

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 FITS: CONDITIONAL DIFFUSION MODEL FOR IRREGULAR TIME SERIES FORECASTING WITH PSEUDO-FUTURE EX- OGENOUS COVARIATES

Anonymous authors

Paper under double-blind review

ABSTRACT

Irregular multivariate time series (IMTS) present unique challenges due to non-uniform intervals and different sampling rates. While existing methods struggle to capture both long-term dynamics and cross-channel dependencies under such irregularities, we tackle this by formulating time series forecasting as a conditional generation problem and introducing FITS, a conditional diffusion model for IMTS forecasting that leverages pseudo-future exogenous covariates. Our approach incorporates two key innovations. First, we propose a novel entropy-aware adaptive patching scheme that generates data-driven segments with dynamic boundaries determined by the information density. This scheme overcomes the limitations of traditional fixed-length or fixed-span segmentation in preserving continuous local semantics and modeling inter-time series correlations. Second, we develop a transformer-based prior knowledge extractor that captures forward-looking covariate dependencies via a novel cross-variate attention mechanism. The transformer structure is integrated into the conditional diffusion generative process as a unified framework, enabling precise distributional forecasting for IMTS. Extensive experiments on multiple datasets with four evaluation metrics validate the effectiveness of FITS.

1 INTRODUCTION

Time series forecasting (TSF) plays a crucial role in numerous real-world applications, facilitating data-driven decision-making across diverse fields. It is widely utilized in domains such as stock price prediction (Li et al., 2024a), weather prediction, transportation planning (Guo et al., 2022), and healthcare. Many approaches, such as autoregressive models (Salinas et al., 2020) and sequence-to-sequence modeling (Wen et al., 2017), frame forecasting as a conditional generative task. In particular, diffusion-based generative models have attracted considerable attention owing to their capabilities in image, video, and text generation (Ho et al., 2020a; Dhariwal & Nichol, 2021; Kong et al., 2021).

Most existing time series diffusion models are designed for regularly sampled time series, such as Li et al. (2024c); Shen et al. (2024); Wang et al. (2025), however, when dealing with sparse and irregularly observed data, there are several obstacles: (1) how to capture irregularities in intra-series dependencies and asynchronies in inter-series correlations amid varying time intervals between adjacent observations; (2) how to extract critical insights from all available historical data, which can then serve as prior knowledge to capture covariate dependencies in both forward and reverse processes within the diffusion model. While prior studies such as Li et al. (2024b) and Shen & Kwok (2023) have proposed effective conditional embeddings to guide the diffusion process, when the conditional inputs (e.g., historical observations) are highly sparse, models face challenges in extracting adequate contextual information as they are unable to capture the temporal dependencies, compromising the reliability of time series prediction.

To this end, we propose a conditional diffusion model for irregular time series forecasting with pseudo-future exogenous covariates (FITS), which integrates a transformer-enhanced modeling approach to capture the forward - backward covariate dynamics. It then leverages this model to generate pseudo forecasts of the target variable, which essentially serve as conditional guidance for generating the unobserved segments of sparse time series, supporting downstream prediction tasks (Fig. 1).

Figure 1: The comparison of regular multivariate time series forecasting and IMTS forecasting frwmework considered in this work. (a) The goal of regular multivariate time series forecasting is to simultaneously forecast all the variables in the system. (b) **The goal of this work is to forecast the sparse and irregularly observed target time series, given all the external covariates, and the covariates could be either sparse or non-sparse.**

Our contributions are summarized as follows: We introduce FITS, a conditional diffusion model designed for forecasting sparse and irregularly observed time series. Specifically: (1) FITS incorporates an adaptive entropy-based patching approach tailored to irregular time series, which leverages local semantic granularities and enables more accurate modeling of inter-series correlations. (2) FITS also employs a transformer-based predictive model learned from external covariates, equipped with forward-looking cross-variate attention mechanisms. During the reverse diffusion process, this learned model is leveraged as a conditional representation to generate accurate probability distributions of future time series. (3) In our experiments, besides standard evaluation metrics such as mean squared error (MSE) and mean absolute error (MAE), we employed Prediction Interval Coverage Probability (PICP) (Yao et al., 2019) and Quantile Interval Coverage Error (QICE) (Han et al., 2022) as metrics for the probabilistic multivariate time series forecasting task. Extensive experiments demonstrate that FITS outperforms state-of-the-art time series diffusion models and performs better than or comparable to various advanced time series prediction models.

2 RELATED WORK

2.1 IRREGULAR MULTIVARIATE TIME SERIES FORECASTING

Existing works have primarily focused on IMTS classification (Yalavarthi et al., 2022; Horn et al., 2020; Tashiro et al., 2021), imputation (Shukla & Marlin, 2021a; Yalavarthi et al., 2023) and forecasting (Zhang et al., 2023; Mercatali et al., 2024; Yalavarthi et al., 2024). To summarize the core mechanism of the IMTS forecasting methods in addressing the data irregularities, some authors proposed novel data preprocessing and representation methods, for example, in the patching-based approach, the input time series is represented as matrices with temporal and variable dimensions, and model components are designed to learn

dependencies along both dimensions Zhang et al. (2024), however, in the case of sparsely observed time series, the number of observations within a patch may be scarce, resulting in an excessive number of uninformative patches under a temporal resolution; there are also other non-patching approaches that use bipartite graphs (Yalavarthi et al., 2024), or hypergraphs (Li et al., 2025), but their model architectures restrict the ability to capture dependencies in high dimensional or highly sparse IMTS.

In addition to data representation methods for IMTS forecasting, some authors also proposed novel deep architectures and attention mechanisms. For example, *T-PATCHGNN* (Zhang et al., 2024) proposed a time-adaptive graph neural network to model the dynamic intra-patch and inter-patch dependencies. *Warpformer* (Zhang et al., 2023) proposed a doubly self-attention module within the transformer framework for representation learning on multiple sampling granularities. *ContiFormer* (Chen et al., 2023) adopted continuous-time Neural ordinary differential equations (ODEs) within the attention mechanism of Transformers to capture the temporal dynamics of the underlying IMTS system. These methods often presume a specific form of dependency, which introduces significant restrictiveness and fails to accommodate considerations of complex hierarchical, higher-order or multi-scale dependencies.

2.2 TIME SERIES DIFFUSION MODELS

The Denoising Diffusion Probabilistic Models proposed by Ho et al. (2020b) has become a powerful tool for time series modeling (Lin et al., 2024), due to their advantages in fine-grained temporal modeling. Many recent time-series diffusion models have focused on designing effective conditional embeddings to guide the reverse process (Li et al., 2024c; Tashiro et al., 2021; Rasul et al., 2021). For example, TimeGrad (Rasul et al., 2021) employs the hidden state from an RNN as the conditional embedding, Li et al. (2024c) utilized vanilla transformers to extract a representation from historical data, which is then used as a prior knowledge to recover the full distribution of future time series. In addition, Shen & Kwok (2023) further incorporated parts of the ground-truth future predictions for conditioning, which introduces additional inductive bias in the conditioning module for more accurate time series prediction. Shen et al. (2024) also considered other unique time series properties and proposed a multi-resolution diffusion model corresponding to a sequence of fine-to-coarse trend.

