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Abstract

New proposals for causal discovery algorithms are
typically evaluated using simulations and a few
selected real data examples with known data gen-
erating mechanisms. However, there does not exist
a general guideline for how such evaluation stud-
ies should be designed, and therefore, comparing
results across different studies can be difficult. In
this article, we propose to use negative controls as
a common evaluation baseline by posing the ques-
tion: Are we doing better than random guessing?
For the task of graph skeleton estimation, we derive
exact distributional results under random guessing
for the expected behavior of a range of typical
causal discovery evaluation metrics, including pre-
cision and recall. We show that these metrics can
achieve very favorable values under random guess-
ing in certain scenarios, and hence warn against
using them without also reporting negative control
results, i.e., performance under random guessing.
We also propose an exact test of overall skeleton
fit, and showcase its use on a real data application.
Finally, we propose a general pipeline for using
negative controls beyond the skeleton estimation
task, and apply it both in a simulated example and
a real data application.

1 INTRODUCTION

Causal discovery algorithms seek to infer information about
a causal data generating mechanism by analyzing empir-
ical data it generated. The causal data generating mecha-
nism is typically represented by a causal graph, for example
an equivalence class of directed acyclic graphs (DAGs).
A highly productive research community has published a
plethora of new causal discovery algorithms within the last
30 years or so. Naturally, this fast growing battery of avail-

able algorithms requires some standards and guidelines for
evaluating and benchmarking their performance. Because
the result of a causal discovery algorithm is an estimated
graph (or family of graphs), rather than one or more scalars,
it is not entirely obvious how to use classic approaches for
performance evaluation from neither machine learning nor
statistics.

Nonetheless, machine learning classification metrics orig-
inally developed for evaluating prediction tasks are often
used to evaluate causal discovery algorithms. Most com-
monly, precision and recall, or possibly their harmonic mean,
the F1 score, are reported, although some studies also focus
on other metrics, e.g., negative predictive value [Petersen
et al., 2023b]. These metrics are computed from graph-level
confusion matrices summarizing either agreement on place-
ment of oriented edges (primarily used for DAG discovery
evaluation), adjacencies (i.e., edge placement without con-
sidering orientation), and/or arrowheads among correctly
placed adjacencies (conditional orientation). Typically, they
are reported as averages over numerous simulations. Some-
times the results are stratified by graphical parameters (e.g.,
true graph density), data-related parameters (e.g., sample
size), or simply reported as averages across several such
settings.

Alternative metrics developed specifically for graphs also
exist; the structural Hamming distance [Tsamardinos et al.,
2006] is the most widely used example, probably due to
its cheap computation and easy interpretation. A differ-
ent metric focusing more on the causal implications of the
graphs is the structural intervention distance (SID) [Peters
and Bühlmann, 2015], although it is most naturally suited
for DAG-DAG comparison, and hence not readily applicable
for all discovery evaluation tasks. A more recent proposal is
the adjustment identification distance [Henckel et al., 2024],
which also focuses on differences in causal inference based
on the graph, or the separation distance [Wahl and Runge,
2025], which counts agreement in separation statements.
There are thus many different possible choices of metrics
for evaluating causal discovery algorithms. However, no
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general guidelines exist on how to then interpret the values
these metrics take: What is a high or low number?

An often-used strategy for answering this question in ex-
perimental sciences is to conduct a controlled experiment.
In such an experiment, the intervention of interest (here: a
causal discovery algorithm) is compared to a control condi-
tion. When this control condition cannot have any influence
on the outcome of interest, it is denoted a negative control.
For example, say we want to study the impact of a fertil-
izer on plant growth. We plant 100 seeds in two plots with
similar conditions, except that one (the treatment group)
receives the fertilizer, while the other (the negative control)
does not. After, say, 10 days, we measure the heights of
the plants, and we use the average difference in heights as
a measure of the effect of the fertilizer. By including the
negative control we obtain a direct measure of the specific
effect of the treatment.

Alternatively, we could have compared the fertilizer of in-
terest with another active treatment, perhaps an alternative
well-known fertilizer (denoted a positive control). This com-
parison gives less information about the specific treatment of
interest. For example, we cannot falsify a hypothesis saying
that neither fertilizer has any effect. In some scientific fields,
for example human drug trials, using positive controls is the
only viable option, as it would be utterly unethical to deny
patients treatment (if one exists) in order to obtain a nega-
tive control group for evaluating a new proposed treatment.
But of course, no such concerns are relevant for evaluating
causal discovery algorithms. Nonetheless, the current stan-
dard practice is to report positively controlled experiments:
A new candidate algorithm is typically compared to a selec-
tion of existing algorithms. Such a comparison in itself does
not provide information about whether either of the consid-
ered algorithms work. Moreover, because causal discovery
evaluations are very sensitive towards experimental settings
concerning graph sparsity (as we will demonstrate below),
it is not straight-forward to generalize findings from such a
positively controlled experiment to infer what performance
should be expected on just slightly different evaluation set-
tings. This makes it very difficult to compare results across
different evaluation studies with just marginally different
designs.

