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ABSTRACT

Irregular multivariate time series (IMTS) present unique challenges due to non-uniform in-
tervals and different sampling rates. While existing methods struggle to capture both long-
term dynamics and cross-channel dependencies under such irregularities, we tackle this by
formulating time series forecasting as a conditional generation problem and introducing
FITS, a conditional diffusion model for IMTS forecasting that leverages pseudo-future ex-
ogenous covariates. Our approach incorporates two key innovations. First, we propose a
novel entropy-aware adaptive patching scheme that generates data-driven segments with
dynamic boundaries determined by the information density. This scheme overcomes the
limitations of traditional fixed-length or fixed-span segmentation in preserving continu-
ous local semantics and modeling inter-time series correlations. Second, we develop a
transformer-based prior knowledge extractor that captures forward-looking covariate de-
pendencies via a novel cross-variate attention mechanism. The transformer structure is in-
tegrated into the conditional diffusion generative process as a unified framework, enabling
precise distributional forecasting for IMTS. Extensive experiments on multiple datasets
with four evaluation metrics validate the effectiveness of FITS.

1 INTRODUCTION

Time series forecasting (TSF) plays a crucial role in numerous real-world applications, facilitating data-
driven decision-making across diverse fields. It is widely utilized in domains such as stock price prediction
(Li et al., 2024a), weather prediction, transportation planning (Guo et al., 2022), and healthcare. Many
approaches, such as autoregressive models (Salinas et al., 2020) and sequence-to-sequence modeling (Wen
et al., 2017), frame forecasting as a conditional generative task. In particular, diffusion-based generative
models have attracted considerable attention owing to their capabilities in image, video, and text genera-
tion (Ho et al., 2020a; Dhariwal & Nichol, 2021; Kong et al., 2021).

Most existing time series diffusion models are designed for regularly sampled time series, such as Li et al.
(2024c); Shen et al. (2024); Wang et al. (2025), however, when dealing with sparse and irregularly observed
data, there are several obstacles: (1) how to capture irregularities in intra-series dependencies and asyn-
chronies in inter-series correlations amid varying time intervals between adjacent observations; (2) how to
extract critical insights from all available historical data, which can then serve as prior knowledge to capture
covariate dependencies in both forward and reverse processes within the diffusion model. While prior studies
such as Li et al. (2024b) and Shen & Kwok (2023) have proposed effective conditional embeddings to guide
the diffusion process, when the conditional inputs (e.g., historical observations) are highly sparse, models
face challenges in extracting adequate contextual information as they are unable to capture the temporal
dependencies, compromising the reliability of time series prediction.
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To this end, we propose a conditional diffusion model for irregular time series forecasting with pseudo-
future exogenous covariates (FITS), which integrates a transformer-enhanced modeling approach to capture
the forward - backward covariate dynamics. It then leverages this model to generate pseudo forecasts of the
target variable, which essentially serve as conditional guidance for generating the unobserved segments of
sparse time series, supporting downstream prediction tasks (Fig. 1).

Figure 1: The comparison of regular multivariate time series forecasting and IMTS forecasting frmework
considered in this work. (a) The goal of regular multivariate time series forecasting is to simultaneously
forecast all the variables in the system. (b) The goal of this work is to forecast the sparse and irregularly
observed target time series, given all the external covariates.

Our contributions are summarized as follows: We introduce FITS, a conditional diffusion model designed
for forecasting sparse and irregularly observed time series. Specifically: (1) FITS incorporates an adaptive
entropy-based patching approach tailored to irregular time series, which leverages local semantic granulari-
ties and enables more accurate modeling of inter-series correlations. (2) FITS also employs a transformer-
based predictive model learned from external covariates, equipped with forward-looking cross-variate at-
tention mechanisms. During the reverse diffusion process, this learned model is leveraged as a conditional
representation to generate accurate probability distributions of future time series. (3) In our experiments,
besides standard evaluation metrics such as mean squared error (MSE) and mean absolute error (MAE), we
employed Prediction Interval Coverage Probability (PICP) (Yao et al., 2019) and Quantile Interval Coverage
Error (QICE) (Han et al., 2022) as metrics for the probabilistic multivariate time series forecasting task.
Extensive experiments demonstrate that FITS outperforms state-of-the-art time series diffusion models and
performs better than or comparable to various advanced time series prediction models.

2 RELATED WORK

2.1 IRREGULAR MULTIVARIATE TIME SERIES FORECASTING

Existing works have primarily focused on IMTS classification (Yalavarthi et al., 2022; Horn et al., 2020;
Tashiro et al., 2021), imputation (Shukla & Marlin, 2021; Yalavarthi et al., 2023) and forecasting (Zhang
et al., 2023; Mercatali et al., 2024; Yalavarthi et al., 2024). To summarize the core mechanism of the IMTS
forecasting methods in addressing the data irregularities, some authors proposed novel data preprocessing
and representation methods, for example, in the patching-based approach, the input time series is repre-
sented as matrices with temporal and variable dimensions, and model components are designed to learn
dependencies along both dimensions Zhang et al. (2024), however, in the case of sparsely observed time
series, the number of observations within a patch may be scarce, resulting in an excessive number of unin-
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formative patches under a temporal resolution; there are also other non-patching approaches that use bipartite
graphs (Yalavarthi et al., 2024), or hypergraphs (Li et al., 2025), but their model architectures restrict the
ability to capture dependencies in high dimensional or highly sparse IMTS.

