encoders. In our model,
we aim to push uk and vk closer while pushing zk and vk apart. To this end, we design a novel
contrastive reverse distillation loss:

L =
∑
k

1− sim(uk,vk)

1− sim(zk,vk) + ϵ
, (2)

where ϵ is a small value added to the denominator to avoid division-by-zero errors in practice. It
is worth noting that unlike Eq. (1), here uk and vk are reshaped into 1D representations prior to
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calculating the cosine similarity between them, and the same reshaping operation is applied to zk as
well. This makes results more stable.

2.2.2 IMAGE SYNTHESIS FOR NOISY TEACHER

Medical images typically exhibit a power law distribution of frequencies, with lower frequency
components dominating the image content (Wyatt et al., 2022). Based on the assumption that both
normal and abnormal images adhere to this power law, we are motivated to synthesize abnormal
images by applying noise with a similar distribution. While such noise can be generated through
Gaussian random fields or engineered covariance matrices, we opt for a simpler approach utilizing
simplex noise (Perlin, 2002), following methods of Tien et al. (2023) and Wyatt et al. (2022). Sim-
plex noise enables precise control over the frequency distribution of images. In contrast to Gaussian
noise, simplex noise produces smooth, structured randomness, making it well-suited for our task.
We compare the performance of these two noise types in our model (cf. Section 3.3.3).

In our approach, for each training image x, we first sample noise size and position from uniform
distributions. Then, simplex noise (Perlin, 2002) is generated with six octaves and a persistence of
γ = 0.6. Finally, the generated noise is added to the image, scaled by a factor of λ = 0.2. This
process synthesizes an abnormal image x′, introducing structured perturbations that mimic potential
anomalies.

2.3 SCALE-AWARE CONTRASTIVE REVERSE DISTILLATION

To address the scale variation of anomalies in medical images, we propose learning a scale descriptor
α = [α1, . . . , αK ], where K is the number of layers, using a head h(·). The process involves em-
ploying global max pooling (GMP) to spatially shrink ϕ, generating channel-wise statistics. Since ϕ
can be viewed as the joint representation of multi-scale features, its statistics are informative about
the image content across scales. Subsequently, a linear layer with softmax normalization maps the
channel-wise statistics to the scale descriptor α. This process is formulated as:

α = h(ϕ) = softmax(W ·GMP(ϕ)) . (3)

The final loss is obtained by recalibrating knowledge transfer at different scales with α:

L =
∑
k

αk
1− sim(uk,vk)

1− sim(zk,vk) + ϵ
. (4)

The scale descriptor α acts as input-specific scale weights for contrastive reverse distillation. In this
regard, it intrinsically introduces dynamics conditioned on the input, helping to boost the discrim-
inability of the model.

2.4 ANOMALY SCORING

During inference, given a test image, we extract a set of feature maps, {uk} and {vk}, from the
clean teacher encoder and student decoder, respectively, as defined in Section 2.2.1. Besides, we
obtain a scale descriptor α from the scale adaptation module. We compute the vector-wise cosine
similarity between uk and vk for each scale k. The resulting similarity map is then weighted by
the corresponding αk and upsampled to match the input image resolution. We aggregate weighted
similarity maps across all scales to construct a comprehensive anomaly map. The final anomaly
score for the input image is obtained by computing the mean value of this aggregated anomaly map.

2.5 COMPARISON WITH RD++

A recent work closely related to our approach is RD++ (Tien et al., 2023), which also builds upon
the reverse distillation paradigm and utilizes synthesized abnormal images. While the proposed
model shares some architectural similarities with RD++, including the use of dual encoding path-
ways, there are fundamental differences in approach and objectives. A key distinction lies in how
anomalous information is used. Our method leverages synthesized anomalies to enhance feature
discrimination by employing contrastive regularization between the student’s reconstructed features
and representations from both teachers. In contrast, RD++ introduces multiple regularizations for
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two encoding pathways, aiming to encourage the model to learn how to reconstruct normal features
from pseudo-abnormal regions. This design inherently restricts the flow of anomalous information
to the student network. Furthermore, our approach incorporates a scale adaptation mechanism for
reverse distillation, addressing the critical issue of scale variation in anomaly detection—a challenge
not explicitly tackled by RD++. We provide a comparison of the two models in Table 1.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

3.1.1 DATASETS

We evaluate our proposed method on three widely-used medical imaging datasets: the RSNA Pneu-
monia Detection Challenge dataset1, the Brain Tumor MRI dataset2, and the ISIC 2018 dataset3.

