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Towards Energy-efficient Audio-visual Classification via
Multimodal Interactive Spiking Neural Network

XU LIU and NA XIA, Hefei University of Technology, Hefei, China
JINXING ZHOU, Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab
Emirates
ZHANGBIN LI, Hefei University of Technology, Hefei, China
DAN GUO, Hefei University of Technology, Hefei, China and Hefei Comprehensive National Science
Center, Hefei, China

The Audio-visual Classification (AVC) task aims to determine video categories by integrating audio and
visual signals. Traditional methods for AVC leverage Artificial Neural Networks (ANNs) that operate on
floating-point features, affording large parameter counts and consuming extensive energy. Recent research
has shifted towards brain-inspired Spiking Neural Networks (SNNs), which transmit audiovisual information
through sparser 0/1 spike features allowing for better energy efficiency. However, a byproduct of such sparsity
is the increased difficulty in effectively encoding and utilizing these spike features. Moreover, the spike
firing characteristics based on neuron membrane potential cause asynchronous spike activations due to the
heterogeneous distributions of different modalities in the AVC task, resulting in cross-modal asynchronization.
This issue is often overlooked by prior SNN models, resulting in lower classification accuracy compared
to traditional ANN models. To address these challenges, we present a new Multimodal Interaction Spiking
Network (MISNet), the first to successfully balance both accuracy and efficiency for the AVC task. As the
core of MISNet, we propose a Multimodal Leaky Integrate-and-fire (MLIF) neuron, which coordinates and
synchronizes the spike activations of audiovisual signals within a single neuron, distinguishing it from the
prior paradigm of SNNs that relies on multiple separate processing neurons. As a result, our MISNet enables
to generate audio and visual spiking features with effective cross-modal fusion. Additionally, we propose to
add extra loss regularizations before fusing the obtained audio-visual features for final classification, thereby
benefiting unimodal spiking learning for multimodal interaction. We evaluate our method on five audio-visual
datasets, demonstrating advanced performance in both accuracy and energy consumption.
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1 Introduction
Artificial Neural Networks (ANNs) have achieved significant success in artificial intelligence
applications such as computer vision [18], multi-modals [3, 9, 10, 40], by simulating the hierar-
chical structure of the visual cortex. However, their computational costs are extremely high [18].
A standard computer requires about 250 watts [31] of power to recognize objects and sounds,
whereas the human brain consumes only about 20 watts when simultaneously performing complex
tasks such as object and sound recognition, reasoning, control, and movement. Many real-world
platforms, such as smartphones and Internet of Things devices, face constraints in terms of re-
sources and battery life, which limits the implementation of deep neural networks [47]. To enable
intelligence on these platforms, it is of great significance to explore how to utilize the inherently
efficient computational paradigm of biological neural systems (i.e., brain-inspired computing) to
achieve low-power implementations of neural networks.

Biologically inspired Spiking Neural Networks (SNNs) offer distinct advantages such as
biological feasibility, event-driven sparsity, and binary activation [14], enabling them to achieve
artificial intelligence as efficient as brain-inspired computing [27, 51]. The activated spike feature
allows matrix multiplications to be converted into accumulation operations, further enhancing
computational efficiency [25]. Unlike traditional ANN-based methods, SNN-based methods perform
all forward computations entirely through binary 0/1 spike calculations, significantly reducing
power consumption on hardware platforms such as GPUs. In addition, the SNN architecture is
performed in an event-driven manner, which allows it to capture key information from dynamic
event changes and perform computations only when events occur (i.e., the triggering of spikes),
thus avoiding resource waste. Recent research has shown that SNNs have made significant progress
in fields such as computer vision [41] and natural language processing [1]. Particularly, SNN-based
architectures such as Spiking CNN [8] and Spiking Transformer [33, 46, 62] have demonstrated
low energy consumption while maintaining excellent performance in vision tasks.

Although SNNs have shown their effectiveness in various unimodal tasks, their application in
the multimodal domain remains relatively limited. In contrast to unimodal research tasks, the
exploration of multimodal tasks, necessitating utilization and fusion of multiple modalities, can
significantly enhance a model’s ability to understand and process complex scenarios, making it
an emerging and important research direction [12, 29]. Audio-visual Classification (AVC) is
a typical yet straightforward task, as shown in Figure 1(a), which involves the fusion of visual
(image) and auditory information for video classification, its practical applications include emotion
recognition in human-computer interaction [30], autonomous driving [52]. These scenarios demand
high multimodal fusion capabilities. Applying SNNs to these scenarios offers advantages such as
low energy consumption and ease of deployment on embedded devices, making the exploration of
SNN-based AVC methods highly significant [11, 55].
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Fig. 1. (a) Illustration of the Audio-visual Classification (AVC) task which aims to determine the video event
category by integrating audio and visual signals. (b) Prior ANN methods, for example, PMR [6], typically
use continuous float-point values to embed audio-visual features, leading to extensive energy consumption.
(c) The recent work, for example, SMMT [12], starts to employ SNN architecture whereas the audio and
visual features are embedded by discrete binary spikes (0 or 1). This helps to reduce the energy consumption.
However, we visualize the learned spike features and find they cannot satisfactorily capture key audio-visual
information related to the video event across the timeline, causing incorrect predictions. (d) In contrast, the
spike features learned by our proposed SNN-based method can effectively capture key audiovisual cues, such
as facial expressions and relevant audio spectrum, striking a balance between accuracy and energy efficiency.

Traditional ANN-based methods use full-precision floating-point representations for all for-
ward propagation, which requires substantial computational resources, as show in Figure 1(b).
In contrast, SNN-based methods execute all forward propagation solely through 0/1 spikes, signifi-
cantly reducing energy consumption in multimodal computations, as shown in Figure 1(c) and (d).
Additionally, SNNs can leverage their excellent event-processing capabilities to optimize the han-
dling of temporal information and dynamic changes in video data. Exploring the potential of
SNNs in this task holds great value and could further extend to other related multimodal tasks
[43–45, 50, 59].