In addition to data representation methods for IMTS forecasting, some authors also proposed novel deep
architectures and attention mechanisms. For example, T-PATCHGNN (Zhang et al., 2024) proposed a time-
adaptive graph neural network to model the dynamic intra-patch and inter-patch dependencies. Warpformer
(Zhang et al., 2023) proposed a doubly self-attention module within the transformer framework for represen-
tation learning on multiple sampling granularities. ContiFormer (Chen et al., 2023) adopted continuous-time
Neural ordinary differential equations (ODEs) within the attention mechanism of Transformers to capture
the temporal dynamics of the underlying IMTS system. These methods often presume a specific form of de-
pendency, which introduces significant restrictiveness and fails to accommodate considerations of complex
hierarchical, higher-order or multi-scale dependencies.

2.2 TIME SERIES DIFFUSION MODELS

The Denoising Diffusion Probabilistic Models proposed by Ho et al. (2020b) has become a powerful tool
for time series modeling (Lin et al., 2024), due to their advantages in fine-grained temporal modeling. Many
recent time-series diffusion models have focused on designing effective conditional embeddings to guide the
reverse process (Li et al., 2024c; Tashiro et al., 2021; Rasul et al., 2021). For example, TimeGrad (Rasul
et al., 2021) employs the hidden state from an RNN as the conditional embedding, Li et al. (2024c) utilized
vanilla transformers to extract a representation from historical data, which is then used as a prior knowledge
to recover the full distribution of future time series. In addition, Shen & Kwok (2023) further incorporated
parts of the ground-truth future predictions for conditioning, which introduces additional inductive bias in
the conditioning module for more accurate time series prediction. Shen et al. (2024) also considered other
unique time series properties and proposed a multi-resolution diffusion model corresponding to a sequence
of fine-to-coarse trend.

So far, the existing works on time series diffusion models have been focused on regularly sampled time
series data, in the context of IMTS, representations extracted from historical data may fail to capture the
underlying trends of the sequence, leading to a lack of reliable prior guidance, making it prone to generating
sequences that are disconnected from historical patterns. Furthermore, in terms of model training during
the reverse process, it is difficult to generate the desired series when there are limited fine granularity in-
formation (Coletta et al., 2023), which may provide unreliable underlying inputs for the multi-resolution
framework and thus undermining the consistency of the overall trend.

3 PROPOSED METHOD

In this work, we assume that the total length of the observed time series is T , where the historical observed
target time series x0:T−L (0 < L < T ) is sparse and irregularly sampled, with its last valid obser-
vation recorded at time T − L. Furthermore, we consider multiple exogenous covariates z0:T ∈ RT×C ,
where C represents the dimensionality of the exogenous covariates; by definition, any time series that
provides predictive value for the prediction target is classified as an exogenous covariate. The proposed
diffusion-based forecasting framework aims to predict the future segment xT :T+H using a model Fθ that
specifically captures all available information embedded in the historical observed time series x0:T−L and
exogenous covariates z0:T .

x̂T :T+H = Fθ (x0:T−L, z0:T ) . (1)

Fig. 2 shows an overview of the proposed model.
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Figure 2: Overall framework of the proposed FITS framework.

3.1 FORWARD DIFFUSION PROCESS

During model training, the objective of the forward diffusion is to diffuse the “future” time steps xT :T+H of
the target time series. At the k-th step of the forward process, xk is parameterized by adding noise to the
previous diffusion step k − 1, scaled by

√
1− βk:

q
(
xk | xk−1

)
= N

(
xk;

√
1− βkx

k−1, βkI
)
, k = 1, . . . ,K, (2)

with βt ∈ (0, 1) representing the noise variance following a predefined schedule. It can be shown that:

q
(
xk | x0

)
= N

(
xk;

√
ᾱkx

0, (1− ᾱk) I
)
, (3)

where ᾱk = Πk
s=1αs, and αk = 1− βk. Then, xk is given as:

xk =
√
ᾱkx

0 +
√
1− ᾱkϵ, ϵ ∈ N (0, I). (4)

The subscript of xT :T+H is omitted for notational simplicity.