RSNA: This chest X-ray dataset comprises 8,851 normal and 6,012 lung opacity images. Follow-
ing Cai et al. (2022), we utilize 3,851 normal images for training and a balanced test set of 1,000
normal and 1,000 abnormal images.

Brain Tumor: This dataset consists of 2,000 MRI slices without tumors, 1,621 with gliomas, and
1,645 with meningiomas. We categorize glioma and meningioma slices as anomalies. The normal
instances are sourced from Br35H54 and Saleh et al. (2020), while the anomalous cases are from
Saleh et al. (2020) and Cheng et al. (2015). In line with Cai et al. (2022), our experimental setup
includes 1,000 normal slices for training and a test set of 600 normal and 600 abnormal slices
(equally split between glioma and meningioma).

ISIC: This skin lesion dataset, originating from the ISIC 2018 challenge, contains dermoscopic
images across seven categories. Consistent with previous studies (Lu & Xu, 2018; Guo et al., 2024),
we designate nevus as the normal class. Our experimental protocol, following Cai et al. (2024),
employs 6,705 normal images from the official training set for model training. Our test set comprises
909 normal images and 603 abnormal images (distributed across the remaining six categories) from
the official test set.

3.1.2 EVALUATION METRICS

Unsupervised anomaly detection methods typically generate continuous-valued predictions. There-
fore, we use the area under a receiver operating characteristic (ROC) curve (AUC) as our primary
evaluation metric, given its threshold-independent nature. Moreover, we report F1 score and accu-
racy. For these metrics, we determine the optimal threshold based on the best F1 score, following
the approach of Zhao et al. (2023).

3.1.3 IMPLEMENTATION DETAILS

We conduct all experiments using PyTorch on a single NVIDIA RTX 3090Ti GPU. Our encoder
utilizes a WideResNet50 (Zagoruyko, 2016) pre-trained on ImageNet (Russakovsky et al., 2015).
We also report the performance of our network using ResNet18 (He et al., 2016) and ResNet50 (He
et al., 2016) as the encoder in Section 3.3.4. We resize all images to 256 × 256 pixels and apply
no data augmentation during training. To train our model, we employ the Adam optimizer (Kingma
& Ba, 2015) with β = (0.5, 0.999) and a learning rate of 1e-3. We train for 4,000 iterations with
a batch size of 16. Our decoder mirrors the encoder, identical to that used in RD4AD (Deng & Li,
2022). For competing methods, we utilize their publicly available codes and adhere to their default
training configurations.

1https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
2https://www.kaggle.com/datasets/masoudnickparvar/

brain-tumor-mri-dataset
3https://challenge.isic-archive.com/data/#2018
4https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection
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RSNA Brain Tumor ISIC
AUC F1 ACC AUC F1 ACC AUC F1 ACC

AE 68.33 67.85 52.90 80.88 84.79 82.33 73.59 64.67 67.20
UAE 84.36 79.47 77.55 94.50 91.38 90.75 74.12 65.91 68.25
MorphAEus 80.87 75.74 72.80 64.68 70.43 60.67 68.30 61.11 57.74
GAN Ensemble 82.10 75.30 74.30 66.60 68.40 64.00 63.70 62.70 54.60
MemAE 68.65 67.95 53.45 79.91 82.63 80.00 73.47 64.67 64.81
PatchCore 86.33 80.86 79.40 93.63 89.23 88.42 68.09 61.98 59.26
SQUID 70.38 72.40 65.95 41.33 66.67 50.00 57.47 54.78 46.11
FastFlow 76.00 73.68 67.95 85.62 80.41 77.58 67.27 63.46 57.34
CFLOW-AD 70.26 70.20 62.05 36.35 66.67 50.00 66.97 60.81 57.80
CutPaste 55.86 66.69 50.05 74.24 67.99 52.92 64.25 57.05 39.95
NSA 82.13 75.87 82.13 83.20 79.00 76.17 69.08 62.53 58.47
RD4AD 84.29 78.09 76.80 90.52 87.24 85.67 76.48 67.94 67.72
RD++ 88.00 81.57 81.20 91.68 87.43 85.83 75.47 67.33 67.59
ReContrast 87.53 81.24 80.70 91.67 85.99 84.33 80.02 70.20 75.46
UniAD 73.69 69.71 65.85 62.30 69.92 58.42 73.78 65.48 66.60
SimpleNet 69.06 68.99 62.70 93.93 88.74 88.50 69.01 60.66 56.99
EfficientAD 74.88 73.12 68.20 78.41 76.20 72.00 60.32 56.95 39.81
UCAD 70.89 69.88 62.45 87.42 80.68 80.08 67.88 59.62 55.29
Ours 91.01 84.05 83.40 98.88 96.52 96.50 83.10 72.07 75.60