So far, the existing works on time series diffusion models have been focused on regularly sampled time series data, in the context of IMTS, representations extracted from historical data may fail to capture the underlying trends of the sequence, leading to a lack of reliable prior guidance, making it prone to generating sequences that are disconnected from historical patterns. Furthermore, in terms of model training during the reverse process, it is difficult to generate the desired series when there are limited fine granularity information (Coletta et al., 2023), which may provide unreliable underlying inputs for the multi-resolution framework and thus undermining the consistency of the overall trend.

3 PROPOSED METHOD

In this work, we assume that the total length of the observed time series is T , where the historical observed target time series $\mathbf{x}_{0:T-L}$ ($0 < L < T$) is sparse and irregularly sampled, with its last valid observation recorded at time $T - L$. Furthermore, we consider multiple exogenous covariates $\mathbf{z}_{0:T} \in \mathbb{R}^{T \times C}$, where C represents the dimensionality of the exogenous covariates; by definition, any time series that provides predictive value for the prediction target is classified as an exogenous covariate. The proposed diffusion-based forecasting framework aims to predict the future segment $\mathbf{x}_{T:T+H}$ using a model \mathcal{F}_θ that specifically captures all available information embedded in the historical observed time series $\mathbf{x}_{0:T-L}$ and exogenous covariates $\mathbf{z}_{0:T}$.

$$\hat{\mathbf{x}}_{T:T+H} = \mathcal{F}_\theta(\mathbf{x}_{0:T-L}, \mathbf{z}_{0:T}). \quad (1)$$

Fig. 2 shows an overview of the proposed model.

Figure 2: Overall framework of the proposed FITS framework.

3.1 FORWARD DIFFUSION PROCESS

During model training, the objective of the forward diffusion is to diffuse the “future” time steps $\mathbf{x}_{T:T+H}$ of the target time series. At the k -th step of the forward process, \mathbf{x}^k is parameterized by adding noise to the previous diffusion step $k-1$, scaled by $\sqrt{1-\beta_k}$:

$$q(\mathbf{x}^k | \mathbf{x}^{k-1}) = \mathcal{N}(\mathbf{x}^k; \sqrt{1-\beta_k}\mathbf{x}^{k-1}, \beta_k \mathbf{I}), \quad k = 1, \dots, K, \quad (2)$$

with $\beta_t \in (0, 1)$ representing the noise variance following a predefined schedule. It can be shown that:

$$q(\mathbf{x}^k | \mathbf{x}^0) = \mathcal{N}(\mathbf{x}^k; \sqrt{\bar{\alpha}_k}\mathbf{x}^0, (1-\bar{\alpha}_k)\mathbf{I}), \quad (3)$$

where $\bar{\alpha}_k = \prod_{s=1}^k \alpha_s$, and $\alpha_k = 1 - \beta_k$. Then, \mathbf{x}^k is given as:

$$\mathbf{x}^k = \sqrt{\bar{\alpha}_k}\mathbf{x}^0 + \sqrt{1-\bar{\alpha}_k}\epsilon, \quad \epsilon \in \mathcal{N}(0, \mathbf{I}). \quad (4)$$

The subscript of $\mathbf{x}_{T:T+H}$ is omitted for notational simplicity.

3.2 CONDITIONING THE BACKWARD DENOISING PROCESS

Existing time series diffusion models typically incorporate either the original historical observation segment $\mathbf{x}_{0:T}$ (Tashiro et al., 2021) or a derived representation $\mathcal{F}(\cdot)$ from historical data (Li et al., 2024b) as

188 input to their conditioning networks. In contrast, this study proposes to leverage the evolutionary dynamics
 189 embedded in external covariates, which capture the relationship from $\mathbf{z}_{0:T-L}$ to $\mathbf{z}_{T-L:T}$. This latent process
 190 characterize the potential variation patterns of the target variable from the historically observed part $\mathbf{x}_{0:T-L}$
 191 to the “pseudo-future” segment $\mathbf{x}_{T-L:T}$, thereby facilitating predictive inference.
 192

193 3.2.1 ENTROPY-AWARE PATCHING AND ENCODING FOR IRREGULAR TIME SERIES

195 In this subsection, we propose a novel information density-based patching and encoding approach applied to
 196 all variables. For IMTS, it is difficult to capture the local dynamic granular semantics due to discretionary
 197 segmentation of continuous observations, which hinders the effective extraction of low-dimensional latent
 198 factors and state evolution patterns. For example, a patient’s sudden health deterioration may be segmented
 199 across two time windows, which fragments this critical pattern and prevents it from being fully captured.

200 **Entropy-aware module to compute dynamic window boundaries.** To fully leverage temporal information,
 201 we first enrich each raw observation by filling the missing points with zero. Motivated by Liu et al.
 202 (2025), assume the historical observation is initially divided into P patches with length $S_{\text{init}} = T/P$. For
 203 each patch p , the initial reference center is $c_p = (p - 0.5) \cdot (T/P)$, and the window boundaries can be
 204 computed as:

$$205 t_p^{\text{left}} = c_p - \frac{S_{\text{init}}}{2} + \delta_p, \quad t_p^{\text{right}} = t_p^{\text{left}} + \exp(\lambda_p). \quad (5)$$

207 In this work, we propose a novel boundary network (BoundaryNet) based on a sample entropy (SampEn)
 208 measure to specifically learn the parameters δ_p and λ_p in Eq. (5). Specifically, the SampEn measure proposed
 209 by Richman & Moorman (2000) quantifies the information richness of a time series: a higher entropy value
 210 indicates a more complex series that harbors dense implicit information. According to the definition of
 211 SampEn, we first compute the number of matching subsequences for a given embedding dimension m and
 212 similarity tolerance r , denoted as Mat . For the target sequence, we then utilize a lightweight MLP network
 213 to map Mat to the latent space, enabling the calculation of the two scalar boundary parameters, given below:

$$214 [\delta_p, \lambda_p] = \text{Linear}_{\text{output}}(\text{SiLU}(\text{Linear}_{\text{hidden}}(\text{Mat}))). \quad (6)$$

215 Substitute Eq. (6) into Eq. (5), we can effectively compute the dynamically adjusted window boundaries
 216 based on the information density.

218 **Adaptive patch representations.** After defining the dynamic temporal windows, using the method proposed
 219 by Liu et al. (2025), we calculate a relevance weight $\alpha_{i,p}$ using $[\delta_p, \lambda_p]$ for each observation i in patch p and
 220 arrive at the final representation:

$$221 \bar{h}_p = \frac{\sum_{i=1}^{L_p} \alpha_{i,p} \cdot \tilde{v}_i}{\sum_{i=1}^L \alpha_{i,p} + \epsilon} \in \mathbb{R}^{1+D_{te}}, \quad (7)$$

224 where L_p denotes the number of observations in patch p , and $\tilde{v}_i = \text{Concat}(\mathbf{x}_p(t_i), \text{TE}(t_i))$, $\text{TE}(t_i) \in \mathbb{R}^{D_{te}}$
 225 denotes the learnable time embedding. Then, \bar{h}_p is projected into the model’s uniform hidden space via a
 226 linear layer: $h_p = \text{Linear}_D(\bar{h}_p) \in \mathbb{R}^D$. Therefore, we have for the whole sequence: $H = [h_1, \dots, h_P] \in$
 227 $\mathbb{R}^{P \times D}$.