3.2 CONDITIONING THE BACKWARD DENOISING PROCESS

Existing time series diffusion models typically incorporate either the original historical observation seg-
ment x0:T (Tashiro et al., 2021) or a derived representation F(·) from historical data (Li et al., 2024b) as
input to their conditioning networks. In contrast, this study proposes to leverage the evolutionary dynamics
embedded in external covariates, which capture the relationship from z0:T−L to zT−L:T . This latent process
characterize the potential variation patterns of the target variable from the historically observed part x0:T−L

to the “pseudo-future” segment xT−L:T , thereby facilitating predictive inference.
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3.2.1 ENTROPY-AWARE PATCHING AND ENCODING FOR IRREGULAR TIME SERIES

In this subsection, we propose a novel information density-based patching and encoding approach applied to
all variables. For IMTS, it is difficult to capture the local dynamic granular scemantics due to discretionary
segmentation of continuous observations, which hinders the effective extraction of low-dimensional latent
factors and state evolution patterns. For example, a patient’s sudden health deterioration may be segmented
across two time windows, which fragments this critical pattern and prevents it from being fully captured.

Entropy-aware module to compute dynamic window boundaries. To fully leverage temporal informa-
tion, we first enrich each raw observation by filling the missing points with zero. Motivated by Liu et al.
(2025), assume the historical observation is initially divided into P patches with length Sinit = T/P . For
each patch p, the initial reference center is cp = (p − 0.5) · (T/P ), and the window boundaries can be
computed as:

tleft
p = cp −

Sinit

2
+ δp, tright

p = tleft
p + exp (λp) . (5)

In this work, we propose a novel boundary network (BoundaryNet) based on a sample entropy (SampEn)
measure to specifically learn the parameters δp and λp in Eq. (5). Specifically, the SampEn measure proposed
by Richman & Moorman (2000) quantifies the information richness of a time series: a higher entropy value
indicates a more complex series that harbors dense implicit information. For a given patch xp, using a
light-weight MLP network, we can map the entropy SampEnp to the latent space:

ep = Linear
(
ELU

(
Linear(SampEnp)

))
∈ RDe . (6)

Then, ep is concatenated with the Rotary Position Embedding (RoPE) (Su et al., 2024) PE(cp) ∈ RDpe to
arrive at a enhanced time-information representation: P̃E(cp) = Concat(PE(cp), ep) ∈ RDpe+De .

Finally, the proposed BoundaryNet to calculate the two scalar boundary parameters is given as:

[δp, λp] = Linearoutput

(
SiLU

(
Linearhidden

(
P̃E (cp)

)))
. (7)

Substitute Eq. (7) into Eq. (5), we can effectively compute the dynamically adjusted window boundaries
based on the information density.

Adaptive patch representations. After defining the dynamic temporal windows, using the method proposed
by Liu et al. (2025), we calculate a relevance weight αi,p using [δp, λp] for each observation i in patch p and
arrive at the final representation:

h̄p =

∑Lp

i=1 αi,p · ṽi∑L
i=1 αi,p + ϵ

∈ R1+Dpe+De+Dte , (8)

where Lp denotes the number of observations in patch p, and ṽi = Concat(xp(ti), P̃E(cp),TE(ti)),
TE(ti) ∈ RDte denotes the learnable time embedding. Then, h̄p is projected into the model’s uniform
hidden space via a linear layer: hp = LinearD(h̄p) ∈ RD. Therefore, we have for the whole sequence:
H = [h1, . . . , hP ] ∈ RP×D.

3.2.2 LEARNING CONDITIONAL REPRESENTATION THROUGH RECONCILIATING TARGET AND
EXOGENOUS INFORMATION

In this work, transformer is utilized as a prior knowledge extractor, capturing covariate-dependence in the
reverse process within the diffusion model. In addition to the patch representation H derived in the pre-
vious section, the entire target time series x0:T is also embedded into one single series-level global token
embedding Gtar via the same trainable linear MLP projector.

5



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

Intra-series self-attention. In the patch-level attention, we apply multi-head attention with causal masking
to all variables to capture their intra-variate cross-time dependency. Taking the target variable as an example,
and dropping layer index for brevity, this can be formalized as:

H̃pat
: = LN(H: +MHA(H:,H:,H:)) ,

H: = LN
(
H̃pat

: + FFN
(
H̃pat

:

))
,

(9)

where H: denotes the collective token embeddings of a variable at all patch steps, LN denotes layer nor-
malization, MHA(Q,K,V) denotes the multi-head attention layer where Q, K, and V serve as queries,
keys and values, and FFN denotes a feed-forward network. In addition, we also employ a series-level global
token embedding Gtar, which serves as a bridge that connects the patches in the target variable and the ex-
ogenous variables (Wang et al., 2024). Accordingly, we also employ a variate-to-patch attention Hvar-to-pat

:

and a patch-to-variate attention Gpat-to-var (Wang et al., 2024), which offers a holistic perspective of the tem-
poral dependencies inherent to the target variable, while also enabling enhanced interactions with exogenous
variables that exhibit arbitrary irregularity.

Inter-series cross-attention. Assume the last observed data point of the target variable occurs at
time T − L; zT−L:T thus constitutes a relative future segment relative to x0:T−L. To this end, we re-
design the cross-attention layer: the global token of the target variable, Gtar, remains the query (Q), while
exogenous variables are split into two segments for the key (K) and value (V), where the embedding of the
historical segment z0:T−L serves as K and the embedding of the pseudo-future segment zT−L:T serves as V.
The learned global token of the target acts as a bridge to integrate and filter exogenous information, ensuring
that only relevant insights support the prediction of the target variable.