We propose to use negative controls to obtain an inter-
pretable benchmark for any causal discovery evaluation
study: Namely, to investigate what values of the metrics of
interest can be obtained using random guessing (a negative
control), and report this alongside findings from positive
controls (alternative algorithms). Others have reported re-
sults from a single random guess alongside causal discovery
benchmarks [Lachapelle et al., 2020], but as we will argue,
a more structured approach to including negative controls
provides many benefits. We discuss negative controls in two
different settings: First, we consider the task of skeleton
estimation, that is estimating e.g., a DAG without taking
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Figure 1: The True Underlying DAG (a) and an Estimated
DAG (b) Obtained Using an Undisclosed Causal Discovery
Procedure.

Table 1: Adjacency Confusion Matrix for the 5 Node DAG
Example in Figure 1.

Truth
Adjacency Non-adjacency

Estimate Adjacency tp = 6 fp = 1
Non-adjacency fn = 2 tn = 1

orientation information into account. For this case, we de-
rive exact distributional results for the expected behavior
under random guessing (Section 3), and we use these results
to compute expected negative control values for a range of
often-used metrics (Section 4). We furthermore propose an
exact test of overall skeleton fit (Section 5), and provide an
example of its use on real data. Secondly, we consider more
general metrics that are not only concerned with skeleton
estimation, and propose a negative control pipeline for this
case (Section 6). We provide two examples of its use, both
in a simulation study and in a real data application.

But before we turn to these general results, we present an
example case where well-known metrics such as adjacency
precision and recall do perhaps not behave exactly as one
would have expected.

Code for all computations is available online at https://
github.com/annennenne/negcontrol-disco.

2 PRECISION AND RECALL: A
CAUTIONARY TALE

Consider the two DAGs in Figure 1. The left graph (a) is the
true DAG, and the right graph (b) is an estimate produced by
a causal discovery procedure. We compute their adjacency
confusion matrix in order to evaluate the performance of the
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Table 2: Generically Labelled Adjacency Confusion Matrix.

Truth
Adjacency Non-adjacency Total

Est. Adjacency TP FP mest

Non-adjacency FN TN -
Total mtrue - mmax

Notes: Entries marked with dashes are sums that will not be used for the
derivations here. "Est." abbreviates estimate.

discovery procedure (Table 1). This results in:

precision =
tp

tp + fp
=

6

7
≃ 0.86 and

recall =
tp

tp + fn
=

6

8
= 0.75.

Are these numbers high or low? Although these values are
not too far off from the performance of well-established
causal discovery algorithms on simulated data (and much
better than typical performance on "real" benchmarking
datasets), we will argue that they are indeed as low as can
be for this specific discovery task — because the "discovery
algorithm" applied here was simply random guessing and
hence had absolutely no information about the true data
generating mechanism.

More specifically, we simulated 1000 random Erdős-Rényi
type DAGs over 5 nodes each with 7 edges1 and used these
"random guesses" as estimates of the DAG in Figure 1 (a).
This resulted in a median precision of 0.86 and a median
recall of 0.75, i.e., numbers that exactly match the per-
formance of the example just described. The DAG shown
in Figure 1 (b) was one among many random draws that
matches this median performance. Hence the large values of
precision and recall cannot be attributed to a conveniently
chosen random seed.

Is it then a curious artefact for very dense graphs? Or "small"
graphs over e.g., 5 nodes? Neither is the case. As we will
show in the following section, the phenomenon does not
depend on the number of nodes, and depending on the choice
of metrics, can occur also in modestly dense graphs.

3 DISTRIBUTIONAL RESULTS FOR
ADJACENCY METRICS UNDER
RANDOM GUESSING

Consider a DAG G over d nodes, and let mtrue denote the
number of edges in G. Let Ĝ be another DAG over the same
d nodes used as an estimate of G, and let mest be the number
of edges in Ĝ. Finally, let mmax =

∑d−1
i=1 i = 1

2 (d− 1)d de-
note the maximal number of possible edges in a DAG over

1Note that this is not even the correct number of edges, al-
though close to it, as the true DAG has 8 edges.

d nodes (corresponding to a fully connected graph). We
can describe the performance of Ĝ as an adjacency/skeleton
estimator of G through a (generic) confusion matrix as seen
in Table 2. Note that for a given causal discovery prob-
lem, namely estimating some given G, mmax and mtrue can
be considered fixed: mmax depends only on the number of
nodes d, which does not change, and mtrue is fixed given
G. Moreover, for many causal discovery procedures, it fur-
ther makes sense to consider mest fixed — at least for a
specific value of a tuning parameter (e.g., significance level
for testing or penalty for a score) and a specific dataset —
as we most often do not try to estimate the correct number
of edges from data. Rather, algorithms are typically applied
with a pre-specified value of the tuning parameter (e.g. sig-
nificance level of α = 0.01), which indirectly controls the
resulting number of edges, mest (see Sections 6 and 7 for
considerations in cases where this latter assumption is not
meaningful).