Table 1: Quantitative comparison of the proposed method against state-of-the-art approaches on
three public medical anomaly detection datasets. The best results for each dataset and metric are
highlighted in bold, and the second-best results are underlined.

3.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We comprehensively evaluate our approach against existing unsupervised anomaly detection meth-
ods. Our comparisons encompass reverse distillation-based methods such as RD4AD (Deng & Li,
2022) and its variants, RD++ (Tien et al., 2023) and ReContrast (Guo et al., 2023), as the proposed
model builds upon this paradigm. Given our use of synthetic anomalies, we also compare with syn-
thetic anomaly-based methods like NSA (Schlüter et al., 2022) and CutPaste (Li et al., 2021). Fur-
thermore, we assess our approach against methods using generative models (AE, UAE (Mao et al.,
2020), GAN Ensemble (Han et al., 2021b), and MorphAEus (Bercea et al., 2023)), methods utiliz-
ing memory banks (MemAE (Gong et al., 2019), PatchCore (Roth et al., 2022), and SQUID (Xiang
et al., 2023)), and methods leveraging normalizing flows (FastFlow (Yu et al., 2021) and CFLOW-
AD (Gudovskiy et al., 2022)). We also include other recent relevant methods such as UniAD (You
et al., 2022), SimpleNet (Liu et al., 2023), EfficientAD (Batzner et al., 2024), and UCAD (Liu et al.,
2024) in our comparison. As shown in Table 1, the proposed framework demonstrates superior per-
formance across all three datasets, consistently outperforming competitors on all evaluation metrics.
Notably, in terms of the primary metric AUC, our method shows substantial improvements over
the second-best methods. On the RSNA dataset, we achieve a 3.01% improvement. For the Brain
Tumor dataset, the improvement is 4.38%, while on the ISIC dataset, we see a 3.08% increase in
performance.

3.3 ABLATION STUDY

We conduct ablation studies to validate the efficacy of each component in our framework. Using the
RD4AD model (Deng & Li, 2022) as our baseline, we progressively incorporate our contributions,
including contrastive reverse distillation and the scale-adaptive mechanism. Table 2 presents the
numerical results.

3.3.1 EFFECTIVENESS OF CONTRASTIVE REVERSE DISTILLATION

Augmenting the reverse distillation model with the proposed contrastive student-teacher learning
yields significant improvements. On the RSNA dataset, we achieve gains of 5.58%, 5.6%, and 6.4%
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CRD SAM RSNA Brain Tumor ISIC
AUC F1 ACC AUC F1 ACC AUC F1 ACC

- - 84.29 78.09 76.80 90.52 87.24 85.67 76.48 67.94 67.72
✓ - 89.87 83.69 83.20 91.45 88.17 86.67 78.87 69.50 71.56
✓ ✓ 91.01 84.05 83.40 98.88 96.52 96.50 83.10 72.07 75.60

Table 2: Ablation study quantifying the impact of each component in the proposed method on
three datasets. We report the performance of our full model, as well as variants with the following
components ablated: contrastive reverse distillation (CRD) and scale-adaptive mechanism (SAM).