However, directly applying SNNs to the multimodal AVC task is not easy. In traditional ANNs, as
shown in Figure 2(a), visual and audio modalities are processed through two encoders, which output
floating-point representations andmap them to the same continuous domain for representation [29];
these rich floating-point representations effectively facilitate multimodal fusion [35]. In contrast,
SNNs perform forward computation using 0/1 spikes, and their encoders extract simple spike
features, as shown in Figure 2(b), which are fundamentally different from continuous feature
representations. When integrating multimodal spike features using SNNs, two main challenges
arise: (1) Compared to floating-point features, the spike features composed of 0s and 1s are sparser
and coarser [62], making it more difficult to effectively encode pivotal cues from each modality.
(2) Due to the heterogeneity between the audio and visual modalities, differences in the processing
of these modalities lead to asynchronous spike emissions. This may lead to unsynchronized spike
activation between the audio and visual modalities. As a result, the model may make predictions
in advance according to the dominated activation from a single modality. For example, the prior
SNN-based method SMMT [12] in the AVC task directly fuses the spike features of audio and visual
modalities in the later stage but overlooks their asynchronous spike emissions across temporal
steps. As shown in Figure 1(c), the spikes generated by the audio modality effectively capture some
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Fig. 2. Examples of typical AVC task scenario, the dog appears only in a few frames, while the barking sound
continues throughout, leading to a notable difference in the responses of the visual and audio modalities:
(a) Prior ANN paradigms use separate encoders to represent video and audio s as floating-point features,
mapping them into the same feature space to extract effective floating-point representations; (b) Prior SNN
paradigms use two independent encoders to extract spike representations; however, due to differences between
the visual and audio modalities, spike activations are asynchronous across modalities, affecting the final
fusion outcome; (c) Our paradigm introduces a multi-round spike interaction mechanism in the AVC task.
Through multiple interactions, it synchronizes the barking audio spikes and the dog’s visual spikes to the
same spike timestep, achieving consistent spike activations across modalities and thereby yielding improved
results; (d) Prior methods in neuron-level only use two independent neurons to emit spikes, failing to capture
the relationships between multimodal spike signals; (e) Our method at neuron level utilizes MLIF to achieve
multimodal spike interaction, it can capture multimodal spike relationships.

key cues in the audio spectrum, while the visual modality emits a large number of irrelevant spikes.
This limitation may stem from the constraints of the spike generation paradigm: From a macro
level, this paradigm uses two independent spike encoders to extract spike features, resulting in
severe temporal misalignment between audio and visual spike sequences, as show in Figure 2(b),
which weakens the collaborative expression of bimodal features. For a micro level, this paradigm
employs independent spiking neurons to emit spikes for audio and visual modalities separately, as
show in Figure 2(d), causing the spike emissions of visual and audio modalities to be independent
of each other, ultimately impacting the optimization of fusion performance.

To address these issues, we design a novel multimodal neuron called the Multimodal Leaky
Integrate-and-fire (MLIF) neuron. This neuron, for the first time, integrates spike emissions
from two modalities at the neuron level while maintaining the efficiency of binary computa-
tions. MLIF is primarily utilized to process multimodal data and achieve synchronized spike
emissions. Unlike traditional Leaky Integrate-and-fire (LIF) neurons, the MLIF neuron in-
tegrates multimodal inputs within a single neuron. During the charging phase, MLIF config-
ures multimodal membrane potentials within a single neuron, and during the discharging phase,
these multimodal membrane potentials merge to emit spikes, as shown in Figure 2(e). Additionally,
multimodal membrane potentials accumulate within the neuron over time T and influence each
other. Through this approach, MLIF resolves the issue of asynchronous spike emissions caused by
using two independent LIF neurons. Based on the MLIF neuron, we have constructed a new spiking
multimodal paradigm and designed a novel Multimodal Interactive Spiking Neural Network
(MISNet) for AVC tasks, marking the first introduction of multimodal interaction into SNNs. As
shown in Figure 2(c), in MISNet, audio and visual modalities achieve spike interaction through
our designed multimodal spike interaction units, which regulate spike emissions from the audio
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and visual modalities to achieve synchronized spike emissions. Although the final multimodal
fusion occurs at the MISNet output, the multiple rounds of spike coordination in MISNet ensure
that the fused spikes do not depend on any single modality, effectively mitigating the issue of
imbalanced multimodal spike emissions. Furthermore, to more effectively learn the spike generation
process for each modality, we calculate separate target losses for each modality during the training
of MISNet and incorporate these losses as regularization terms. Through this joint optimization
strategy, MISNet learns to generate spike features that are most relevant to the inputs. Figure 1(d)
illustrates the spike generation process in MISNet, enabling the accurate generation of video and
audio features through 0/1 spikes. Our main contributions can be summarized as follows:

—We propose the MISNet, a new multimodal SNN-based network for the AVC task. Our MISNet
leverages multi-round interactions between audio and visual spike signals during forward
computation for more effective multimodal learning.

—We design the MLIF neuron, a unique computational paradigm of multimodal SNN unit, that
dynamically integrates and balances information from multiple modalities to emit unified
spike sequences for final classification.

—Extensive experiments on five AVC datasets confirm the effectiveness of our proposed MISNet.
Compared to existing SNN models and traditional ANN models, our architecture exhibited
superior performance with greater parameter efficiency and lower energy consumption.

2 Related Work
2.1 AVC
AVC [12] aims to identify and classify events and activities in videos using both auditory and
visual modalities, which is a fundamental research task in audio-visual learning [13, 21, 22, 26, 32,
53–55, 57–61]. AVC task is more complex than uni-modal audio classification or visual classification
problems due to the heterogeneity between different modalities. Effective audio-visual fusion
strategies are able to facilitate the AVC task. The early works simply adopt the recurrent neural
networks for audio-visual fusion [5]. Later methods design various attention mechanisms to achieve
the cross-modal fusion [29], whereas the multi-head attention proposed in Transformer [38] is
widely used. Recently, Zhou et al. propose a positive sample propagation strategy [56] to identify
and select only the highly relevant audio-visual pairs for fusion. Moreover, some works emphasize
on balanced audio-visual fusion [39, 42, 48], as well as research on more complex tasks enabled by
audio-visual multimodality, such as weakly supervised referring expression grounding [24] and
change captioning [36, 49]. Although these methods are effective and beneficial for improving
performance, they are mostly based on ANNs and are computationally intensive with high energy
consumption. In contrast, our approach addresses the AVC task by designing a simple SNNs
architecture striking a balance between accuracy and energy efficiency.