We now make the following important observation: If edges
are placed uniformly in both G and Ĝ (corresponding to
Erdős-Rényi type graphs), and we condition on the row and
column sums of Table 2 (which is equivalent with condition-
ing on mtrue, mest and mmax), then by definition, the number
of true positives will follow a hypergeometric distribution
parameterized by mmax, mtrue and mest:

TP |mmax,mtrue,mest ∼ HyperGeom(mmax,mtrue,mest).

Note that this is an exact distributional result, not an asymp-
totic statement. This distributional result is well known from
its use in the (one-sided) Fisher’s exact test, and may also
be motivated using a random urn experiment analogy, see
Supplementary Materials A.

This observation gives rise to several useful applications:
First, we can compute the expected value, median and uncer-
tainty estimates (e.g., confidence interval) for the number of
true positive adjacencies under random guessing. Secondly,
since we are also conditioning on mmax, mtrue and mest, we
can further compute expectations and draw statistical infer-
ence for any function of the confusion matrix, including
precision, recall and F1. We provide formulas for these in
Section 4. Thirdly, we can construct an exact statistical test
of overall skeleton fit by considering how much the number
of true positives in a given estimated graph diverts from
its expected distribution under a null hypothesis of random
edge placement. We propose such a test in Section 5.

4 EXPECTATIONS AND QUANTILES OF
ADJACENCY METRICS UNDER
RANDOM GUESSING

Since

TP |mmax,mtrue,mest ∼ HyperGeom(mmax,mtrue,mest),



Table 3: Expected Values and Quantile Expressions Under
Random Guessing for Five Commonly Used Adjacency
Metrics.

Metric Expected value Quantile
Precision mtrue

mmax

qk
mest

Recall mest
mmax

qk
mtrue

F1 2·mest·mtrue
mmax·mest+mmax·mtrue

2·qk
mest+mtrue

NPV 1− mtrue
mmax

mmax−mest−mtrue+qk
mmax−mest

Specificity 1− mest
mmax

mmax−mest−mtrue+qk
mmax−mtrue

Note: qk denotes the kth quantile from HyperGeom(mmax,mtrue,mest).

by definition we have that

E(TP |mmax,mtrue,mest) =
mest ·mtrue

mmax

and by considering the quantile function of
HyperGeom(mmax,mtrue,mest), we can construct a
confidence interval as e.g., the central 95% of the
distribution, or find the expected median.

For fixed values of (mmax,mtrue,mest), Table 3 provides an
overview of expected values and quantiles under random
guessing for five metrics commonly used for evaluating ad-
jacency placement for causal discovery algorithms, namely
precision, recall, F1 score, negative predictive value (NPV)
and specificity. As an example, we here showcase deriva-
tions for precision, and refer to Supplementary Materials B
for derivations for the remaining four metrics.

Expectation and quantiles for adjacency precision We
first express precision as a function of TP,mmax,mtrue and
mest:

prec =
TP

TP + FP
=

TP
TP +mest − TP

=
TP
mest

Since this is a linear function of TP, we can straight-
forwardly compute the expectation:

E(prec |mmax,mtrue,mest) =
1

mest
E(TP |mmax,mtrue,mest)

=
mtrue

mmax

The linearity also makes it easy to obtain e.g., an exact 95%
confidence interval under the null hypothesis of random
guessing by simply applying the same transformation to
the appropriate quantiles of HyperGeom(mmax,mtrue,mest).
For example, an exact 95% confidence interval for precision
under the null is given by(

1

mest
q(0.025,mmax,mtrue,mest),

1

mest
q(0.975,mmax,mtrue,mest)

)

where q(k,mmax,mtrue,mest) is used to denote the
kth quantile of the probability mass function of
HyperGeom(mmax,mtrue,mest). Similarly, we obtain
the median precision by simply computing

median(prec) =
1

mest
q(0.5,mmax,mtrue,mest).

General remarks concerning Table 3 A notable feature
of Table 3 is that, conditional on (mmax,mtrue,mest), the
expected precision is simply the density of the true DAG G,
and the expected recall is the density of the estimated DAG
Ĝ. Furthermore, the expected values of NPV and specificity
are given as 1 minus the expectations of precision and recall,
respectively, and hence they do not provide additional infor-
mation. However, without random guessing, this is of course
not generally the case, so they are still useful to compute in
order to provide a nuanced and multifaceted evaluation of a
given causal discovery procedure.

Moreover, we note that under random guessing, the expected
precision does not depend on the number of edges in the
estimated graph (mest), only on the number of edges in the
true graph (mtrue) and the maximal possible number of edges
(mmax). But recall increases linearly as a function of the
number of estimated edges. Hence, if we are using random
guessing, a "free lunch" in optimizing precision and recall
is achievable simply by estimating a very large number of
edges, even including the trivial fully connected graph. This
can also be seen from the expected value of the F1 score
under random guessing, which increases monotonically with
the number of estimated edges: It is always better to just
add another edge.