RSNA Brain Tumor ISIC

normal
abnormal

normal
abnormal

normal
abnormal

normal
abnormal

normal
abnormal

normal
abnormal

Figure 2: Comparison of anomaly score distributions for normal (blue) and abnormal (red) samples
in the test sets across datasets. Top: Distributions obtained from the baseline RD4AD (Deng & Li,
2022). Bottom: Distributions generated by our proposed model. Scores are normalized to [0,1]
for each subfigure to enable direct comparison. Our approach demonstrates enhanced separation,
leading to improved anomaly detection performance.

in AUC, F1 score, and accuracy, respectively, over the baseline. We observe consistent improve-
ments across all metrics on the Brain Tumor and ISIC datasets as well.

3.3.2 EFFECTIVENESS OF SCALE ADAPTIVE MECHANISM

Further incorporating the scale adaptive mechanism into the contrastive reverse distillation frame-
work leads to additional performance enhancements. On the Brain Tumor dataset, we observe im-
provements of 7.43%, 8.35%, and 9.83% in AUC, F1 score, and accuracy, respectively. The RSNA
dataset shows consistent gains (1.14% in AUC, 0.36% in F1 score, and 0.2% in accuracy), as does
the ISIC dataset (4.23% in AUC, 2.57% in F1 score, and 4.04% in accuracy). These results confirm
the importance of addressing scale variation in anomaly detection for medical images.

3.3.3 IMPACT OF NOISE TYPE AND INTENSITY

We evaluate our model’s performance using two types of noise for creating synthetic anomalies:
simplex noise and Gaussian noise. Table 3 presents the results, indicating that simplex noise gener-
ates more natural pseudo-anomalies that better align with anatomical structures in medical imaging
compared to Gaussian noise.

We further investigate the impact of varying simplex noise intensities on model performance. Fig-
ure 3 shows our method’s performance on the RSNA dataset as λ increases from 0.1 to 0.5. We
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Noise Type RSNA Brain Tumor ISIC
AUC F1 ACC AUC F1 ACC AUC F1 ACC

Gaussian 90.70 84.11 84.05 75.23 74.88 68.25 74.30 66.20 67.99
Simplex 91.01 84.05 83.40 98.88 96.52 96.50 83.10 72.07 75.60

Table 3: Comparative analysis of model performance under various noise types on all datasets.

Backbone RSNA Brain Tumor ISIC
AUC F1 ACC AUC F1 ACC AUC F1 ACC

Resnet-34 85.20 78.96 77.25 92.17 87.95 86.67 78.76 70.43 69.44
Resnet-50 88.45 82.15 81.25 94.16 89.81 89.00 80.83 71.28 71.96
Wide ResNet-50 91.01 84.05 83.40 98.88 96.52 96.50 83.10 72.07 75.60

Table 4: Quantitative performance comparison of multiple backbone architectures for all datasets.

observe that the intensity of simulated anomalies significantly influences model performance. Low
noise (λ = 0.1) appears insufficient to effectively emulate real abnormalities in medical images. The
model’s performance peaks at a moderate intensity (λ = 0.2). When λ reaches 0.5, our approach’s
performance drops sharply, suggesting that excessive noise may interfere with key medical features,
making it challenging for the model to distinguish between real pathological changes and excessive
image distortions.

The results demonstrate that the choice of noise type and intensity plays a crucial role in the effec-
tiveness of synthetic anomaly generation for improving anomaly detection in the proposed frame-
work.

3.3.4 QUANTITATIVE COMPARISON ACROSS DIFFERENT BACKBONES

Table 4 presents the performance of our model with various backbone architectures. Generally,
deeper and wider networks exhibit stronger representational capabilities, enhancing our model’s
ability to detect anomalies more precisely.

3.3.5 QUALITATIVE ANALYSIS

To qualitatively assess the discriminative capability of our framework, we visualize the distributions
of anomaly scores for normal and abnormal images within all datasets in Figure 2. The overlap
between normal and abnormal histograms represents samples from different categories that share
identical anomaly scores. A smaller overlap indicates a stronger discriminative capability of a model
in separating normal and abnormal instances. As evident from Figure 2, compared to the baseline
model, the proposed framework better separates normal and abnormal images, exhibiting superior
anomaly detection performance.

3.4 DISCUSSION

The performance difference between ISIC and Brain Tumor datasets arises from their inherent
structural complexities. The ISIC dataset contains multiple dermatological anomalies (melanoma,
melanocytic nevus, basal cell carcinoma, actinic keratosis, benign keratosis, dermatofibroma, and
vascular lesion) with subtle, often indistinct morphological features, challenging model discrimina-
tion. In contrast, Brain Tumor images reveal well-defined, high-contrast lesions with clear structural
boundaries, rendering anomaly detection more straightforward for models.