2.2 SNN
SNNs demonstrate substantial potential in the field of deep learning, mainly due to their neuron
modeling and learning rules that draw inspiration from real biological mechanisms [16]. SNNs
can effectively integrate techniques in typical ANNs, such as network architectures [62], training
methodologies [63], gradient backpropagation [15, 20], and normalization [4, 17], significantly
enhancing the performance in various tasks. Currently, the predominant training methods for
SNNs include conversion methods from ANNs to SNNs [28] and direct training methods [63],
with surrogate gradients being a popular approach for the latter. SNNs have shown comparable
performance to ANNs in various unimodal tasks, such as image classification [46, 62] and natural
language processing [1]. However, the complexity of multimodal tasks, especially the cross-modal
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Fig. 3. Overview of our proposed MISNet for AVC. Our MISNet is primarily composed of L stages of encoders
followed by a classification head. The encoder initially employs a Unimodal Spike Generation block, which
separately extracts the spike representations for audio and visual modalities. Then, the Multimodal Spike
Interaction block utilizes a coreMLIF neuron to integrate audio and visual spikes, achieving synchronized
multimodal spike learning.

heterogeneity in the studied AVC task, makes the SNNs less competitive than ANNs. For example,
SMMT [12] attempts to address the AVC task using a SNN. Although the utilization of SNN helps to
save energy, this method still suffers from large parameter overhead, and the performance/accuracy
is far from the state-of-the-art ANNmethod. In summary, prior works simply introduce binary spike
activations, which fails to consider the unique characteristics of the audio and visual modalities
and the cross-modal spike activation imbalance issue.

3 Method
As illustrated in Figure 3, our proposed MISNet primarily consists of L stages of encoders and a
classification head. Each stage is composed of two core components: (1) Unimodal Spike Generation,
which describes how high-dimensional mappings are applied to the audio and visual inputs,
encoding each modality into 0/1 spike features; (2) Multimodal Spike Interaction, which utilizes
our proposed MLIF neuron to enable multimodal interactive learning and generate synchronized
spike features. The Pooling layer is used to downsample the audio/visual spike features to reduce
dimensionality and computational load before sending them to the next stage. Finally, after the
multimodal interaction through the encoders, the generated audio and visual spike features are
concatenated and sent to a linear layer to predict the video category.

3.1 Preliminary
The fundamental unit of SNNs is the spike neuron, which accumulates membrane potential from the
input postsynaptic current and compares it to a pre-set threshold to generate spikes. The LIF [41] is
a typical neuron for spike generation. We provide an illustration of LIF in Figure 4(a). The whole
process can be formulated as a differential equation as follows:

g
3D (C)
3C

= −D (C) + '� (C). (1)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 21, No. 5, Article 144. Publication date: May 2025.



Towards Energy-efficient AVC via Multimodal Interactive SNN 144:7

Fig. 4. Illustration of the differences between MLIF and LIF. (a) Vanilla LIF neuron is used to process a single
modality, with a neuron handling the signals of that modality; (b) Vanilla LIF neuron is used for multimodality,
employing two independent neurons to process the signals of each modality separately; (c) Our proposed
MLIF neuron is designed for multimodality, capable of synchronous processing multiple modality inputs
within a single neuron.

Its iterative form can be represented by the following equations:
* [C] = (1 − 1

g
)* [C − 1] +� [C] , Charge

( [C] = Ψ (* [C] −+t ) =
{
1, if* [C] ≥ +t

0, otherwise
, Fire

* [C + 1] =* [C] −+C( [C] , Reset.

(2)

Specifically, the operations of the LIF neuron involve three key steps: (1) Charge: The neuron
integrates the input postsynaptic current C[t] and membrane time constant g , simulating the
process of a capacitor accumulating voltage over time, which leads to the accumulation of membrane
potential U[t]; (2) Fire: When U [t] reaches or exceeds the given threshold+th through the Heaviside
function Ψ(·), the neuron fires, emitting a spike; otherwise, no spike is emitted; (3) Reset : After a
spike is emitted, U [t] undergoes a reset and decay, simulating the recovery process of biological
neurons.

3.2 Unimodal Spike Generation
Given the visual frames and audio sequence, we first generate the unimodal spike representations
for each modality. This is achieved through the aforementioned LIF neuron and some learnable
layers including Conv2D and BatchNorm (BN ). Specifically, for the timestep C ∈ {1, 2, . . . ,) } in the
lth stage encoder ; ∈ {1, 2, . . . , !}, the model receives the output from the prior stage and generates
spike features for each modality. Let us denote the outputs of visual and audio modalities from the
prior ; − 1 stage as - [C];−1E ∈ R2;−1×ℎ;−1×F;−1 and - [C];−10 ∈ R2;−1×ℎ;−1×F;−1 , respectively. Here, 2;−1
represents the channel dimension of features, ℎ;−1 and F;−1 denote the height and width of the
feature map, respectively. At the first stage (; = 1), - [C]0E and - [C]00 correspond to the initial visual
and audio inputs, respectively. Then, the spike generation process can be described as follows:

� [C];< = BN(Conv2D;
< (- [C];−1< )),

( [C];< = LIF< (� [C];<),
(3)

where< ∈ {0, E} denotes the audio/visual modality and C[t] represents the postsynaptic current,
simulated through a learnable Conv2D layer to mimic synaptic firing. ( [C];< ∈ R2;×ℎ;×F; is the
generated spike binary features.
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3.3 Multimodal Spike Interaction
The unimodal spike representations ( [C];< are obtained independently. We further consider en-
hancing the multimodal interactions between audio and visual spike features to utilize the unsyn-
chronized spike activations across modalities.

As shown in Figure 3, the unimodal spike features at the lth stage (;< [C] are further processed
by N multimodal spike interactions. We name the multimodal interaction at nth round of the
lth stage as InteractCell;,= , where = ∈ {1, 2, ..., # } and ; ∈ {1, 2, ..., !}. Next, we provide details of
each InteractCell;,= . Notably, we abbreviate the superscript n in the following equations for ease of
expression. Specifically, the unimodal spike features ( [C];< are first passed through two SEW [8]
blocks, each comprising “Conv2D-BN -LIF” layers with a residual connection. This process can be
described as

$ [C];< = ( [C];< + (�, ((;< [C]),
(�, ((;< [C]) = LIF(BN (Conv2D(LIF(BN (Conv2D((;< [C])))))),

(4)

where $ [C];< ∈ R2;×ℎ×F is the output from the SEW blocks.
Next,$ [C];< (< ∈ {0, E}) is fed into our proposedMLIF neuron to update the spike representations

by considering cross-modal relations, written as

� [C];< =$ [C];< ·, ;
<,

( [C];E, ( [C];0 =MLIF(� [C];E,� [C];0),
(5)

where, ;
< ∈ Rℎ×F is a learnable weight matrix used to transform$ [C];< into the input postsynaptic

current � [C];< required for the multimodal interaction process. ( [C];E and ( [C];0 are the updated
visual and audio spike features, respectively. Next, we elaborate on the core MLIF neuron.