228 3.2.2 LEARNING CONDITIONAL REPRESENTATION THROUGH RECONCILIATING TARGET AND 229 EXOGENOUS INFORMATION

231 In this work, a transformer is utilized as a prior knowledge extractor, capturing covariate-dependence in
 232 the reverse process within the diffusion model. In addition to the patch representation H derived in the
 233 previous section, the entire target time series $\mathbf{x}_{0:T}$ is also embedded into one single series-level global token
 234 embedding \mathbf{G}_{tar} via the same trainable linear MLP projector.

Intra-series self-attention. In the patch-level attention, we apply multi-head attention with causal masking to all variables to capture their intra-variate cross-time dependency. Taking the target variable as an example, and dropping layer index for brevity, this can be formalized as:

$$\begin{aligned}\tilde{\mathbf{H}}_{\cdot}^{\text{pat}} &= \text{LN}(\mathbf{H}_{\cdot} + \text{MHA}(\mathbf{H}_{\cdot}, \mathbf{H}_{\cdot}, \mathbf{H}_{\cdot})), \\ \mathbf{H}_{\cdot} &= \text{LN}\left(\tilde{\mathbf{H}}_{\cdot}^{\text{pat}} + \text{FFN}\left(\tilde{\mathbf{H}}_{\cdot}^{\text{pat}}\right)\right),\end{aligned}\quad (8)$$

where \mathbf{H}_{\cdot} denotes the collective token embeddings of a variable at all patch steps, LN denotes layer normalization, $\text{MHA}(\mathbf{Q}, \mathbf{K}, \mathbf{V})$ denotes the multi-head attention layer where \mathbf{Q} , \mathbf{K} , and \mathbf{V} serve as queries, keys and values, and FFN denotes a feed-forward network. In addition, we also employ a series-level global token embedding \mathbf{G}_{tar} , which serves as a bridge that connects the patches in the target variable and the exogenous variables (Wang et al., 2024). Accordingly, we also employ a variate-to-patch attention $\mathbf{H}_{\cdot}^{\text{var-to-pat}}$ and a patch-to-variate attention $\mathbf{G}_{\cdot}^{\text{pat-to-var}}$, which offers a holistic perspective of the temporal dependencies inherent to the target variable, while also enabling enhanced interactions with exogenous variables that exhibit arbitrary irregularity. **Inter-series cross-attention.** Assume the last observed data point of the target variable occurs at time $T - L$; $\mathbf{z}_{T-L:T}$ thus constitutes a relative future segment relative to $\mathbf{x}_{0:T-L}$. To this end, we redesign the cross-attention layer: the global token of the target variable, \mathbf{G}_{tar} , remains the query (Q), while exogenous variables are split into two segments for the key (K) and value (V), where the embedding of the historical segment $\mathbf{z}_{0:T-L}$ serves as K and the embedding of the pseudo-future segment $\mathbf{z}_{L:T}$ serves as V. The learned global token of the target acts as a bridge to integrate and filter exogenous information, ensuring that only relevant insights support the prediction of the target variable.

3.2.3 CONDITIONING NETWORK

Following Shen & Kwok (2023), using the transformer network $\mathcal{T}(\cdot)$ derived from the previous sections, we adopt the future mixup strategy which combines the past information's mapping $\hat{\mathbf{x}}_{T:T+H} = \mathcal{T}(\mathbf{x}_{0:T-L})$ with the future ground-truth $\mathbf{x}_{T:T+H}^0$, which is only available during training. At diffusion step k , it produces the conditioning signal \mathbf{c} as:

$$\mathbf{c} = \mathbf{m}^k \mathcal{T}(\mathbf{x}_{0:T-L}) + (1 - \mathbf{m}^k) \mathbf{x}_{T:T+H}^0. \quad (9)$$

Here, $\mathbf{m}^k \in [0, 1]^{1 \times H}$ is a mixing coefficient randomly sampled from the uniform distribution on $[0, 1]$. During inference, $\mathbf{x}_{T:T+H}^0$ is no longer available, and the condition \mathbf{c} is set to $\mathcal{T}(\mathbf{x}_{0:T-L})$.

3.3 DENOISING REVERSE PROCESS

The reverse denoising process is a markov chain. At the k -th denoising step, $\mathbf{x}_{T:T+H}^{k-1}$ is generated from $\mathbf{x}_{T:T+H}^k$ by sampling from the following normal distribution, subject to the conditional representation \mathbf{c} :

$$p_{\theta}(\mathbf{x}_{T:T+H}^{k-1} | \mathbf{x}_{T:T+H}^k, \mathbf{c}) = \mathcal{N}(\mathbf{x}_{T:T+H}^{k-1}; \mu_{\theta}(\mathbf{x}_{T:T+H}^k, k | \mathbf{c}), \Sigma_{\theta}(\mathbf{x}_{T:T+H}^k, k)), \quad (10)$$

where the variance $\Sigma_{\theta}(\mathbf{x}_{T:T+H}^k, k)$ is fixed to $\sigma_k^2 \mathbf{I}$. The goal of this reverse process is to learn this mean function $\mu_{\theta}(\mathbf{x}_{T:T+H}^k, k)$, which effectively produces $\mathbf{x}_{T:T+H}^{k-1}$ close to the ground truth. Through iterative denoising steps, the prediction result $\hat{\mathbf{x}}_{T:T+H}^0$ is ultimately recovered to match the distribution of the original time series. To train the diffusion model, considering Eqs. (2) and (10), one uniformly samples k from $\{1, 2, \dots, K\}$ and then minimizes the KL (Kullback-Leibler) divergence:

$$\mathcal{L}_k = D_{\text{KL}}(q(\mathbf{x}^{k-1} | \mathbf{x}^k) \| p_{\theta}(\mathbf{x}^{k-1} | \mathbf{x}^k, \mathbf{c})), \quad (11)$$

where $q(\mathbf{x}^{k-1} | \mathbf{x}^k)$ is the ground-truth conditional data distribution.

282 Then, the training objective in (11) is then formulated as:
 283

$$284 \quad 285 \quad \mathcal{L}_k = \frac{1}{2\sigma_k^2} \left\| \tilde{\mu}_k(\mathbf{x}^k, \mathbf{x}^0, k) - \mu_\theta(\mathbf{x}^k, k \mid \mathbf{c}) \right\|^2. \quad (12)$$

286 The estimation of $\mu_\theta(\mathbf{x}^k, k \mid \mathbf{c})$ can be computed via a noise prediction model $\epsilon_\theta(\mathbf{x}^k, k)$ following Benny &
 287 Wolf (2022).

288 During inference, a noise vector $\mathbf{x}_{1:H}^K \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ is generated, and through the reverse denoising process,
 289 we can obtain the final prediction result $\hat{\mathbf{x}}_{T:T+H}^0$.

291 4 EXPERIMENTS

292 In this section, we perform extensive experiments to compare the proposed FITS with recent 6 state-of-the-
 293 art (SOTA) time series prediction models on 7 commonly used real-world datasets.