3.2.3 CONDITIONING NETWORK

Following Shen & Kwok (2023), using the transformer network T (·) derived from the previous sections,
we adopt the future mixup strategy which combines the past information’s mapping x̂T :T+H = T (x0:T−L)
with the future ground-truth x0

T :T+H , which is only available during training. At diffusion step k, it produces
the conditioning signal c as:

c = mkT (x0:T−L) +
(
1−mk

)
x0
T :T+H . (10)

Here, mk ∈ [0, 1)1×H is a mixing coefficient randomly sampled from the uniform distribution on [0, 1).
During inference, x0

T :T+H is no longer available, and the condition c is set to T (x0:T−L).

3.3 DENOISING REVERSE PROCESS

The reverse denoising process is a markov chain. At the k-th denoising step, xk−1
T :T+H is generated from

xk
T :T+H by sampling from the following normal distribution, subject to the conditional representation c:

pθ
(
xk−1
T :T+H | xk

T :T+H , c
)
= N

(
xk−1
T :T+H ;µθ

(
xk
T :T+H , k | c

)
,Σθ

(
xk
T :T+H , k

))
, (11)

where the variance Σθ

(
xk
T :T+H , k

)
is fixed to σ2

kI. The goal of this reverse process is to learn this mean
function µθ(x

k
T :T+H , k), which effectively produces xk−1

T :T+H close to the ground truth. Through iterative
denoising steps, the prediction result x̂0

T :T+H is ultimately recovered to match the distribution of the original
time series. To train the diffusion model, considering Eqs. (2) and (11), one uniformly samples k from
{1, 2, . . . ,K} and then minimizes the KL (Kullback-Leibler) divergence:

Lk = DKL(q(x
k−1 | xk)∥pθ(xk−1 | xk, c)), (12)

where q(xk−1 | xk) is the ground-truth conditional data distribution.

6
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Then, the training objective in (12) is then formulated as:

Lk =
1

2σ2
k

∥∥µ̃k

(
xk,x0, k

)
− µθ

(
xk, k | c

)∥∥2 . (13)

The estimation of µθ(x
k, k | c) can be computed via a noise prediction model ϵθ(xk, k) following Benny &

Wolf (2022).

During inference, a noise vector xK
1:H ∼ N (0, I) is generated, and through the reverse denoising process,

we can obtain the final prediction result x̂0
T :T+H .

4 EXPERIMENTS

In this section, we perform extensive experiments to compare the proposed FITS with recent 6 state-of-the-
art (SOTA) time series prediction models on 7 commonly used real-world datasets.

4.1 SETUP

Benchmark datasets. Experiments were performed on 7 public benchmark datasets with different levels
of multivariate correlations. The datasets include: (i) Electricity Price Forecasting Dataset (EPF) (5 sub-
datasets from different major power markets) (Lago et al., 2021). (ii) Exchange (Daily exchange rates of
eight different countries) (Lai et al., 2018). (iii) Weather (21 meteorological variables from Germany) (Zhou
et al., 2021). Due to space constraints, detailed descriptions of the datasets are deferred to Appendix B.1.
Appendix B.1 also includes the process of downsampling the original data to arrive at the sparse and irregular
time series used in this work, which in turn contextualizes the data preparation aligned with our research
focus. The data are processed using two random missingness strategies: (1) Random Missing (RM), and (2)
Block Missing (BM).

Baselines. To establish a comprehensive benchmark for our proposed FITS method, we select baselines from
four methodological domains. Specifically, we include: (i) Time series diffusion models: CSDI (Tashiro
et al., 2021); Transformer-Modulated Diffusion Model (TMDM) (Li et al., 2024b); Diffusion-TS (Yuan &
Qiao, 2024). (ii) Time series transformers: PatchTST (Nie et al., 2023); Crossformer (Zhang & Yan,
2023). (iii) Other time series forecasting methods. TiDE (Das et al., 2023); DLinear (Zeng et al., 2023).
See Appendix B.2 for more details about the baselines.

Implementation details. In our experiments, we employed a linear noise schedule with β1 = 10−4 and
βK = 0.02, setting the number of diffusion timesteps to K = 1000. We approximated the data distribution
using 100 samples, and all experiments were repeated 5 times with seeds {1, 2, 3, 4, 5}. The model was
trained using the Adam optimizer with a learning rate of 10−4 and a batch size of 64. Additional details are
given in Appendix B.3.

4.2 MAIN RESULTS

4.2.1 PROBABILISTIC FORECASTING

To intuitively illustrate the probabilistic distribution forecasting capabilities of the models, we present the
forecasting results of our proposed FITS model alongside three comparative baseline models in Figure 4.
Specifically, we visualize the 50% and 90% prediction intervals (denoted by dark green and light green,
respectively) and overlay the true observed values for direct reference. It is worth noting that certain baseline
models were originally devised for generative tasks rather than dedicated probabilistic forecasting; however,
their authors have asserted that these models are capable of yielding probabilistic forecasting results (Yuan
& Qiao, 2024).