Note that all statistical inference based on Table 3 relies on a
single distributional result. Hence, while we may construct
confidence intervals for e.g., both precision and recall to
aid our own interpretation of a specific estimation problem,
there is no additional statistical information gained: We
might as well just draw inference directly on the number of
true positives.

We will now consider two small example applications of
the results from Table 3. First, we revisit the example from
Section 2 and compute the median, expected value, and a
95% confidence interval for precision and recall for this
case. Next, we provide an overview of how the expected F1
score varies as a function of mest and mtrue under random
guessing.

4.1 EXAMPLE: EXPECTED ADJACENCY
PRECISION AND RECALL FOR A DENSE 5
NODE DAG

Consider the problem from Section 2 regarding estimating a
DAG skeleton over 5 nodes. Such a DAG can have at most
mmax = 1

2 (5− 1)5 = 10 edges. Assume that the true DAG



has mtrue = 8 edges, while a randomly drawn graph over
the same 5 nodes has mest = 7 edges. What performance
can we then expect from this random guessing procedure?
With reference to Table 3, we find

E(prec |mmax = 10,mtrue = 8,mest = 7) =
8

10
= 0.80

with a 95% confidence interval of(q(0.025,10,8,7)
7

,
q(0.975,10,8,7)

7

)
=

(
5

7
,
7

7

)
≃ (0.71, 1.00).

Hence for this DAG estimation task, it will not be highly
unusual to obtain adjacency precisions as high as 1.00 under
random guessing, and thus adjacency precision is not very
useful for assessing performance. We can also compute the
median precision:

median(prec) =
q(0.5,10,8,7)

7
=

6

7
≃ 0.86

This is the same value as found in the simulations presented
in Section 2.

For adjacency recall we find

E(recall |mmax = 10,mtrue = 8,mest = 7) =
7

10
= 0.70

and we compute a 95% confidence interval as(q0.025,10,8,7
8

,
q0.975,10,8,7

8

)
=

(
5

8
,
7

8

)
≃ (0.63, 0.88).

One is not included in this confidence interval and hence
adjacency recall does have some discriminatory power for
this DAG estimation task. We compute the median:

median(recall) =
q(0.5,10,8,7)

8
=

6

8
= 0.75

Once again, this matches our simulation-based findings from
Section 2.

4.2 EXAMPLE: ADJACENCY F1 SCORES FOR A 5
NODE DAG WITH VARYING DENSITY

Figure 2 provides an overview of obtained F1 scores under
random guessing across all possible combinations of esti-
mated number of edges (horizontal axis) and true number of
edges (marked in color) for 5 node DAGs. We see that it is
quite possible to obtain a large F1 score by random guessing
if the true DAG is not very sparse, and especially, if the
estimate is also not very sparse. But we stress that neither
has to be overly or unrealistically dense either: For a true
graph that has just 5 edges — i.e., only one edge more than
the sparsest graph that is connected — a randomly drawn
DAG with 5 edges will result in an expected F1 of 0.5, and
placing all 10 possible edges results in an F1 score of 0.66.
If we instead consider a more dense graph, e.g., a true DAG
with 8 edges, we are back in the scenario already considered
above, and we see that we can find a peak F1 score of 0.89
by placing all edges.
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Figure 2: Expected Adjacency F1 Scores Under Random
Guessing for Estimating 5 Node DAGs.

Table 4: Adjacency Confusion Matrix Replicated From Pe-
tersen et al. [2023a].

Experts
Adjacency Non-adjacency

TPC Adjacency 10 20
Non-adjacency 20 181

5 A TEST OF OVERALL SKELETON FIT

We can also use the distributional results presented above to
construct an exact test of overall skeleton fit. More specifi-
cally, for an estimated DAG Ĝ with mest edges, we test the
null hypothesis

H0 : Ĝ was obtained by randomly placing mest edges.

This is done by comparing the observed number of true posi-
tives, tpobs with the appropriate hypergeometric distribution.
Formally, if we let X ∼ HyperGeom(mmax,mtrue,mest), a
one-sided p-value for H0 is computed as

P (X ≥ tpobs)

i.e., the probability of getting at least as many true positives
as the observed number if edges were in fact randomly
placed. Note that since the test is exact (and based on a
discrete probability distribution), it will be conservative.

5.1 APPLICATION: TEMPORAL PC ON THE
METROPOLIT COHORT DATASET

We will reanalyze data from Petersen et al. [2023a]. In that
study, the temporal PC algorithm (TPC) [Petersen et al.,
2021] was used on a cohort data set of n = 3145 Danish
men to identify possible causes of depression and heart
disease, as well as their interplay. Two experts were also
asked to construct a model for the data based on existing
studies and subject-field knowledge, and their DAG was
compared to the output of TPC. For the comparison here,



we assume that the expert model is correct and wish to
evaluate if TPC performs better than a negative control at
estimating the expert model. The DAGs have 22 nodes, and
hence mmax = 231 possible edges.