294 4.1 SETUP

295 **Benchmark datasets.** Experiments were performed on 7 public benchmark datasets with different levels
 296 of multivariate correlations. The datasets include: (i) **Electricity Price Forecasting Dataset (EPF)** (5 sub-
 297 datasets from different major power markets) (Lago et al., 2021). (ii) **Exchange** (Daily exchange rates of
 298 eight different countries) (Lai et al., 2018). (iii) **Weather** (21 meteorological variables from Germany) (Zhou
 299 et al., 2021). Due to space constraints, detailed descriptions of the datasets are deferred to Appendix B.1.
 300 Appendix B.1 also includes the process of downsampling the original data to arrive at the sparse and irregular
 301 time series used in this work, which in turn contextualizes the data preparation aligned with our research
 302 focus. The data are processed using two random missingness strategies.

303 **Baselines.** To establish a comprehensive benchmark for our proposed FITS method, we select baselines from
 304 four methodological domains. Specifically, we include: (i) **Time series diffusion models:** CSDI (Tashiro
 305 et al., 2021); Transformer-Modulated Diffusion Model (TMDM) (Li et al., 2024b); Diffusion-TS (Yuan &
 306 Qiao, 2024). (ii) **Time series transformers:** Crossformer (Zhang & Yan, 2023). (iii) **Other time series
 307 forecasting methods:** TiDE (Das et al., 2023); DLinear (Zeng et al., 2023). [mTAN \(Shukla & Marlin, 2021b\)](#). See Appendix B.2 for more details about the baselines.

308 **Implementation details.** In our experiments, we employed a linear noise schedule with $\beta_1 = 10^{-4}$ and
 309 $\beta_K = 0.02$, setting the number of diffusion timesteps to $K = 1000$. We approximated the data distribution
 310 using 100 samples, and all experiments were repeated 5 times with seeds $\{1, 2, 3, 4, 5\}$. The model was
 311 trained using the Adam optimizer with a learning rate of 10^{-4} and a batch size of 64. Additional details are
 312 given in Appendix B.3.

313 4.2 MAIN RESULTS

314 4.2.1 PROBABILISTIC FORECASTING

315 To intuitively illustrate the probabilistic distribution forecasting capabilities of the models, we present the
 316 forecasting results of our proposed FITS model alongside three comparative baseline models in Figure 4.
 317 Specifically, we visualize the 50% and 90% prediction intervals (denoted by dark green and light green,
 318 respectively) and overlay the true observed values for direct reference. It is worth noting that certain baseline
 319 models were originally devised for generative tasks rather than dedicated probabilistic forecasting; however,
 320 their authors have asserted that these models are capable of yielding probabilistic forecasting results (Yuan
 321 & Qiao, 2024).

As evidenced by the visualization, FITS demonstrates superior performance in probabilistic distribution forecasting. This advantage can be attributed to the design of our conditional estimation module, which enables more accurate mean estimation even when the input data suffers from temporal misalignment and high proportions of missing values. In particular, the inter-series cross-attention component embedded within this module facilitates the model’s effective extraction and utilization of latent information in pseudo-future data, thereby enhancing forecasting reliability. Nevertheless, in scenarios where there exist unobserved gaps between the historical information window and the target forecasting window, all models encounter heightened challenges in capturing future trend dynamics, resulting in elevated predictive uncertainty.

To quantitatively analyze the models’ probabilistic forecasting capabilities, we adopted CRPS (Continuous Ranked Probability Score) and QICE (Quantile Interval Coverage Error) as evaluation metrics, following the approach of Li et al. (2024b). For both metrics, smaller values indicate better performance. Table 1 shows the CRPS and QICE on the time series. Notably, our model achieves the optimal performance on nearly all datasets, with its CRPS and QICE values consistently remaining at the lowest level among all compared models, fully demonstrating its superior probabilistic forecasting capability.

Table 1: Performance comparisons in terms of QICE and CRPS. The best results are boldfaced, and the suboptimal results are underlined. The table presents both the scenarios of no missing values and random missingness of 0.5.

		Weather		Exchange		NP		PJM		BE		FR		DE	
		QICE	CRPS												
CSDI	No-Missing	13.91	0.735	10.91	0.178	1.96	0.279	16.75	0.603	14.63	0.393	15.60	0.377	13.34	0.683
	RM=0.5	14.90	0.763	10.76	0.189	2.394	0.324	14.37	0.624	14.33	0.452	15.32	0.386	13.56	0.769
TMDM	No-Missing	10.86	0.485	7.439	0.516	5.609	0.593	4.541	0.209	6.096	0.353	5.125	0.294	4.577	0.407
	RM=0.5	12.20	0.554	7.305	0.488	5.453	0.503	2.511	0.178	9.001	0.532	8.795	0.388	4.488	0.410
Diffusion-TS	No-Missing	12.13	0.532	15.90	1.310	9.692	0.612	15.36	0.218	8.236	0.401	9.486	0.376	13.96	0.785
	RM=0.5	13.690	0.543	15.27	1.040	10.25	0.635	15.20	0.256	8.569	0.490	10.50	0.358	12.30	0.813
FITS	No-Missing	3.275	0.409	4.966	0.354	1.800	0.287	3.007	0.176	2.854	0.226	3.739	0.182	2.162	0.390
	RM=0.5	4.170	0.497	4.979	0.359	1.924	0.277	2.976	0.177	3.023	0.226	3.830	0.190	1.024	0.377

4.2.2 NON-PROBABILISTIC FORECASTING

Tables 2 and 3 present the Mean Squared Error (MSE) and the Mean Absolute Error (MAE) results. It can be observed that the performance improvement of the model is particularly significant on more complex datasets such as BE and FR. Overall, the FITS model ranks the highest compared to the baselines under two missingness rates. It should be noted that the model does not achieve performance improvement on long-term forecasting datasets such as Exchange rate, and this may be because there are no complex inter-dependencies between variables in such datasets, leading to the introduction of noise by the inter-variable attention mechanism in the conditional estimation model. TiDE and DLinear, the two channel-independent models, achieved the optimal and suboptimal performance respectively, which also corroborates this point. In contrast, the covariates of the EPF dataset have been confirmed to indeed have a positive effect on target prediction, so our model has achieved better performance on this dataset. Furthermore, we also found that all diffusion models in the baselines perform poorly, which indicates that the current diffusion models are weaker than general models in terms of mean prediction ability.

4.2.3 MODEL EFFICIENCY

To systematically evaluate how model efficiency varies with the number of variables, we conducted predictive performance comparisons against the baseline models using two distinct datasets: EPF-DE (comprising 3 variables) and Weather (consisting of 21 variables), shown in Tables 4 and 5.