MLIF Neuron. As shown in Figure 4(c), unlike the traditional approach of using two LIF neurons
to process the multimodalities independently, like Figure 4(b), our proposed MLIF neuron processes
multimodal spike voltages and emits 0/1 spikes by jointly processing the postsynaptic current� [C];<
from multiple modalities, rather than firing independently. The operations of the MLIF neuron are
based on the multimodal postsynaptic current and corresponding membrane potentials, consisting
of four core steps: Multimodal Charge, Fusion, Fire, and Reset. In the following, we explain each step
in detail.

(1) Multimodal Charge. Since the changes of membrane potential are influenced by multiple
modalities, their dynamic fusion must be considered during the charging process. For the tth
timestep, given the input postsynaptic current from each modality � [C]< and the prior membrane
potential at C − 1 timestep * [C − 1]< , the membrane potential at tth timestep * [C];< can be
updated/charged as follows:

* [C];< =

(
1 − 1

g

)
* [C − 1];< +� [C];< , (6)

where g is a membrane time constant, empirically set to 0.2.< ∈ {0, E} denotes the audio or visual
modality.

(2) Multimodal Fusion. The above charging process still responds independently within each
modality. To achieve a genuine integration of membrane potentials from audio and visual modalities
simultaneously, we fuse* [C];E and* [C];0 through an automatic mechanism, formulated as

* [C]; =
[
U;E* [C];E ;U;0* [C];0

]
, (7)
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where U;E and U;0 are two learnable parameters, and [·; ·] represents the concatenate (Concat)
operation.* [C]; ∈ R22;×ℎ×F is the membrane potential after multimodal fusion.

(3) Multimodal Fire. After obtaining * [C]; , we can generate the spike ( [C]; by comparing * [C];
with a pre-set threshold+C . If* [C]; is greater than+C , the membrane potential will fire to generate
a positive spike (value +1); otherwise, the spike value will remain zero, written as

( [C]; = Ψ(* [C]; −+C ) =
{
1, if* [C]; ≥ +C
0, otherwise . (8)

Then, the obtained spike ( [C]; ∈ R22;×ℎ×F is split into two components, corresponding to the
updated audio spike ( [C];0 ∈ R2;×ℎ×F and visual spike ( [C];E ∈ R2;×ℎ×F , which can be further used
as the inputs of the next MLIF neuron, described as[

( [C];E ; ( [C];0
]
= B?8;C (( [C]; ). (9)

(4) Multimodal Reset. After the firing, it is necessary to reinitialize the neuron’s state, simulating
the periodic discharge and energy recovery of biological neurons, which is expected to recharge
and re-spike at the appropriate time in the future. Under the multimodal condition, the reset process
needs to be applied to each membrane potential * [C];< , allowing for adjustments of contributions
from each modality. The reset process can be operated following:

* [C + 1];< =* [C];< −+C( [C];< , (10)

where the initial membrane potential * [C];< is decayed by the multiplication of +C with activated
spike ( [C];< .

With the above principles, the processes of our MLIF neuron can be summarized as

* [C];< = (1 − 1
g
)* [C − 1];< +� [C];< , Multimodal Charge

* [C]; =
[
U;E* [C];E ;U;0* [C];0

]
, Multimodal Fusion

( [C]; = Ψ(* [C]; −+C ) =
{
1, if* [C]; ≥ +t

0, otherwise
,Multimodal Fire[

( [C];E ; ( [C];0
]
= B?8;C (( [C]; ),

* [C + 1];< =* [C];< −+C( [C];< , Multimodal Reset

(11)

where* [C − 1];< and � [C];< are the inputs of MLIF neuron, and ( [C]< is the generated spikes.

3.4 Model Training and Inference
As shown in Figure 3, the entire MISNet consists of L stages. Given the inputs at lth stage, i.e.,
- [C];−10 ∈ R�;−1×ℎ;−1×F;−1 and - [C];−1E ∈ R�;−1×ℎ;−1×F;−1 , the computation process for this stage can
be expressed as

- [C];0, - [C];E = Stage; (- [C];−10 , - [C];−1E |Θ; ), (12)

where ; = {1, 2, ..., !}. Θ; represents the learnable parameters for unimodal spike generation and
multimodal spike interaction at lth stage. - [C];< ∈ R2;×ℎ;×F; (< ∈ {0, E}) are the updated audiovi-
sual spike features. Let us denote H and W as the height, and width of the initial audio and visual
feature maps, we have ℎ; = �/2; andF; =, /2; . Channel dimension 2; is different in each stage.

The audio and visual spike features at the last Lth stage are concatenated to predict category
probability P[t] at tth timestep, computed as

% [C] = Linear(Pool(Concat(- [C]!0 , - [C]!E ))). (13)
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Here, % [C] ∈ R1×� (C is the total number of classes). In Equation (13), we use the Concat operation
as the default fusion strategy and we will perform an ablation study on other fusion methods in
Section 4.5.

Notably, as a SNN-based method, our proposed MISNet needs to successively process audio
signals and visual frames through multiple timesteps. The final prediction result can be calculated
by accumulating the outputs over T steps and dividing by T, formulated as, ? =

∑)
C=1 % [C ]
)

∈ R1×� .
Given the ground truth . ∈ R1×� , we can compute the MSE between p and Y as the basic loss,
written as

L<< ="(� (?,. ) . (14)

L<< regularizes the prediction obtained from multimodal fused spike features. Moreover, we
propose to add constraints on unimodal spike features since the video event usually appears in
both audio and visual modalities for the studied AVC task. To this end, we send the unimodal spike
features (- [C]!0 , - [C]!E ) at each timestep into independent linear layers to generate audio and visual
event probability, denoted as $ [C]0 and $ [C]E , respectively. Then, the probability across T time
steps can be computed by: >0 =

∑)
C=1$ [C ]0

)
and >E =

∑)
C=1$ [C ]E

)
. In this way, we can compute the

unimodal loss as follows:

L0 =MSE(>0, . ), LE =MSE(>E, . ). (15)

These loss items are beneficial for maximizing the retention of unimodal spiking during multimodal
optimization.

The total objective for model optimization is calculated by summarizing the above three losses:

L = L<< + V0L0 + VELE . (16)

Notably, in the inference phase, only the predictions obtained from the multimodal spikes (i.e., p)
are used. The final prediction can be determined by identifying the category having the highest
probability value. We provide a comprehensive overview of our MISNet in Algorithm 1.

4 Experiments
4.1 Datasets
To demonstrate the efficacy and efficiency of our MISNet, we conduct experiments on two audio-
image datasets, following prior works [12, 23]: CIFAR10-AV [12], Urbansound8K-AV (Ub8k-AV) [12],
and the audio-visual sensor datasets MNIST-DVS and N-TIDIGITS (M&N) [23].