Table 4 shows the adjacency confusion matrix comparing
the expert and TPC models. Note that the two models did
not disagree on edge orientation among shared adjacencies
(although one shared adjacency was left unoriented by TPC).
Hence in this case, the adjacency performance comparison
summarizes all edge-wise comparisons of the two outputs.
Note also that TPC was set to find the same number of edges
as the experts did, i.e. mtrue = mest = 30, and hence the
symmetry in the confusion matrix is by design.

We conduct an overall test of skeleton fit by comparing
the obtained number of true positives, tpobs = 10, with
HyperGeom(231, 30, 30) and we find p = 0.002. Hence,
we reject H0 and conclude that TPC performs significantly
better than random guessing in this application.

6 SIMULATION-BASED NEGATIVE
CONTROLS FOR MORE GENERAL
METRICS

Although the results provided above cover some of the most
commonly reported metrics for causal discovery evaluation,
other interesting metrics cannot be expressed as functions
of the adjacency confusion matrix, and hence are out the
scope of the results presented thus far.

One example is conditional orientation metrics (also some-
times referred to as arrowhead metrics) (see e.g., Andrews
et al. [2019]). These metrics describe correct orientations
among correctly placed edges. We conjecture that simple
exact distributional results under random guessing do not
exist for this classification task. The main issue is that con-
secutive edge placement steps are not independent when
the goal is to output e.g., a valid DAG: If we have already
placed oriented edges such that X → Y → Z, it is no
longer possible to have an edge pointing from Z to X , as
this would introduce a cycle and the graph would then no
longer be a valid DAG. Thus, describing expected behavior
under random guessing when also taking edge orientations
into account is more complicated.

However, we can easily use simulation to obtain an em-
pirical estimate of the distribution of a given metric under
random edge placement — oriented or not. Let b be the
number of repetitions in the simulation study, and let f
denote some metric of interest.We propose the following
procedure:

1. Standard simulation study: Conduct the simulation
study as usual: Simulate b "true" DAGs G1

true, ..., G
b
true,

generate appropriate data for each, and use the causal
discovery algorithm of interest to obtain estimated

graphs Ĝ1
algo, ..., Ĝ

b
algo. For each i ∈ {1, ..., b}, com-

pare the true and estimated graphs by computing the
metric of interest, f(Gi

true, Ĝ
i
algo), and for each esti-

mated graph Ĝi
algo, count the number edges, mi

est.

2. Negative control simulation: For each i ∈ {1, ..., b},
draw a negative control random DAG Ĝi

NC with num-
ber of edges sampled randomly from {m1

est, ...,m
b
est}

(with replacement).

3. Negative control evaluation: Compare each negative
control with the corresponding true graph by com-
puting the metric of interest, f(Gi

true, Ĝ
i
NC). Report

the mean as the expected performance under random
guessing, and use the empirical quantiles to construct
e.g., a 95% confidence interval.

4. Comparison: Finally, compare the metrics obtained un-
der random guessing with the metrics obtained for the
evaluated algorithm. In order to draw statistical infer-
ence, consider pairwise comparisons and conduct a
one-sided statistical test. Compute the p-value as

p =
1

b

b∑
i=1

1
(
f(Gi

true, Ĝ
i
algo) ≤ f(Gi

true, Ĝ
i
NC)

)
for metrics where small values are favorable (otherwise
reverse the inequality).

Note that it is important for obtaining valid statistical in-
ference that it is conducted on the pairwise comparisons
of performance, as inference e.g., based on whether or not
confidence intervals overlap is highly conservative [Knol
et al., 2011].

If the evaluated algorithm does not estimate a DAG, we
suggest that Step 2 is altered to match the output of the
evaluated algorithm. For example, if the algorithm only aims
to learn the Markov equivalence class of the data generating
DAG, as represented by a CPDAG, we would simply use
negative control CPDAGs in Step 2 by first drawing DAGs
and subsequently finding their encompassing CPDAGs.

We have here focused on the case of a simulation study
where many different ground truth graphs are simulated in
Step 1, but in Section 6.2 we also provide an example of
how to adapt the procedure to be suited for evaluation of
a real data application where there is only a single ground
truth.

6.1 EXAMPLE: SIMULATION STUDY
EVALUATING THE PC ALGORITHM

We showcase the proposed simulation-based negative con-
trol procedure by evaluating the performance of the PC algo-
rithm [Spirtes and Glymour, 1991]. We construct a small toy
simulation study considering the task of learning 10-node
DAGs (or more specifically, CPDAGs corresponding to their



Table 5: Comparisons of PC Algorithm and Negative Controls.