376 Table 2: Performance comparisons in terms of MAE and MSE. The best results are boldfaced, and the
 377 suboptimal results are underlined. The table presents the scenarios of RM=0.3 for both target and covariates.
 378

	PJM		BE		DE		FR		NP		Eeather		Exchange		Ranking
	MSE	MAE													
Tide	0.183	0.286	0.633	0.393	0.840	0.591	0.522	<u>0.335</u>	0.532	<u>0.482</u>	0.928	0.683	0.344	<u>0.456</u>	4.14
Dlinear	0.192	0.295	0.637	0.413	0.895	0.612	0.547	0.359	0.560	0.503	0.927	0.679	<u>0.341</u>	0.461	5.36
Crossformer	0.185	0.256	<u>0.512</u>	<u>0.359</u>	0.692	0.520	0.486	0.314	0.523	0.492	0.574	0.552	0.677	0.504	2.94
mTAN	0.219	0.277	0.700	0.545	0.955	0.963	0.827	0.589	0.918	0.762	1.009	0.701	1.218	0.972	7.64
CSDI	0.221	0.322	0.540	0.447	0.944	0.652	0.576	0.356	0.515	0.469	2.136	1.361	4.245	1.609	6.21
TMDM	0.151	0.257	0.640	0.460	2.094	0.966	0.553	0.368	1.101	0.874	0.820	0.611	0.849	0.786	5.79
Diffusion-ts	0.169	0.276	0.651	0.480	0.806	0.588	0.678	0.460	1.252	0.853	0.768	0.658	1.791	1.223	6.21
FITS	<u>0.156</u>	0.250	0.510	0.358	<u>0.723</u>	<u>0.560</u>	0.469	0.357	0.529	0.513	0.813	0.596	0.253	0.414	2.29

389
 390 Table 3: Performance comparisons in terms of MAE and MSE. The best results are boldfaced, and the
 391 suboptimal results are underlined. The table presents the scenarios of RM=0.5 for both target and covariates.
 392

	PJM		BE		DE		FR		NP		Weather		Exchange		Ranking
	MSE	MAE													
Tide	0.192	0.294	<u>0.617</u>	<u>0.412</u>	0.862	0.598	0.666	0.387	0.638	<u>0.525</u>	0.963	0.696	<u>0.402</u>	0.491	4.29
Dlinear	0.199	0.304	0.650	0.428	0.953	0.631	0.591	0.364	0.671	0.545	0.995	0.701	0.451	0.526	5.86
Crossformer	0.238	0.267	0.638	0.374	0.716	0.539	0.511	0.309	0.544	0.500	0.623	0.567	0.768	0.713	4.00
mTAN	0.241	0.264	0.663	0.435	1.082	0.712	0.810	0.602	1.304	0.933	0.938	0.725	1.169	0.967	7.43
CSDI	0.220	0.324	0.675	0.420	0.981	0.667	<u>0.466</u>	0.372	0.588	0.526	4.153	2.336	2.769	1.325	6.29
TMDM	0.271	0.362	0.987	0.592	2.089	0.846	0.721	0.497	1.806	1.035	0.820	0.611	0.931	0.873	7.86
Diffusion-ts	0.194	0.291	0.867	0.646	0.851	0.583	1.546	0.823	1.375	0.900	0.757	0.603	1.522	1.123	6.29
FITS	0.174	0.254	0.590	0.460	<u>0.837</u>	<u>0.597</u>	0.469	0.357	0.7353	0.595	1.156	0.761	0.269	0.412	3.43

403
 404 Several observations can be drawn from the two tables. TiDE, as an MLP-based model, is inherently a
 405 lightweight architecture, characterized by relatively short training and inference times as well as modest
 406 memory requirements. Crossformer adopts a transformer-based architecture with attention mechanisms,
 407 and the cross-attention calculations involved incur substantial memory overhead.

408
 409 For all diffusion-based benchmark methods, their forward-reverse diffusion process operates on the entire
 410 time series, which results in these models having the highest time and memory consumption. In contrast,
 411 our proposed method leverages a conditional denoising design that restricts diffusion computations to the
 412 forecasting series exclusively, thereby improving time efficiency relative to its closest diffusion-based counter-
 413 terparts. Moreover, our novel attention mechanism structure enables a substantial reduction in memory usage
 414 when compared to the TMDM method, which also leverages the forecasting series as the diffusion target.

4.2.4 ABLATION STUDY

415
 416 We compared prediction results of one full model and three ablation variants in Table 6. The **rp-atten** variant
 417 replaces the proposed inter-variable attention with standard cross-attention, leading to performance degra-
 418 dation; **w/o-covar** removes the inter-variable attention module for univariate prediction, causing significant
 419 performance decline—the most severe among all variants; **rp-patch** uses standard instead of attention-driven
 420 patch partitioning. The experimental results show that the inter-series attention plays an important role in
 421 the EPF dataset, and the other components also have a positive impact on the experimental results.

423 Table 4: Efficiency comparison of different models on EPF-DE dataset.
424

425 Model	426 Memory (MB)	427 Training Time / epoch (s)	428 Inference Time (s)
429 TiDE	46.8	2.8	0.6
430 Crossformer	2,315.4	10.7	1.5
431 Diffusion-TS	1,518	195	62
CSDI	3,671	214	65
TMDM	32,007	40.5	6
FITS	199	4.9	11.6

432 Table 5: Efficiency comparison of different models on Weather dataset.
433

434 Model	435 Memory (MB)	436 Training Time / epoch (s)	437 Inference Time (s)
438 TiDE	155.6	3.2	0.7
439 Crossformer	12,798	47.2	5.2
440 Diffusion-TS	1,298	197	916
CSDI	21,530	270	298
TMDM	15,988	22	12
FITS	384	7.3	45

442
443 5 CONCLUSION
444

445 In this work, we propose FITS, an innovative framework that integrates a
446 diffusion generative process with a newly designed transformer-based con-
447 ditional representation learning framework. In particular, our approach in-
448 introduces two key innovations: first, we propose an entropy-based adaptive
449 patching method that leverages the sample entropy measure to effectively
450 capture granular local semantics, which avoids information fragmentation
451 caused by discretionary segmentation. Second, we propose a novel cross-
452 variate attention module to effectively capture the evolutionary dynamics
453 of covariates. By using this transformer-based representation module as
454 a conditional guidance for generating future target variables, the diffusion
455 model can be more effectively guided toward the true values. Extensive ex-
456 periments demonstrate that FITS achieves superior performance in both point forecasting and probabilistic
457 forecasting quality.

458
459 REFERENCES
460

461 Yaniv Benny and Lior Wolf. Dynamic dual-output diffusion models. In *IEEE/CVF Conference on Computer*
462 *Vision and Pattern Recognition*, 2022.

463

464 Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contif-
465 ormer: Continuous-time transformer for irregular time series modeling. In A. Oh, T. Nau-
466 mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neu-*
467 *ral Information Processing Systems*, volume 36, pp. 47143–47175. Curran Associates, Inc.,
468 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/9328208f88ec69420031647e6ff97727-Paper-Conference.pdf.

469 Table 6: Ablation experiment
results in terms of MSE

	Wea.	FR	BE
rp-atten	0.568	0.388	0.414
w/o-covar	0.607	0.423	0.444
rp-patch	0.569	0.391	0.401
FITS	0.559	0.384	0.398

470 Andrea Coletta, Sriram Gopalakrishnan, Daniel Borrajo, and Svitlana Vyetrenko. On the constrained time-
 471 series generation problem. *Advances in Neural Information Processing Systems*, 36:61048–61059, 2023.
 472

473 Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan K Mathur, Rajat Sen, and Rose Yu. Long-term
 474 forecasting with tiDE: Time-series dense encoder. *Transactions on Machine Learning Research*, 2023.
 475 ISSN 2835-8856. URL <https://openreview.net/forum?id=pCbC3aQB5W>.

476 Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. In *NIPS'21: Proceed-
 477 ings of the 35th International Conference on Neural Information Processing Systems*, pp. 8780 – 8794.
 478 NeurIPS, 12 2021.