The Brain Tumor MRI dataset features highly variable tumor sizes across slices, making the SAM
module more impactful, whereas the RSNA X-ray dataset exhibits more consistent anomaly sizes,
thus limiting SAM’s comparative effectiveness. This differential performance aligns with the un-
derlying dataset characteristics and underscores the importance of scale adaptability across diverse
medical imaging contexts.
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λ AUC F1 ACC
0.1 87.05 80.52 79.7
0.2 91.01 84.05 83.4
0.3 89.77 83.29 83.25
0.4 90.03 83.34 82.55
0.5 87.08 79.87 79.05
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Figure 3: Effect of λ on model performance on the RSNA dataset. λ ranges from 0.1 to 0.5 in
0.1 increments, with higher values corresponding to increased simplex noise levels. Performance
metrics (AUC, F1, and ACC) are shown as λ increases left to right.

4 RELATED WORK

Reconstruction-based methods have emerged as a prominent approach in unsupervised anomaly
detection. Schlegl et al. (2017) pioneer the use of GANs for this purpose with AnoGAN, later
introducing f-AnoGAN (Schlegl et al., 2019), a faster variant employing an encoder to map images
to a latent space. In addition, various autoencoder architectures are explored, including variational
autoencoder (Zimmerer et al., 2018) and vector-quantized variational autoencoder (Naval Marimont
& Tarroni, 2021). To address the overgeneralization problem, Gong et al. (2019) propose a memory-
augmented autoencoder. Given an input image, they first obtain an encoded representation from the
encoder and then use it as a query to retrieve the most relevant memory items for reconstruction. Park
et al. (2020) exploit a memory module to record prototypical patterns of normal instances. Several
works (Rudolph et al., 2021; Gudovskiy et al., 2022; Yu et al., 2021) leverage normalizing flows,
enabling exact likelihood estimation for image modeling, and achieve good performance in anomaly
detection. For example, Gudovskiy et al. (2022) use a conditional normalizing flow framework, and
Yu et al. (2021) propose a 2D normalizing flow model for unsupervised anomaly detection and
localization.

Self-supervised learning (Jing & Tian, 2021) has also been applied to anomaly detection. Some
works train models to detect synthetic anomalies and directly apply them to real abnormalities. To
make synthesized anomaly images more natural, Tan et al. (2021) and Schlüter et al. (2022) integrate
Poisson image editing to seamlessly blend scaled patches of various sizes from separate images. This
creates a wide range of synthetic anomalies that are more similar to natural abnormalities than pre-
vious data augmentation strategies for self-supervised anomaly detection. Furthermore, two-stage
approaches are studied. For instance, Li et al. (2021) propose a simple strategy to generate synthetic
anomalies for anomaly detection by cutting an image patch and pasting it at a random location of a
large image. They then learn self-supervised representations by classifying normal and sythesized
abnormal data. Finally, a generative one-class classifier is built on the learned representations. Sohn
et al. (2021) learn self-supervised representations from normal data by solving proxy tasks, e.g.,
rotation prediction and contrastive learning, and then train one-class classifiers using the learned
representations.

Knowledge distillation from pre-trained models showcases promising results recently (Salehi et al.,
2021; Deng & Li, 2022; Batzner et al., 2024). Salehi et al. (2021) propose to use the distillation
of features at various layers of an expert network, pre-trained on ImageNet, into a simpler cloner
network. They detect anomalies using the discrepancy between the expert and cloner networks’
intermediate feature maps given an input image. Deng & Li (2022) devise a reverse distillation
paradigm, which is further explored in subsequent works (Deng & Li, 2022; Tien et al., 2023).