PC Negative control
Mean CI Mean CI p

Dense case (mtrue = 30)
SHD 27.33 (21, 33) 31.23 (26, 36) 0.202
Adjacency precision 0.85 (0.65, 1.00) 0.66 (0.42, 0.87) 0.122
Adjacency recall 0.38 (0.27, 0.50) 0.29 (0.17, 0.43) 0.245
Orientation precision 0.65 (0, 1) 0.50 (0, 1) 0.360
Orientation recall 0.40 (0.00, 0.78) 0.37 (0.00, 0.78) 0.464
Proportion recovered v-structures 0.05 (0.0, 0.2) 0.02 (0.00, 0.14) 0.563
SID (lower bound) 67.73 (46, 83) 74.23 (56, 85) 0.317
SID (upper bound) 79.48 (61, 90) 79.10 (63, 88) 0.557

Sparse case (mtrue = 15)
SHD 10.1 (4, 15) 21.30 (17, 25) 0.002
Adjacency precision 0.9 (0.73, 1.00) 0.33 (0.091, 0.571) 0.000
Adjacency recall 0.7 (0.47, 0.87) 0.25 (0.067, 0.467) 0.001
Orientation precision 0.9 (0.5, 1.0) 0.52 (0, 1) 0.273
Orientation recall 0.5 (0.00, 0.91) 0.36 (0, 1) 0.316
Proportion recovered v-structures 0.3 (0.0, 0.8) 0.01 (0.00, 0.14) 0.106
SID (lower bound) 29.3 (7, 55) 51.01 (29, 74) 0.072
SID (upper bound) 51.5 (22, 81) 58.43 (36, 81) 0.350

Notes: CI denotes a 95% confidence interval based on the empirical distribution. The p-values corresponds to one-sided tests.

Markov equivalence classes) from linear Gaussian data gen-
erated according to the DAGs. This is a scenario where the
PC algorithm is sound and complete in the large sample
limit, so in principle we should expect good performance.
However, it is well-known that PC struggles on finite data
when the true data generating mechanism is dense, because
the algorithm is biased towards sparse graphs (see e.g., [Pe-
tersen et al., 2023b]). We therefore consider a moderate
sample size of n = 400 observations, and two settings for
how dense the true DAGs are: A dense case with mtrue = 30
edges and a sparse case with mtrue = 15. We expect that PC
performs better than negative controls in the sparse case, but
not in the dense case.

To evaluate PC, we consider five different metrics that make
use of orientation information (and are hence beyond the
scope of Sections 3-5): Structural Hamming distance, orien-
tation precision, orientation recall, proportion recovered v-
structures, and structural intervention distance (SID) lower
and upper bounds2. For comparability with the previous
sections, we also report two adjacency metrics considered
above; namely adjacency precision and recall. We provide
definitions of the metrics and additional details about the
simulation study in Supplementary Materials C.

Table 5 presents the results. In the dense case, we find that
none of the metrics have sufficient discriminatory power to
distinguish between PC and the negative control (testing at

2The SID can only be reported as bounds as we are comparing a
true DAG with an estimated CPDAG, see details in Supplementary
Materials C.

e.g., a 5% significance level). For this case, PC estimated
graphs with numbers of edges ranging from 7 to 19 with a
mean of 13.3, which is severely biased towards sparsity, as
expected.

For the sparse case, the number of edges estimated by PC
ranges from 7 to 16 with a mean of 11.5, i.e., a better match
with mtrue. We find that some metrics show significant dif-
ferences between PC and the negative control, while others
do not: SHD, and adjacency precision and recall are sig-
nificantly better for PC than the negative controls (at a 5%
level), while the others are not. While the mean values for
PC and negative controls are generally quite far apart, the
95% confidence intervals reveal very broad distributions for
orientation precision, orientation recall, proportion recov-
ered v-structures and both SID bounds. Hence, there is a lot
of variability in these metrics — both for PC and negative
controls — and they are thus perhaps not very useful for
evaluating this case. Another takeaway from this applica-
tion is that reporting only mean values of metrics is not
advisable; ideally, some description of the distribution (e.g.,
confidence intervals) should be included.

Overall, we find that including negative controls can thus
also be used to provide insights into the level of informa-
tiveness of a specific metric in scenarios where we have an
established consensus of whether a certain causal discovery
procedure "works well" or not.



6.2 APPLICATION: STRUCTURAL HAMMING
DISTANCES ON THE SACHS DATA

Table 6: Structural Hamming Distances for the Sachs Data.

Observed Negative control
Algorithm SHD mest Mean SHD p
PC 23 24 31.54 0.001
NOTEARS 22 16 27.10 0.050
LiNGAM 30 33 34.43 0.083
GES 30 30 34.24 0.114
BOSS 35 32 35.24 0.510

In this application, we consider the Sachs dataset [Sachs
et al., 2005], which is often used to evaluate causal discovery
algorithms. The ground truth DAG for the Sachs dataset has
11 nodes and mtrue = 20 edges3.