7
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Table 1: Performance comparisons in terms of QICE and CRPS. The best results are boldfaced, and the
suboptimal results are underlined. The table presents both the scenarios of no missing values and random
missingness of 0.5.

metrci
model

Weather Exchange NP PJM BE FR DE
QICE CRPS QICE CRPS QICE CRPS QICE CRPS QICE CRPS QICE CRPS QICE CRPS

CSDI No-Missing 13.91 0.735 10.91 0.178 1.96 0.279 16.75 0.603 14.63 0.393 15.60 0.377 13.34 0.683
RM=0.5 14.90 0.763 10.76 0.189 2.394 0.324 14.37 0.624 14.33 0.452 15.32 0.386 13.56 0.769

TMDM No-Missing 10.86 0.485 7.439 0.516 5.609 0.593 4.541 0.209 6.096 0.353 5.125 0.294 4.577 0.407
RM=0.5 12.20 0.554 7.305 0.488 5.453 0.503 2.511 0.178 9.001 0.532 8.795 0.388 4.488 0.410

Diffusion-TS No-Missing 12.13 0.532 15.90 1.310 9.692 0.612 15.36 0.218 8.236 0.401 9.486 0.376 13.96 0.785
RM=0.5 13.690 0.543 15.27 1.040 10.25 0.635 15.20 0.256 8.569 0.490 10.50 0.358 12.30 0.813

our No-Missing 3.275 0.409 4.966 0.354 1.800 0.287 3.007 0.176 2.854 0.226 3.739 0.182 2.162 0.390
RM=0.5 4.170 0.497 4.979 0.359 1.924 0.277 2.976 0.177 3.023 0.226 3.830 0.190 1.024 0.377

As evidenced by the visualization, FITS demonstrates superior performance in probabilistic distribution
forecasting. This advantage can be attributed to the design of our conditional estimation module, which en-
ables more accurate mean estimation even when the input data suffers from temporal misalignment and high
proportions of missing values. In particular, the inter-series cross-attention component embedded within this
module facilitates the model’s effective extraction and utilization of latent information in pseudo-future data,
thereby enhancing forecasting reliability. Nevertheless, in scenarios where there exist unobserved gaps be-
tween the historical information window and the target forecasting window, all models encounter heightened
challenges in capturing future trend dynamics, resulting in elevated predictive uncertainty. Further details
and supplementary analyses related to these experiments are provided in Appendix C.2.

To quantitatively analyze the models’ probabilistic forecasting capabilities, we adopted CRPS (Continuous
Ranked Probability Score) and QICE (Quantile Interval Coverage Error) as evaluation metrics, following the
approach of Li et al. (2024b). For both metrics, smaller values indicate better performance. Table 1 shows
the CPRS and QICE on the time series. Notably, our model achieves the optimal performance on nearly
all datasets, with its CRPS and QICE values consistently remaining at the lowest level among all compared
models, fully demonstrating its superior probabilistic forecasting capability.

4.2.2 NON-PROBABILISTIC FORECASTING

Table 2 presents the Mean Squared Error (MSE) results on time series. It can be observed that the perfor-
mance improvement of the model is particularly significant on more complex datasets such as BE and FR.
Among all datasets, the FITS model ranks first in 4 of them; overall, its average MSE is better than all other
baseline models, including the latest diffusion models. In addition, it can be found that our model achieves
a better average ranking when the random missing situation is better. It should be noted that the model does
not achieve performance improvement on long-term forecasting datasets such as exchange rate. This may
be because there are no complex interdependencies between variables in such datasets, leading to the intro-
duction of noise by the inter-variable attention mechanism in the conditional estimation model. TiDE and
DLinear, the two channel-independent models, achieved the optimal and suboptimal performance respec-
tively, which also corroborates this point. In contrast, the covariates of the EPF dataset have been confirmed
to indeed have a positive effect on target prediction, so our model has achieved better performance on this
dataset.

Furthermore, we also found that all diffusion models in the baselines perform poorly, which indicates that
the current diffusion models are weaker than general models in terms of mean prediction ability.

4.2.3 ABLATION STUDY

8
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Table 2: Performance comparisons in terms of MAE and MSE. The best results are boldfaced, and the
suboptimal results are underlined. The table presents both the scenarios of no missing values and random
missingness of 0.5.

metric
model

Weather Exchange NP PJM BE FR DE AVG
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

TIDE No-Missing 0.520 0.519 0.073 0.215 0.515 0.458 0.159 0.261 0.595 0.377 0.506 0.302 0.869 0.602 0.462 0.390
RM=0.5 0.612 0.562 0.462 0.494 0.608 0.520 0.193 0.283 0.613 0.417 0.481 0.339 0.931 0.604 0.573 0.454

DLinear No-Missing 0.849 0.653 0.260 0.412 0.507 0.448 0.176 0.276 0.651 0.399 0.587 0.344 0.867 0.601 0.556 0.447
RM=0.5 0.855 0.656 0.265 0.416 0.528 0.45 0.178 0.28 0.628 0.397 0.577 0.344 0.881 0.602 0.558 0.449