479

480 Kan Guo, Yongli Hu, Zhen Qian, Yanfeng Sun, Junbin Gao, and Baocai Yin. Dynamic graph convolution
 481 network for traffic forecasting based on latent network of laplace matrix estimation. *IEEE Transactions
 482 on Intelligent Transportation Systems*, 23(2):1009–1018, 2022. doi: 10.1109/TITS.2020.3019497.

483 Xizewen Han, Huangjie Zheng, and Mingyuan Zhou. Card: Classification and regression diffusion models.
 484 In *Thirty-Sixth Conference on Neural Information Processing Systems*, 2022.

485

486 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

487

488 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in Neural
 489 Information Processing Systems*, volume 33, pp. 6840–6851, 2020b.

490

491 Max Horn, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. Set functions for time
 492 series. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on
 493 Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 4353–4363. PMLR,
 494 Jul 13–18 2020. URL <https://proceedings.mlr.press/v119/horn20a.html>.

495

496 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile diffu-
 497 sion model for audio synthesis. In *International Conference on Learning Representations*, 2021. URL
 498 <https://openreview.net/forum?id=a-xFK8Ymz5J>.

499

500

501 Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, and Rafał Weron. Forecasting day-ahead electricity
 502 prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark. *Applied
 503 Energy*, 293:116983, 2021. ISSN 0306-2619. doi: <https://doi.org/10.1016/j.apenergy.2021.116983>. URL
 504 <https://www.sciencedirect.com/science/article/pii/S0306261921004529>.

505

506 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal
 507 patterns with deep neural networks. In *The 41st international ACM SIGIR conference on research &
 508 development in information retrieval*, pp. 95–104, 2018.

509

510 Boyuan Li, Yicheng Luo, Zhen Liu, Junhao Zheng, Jianming Lv, and Qianli Ma. Hyperimts: Hypergraph
 511 neural network for irregular multivariate time series forecasting. In *Proceedings of the 42nd International
 512 Conference on Machine Learning (ICML)*, 2025.

513 Tong Li, Zhaoyang Liu, Yanyan Shen, Xue Wang, Haokun Chen, and Sen Huang. Master: Market-guided
 514 stock transformer for stock price forecasting. *Proceedings of the AAAI Conference on Artificial Intelli-
 515 gence*, 38(1):162–170, Mar. 2024a. doi: 10.1609/aaai.v38i1.27767. URL <https://ojs.aaai.org/index.php/AAAI/article/view/27767>.

516

517 Yuxin Li, Wenchao Chen, Xinyue Hu, Bo Chen, baolin sun, and Mingyuan Zhou. Transformer-modulated
 518 diffusion models for probabilistic multivariate time series forecasting. In *The Twelfth International*
 519 *Conference on Learning Representations*, 2024b. URL <https://openreview.net/forum?id=qae04YACHs>.

520

521 Yuxin Li, Wenchao Chen, Xinyue Hu, Bo Chen, Mingyuan Zhou, et al. Transformer-modulated diffusion
 522 models for probabilistic multivariate time series forecasting. In *The Twelfth International Conference on*
 523 *Learning Representations*, 2024c.

524

525 L. Lin, Z. Li, R. Li, X. Li, and J. Gao. Diffusion models for time-series applications: A survey. *Frontiers of*
 526 *Information Technology & Electronic Engineering*, 25(1):19–41, 2024.

527

528 Xuyuan Liu, Xiangfei Qiu, Xingjian Wu, Zhengyu Li, Chenjuan Guo, Jilin Hu, and Bin Yang. Rethinking
 529 irregular time series forecasting: A simple yet effective baseline, 2025.

530

531 G. Mercatali, A. Freitas, and J. Chen. Graph neural flows for unveiling systemic interactions among irreg-
 532 ularly sampled time series. In *The Thirty-eighth Annual Conference on Neural Information Processing*
 533 *Systems*, 2024.

534

535 Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising diffusion
 536 models for multivariate probabilistic time series forecasting. In *International Conference on Machine*
 537 *Learning*, pp. 8857–8868, 2021.

538

539 Joshua S. Richman and J. Randall Moorman. Physiological time-series analysis using approximate entropy
 540 and sample entropy. *American Journal of Physiology - Heart and Circulatory Physiology*, 278(6):H2039–
 541 H2049, 2000. doi: 10.1152/ajpheart.2000.278.6.H2039.

542

543 David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic forecasting
 544 with autoregressive recurrent networks. *International Journal of Forecasting*, 36(3):1181–1191, 2020.

545

546 Lifeng Shen and James Kwok. Non-autoregressive conditional diffusion models for time series prediction.
 547 In *International Conference on Machine Learning*, 2023.

548

549 Lifeng Shen, Weiyu Chen, and James Kwok. Multi-resolution diffusion models for time series fore-
 550 casting. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=mmjnr0G8ZY>.

551

552 S. N. Shukla and B. Marlin. Multi-time attention networks for irregularly sampled time series. In *Inter-
 553 national Conference on Learning Representations*, 2021b. URL https://openreview.net/forum?id=4c0J6lwQ4_.

554

555 Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional score-based diffusion
 556 models for probabilistic time series imputation. In *Advances in Neural Information Processing Systems*
 557 34, pp. 24804–24816, 2021.

558

559 Daoyu Wang, Mingyue Cheng, Zhiding Liu, and Qi Liu. TimeDART: A diffusion autoregressive transformer
 560 for self-supervised time series representation. In *Forty-second International Conference on Machine*
 561 *Learning*, 2025. URL <https://openreview.net/forum?id=v2G9HML7ep>.

562

563 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jianmin Wang,
 564 and Mingsheng Long. Timexer: Empowering transformers for time series forecasting with exogenous
 565 variables. *Advances in Neural Information Processing Systems*, 37:469–498, 2024.

564 Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. A multi-horizon quantile
 565 recurrent forecaster. *arXiv preprint arXiv:1711.11053*, 2017.

566

567 V. K. Yalavarthi, K. Madhusudhanan, R. Scholz, N. Ahmed, J. Burchert, S. Jawed, S. Born, and L. Schmidt-
 568 Thieme. Grafiti: Graphs for forecasting irregularly sampled time series. *Proceedings of the AAAI Conference
 569 on Artificial Intelligence*, 38(15):16255–16263, 2024. ISSN 2374-3468. doi: 10.1609/aaai.v38i15.
 570 29560.

571

572 Vijaya Krishna Yalavarthi, Johannes Burchert, and Lars Schmidt-Thieme. Dcsf: Deep convolutional set
 573 functions for classification of asynchronous time series. In *2022 IEEE 9th International Conference on
 574 Data Science and Advanced Analytics (DSAA)*, pp. 1–10. IEEE, 2022.

575

576 Vijaya Krishna Yalavarthi, Johannes Burchert, and Lars Schmidt-Thieme. Tripletformer for probabilistic
 577 interpolation of irregularly sampled time series. In *2023 IEEE International Conference on Big Data
 578 (BigData)*, pp. 986–995. IEEE, 2023.

579

580 Jiayu Yao, Weiwei Pan, Soumya Ghosh, and Finale Doshi-Velez. Quality of uncertainty quantification for
 581 bayesian neural network inference, 2019.

582

583 Xinyu Yuan and Yan Qiao. Diffusion-TS: Interpretable diffusion for general time series generation. In *The
 584 Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=4h1apFjO99>.