We evaluate the performance of five causal discovery proce-
dures, namely PC [Spirtes and Glymour, 1991], GES [Chick-
ering, 2002], LiNGAM [Shimizu et al., 2006], NOTEARS
[Zheng et al., 2018] and BOSS [Andrews et al., 2023]. We
apply each of these algorithms to the Sachs dataset and com-
pute their SHD and estimated number of edges, mest. Based
on mest, we simulate 1000 negative controls separately for
each algorithm, and report the mean SHD over the negative
controls. For algorithms that return a DAG (LiNGAM and
NOTEARS), we simulate negative control DAGs, and for
algorithms that return a CPDAG (PC, GES, and BOSS), we
simulate negative control CPDAGs. In all cases we com-
pare to the ground truth DAG by computing a one-sided
p-value testing how often the discovery algortihm performs
at least as well as the negative control (according to SHD).
Additional details about the application are provided in Sup-
plementary Materials D.

Table 6 summarizes the results. We see that while the small-
est SHD value is obtained by NOTEARS, PC produces
the smallest p-value (p = 0.001) and hence is the furthest
removed from random guessing, seconded by NOTEARS
(p = 0.050) and LiNGAM (p = 0.083). In the other end of
the spectrum, we find that GES, and especially BOSS, are
not significantly different from random guessing testing at
e.g., a 10% significance level.

This application illustrates that it is not very meaningful to
compare and interpret differences in SHD without taking
into account the number of edges placed. A lower SHD does
not necessarily mean that an algorithm is further removed
from random guessing; it may just reflect a more preferable
level of sparsity in the estimated graph, which can be an
artefact of the chosen metric. For example for SHD on the
Sachs dataset, we can obtain SHD = mtrue = 20 — i.e., a
value that outperforms all considered algorithms — simply

3Note that there also exists an alternative version with only 17
edges.

by "estimating" the empty graph. Hence, a more meaningful
ranking may come about by considering the size of the
negative control p-values.

7 DISCUSSION

The results presented here were developed with the aim of
evaluating algorithms in an artificial "lab" setting where we
have access to a known ground truth. Subsequent to such
evaluations, the algorithms should of course also be tested
in practice in real data applications without a known ground
truth graph. How to asses performance in such scenarios
is fundamentally difficult, as causal discovery is a unsuper-
vised problem. One approach for validating causal discovery
on real world data is to compare graphs (or resulting effect
estimates) found by causal discovery algorithms with expert-
made graphs based on theory or existing literature [Petersen
et al., 2023a, Gururaghavendran and Murray, 2024]. How-
ever, such comparisons are of course only feasible when
a comprehensive body of knowledge about the considered
variables already exists, and even in this case, it is highly
time consuming to construct expert graphs. A more broadly
applicable evaluation strategy has been proposed by Eulig
et al. [2024]. They compare conditional independence fit of
a candidate DAG (given by experts or estimated using causal
discovery) with a baseline obtained by randomly permuting
nodes. By doing so, they construct a statistical test of fit
with a similar interpretation to the test proposed in Section
5, although focusing on conditional independencies implied
by the DAG rather than edge presence directly. However,
as the authors note, such a test is not readily applicable for
validating causal discovery fit, as most algorithms use con-
ditional independence information for estimating the graph,
and hence a subsequent test based on the same information
would result in overfitting. This could however be resolved
by applying data splitting if the sample size renders such an
approach feasible.

The distributional results for adjacency metrics presented
in Section 3 are conditional on three quantities: The max-
imal number of edges in the DAG (mmax), the number of
edges in the true DAG (mtrue) and the number of edges
in the estimated DAG (mest). Clearly, conditioning on the
first two is completely uncontroversial, but conditioning
on mest may be debated. Our motivation for doing so is
as follows: Many causal discovery algorithms — e.g., PC
[Spirtes and Glymour, 1991], FCI [Spirtes et al., 2000],
GES [Chickering, 2002], and GRaSP [Lam et al., 2022] —
require choosing a tuning parameter, which will in practice
directly control the number of outputted edges (e.g., test
significance level in constraint-based algorithms or score
penalties in score-based algorithms). Although we do not
generally have a characterization of the relationship between
the tuning parameter values and the resulting value of mest,
the relationship is generally deterministic in a single causal



discovery application. The way causal discovery algorithms
are mostly applied, the tuning parameter is not chosen in
a data-driven manner, but rather set at somewhat arbitrary
"standard" values. Alternatively, in some instances, it may
be chosen based on external background knowledge [Pe-
tersen et al., 2023a]. In either case, the number of edges in
the estimated graph is de facto chosen a priori, in which
case we can meaningfully condition on it.

Some work has been proposed for data-driven tuning of
causal discovery algorithms [Biza et al., 2020]. If such meth-
ods are applied, mest will generally be estimated from data.
In this case, we lose the distributional results for the adja-
cency metrics presented in Section 3, as the number of true
positives will no longer be hypergeometrically distributed.
But we can still use the proposed simulation-based pipeline
from Section 6 to obtain a negative control for such algo-
rithms.