Next, we additionally consider more complex audio-video datasets, such as CREMA-D [2] and
AVE [34], to further evaluate the applicability ofMISNet.TheCREMA-D dataset includes 6 emotional
categories with a total of 7,442 clips, randomly divided into 6,698 training samples and 744 testing
samples. The AVE dataset contains 28 event categories and 4,143 10-second videos.
Audio-visual Data Preprocessing. For the audio modality, we convert it into a Mel spectrogram.

For the visual modality, we preprocess it following established standards [12, 46, 62]. For both
the audio and video modalities, we set data to different input sizes across datasets: 32 × 32 for
CIFAR10-AV, 96 × 96 for Urban8K-AV, and 128 × 128 for both CREMA-D and AVE. In CREMA-D
and AVE, we extract 10 frames from each video clip and randomly select 4 frames to construct the
training dataset.

4.2 Experimental Setup
MISNet Variants. We constructed four versions of the model—XS, S, L, and XL—which differ in
channel dimensions and the number of stacked layers (see Table 1 for details). MISNet-L/XL can
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Algorithm 1: MISNet for AVC

achieve better performance and is suited for more complex multimodal audio-visual tasks, offering
improved handling of high-dimensional, high-complexity input data. However, its parameter count
and computational complexity also increase accordingly. On the other hand, XS/S versions are
optimized for simpler tasks, with reduced parameters and lower computational demands.
Implementation Details. In all comparison experiments, we set U;0 = U;E = 0.5 according to

Equation (9), and these parameters are initialized to 0.5 and subsequently updated and optimized
through gradient descent during training. All models are trained using a mini-batch size of 32 with
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Table 1. Detailed Architecture of MISNet Variants, Illustrating
the Number of Stages !, the Channel Mappings for Each Stage
({21, 22, . . . , 2; }), and the Number of InteractCell per Stage

Model L {21, 22, . . . , 2!} InteractCell ×#
MISNet-XS 3 {64, 128, 256} {×2,×2,×1}
MISNet-S 3 {64, 128, 256} {×2,×2,×2}
MISNet-L 4 {64, 128, 256, 512} {×2,×2,×2,×1}
MISNet-XL 4 {64, 128, 256, 512} {×2,×2,×2,×2}

Fig. 5. Illustration of how the SNN processes different data datasets in different timesteps) , Left : Audio-video
classification datasets (audio-visual sensor datasets), including CREMA-D [2], AVE [34], and MNIST-DVS,
and N-TIDIGITS [23], where each keyframe and spectrogram of the input is processed as an input for a
timestep C ; Right : Audio-image classification datasets, including CIFAR10-AV [12] and Urbansound8k-AV [12],
follow prior work [12, 23], where the same image and audio are input across different timesteps C .

the SGD optimizer, employing a momentum of 0.9 and a weight decay of 1 × 10−4. The learning
rate starts at 1 × 10−3 and gradually decays to 1 × 10−5.

Surrogate Gradient. Due to the non-differentiability of the Fire operation in Equation (2) and the
Multimodal Fire operation in Equation (11), MISNet follows previous surrogate gradient training
methods during backpropagation, with Sigmoid selected as the surrogate function.

Platform. All experiments are conducted on a single NVIDIA A100 for both training and evalu-
ation. We implement our model using PyTorch, with the SNN part utilizing the SpikingJelly [7]
framework.
Timesteps. The SNN is set by default to emit spikes over a total of T timesteps. For AVC tasks,

the input at each timestep C ∈ ) is different. Therefore, in the audio-video dataset, each timestep
corresponds to a keyframe. Figure 5 illustrates the variation in audio-visual input across different
time steps.

4.3 Performance Comparison with Prior Methods
Visual-only Dataset. As shown in Table 2, we also compared MISNet with recent unimodal SNN
architectures, including Spikeformer-4-384 [62], DSpikeformer-4-384 [46], and Resformer-Ti [33],
which are primarily used for visual classification. The comparison results indicate that MISNet not
only requires fewer parameters than these models but also significantly outperforms them. For
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Table 2. Performance Comparison of Existing SNN-base Methods on Visual-only and
Audio-visual Classification

Modality Architecture Venue Param (M) ↓ Timestep (T ) Acc (%) ↑
CIFAR10 Ub8k

Visual-only

ResNet18 [20] NIPS 2021 11.69 2 93.13 -
Spikeformer-4-384 [62] ICLR 2023 9.32 4 95.19 -
DSpikeformer-4-384 [46] NIPS 2023 9.32 4 95.60 -

Resformer-Ti [33] NIPS 2023 10.79 4 96.24 -

MISNet-XS (ours)

-

4.06 4 96.32 89.04
MISNet-S (ours) 7.33 4 96.61 90.11
MISNet-L (ours) 19.63 4 96.82 91.05
MISNet-XL (ours) 31.00 4 97.06 91.92

Modality Architecture Venue Param (M) ↓ Timestep (T ) Acc (%) ↑
CIFAR10-AV Ub8k-AV

Audio-image

SMMT [12] TCDS 2023 9.99 1
4

93.53
97.01

94.30
96.85

MISNet-XS (ours)

-

4.06 1 99.03 96.91
MISNet-XS (ours) 4.06 4 99.53 97.71
MISNet-S (ours) 7.33 1 98.62 97.94
MISNet-S (ours) 7.33 4 99.15 98.09
MISNet-L (ours) 19.63 1 99.18 98.52
MISNet-XL (ours) 31.00 1 99.26 98.96

Our method achieved the best results on all datasets. The bold indicates the best performance.

instance, compared to Resformer-Ti, which achieves an accuracy of 96.24% at) = 4, our MISNet-XS
reaches an accuracy of 96.32%. This further emphasizes that using MISNet can achieve better results
compared to unimodal modals without requiring a large number of parameters.

Audio-image Datasets. Table 2 presents a comparison between MISNet and previous SNN-based
models on Audio-image datasets, showing that MISNet outperforms the prior SMMT on both
CIFAR10-AV and Urbansound8k-AV (Ub8k-AV) datasets. Specifically, MISNet-XS achieves a 5.5%
improvement in accuracy over SMMT on CIFAR10-AV and a 2.60% improvement on Ub8k-AV, using
fewer time steps T. Additionally, another configuration, MISNet-S, although slightly increased
in parameter count compared to MISNet-XS, still requires fewer parameters than SMMT while
achieving significantly better performance.