Crossformer No-Missing 0.486 0.499 0.543 0.602 0.327 0.308 0.231 0.234 0.524 0.373 0.537 0.303 0.578 0.483 0.460 0.400
RM=0.5 0.486 0.501 0.557 0.598 0.340 0.341 0.242 0.238 0.529 0.379 0.499 0.302 0.577 0.491 0.481 0.407

CSDI No-Missing 0.813 0.632 0.507 0.701 0.526 0.441 0.370 0.336 0.590 0.384 0.556 0.332 0.838 0.609 0.600 0.490
RM=0.5 0.830 0.652 0.542 0.781 0.731 0.532 0.453 0.312 0.683 0.543 0.506 0.352 0.871 0.632 0.659 0.543

TMDM No-Missing 0.568 0.551 0.571 0.641 1.068 0.718 0.170 0.286 0.651 0.467 0.640 0.280 0.687 0.514 0.622 0.493
RM=0.5 0.671 0.584 0.532 0.610 0.779 0.627 0.155 0.285 0.728 0.541 0.506 0.357 0.686 0.513 0.579 0.502

Diffusion-TS No-Missing 0.713 0.621 2.507 1.280 1.260 0.869 0.181 0.292 0.709 0.501 0.583 0.363 0.832 0.5964 0.969 0.646
RM=0.5 0.766 0.649 1.960 1.240 1.380 0.869 0.186 0.290 0.750 0.576 0.455 0.372 0.817 0.571 0.902 0.652

our No-Missing 0.554 0.541 0.394 0.551 0.364 0.368 0.175 0.232 0.443 0.292 0.424 0.233 0.659 0.501 0.430 0.388
RM=0.5 0.559 0.547 0.395 0.474 0.362 0.356 0.161 0.238 0.398 0.296 0.384 0.244 0.581 0.488 0.405 0.377

Table 3: Ablation experiment
results in terms of MSE

Wea. FR BE

rp-atten 0.568 0.388 0.414
w/o-covar 0.607 0.423 0.444
rp-patch 0.569 0.391 0.401
FITS 0.559 0.384 0.398

We compared prediction results of one full model and three ablation vari-
ants in Table 3. The rp-atten variant replaces the proposed inter-variable
attention with standard cross-attention, leading to performance degradation;
w/o-covar removes the inter-variable attention module for univariate pre-
diction, causing significant performance decline—the most severe among
all variants; rp-patch uses standard instead of attention-driven patch parti-
tioning. The experimental results show that the inter-series attention plays
an important role in the EPF dataset, and the other components also have a
positive impact on the experimental results.

5 CONCLUSION

In this work, we propose FITS, an innovative framework that integrates a diffusion generative process with
a newly designed transformer-based conditional representation learning framework. In particular, our ap-
proach introduces two key innovations: first, we propose an entropy-based adaptive patching method that
leverages the sample entropy measure to effectively capture granular local semantics, which avoids informa-
tion fragmentation caused by discretionary segmentation. Second, we propose a novel cross-variate attention
module to effectively capture the evolutionary dynamics of covariates. By using this transformer-based rep-
resentation module as a conditional guidance for generating future target variables, the diffusion model can
be more effectively guided toward the true values. Extensive experiments demonstrate that FITS achieves
superior performance in both point forecasting and probabilistic forecasting quality.

REFERENCES

Yaniv Benny and Lior Wolf. Dynamic dual-output diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contif-
ormer: Continuous-time transformer for irregular time series modeling. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 47143–47175. Curran Associates, Inc.,

9



423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
9328208f88ec69420031647e6ff97727-Paper-Conference.pdf.

Andrea Coletta, Sriram Gopalakrishnan, Daniel Borrajo, and Svitlana Vyetrenko. On the constrained time-
series generation problem. Advances in Neural Information Processing Systems, 36:61048–61059, 2023.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan K Mathur, Rajat Sen, and Rose Yu. Long-term
forecasting with tiDE: Time-series dense encoder. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856. URL https://openreview.net/forum?id=pCbC3aQB5W.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. In NIPS’21: Proceed-
ings of the 35th International Conference on Neural Information Processing Systems, pp. 8780 – 8794.
NeurIPS, 12 2021.

Kan Guo, Yongli Hu, Zhen Qian, Yanfeng Sun, Junbin Gao, and Baocai Yin. Dynamic graph convolution
network for traffic forecasting based on latent network of laplace matrix estimation. IEEE Transactions
on Intelligent Transportation Systems, 23(2):1009–1018, 2022. doi: 10.1109/TITS.2020.3019497.

Xizewen Han, Huangjie Zheng, and Mingyuan Zhou. Card: Classification and regression diffusion models.
In Thirty-Sixth Conference on Neural Information Processing Systems, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems, volume 33, pp. 6840–6851, 2020b.