585

586 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting?
 587 *Proceedings of the AAAI Conference on Artificial Intelligence*, 37(9):11121–11128, Jun. 2023. doi: 10.
 588 1609/aaai.v37i9.26317. URL <https://ojs.aaai.org/index.php/AAAI/article/view/26317>.

589

590

591 J. Zhang, S. Zheng, W. Cao, J. Bian, and J. Li. Warpformer: A multi-scale modeling approach for irregular
 592 clinical time series. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
 593 Data Mining*, pp. 3273–3285, 2023. doi: 10.1145/3580305.3599543.

594

595 Weijia Zhang, Chenlong Yin, Hao Liu, Xiaofang Zhou, and Hui Xiong. Irregular multivariate time se-
 596 ries forecasting: A transformable patching graph neural networks approach. In *Forty-first International
 597 Conference on Machine Learning*, 2024.

598

599 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multi-
 600 variate time series forecasting. In *International Conference on Learning Representations*, 2023.

601

602 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. In-
 603 former: Beyond efficient transformer for long sequence time-series forecasting. *Proceedings of the AAAI
 604 Conference on Artificial Intelligence*, 35(12):11106–11115, May 2021. doi: 10.1609/aaai.v35i12.17325.
 605 URL <https://ojs.aaai.org/index.php/AAAI/article/view/17325>.

606

607

608 A TRAINING ALGORITHM

609

610 The training procedure is provided in Algorithm 1 below.

611 Algorithm 1 Training

612 **Require:** Number of diffusion steps K .

613 1: **repeat**

614 2: Sample $\mathbf{x}_{T:T+H}^0$ from the training set;

615 3: $k \sim \text{Uniform}(\{1, 2, \dots, K\})$, $\epsilon \sim \mathcal{N}(0, \mathbf{I})$;

616 4: Compute $\mathbf{x}_{T:T+H}^k$ following Eq. (4);

617 5: Using the transformer network given in Section 3.2, obtain condition \mathbf{c} based on Eq. (9);

618 6: Use the reverse denoising process to generate denoised sample $\mathbf{x}_{T:T+H}^{k-1}$ by Eq. (10);

619 7: Calculate the loss $\mathcal{L}_k(\theta)$ in (12);

620 8: Take gradient descent step on $\nabla_{\theta} \mathcal{L}_k(\theta)$;

621 9: **until** converged

623 **B DATASETS AND BASELINES**

624 **B.1 DATASETS**

625 We assessed the effectiveness of the proposed FITS model through extensive experiments on 7 time series forecasting datasets. As our focus is on sparse and irregularly sampled time series, we modified the originally regular datasets by applying a subsampling procedure with different filtering rates to induce sparsity.

626 First, detailed descriptions of the original datasets are provided below:

627 (1) The **EPF** is an electricity price forecasting dataset, which contains five datasets representing five different day-ahead electricity markets spanning six years each (Lago et al., 2021).

628 • **NP** represents the Nord Pool electricity market, recording the hourly electricity price, and corresponding grid load and wind power forecast from 2013-01-01 to 2018-12-24.

629 • **PJM** corresponds to the Pennsylvania - New Jersey - Maryland (PJM) market. It contains the zonal electricity price in the Commonwealth Edison (COMED) area, along with the corresponding system load and COMED load forecast data, spanning from 2013-01-01 to 2018-12-24.

630 • **BE** stands for Belgium's electricity market. It documents the hourly electricity prices, load forecast in Belgium, and generation forecast in France, covering the period from 2011-01-09 to 2016-12-31.

631 • **FR** represents the electricity market in France. It records the hourly electricity prices and the corresponding load and generation forecast data, with the time range from 2012-01-09 to 2017-12-31.

632 • **DE** corresponds to the German electricity market. It keeps track of the hourly electricity prices, the zonal load forecast in the TSO Amprion zone, and the wind and solar generation forecasts, spanning from 2012-01-09 to 2017-12-31.

633 (2) The **Exchange** (Lai et al., 2018) dataset comprises of daily closing exchange rates of eight currencies against the USD from 1990 to 2016.

634 (3) The **Weather** (Zhou et al., 2021) dataset contains 21 meteorological variables recorded every 10 minutes at a weather station in Germany during 2020. In this work, we use the Wet Bulb factor as the target variable to be predicted and the other indicators as exogenous variables

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657 Table 7 provides a summary of the data statistics.

658 Table 7: Full dataset descriptions. Training/Validation/Test dataset is split as 70%/10%/20%.
659
660
661
662

Datasets	Look-back period	Forecasting horizon	Target variable	No. of Exogenous Variables	Sampling frequency
EPF - NP	192	24	Nord Pool Electricity Price	2	1h
EPF - PJM	192	24	Pennsylvania-New Jersey-Maryland Electricity Price	2	1h
EPF - BE	192	24	Belgium's Electricity Price	2	1h
EPF - FR	192	24	France's Electricity Price	2	1h
EPF - DE	192	24	German's Electricity Price	2	1h
Exchange	96	96	Exchange rates	7	1d
Weather	96	96	CO ₂ -Concentration	20	10m

689 Figure 3: Schematic diagrams of RM and BM, where the gray shaded areas represent the missing regions.
690
691

692 This study employs two distinct downsampling procedures to generate sparse datasets for subsequent model
693 training and inference. The first is a **random missing (RM)** approach, wherein a fraction α of data points
694 is randomly removed from the original target time series, where α is set to 30% and 50%. The forecasting
695 accuracy under different sparsity levels is evaluated in subsequent sections. The second is a **block missing**
696 (**BM**) approach. For each sliding window, this method removes a continuous segment of length s from a
697 random position within the window. For instance, from a time series segment of length 96, a contiguous
698 segment of 24 points is removed. Figure 3 illustrates examples of the original time series and the sparsified
699 series resulting from these two methods.

700
701 **B.2 BASELINES**
702

703 To comprehensively assess the capabilities of FITS, we benchmark it against state-of-the-art approaches,
704 including time series diffusion models, and other leading methods. This diverse set of baselines ensures a

705 rigorous and well-rounded comparison, highlighting FITS’s performance across different learning paradigms
 706 and demonstrating its effectiveness in a wide range of scenarios.
 707

708 (1) Time series diffusion models:
 709

710 • CSDI: <https://github.com/ermongroup/CSDI>. CSDI proposes a novel time series imputation
 711 method that leverages score-based diffusion models conditioned on observed data.
 712 • TMDM: <https://github.com/LiYuxin321/TMDM>. TMDM introduces a Transformer-
 713 Modulated Diffusion Model, uniting conditional diffusion generative process with
 714 transformers into a unified framework to enable precise distribution forecasting for
 715 MTS.
 716 • Diffusion-TS: <https://github.com/Y-debug-sys/Diffusion-TS>. DiffusionTS is a diffusion
 717 model-based framework that decomposes time series into trend, seasonality, and residual com-
 718 ponents, integrates Transformer architectures to capture temporal dependencies, and aims to
 719 produce interpretable and multimodal time series data.
 720