Audio-visual Sensor Dataset. The experimental results on the Audio-visual Sensor M&N dataset
shown in Table 3 indicate that both MISNet-XS and MISNet-S reach an accuracy of 99.98%, sur-
passing prior methods SMMT [12] and EMSNN [23].

Intuitively, while SMMT performs well on CIFAR10-AV, it performs less effectively on the more
complex Ub8k-AV dataset. This is mainly due to SMMT’s use of two spiking encoders to extract
spiking features, which are then fused via an attention mechanism. The complexity of images
in Ub8k-AV makes it challenging for the visual modality to process these inputs effectively. In
contrast, our MISNet demonstrates stable performance across both datasets.
Audio-video Datasets. As shown in Table 4, to further validate the effectiveness of MISNet,

especially on complex audio-visual datasets, we conducted additional experiments on audio-video
datasets (CREMA-D and AVE). The PMR [6] and QMF [50] methods are ANN-based approaches.
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Table 3. Performance Comparison on the M&N Dataset, Where MISNet Achieves
a 99.80% in MISNet-S/L/XL Configurations

NNs type Structure Method Acc (%) ↑

SNN

CNN-RNN EMSNN [23] 99.10
Multi-model Transformer SMMT [12] 99.82

CNN MISNet-XS (ours) 99.88
CNN MISNet-S (ours) 99.98
CNN MISNet-L (ours) 99.98
CNN MISNet-XL (ours) 99.98

The bold indicates the best performance.

Table 4. Performance Comparison of State-of-the-art ANN and SNN Methods on AVC,
Demonstrating That MISNet Significantly Outperform ANNs and Other SNN Methods

NNs type Method Venue Param (M)↓ Acc (%) ↑
CREMA-D AVE

Concat [6] CVPR 2023
22.36

51.70 65.40
Concat+Drop (audio) [6] CVPR 2023 54.40 66.40

ANN Concat+Drop (visual) [6] CVPR 2023 53.30 66.20

PMR [6] CVPR 2023 22.36 61.10 67.10
QMF [50] ICML 2023 63.71 -

SMMT [12] TCDS 2023 9.99 62.50 51.78

MISNet-XS (ours)

-

4.06 66.45 58.44
SNN MISNet-S (ours) 7.33 68.72 65.31

MISNet-L (ours) 19.63 75.22 67.24
MISNet-XL (ours) 31.00 77.14 68.04

The bold indicates the best performance.

As anticipated, MISNet achieved optimal results on both CREMA-D and AVE. For example, on
the CREMA-D dataset, MISNet-S reached an accuracy of 68.72% using only 7.33M parameters,
outperforming PMR [6] and QMF [50] by 7.61% and 5.08%, respectively. Additionally, we further
explored the results of MISNet-L/XL. MISNet-L achieved an accuracy of 75.22% on the CREMA-D
dataset and 67.24% on the AVE dataset. MISNet-XL achieved even higher performance, reaching
77.14% on CREMA-D and 68.04% on AVE.The results indicate that MISNet significantly outperforms
ANN-based methods and the prior SMMT [12] in handling complex, multi-faceted AVC tasks,
especially on datasets containing sequential frames. This superior performance is largely attributed
to MISNet’s unique multimodal spike interaction mechanism and its remarkable capability in
temporal sequence capture, enhancing its effectiveness in processing dynamic audio-visual data.

4.4 Energy Estimation Comparison with Prior Methods
Table 5 highlights the significant advantages of MISNet in terms of energy efficiency and accuracy.
As a high-efficiency neural network architecture, MISNet primarily transmits feature maps through
sparse discrete spikes during forward propagation, effectively reducing energy consumption. We
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Table 5. Energy Consumption Comparison on the Ub8k-AV and CREMA-D Datasets Shows
That MISNet Achieves High Accuracy with Excellent Energy Efficiency

Method Ub8k-AV CREMA-D

Acc (%) ↑ Energy (mJ) ↓ Acc (%) ↑ Energy (mJ) ↓

ANN PMR [6] - - 61.10 266.60
QMF [50] - - 63.71 266.60

SNN SMMT [12] 96.85 3.99 62.50 5.78
MISNet-XS (ours) 97.71 0.97 66.58 1.32
MISNet-S (ours) 98.09 1.76 68.72 2.41
MISNet-L (ours) 98.52 2.55 75.22 4.58
MISNet-XL (ours) 98.96 4.23 77.14 6.88

The bold indicates the best performance.

Table 6. Ablation Study on the Final Classification Fusion Methods in the
Ub8K-AV Dataset (Acc %), as Described in Equation (13), Where MISNet
Consistently Outperforms SEW-ResNet (Two Independent Encoders for

Spike Emission) across All Fusion Methods

Architecture Fusion
Sum Hadamard MLP Attention Concat

MISNet-S 98.34 99.18 99.18 99.58 98.09

SEW-ResNet18-EF 90.23 88.63 88.21 87.65 89.69
SEW-ResNet18-LF 85.72 85.21 89.21 90.73 89.41

EF/LF indicate early/late fusion. The bold indicates the best performance.

followed previous studies [19, 47] in estimating the energy consumption of SNNs by converting
FLOPs into energy units. Firstly, the results indicate that the energy consumption of SNNs is
significantly lower than that of ANNs. For example, on the CREMA-D dataset, MISNet-XS consumes
only 1.32 mJ, achieving 2.8% higher accuracy than the ANNmethod, while its energy consumption is
less than 1% of the ANN. In addition, compared to similar SNN-base like SMMT, MISNet also exhibits
a clear energy efficiency advantage. For instance, on the CREMA-D dataset, SMMT consumes 5.78 mJ
with an accuracy of 62.50%, while MISNet-XS consumes only 1.32 mJ and achieves an accuracy of
66.58%. MISNet-S, with an energy consumption of 2.41 mJ, further improves accuracy to 68.72%.
These results further confirm that MISNet demonstrates excellent energy-efficient when handling
multimodal data, thanks to its use of sparse discrete spikes in feature maps for forward propagation.

4.5 Ablation Study
Ablation Study onMLIF. Figure 6 presents the results of the ablation study on the internal structure of
MLIF, applying various modification schemes. Specifically, Ab1 denotes the removal of multimodal
charging in MLIF, directly performing multimodal fusion during the charging phase, effectively
reducing it to a single LIF neuron for processing multimodal inputs; Ab2 indicates the removal
of both multimodal fusion and firing operations, resulting in two independent LIF neurons; Ab3
represents the default MLIF neuron.
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Fig. 6. Ablation study of MLIF Internal: Ab1–Ab3 represent the progressive removal or replacement of certain
operations within MLIF, followed by observing their impact on the final classification results.