Max Horn, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. Set functions for time
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Algorithm 1 Training

Require: Number of diffusion steps K.
1: repeat
2: Sample x0

T :T+H from the training set;
3: k ∼ Uniform({1, 2, . . . ,K}), ϵ ∼ N (0, I);
4: Compute xk

T :T+H following Eq. (4);
5: Using the transformer network given in Section ??, obtain condition c based on Eq. (10);
6: Compute the mean function µθ(·) using the proposed GCN framework in Section ??;
7: Use the reverse denoising process to generate denoised sample xk−1

T :T+H by Eq. (??);
8: Calculate the loss Lk(θ) in (13);
9: Take gradient descent step on ∇θLk(θ);

10: until converged

A TRAINING ALGORITHM

The training procedure is provided in Algorithm 1 below.

B DATASETS AND BASELINES

B.1 DATASETS

We assessed the effectiveness of the proposed FITS model through extensive experiments on 7 time series
forecasting datasets. As our focus is on sparse and irregularly sampled time series, we modified the originally
regular datasets by applying a subsampling procedure with different filtering rates to induce sparsity.

First, detailed descriptions of the original datasets are provided below:

(1) The EPF is an electricity price forecasting dataset, which contains five datasets representing five
different day-ahead electricity markets spanning six years each (Lago et al., 2021).

• NP represents the Nord Pool electricity market, recording the hourly electricity price, and
corresponding grid load and wind power forecast from 2013-01-01 to 2018-12-24.

• PJM corresponds to the Pennsylvania - New Jersey - Maryland (PJM) market. It contains
the zonal electricity price in the Commonwealth Edison (COMED) area, along with the cor-
responding system load and COMED load forecast data, spanning from 2013-01-01 to 2018-
12-24.

• BE stands for Belgium’s electricity market. It documents the hourly electricity prices, load
forecast in Belgium, and generation forecast in France, covering the period from 2011-01-09
to 2016-12-31.

• FR represents the electricity market in France. It records the hourly electricity prices and
the corresponding load and generation forecast data, with the time range from 2012-01-09 to
2017-12-31.

• DE corresponds to the German electricity market. It keeps track of the hourly electricity
prices, the zonal load forecast in the TSO Amprion zone, and the wind and solar generation
forecasts, spanning from 2012-01-09 to 2017-12-31.

(2) The Exchange (Lai et al., 2018) dataset comprises of daily closing exchange rates of eight curren-
cies against the USD from 1990 to 2016.
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(3) The Weather(Zhou et al., 2021) dataset contains 21 meteorological variables recorded every 10
minutes at a weather station in Germany during 2020. In this work, we use the Wet Bulb factor as
the target variable to be predicted and the other indicators as exogenous variables

Table 4 provides a summary of the data statistics.

Table 4: Full dataset descriptions. Training/Validation/Test dataset is split as 60%/10%/20%.

Datasets Look-back
period

Forecasting
horizon Target variable

No. of
Exogenous
Variables

Sampling
frequency

EPF - NP 192 24 Nord Pool Electricity Price 2 1h

EPF - PJM 192 24 Pennsylvania-New Jersey-
Maryland Electricity Price 2 1h

EPF - BE 192 24 Belgium’s Electricity Price 2 1h
EPF - FR 192 24 France’s Electricity Price 2 1h
EPF - DE 192 24 German’s Electricity Price 2 1h
Exchange 96 {96,192} Exchange rates 7 1d
Weather 96 {96,192} CO2-Concentration 20 10m

Figure 3: Schematic diagrams of RM and
BM, where the gray shaded areas represent
the missing regions.

This study employs two distinct downsampling procedures to
generate sparse datasets for subsequent model training and
inference. The first is a random missing (RM) approach,
wherein a fraction α of data points is randomly removed from
the original target time series, where α is set to range from
30% to 70%. The forecasting accuracy under different spar-
sity levels is evaluated in subsequent sections. The second is
a block missing (BM) approach. For each sliding window,
this method removes a continuous segment of length s from a
random position within the window. For instance, from a time
series segment of length 96, a contiguous segment of 24 points
is removed. Figure 3 illustrates examples of the original time
series and the sparsified series resulting from these two meth-
ods.

B.2 BASELINES

To comprehensively assess the capabilities of FITS, we bench-
mark it against state-of-the-art approaches, including time se-
ries diffusion models, and other leading methods. This diverse
set of baselines ensures a rigorous and well-rounded comparison, highlighting FITS’s performance across
different learning paradigms and demonstrating its effectiveness in a wide range of scenarios.

(1) Time series diffusion models:

• CSDI: https://github.com/ermongroup/CSDI. CSDI proposes a novel time series imputation
method that leverages score-based diffusion models conditioned on observed data.

• TMDM: https://github.com/LiYuxin321/TMDM. TMDM introduces a Transformer-
Modulated Diffusion Model, uniting conditional diffusion generative process with
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transformers into a unified framework to enable precise distribution forecasting for
MTS.

• Diffusion-TS: https://github.com/Y-debug-sys/Diffusion-TS. DiffusionTS is a diffusion
model-based framework that decomposes time series into trend, seasonality, and residual com-
ponents, integrates Transformer architectures to capture temporal dependencies, and aims to
produce interpretable and multimodal time series data.