721 (2) Long time series Forecasting models:
 722

723 • TiDE:<https://github.com/google-research/google-research/blob/master/tide/>. TiDE proposes
 724 an MLP-based encoder-decoder model for long-term time-series forecasting, which handles
 725 covariates and non-linear dependencies.
 726 • DLinear: <https://github.com/ioannislivieris/DLinear>. DLinear introduces simple one-layer
 727 linear models that bypass the temporal information loss inherent in Transformer-based self-
 728 attention, achieving superior performance in long-term time series forecasting across diverse
 729 datasets.
 730 • Crossformer: <https://github.com/Thinklab-SJTU/Crossformer>. Crossformer proposes a novel
 731 transformer-based model for long-sequence time series forecasting (LSTF), which segments
 732 the input into smaller chunks and leveraging cross-attention mechanisms to effectively capture
 733 long-range temporal dependencies, thereby enhancing prediction accuracy for extended time
 734 horizons.
 735

736 (3) Irrgular time series Forecasting models:
 737

738 • mTAN:<https://github.com/reml-lab/mTAN>. mTAN is a interpolate method which uses learn-
 739 able time embeddings and an attention mechanism to achieve efficient interpolation and clas-
 740 sification.
 741

742 B.3 IMPLEMENTATION DETAILS
 743

744 For all datasets, the pseudo length was fixed at 24. The input sequence length for the EPF dataset was
 745 set to 192, yielding a target length of 168, while for the other datasets, the input length was fixed at 96.
 746 The forecasting horizon was 24 for EPF and 96 for the remaining datasets. For Quantile Interval Coverage
 747 Error(QICE), we divided samples into 10 quantile intervals. For models not inherently designed to handle
 748 mismatched lengths between covariates and targets, the target sequences were zero-padded to align dimen-
 749 sions. **To enable prediction in models designed for interpolation and imputation, we treat forecasting as a**
 750 **special imputation case where the target value is at the end of the sequence.** All implementations were based
 751 on PyTorch and executed on an NVIDIA RTX 5090D GPU with 32 GB of memory.

752
753
754
755
756
757 C MORE RESULT
758
759
760
761
762
763
764
765
766
767
768
769
770
771C.1 QUALITATIVE ANYLIST AND VISUALIZATION
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

We visualized the prediction probabilities of the 0th, 200th, 400th, 600th, and 800th samples in the EPF dataset and compared them with the TMDM model, which performed well in the previous results. It can be clearly seen from the visualization results that our model is more advantageous in terms of the accuracy, concentration of the probability distribution and the fit with the ground truth, which fully demonstrates that our model has a strong ability in predicting probabilities.

790
791 Figure 4: Visualization of PJM Dataset Prediction Results In the visualization, dark green and light green
792
793 represent the 50% and 90% prediction intervals of the model, respectively, and the red line denotes the
794
795
796
797
798 ground truth.

818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

Figure 5: Visualization of NP Dataset Prediction Results In the visualization, dark green and light green represent the 50% and 90% prediction intervals of the model, respectively, and the red line denotes the ground truth.

841
842
843
844
845

Figure 6: Visualization of FR Dataset Prediction Results In the visualization, dark green and light green represent the 50% and 90% prediction intervals of the model, respectively, and the red line denotes the ground truth.

865 Figure 7: Visualization of DE Dataset Prediction Results In the visualization, dark green and light green
866 represent the 50% and 90% prediction intervals of the model, respectively, and the red line denotes the
867 ground truth.

888 Figure 8: Visualization of BE Dataset Prediction Results In the visualization, dark green and light green
889 represent the 50% and 90% prediction intervals of the model, respectively, and the red line denotes the
890 ground truth.

893 C.2 FORECASTING PERFORMANCE WHEN MULTIPLE TARGET VARIABLES ARE PRESENT
894895 To demonstrate our model’s ability to simultaneously predict multiple target variables, we selected two
896 best-performing baselines for comparison based on the results presented in Tables 1–3. Specifically, we
897 designated the latter half of the variables in the multivariate dataset as target variables and the first half as
898 covariates. Furthermore, we configured the pseudo-features of all endogenous variables to ensure they have
899 identical lengths.900 Table 8: Performance when there are multiple target variables
901902
903

	FR		BE		PJM	
	MSE	MAE	MSE	MAE	MSE	MAE
Crossformer	0.547	0.355	0.537	0.375	0.262	0.323
DLinear	0.626	0.412	0.633	0.407	0.179	0.281
FITS	0.508	0.338	0.510	0.395	0.151	0.232

908 C.3 ENTROPY COMPUTATION PARAMETERS SENSITIVITY ANALYSIS
909910 We conducted experiments on the sensitivity of the parameters in the entropy calculation, and the results are
911 presented in Figure 9. RM is set to 0.3.912 In this work, as shown in Section 3.2.1, Sample Entropy is used to compute the information density of each
913 individual patches which is then used to compute the dynamic window boundaries. Specifically, Sample
914 Entropy (SampEn) is a statistical metric used to quantify the complexity and regularity of a time series, the
915 core parameters in its calculation are the similarity tolerance r and the embedding dimension m .916 Firstly, the Similarity Tolerance r is a threshold for judging whether two m -dimensional reconstructed vectors
917 are “similar”, and is usually expressed as a multiple of the standard deviation of the original time series
918 (i.e., $r = \alpha \times \text{std}$, where α is a coefficient). It controls the looseness of similarity judgment and is the most
919 sensitive parameter in SampEn calculation. Empirically, α is set to 0.1 0.25 (i.e., $r = 0.1\text{std} \sim 0.25\text{std}$). In
920 this work, r is set to 0.1, 0.15, 0.2 0.25, 0.3, also keeping other parameters fixed.921 Secondly, the embedding dimension m refers to the dimension of reconstructing the original time series into
922 m -dimensional vectors, meaning that m consecutive data points are taken each time to form a reconstructed
923 vector. It determines the granularity of characterizing the local dynamic features of the time series. An ex-
924 cessively small m will lose the multi-dimensional correlation information of the series, while an excessively
925 large m will increase the computational complexity and easily lead to unstable results due to insufficient
926 data volume. According to common practice, m is usually set to 2 or 3. In this work, we demonstrate the
927 performance in terms of MSE for three datasets when m is set to 2, 3, 4, 5, keeping all other parameters
928 fixed.929 From Figure 9, we observe that for both parameters r and m , the model’s MSE performance remains stable
930 across all three datasets. Setting these parameters to appropriate values within the empirical ranges thus has
931 no substantial impact on the overall model performance.933 C.4 MODEL SENSITIVITY TO VARIATIONS IN INITIAL PATCH SIZES S_{INIT}
934935 We assessed the performance across multiple values of initial patch sizes parameter S_{init} (e.g., 8, 16, 24, 32).
936 The results are shown as Figure 10. Results show that our adaptive scheme maintains stable performance
937 across reasonable S_{init} ranges, as the BoundaryNet compensates for suboptimal initializations. The final
938 information density quantification and patching effect are dominated by adaptive adjustment, rather than the
939 initial S_{init} .

Figure 9: Model performance across (a) similarity tolerance $r = \{0.1, 0.15, 0.2, 0.25, 0.3\}$, and (b) embedding dimension $m = \{2, 3, 4, 5\}$. The relatively flat curves in the graph indicate that our model is not sensitive to variations in m and r .

Figure 10: Model sensitivity to variations in initial patch size parameter S_{init}

D THE USE OF LARGE LANGUAGE MODELS (LLM)

This work used LLMs to fix grammar mistakes and spelling errors.