Recently, You et al. (2022) formulate universal anomaly detection and propose a Transformer-based
feature reconstruction model using a layer-wise query decoder to model complex multi-class normal
distributions.
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5 CONCLUSION

This paper presents a novel scale-aware contrastive reverse distillation model for unsupervised
anomaly detection. Our approach introduces a contrastive student-teacher framework comprising
a clean teacher encoder, a noisy teacher encoder, and a student decoder, coupled with a scale adap-
tation mechanism. This architecture enables our model to derive robust feature representations and
effectively address the scale variation issue inherent in anomalies. Extensive experiments on bench-
mark datasets demonstrate that the proposed method achieves state-of-the-art performance, under-
scoring its efficacy in unsupervised anomaly detection tasks. Our current approach relies on random
spatial sampling for noise generation. Future research directions include incorporating modality-
specific anatomical priors for anomaly localization in medical imaging. The exploration of adaptive
hybrid noise generation techniques presents another promising direction. These extensions would
enhance the realism of synthetic anomalies toward improved model performance.
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APPENDIX

Algorithm. We present detailed procedures for synthesizing abnormal images and training our
model in Algorithm 1 and Algorithm 2, respectively.

Inference Time and Paramters. We compare our model with competing methods in terms of
AUC, inference time, and memory usage at inference (see Figure 4). The focus on the inference
phase is particularly relevant due to its critical importance in clinical applications, where real-time
processing and memory efficiency directly impact the feasibility and deployment potential of a
model. The advantages of our model in these aspects make it a promising approach for practical
applications. We additionally report trainable parameter counts for our model and competing meth-
ods in Table 5.

Ours RD4AD RD++ ReContrast CFlow GAN Ensemble PatchCore UAE NSA

AUC 91.01 84.29 88.00 87.53 70.26 82.10 86.33 84.36 82.13
Params (MB) 264.4 263.5 272.8 527.9 288.5 381.46 275.6 256.3 271.2

Table 5: Comparative performance of anomaly detection methods on the RSNA dataset: AUC scores
and model complexity. Our approach achieves the highest AUC with a more parameter-efficient
design.
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Algorithm 1 Synthesize abnormal images
h is the height of the input image.
w is the width of the input image.
[a, b] represents the set {x ∈ R : a ≤ x ≤ b}
for epoch = 1 to n do

for xi in normal training set do
Get hnoise ⊆ [10, int(h/8)]
Get wnoise ⊆ [10, int(w/8)]
Get xstart, ystart ⊆ [0, h− hnoise], [0, w − wnoise]
Randomly generate simplex noise:
ϵ ∼ Simplex((hnoise, wnoise), N = 6, γ = 0.6)
ξ = zeros(h,w)
xend = xstart + hnoise

yend = ystart + wnoise

ξ[xstart : xend, ystart : yend] = ϵ
x′
i = xi + λ ∗ ξ (λ: the intensity of the added noise)

Training process
end for

end for

Algorithm 2 Pseudo-code of our approach in one epoch training
E ,S,B,D: Encoder, Scale Adaptation Module, Bottleneck, Decoder
uk, zk: Normal and synthetic anomalous features at block k
Optimizer = Adam
Load a mini-batch of normal and pseudo-abnormal samples
for x,x′ in train-dataloader do

Get encoder outputs for normal and pseudo-abnormal images at three blocks
u1,u2,u3 = E(x)
z1, z2, z3 = E(x′)
Get decoder outputs
v1,v2,v3 = D(B(u1,u2,u3))
α = S(B(u1,u2,u3))

L1 =
∑3

k=1 αk(1− sim(uk,vk))

L2 =
∑3

k=1 αk(1− sim(zk,vk))
L = L1/L2

L.backward
Optimizer.step

end for
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Figure 4: Performance comparison of anomaly detection methods. Evaluation metrics include:
AUROC (vertical axis), inference time (horizontal axis), and memory footprint (circle radius). Our
method achieves state-of-the-art performance, delivering the highest AUROC while demonstrating
superior computational efficiency. Specifically, our approach is 6x faster than PatchCore, 4x faster
than GAN Ensemble, 3x faster than CFlow, and 2x faster than NSA.

ROC Curves. We visualize the ROC curves to compare our method with the top-performing base-
lines across all datasets (see Figures 5, 6, 7).
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Figure 5: Comparison of ROC curves between our method and the top 5 anomaly detection methods
on the RSNA dataset.
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Figure 6: Comparison of ROC curves between our method and the top 5 anomaly detection methods
on the Brain Tumor dataset.
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Figure 7: Comparison of ROC curves between our method and the top 4 anomaly detection methods
on the ISIC dataset.
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