In Ab1.1 through Ab1.3, we explore different fusion methods during the charging phase, including
Concat, MLP, and Attention. The results in Figure 6 indicate that the default MLIF (Ab3) achieves
the best performance. When switching to Ab1, accuracy decreases as � [C]0 and � [C]E are directly
fused into a single membrane potential for discharge and reset. Although an accuracy of 93.08% is
still achieved on the Ub8k-AV dataset, this is 4.2% lower than MLIF; this performance gap persists
even with MLP or Hadamard fusion methods. The CREMA-D dataset shows a similar trend, further
confirming that spike firing through multimodal membrane potential accumulation is superior to
direct fusion of inputs into a single LIF.

The results for Ab2 indicate that removing both multimodal fusion and firing functions leads
to two independent LIF neurons firing spikes, with the poorest performance. As expected, the
two modalities fire independently, lacking a coordination mechanism, resulting in suboptimal
performance. Furthermore, as shown in Figure 6, Ab2.1–Ab2.3, testing any fusion method within
Ab3 yields poor results.

In Ab3.1–Ab3.3, we explore the effects of different fusion methods when fusion* [C]0 and* [C]E
into U [t]. In addition to the default Concat method, we also test MLP and Attention. The results
show that MLP fusion (Ab3.2) achieves the best performance, with consistent results across the
CREMA-D and Ub8k-AV datasets. Specifically, using the MISNet-L model, accuracy on the CREMA-
D dataset reaches 78.24%, while on the Ub8k-AV dataset, it reaches 98.01%, further validating
the effectiveness of different fusion methods for synchronizing multimodal membrane potentials
in MLIF.
Ablation Study on Fusion Methods. To demonstrate the effectiveness of multimodal spike inter-

action in MISNet, we aim to show that its performance is not influenced by the fusion method
used in the final classification. The results are shown in Table 6. Therefore, in Equation (13), we
replaced the Concat fusion method with Sum, Hadamard, MLP, and Attention and conducted tests.
Compared with spike-based SEW-ResNet-18 [8] (which uses two independent encoders to extract
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Table 7. Ablation Study of MLIF Neuron in MISNet-L
on CREMA-D at ) = 6, Demonstrating That MLIF
Significantly Enhances Effectiveness with Minimal
Parameter Increase, Even without the SEW Block

for Each Stage

Ab. SEW block MLIF Param (M) Acc (%)

#1 - - 3.11 67.88

#2 Ø51 - 19.70 62.55

#3 - Ø51 3.12 72.72

#4 Ø51 Ø51 19.68 76.19

The bold indicates the best performance.

Table 8. Ablation Study of MLIF Neuron
and Training Loss in MISNet-L on the
CREMA-D at ) = 6, Demonstrating

Significant Performance Improvements
with the Addition of MLIF and Further
Enhancements When Combined with

L0 + L1

Ab. MLIF LE + L0 Acc (%)

#1 - - 56.42

#2 - Ø51 62.55

#3 Ø51 - 66.80

#4 Ø51 Ø51 76.19

spike features and examines Early Fusion (EF) and Late Fusion (LF) effects), the experimental
results show that MISNet performs well across all tested fusion methods, achieving the highest
accuracy of 99.58% with Attention. Additionally, Sum, Hadamard, and Concat achieved accuracies
of 98.34%, 99.18%, and 98.09%, respectively, significantly outperforming SEW-ResNet-18. Moreover,
MISNet-S shows a notable advantage when using Sum, improving by 8.11% and 12.62% compared
to SEW-ResNet18-EF and SEW-ResNet18-LF, respectively. These results indicate that MISNet’s
efficiency does not rely on a specific fusion method, further validating that our proposed multimodal
spike interaction method outperforms independent spike emission approaches.

Ablation Study on Multimodal Spike Interaction. The multimodal spike interaction module, Inter-
actCell, consists of two components: the SEW block and MLIF. To explore the relative contributions
of these components, we conduct ablation experiments within the MISNet-L architecture, removing
the SEW block and MLIF individually and observing their impact on performance. The results,
shown in Table 7, provide a detailed view of the model’s performance under different configurations.
We find that even with the SEW block residuals removed, the model still achieves an accuracy of
72.72% by retaining only the MLIF module. In contrast, removing the MLIF module and retaining
only the SEW block causes accuracy to drop to 62.55%. This indicates that MLIF contributes more
significantly than the SEW block in multimodal spike interaction. Additionally, although MISNet-L,
as a deeper architecture, should theoretically benefit from the addition of SEW block residuals, our
results show that even with a deeper structure, removing MLIF leads to a sharp drop in performance,
underscoring the critical role of MLIF in multimodal interaction.

Additionally, to further validate the effectiveness of MLIF, we explore its impact in conjunction
with the regularization loss during the training of MISNet-L. We conduct experiments by individu-
ally removing these two modules. The results are shown in Table 8. When the regularization loss
L0 + LE is removed, the model’s performance declines but still achieves an accuracy of 66.8%. In
contrast, if only the regularization loss is retained while removing MLIF, the performance drops
to 62.55%. If both components are removed simultaneously, the model’s final performance is just
56.42%. These results further demonstrate the effectiveness of MLIF in enhancing the performance
of multimodal SNNs during training.

Ablation Study on Timestep. Additionally, we explore enhancing performance by increasing the
number of frames, specifically by increasing T. The evaluation results for T set to 5 and 6 are
shown in Table 9, where we can see that performance significantly improves with the increase of T.
Specifically, MISNet-S achieved accuracy of 69.99% and 70.12% on the CREMA-D dataset for ) = 5
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Table 9. Ablation Study of Timesteps in
MISNet-L on CREMA-D and AVE

Architecture Timestep Acc (%)

CREMA-D AVE

MISNet-S 5 69.99 65.22
6 70.12 66.81

MISNet-L 5 76.19 67.52
6 76.38 68.81

MISNet-XL 5 78.29 68.31
6 78.56 69.42

It is demonstrated that increasing key frames can indeed
significantly enhance the performance of SNNs on audio-
video datasets. The bold indicates the best performance.

Table 10. Ablation Study of MLIF Neuron
in MISNet-L on CREMA-D

(V0, VE) Acc (%) (V0, VE) Acc (%)

(0.1, 0.9) 76.11 (0.6, 0.4) 76.11

(0.2, 0.8) 76.71 (0.7, 0.3) 75.51

(0.3, 0.7) 75.30 (0.8, 0.2) 73.82

(0.4, 0.6) 76.11 (0.9, 0.1) 72.31

(0.5, 0.5) 76.38

Various combinations of (V0, VE ) were tested
during training, with results indicating that the
optimal setting is (V0, VE ) = (0.5, 0.5) . The bold
indicates the best performance.

and ) = 6, respectively. Meanwhile, the performance of MISNet-L also continued to improve with
the increase in T, ultimately reaching 76.38%. This trend was similarly observed on the AVE dataset.