(2) Long time series Forecasting models:

• TiDE:https://github.com/google-research/google-research/blob/master/tide/. TiDE proposes
an MLP-based encoder-decoder model for long-term time-series forecasting, which handles
covariates and non-linear dependencies.

• DLinear: https://github.com/ioannislivieris/DLinear. DLinear introduces simple one-layer
linear models that bypass the temporal information loss inherent in Transformer-based self-
attention, achieving superior performance in long-term time series forecasting across diverse
datasets.

• Crossformer: https://github.com/Thinklab-SJTU/Crossformer. Crossformer proposes a novel
transformer-based model for long-sequence time series forecasting (LSTF), which segments
the input into smaller chunks and leveraging cross-attention mechanisms to effectively capture
long-range temporal dependencies, thereby enhancing prediction accuracy for extended time
horizons.

B.3 IMPLEMENTATION DETAILS

For all datasets, the pseudo length was fixed at 24. The input sequence length for the EPF dataset was
set to 192, yielding a target length of 168, while for the other datasets, the input length was fixed at 96.
The forecasting horizon was 24 for EPF and {96, 192} for the remaining datasets. For Quantile Interval
Coverage Error(QICE), we divided samples into 10 quantile intervals. For models not inherently designed
to handle mismatched lengths between covariates and targets, the target sequences were zero-padded to align
dimensions. All implementations were based on PyTorch and executed on an NVIDIA RTX 5090D GPU
with 32 GB of memory.

C MORE RESULT

C.1 QUALITATIVE ANYLIST AND VISUALIZATION

We visualized the prediction probabilities of the 0th, 200th, 400th, 600th, and 800th samples in the EPF
dataset and compared them with the TMDM model, which performed well in the previous results. It can
be clearly seen from the visualization results that our model is more advantageous in terms of the accuracy,
concentration of the probability distribution and the fit with the ground truth, which fully demonstrates that
our model has a strong ability in predicting probabilities.
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Figure 4: Visualization of PJM Dataset Prediction Results In the visualization, dark green and light green
represent the 50% and 90% prediction intervals of the model, respectively, and the red line denotes the
ground truth.

Figure 5: Visualization of NP Dataset Prediction Results In the visualization, dark green and light green
represent the 50% and 90% prediction intervals of the model, respectively, and the red line denotes the
ground truth.
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Figure 6: Visualization of FR Dataset Prediction Results In the visualization, dark green and light green
represent the 50% and 90% prediction intervals of the model, respectively, and the red line denotes the
ground truth.

Figure 7: Visualization of DE Dataset Prediction Results In the visualization, dark green and light green
represent the 50% and 90% prediction intervals of the model, respectively, and the red line denotes the
ground truth.

17



799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Figure 8: Visualization of BE Dataset Prediction Results In the visualization, dark green and light green
represent the 50% and 90% prediction intervals of the model, respectively, and the red line denotes the
ground truth.

C.2 PSEUDO LENGTH

We investigated the impact of different pseudo-future lengths (p) on prediction performance. Here, we se-
lected DLinear and Crossformer, which exhibited the best prediction performance, and used two subsets of
the EPF dataset as well as two long-term forecasting datasets, respectively. The results indicate that the
pseudo-future length has a significant influence on prediction performance. However, a closer examina-
tion reveals that our model shows relative insensitivity on the EPF dataset, demonstrating that the attention
mechanism we designed effectively addresses the forecasting problem under such circumstances.

Table 5: Performance comparisons in terms of MAE and MSE. The table presents the scenarios random
missingness of 0.5.

metric DLinear Crossformer FITS
p=0 p=12 p=24 p=48 p=0 p=12 p=24 p=48 p=0 p=12 p=24 p=48

Weather MSE 0.584 0.725 0.855 1.026 0.403 0.419 0.486 0.564 0.428 0.457 0.559 0.569
MAE 0.533 0.604 0.656 0.704 0.446 0.456 0.501 0.542 0.472 0.495 0.547 0.532

Exchange MSE 0.186 0.215 0.265 0.405 0.235 0.263 0.557 0.621 0.363 0.354 0.395 0.435
MAE 0.348 0.378 0.416 0.520 0.401 0.429 0.598 0.655 0.435 0.456 0.474 0.513

FR MSE 0.5150 0.551 0.577 0.605 0.472 0.496 0.529 0.521 0.386 0.392 0.398 0.463
MAE 0.297 0.323 0.344 0.360 0.234 0.276 0.379 0.321 0.246 0.275 0.296 0.356

BE MSE 0.5363 0.599 0.628 0.631 0.450 0.492 0.499 0.525 0.375 0.376 0.384 0.412
MAE 0.349 0.3781 0.397 0.412 0.311 0.331 0.302 0.427 0.245 0.238 0.244 0.309
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D THE USE OF LARGE LANGUAGE MODELS (LLM)

This work used LLMs to fix grammar mistakes and spelling errors.
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