Ablation Study on V0 and VE . During training, the hyper-parameters V0 and VE have a significant
impact on performance. To explore the effect of different combinations of V0 and VE on performance,
we evaluate various combinations and their effects on model performance. The results are shown
in Table 10, indicating that different combinations of V0 and VE have a notable impact on the
outcomes. For example, increasing V0 led the model to overly rely on the audio modality during
training, resulting in faster convergence but insufficient performance in handling visual information,
ultimately affecting the final classification accuracy.

Ablation Study on SEW Blocks. The experimental results in Table 11 demonstrate that MISNet with
SwinT blocks consistently outperforms its SEW counterpart across datasets, including CIFAR10-
AV, Ub8k-AV, and CREMA-D. Notably, on Ub8k-AV, MISNet-XL achieved 98.97% accuracy, and
on CREMA-D, it reached 77.56%. The average accuracy further highlights the advantage, with
MISNet-XL achieving 69.10% compared to SEW’s 68.04%.These results underscore the SwinT block’s
effectiveness and MISNet’s adaptability to both CNN and ViT-based architectures.

4.6 Qualitative Analysis
t-SNE Visualization. To demonstrate that the interaction strategy enhances the representational
capability of spike features, Figure 7 illustrates the spike distributions of SEW-ResNet and MISNet-L
after Concat fusion on the CREMA-D dataset, visualized using t-SNE [37]. The visualization displays
six categories from CREMA-D, each represented by a distinct color, with “sad” shown in yellow.
The visualizations were performed at C = 1, C = 2, and C = 3. We are surprised to find that MISNet
can effectively distinguish the six categories using only discrete features. Despite these discrete
representations being sparse and discrete, they do not hinder MISNet-L from exhibiting high
intra-category compactness and inter-category separability as early as C = 1, a trend that continues
through C = 2 and C = 3. In contrast, SEW-ResNet, which also uses spike features, demonstrates
poorer performance. This observation indirectly validates our hypothesis that the multimodal
interaction fusion strategy based on MLIF can significantly enhance the quality of spike features,
thereby improving model performance.
Spike Activity. To further demonstrate the effectiveness of MLIF in multimodal spike emission

and in alleviating the imbalance between modalities, we record the spiking activity of the 17th
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Table 11. The Ablation Study on the SEW Blocks

Block type Method Dataset
CIFAR10-AV Ub8k-AV CREMA-D AVE

SEW blocks

MISNet-XS 99.53 97.71 66.45 58.44
MISNet-S 99.55 98.09 68.72 65.31
MISNet-L 99.68 98.61 75.22 67.24
MISNet-XL 99.86 98.68 77.14 68.04

SwinT blocks

MISNet-XS 99.63 98.13 67.87 58.80
MISNet-S 99.65 98.84 69.73 66.42
MISNet-L 99.78 98.89 76.61 68.92
MISNet-XL 99.88 98.97 77.56 69.10

Best results are in bold, runner-up results are marked in gray . SwinT blocks represent Swin
Transformer blocks.

Fig. 7. Qualitative comparison of t-SNE visualization of fused spikes on the CREMA-D test data. SEW -ResNet
employs LF. Different colors represent different categories. MISNet, using only discrete spike features, achieves
clear spatial separation of each category at C = 1.

sample in the CREMA-D test set. For comparison, we also provide the spiking activity of MISNet
without MLIF. The results in Figure 8 show that MLIF effectively coordinates the spiking activity of
both modalities, achieving a relative balance. In contrast, the spiking activity without MLIF exhibits
significant imbalance and disorder, with the audio modality firing much more frequently while the
video modality fires significantly less.

Spike Features. As shown in Figure 9, we conducted a case study of the spike feature maps on the
Ub8k-AV and AVE datasets, comparing them with SMMT. For the Ub8k-AV dataset, we set ) = 1,
while for the AVE dataset, we set) = 5 to visualize the spike feature maps in Stage 1. The results of
the spike features indicate that, compared to SMMT, which uses independent dual encoders, MISNet
adopts an interactive dual-encoder design. This allows the two pathways to work collaboratively,
effectively activating spike features in key regions and successfully capturing critical information
from input images and audio. In contrast, SMMT, due to the lack of interaction between its encoders,
fails to achieve similar performance in these aspects.This further demonstrates thatMISNet, through
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Fig. 8. Qualitative comparison of final-stage spike activity at each timestep C of MISNet with and without
MLIF. The vertical axis represents the neuron index. It indicates that, compared to the w/o MLIF interaction,
with MLIF interaction can effectively improve the spike firing rate at each C in the visual modality, thereby
alleviating the issue of spike firing imbalance.

Fig. 9. Case study visualizes the discrete spike feature maps on the Ub8k-AV () = 1) and AVE () = 5)
datasets, demonstrating that the spike features of MISNet effectively focus on key regions. Notably, in the
more challenging AVE dataset, SMMT [12] fails to effectively focus on these important regions, resulting in
suboptimal classification performance. In contrast, MISNet is able to capture the most critical classification
areas within the video and accurately identify key audio segments.

its interactive design, can achieve superior performance in AVC tasks by relying solely on discrete
spike features, while avoiding the resource overhead associated with floating-point representations
in traditional ANNs.
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5 Conclusion
In this work, we propose an effective interactive architecture based on SNNs, called MISNet,
aimed at efficiently conducting multimodal audiovisual spike learning. MISNet enhances the spike
emission effects of multimodal data through multi-round interactions using MLIF during forward
propagation. Additionally, to further optimize the effective extraction of spike features for each
modality during training, we introduce an independent optimization regularization mechanism. We
mainly address two issues: (1) effectively extracting spike features from SNNs in AVC tasks; and (2)
addressing the modality imbalance problem caused by the heterogeneous distribution of different
modalities and the spike firing characteristics of SNN neurons’ membrane potential, which prior
works often overlook. Experimental results demonstrate that MISNet performs well on multiple
audiovisual datasets; further results on audio-video datasets provide additional evidence of MISNet’s
effectiveness, and ablation studies validate the efficacy of MLIF. In the future, we will continue to
explore the application of SNNs in multimodal learning, aiming to design more general solutions.
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