Another reason for preferring to condition on mest is re-
lated to interpretability. By only considering one value of
mest, we compare our causal discovery procedure with a
well-specified negative control condition, namely placing
the same number of edges at random. This argument also
has implications for how we ought to compare two different
causal discovery algorithms; to increase interpretability, we
advise to either tune the algorithms to estimate the same
number of edges and then compare their outputs, or follow
the strategy from Section 6.2 and compare negative control
p-values. Otherwise, we may be comparing sparse outputs
with dense ones without accounting for the different difficul-
ties in estimating sparse and dense graphs, and as we have
seen above, such a comparison may not be meaningful, and
will definitely be difficult to interpret. Tuning algorithms to
produce equally dense outputs has an additional benefit by
removing the (difficult to interpret) tuning parameters from
the evaluation equation altogether, and replacing them with
the simpler notion of outputted graph density.

However, we want to stress that it can be problematic to con-
sider only a single density in a simulation-based evaluation
study if the algorithm being evaluated is able to thereby learn
the (unique) intended density [Petersen et al., 2023b]. This
evaluation design flaw has been present for several super-
vised discovery algorithms [Li et al., 2020, Xu and Xu, 2021,
Yu et al., 2019], and could harm transportability greatly. We
propose that a range of densities should therefore always be
considered when conducting simulation-based evaluation
studies of discovery algorithms that may learn the density
directly from training data. But to ease interpretation, the
results should ideally be presented stratified according to
density.

We have considered a range of different metrics that may
be used to evaluate causal discovery methods, but the list is
clearly not exhaustive. We have focused on edgewise and
structural evaluations, as these are most commonly reported

[Gentzel et al., 2019], but we advice that all evaluation stud-
ies should include a critical consideration of what metrics
are relevant for the specific intended use case. For example,
if an intended usecase is mostly focused on causal informa-
tion flow, and not whether effects are direct or indirect, it is
natural to consider a metric that explicitly counts preserved
ancestral information [Bang et al., 2024]. Or, if one is inter-
ested in using a causal discovery estimate for subsequent
effect estimation and inference, one should include metrics
on the intervention distribution, possibly targeting a specific
causal estimand of interest [Gentzel et al., 2019].

The work presented here has focused on Erdős-Rényi type
graphs. This assumption is important for the distributional
results in Sections 3 - 5, as the hypergeometric distribution
requires random draws. Non-central versions of the hyper-
geometric distribution allows for biased draws of edges, but
we do not believe this is very useful for describing causal
graphs: It would allow certain edges to be more likely to
be present than others, but would still not consider graph
properties beyond singular edges and hence not be appropri-
ate for describing for example graphs that exhibit clustering.
However, if a specific evaluation study wants to target such
graphs, the simulation-based method proposed in Section
6 can straightforwardly be applied, simply by simulating
random graphs from the intended target graph type, see e.g.,
[Albieri and Didelez, 2014].

As mentioned in Section 5, the exact distributional results
for adjacency metrics will by definition result in conserva-
tive statistical inference, i.e. conservative control of type I
error in statistical tests and overly wide confidence intervals.
Due to the discrete nature of the hypergeometric distribution,
this is especially pronounced when mmax is small, i.e. when
there are only few nodes. However, we argue that the consid-
ered null hypothesis is very crude — assuming completely
random replacement of mest edges — and hence we do not
consider conservative inference to be very problematic. In-
formally, we would ideally like to perform markedly better
than random guessing, not just borderline significantly so!

In conclusion, we believe the results and examples provided
here showcase that we need to acknowledge that causal dis-
covery is not just another machine learning problem. Esti-
mating a high-dimensional object such as a graph is difficult,
and evaluating how well one did is equally challenging. If
we do not take into account the most fundamental property
of the graphs we simulate for evaluation — their densities
— we are not producing useful results that will be likely
to generalize to new data with other graph densities. We
believe that the use of negative controls will be a useful next
step in the direction of more transparent and interpretable
evaluations. We of course all hope to do better than random
guessing, so let us make it easy to see when we do - and
when we do not.
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A RANDOM URN EXPERIMENT MOTIVATION FOR DISTRIBUTIONAL RESULT

Consider Table 2 and assume that all edges both in G and Ĝ were placed uniformly at random. Then, given the number of
true (mtrue), estimated (mest) and maximum total (mmax) edges, the number of true positives can be seen as the result of a
simple random urn experiment with two colors of balls, say, blue and white: White balls correspond to adjacencies included
in G, and blue balls are adjacencies not in G. A random causal discovery procedure will then metaphorically draw "balls"
(i.e., edges) randomly without replacement, and some will be true positives (white), while others will be false positives
(blue). Since the number of white balls (mtrue), the number of draws (mest) and the total number of balls (mmax) are all
known a priori, the number of drawn white balls (true positive adjacencies) will by definition follow a hypergeometric
distribution: TP |mmax,mtrue,mest ∼ HyperGeom(mmax,mtrue,mest).

B COMPUTATIONS FOR TABLE 3

Below, we let q(k,mmax,mtrue,mest) be the kth quantile from HyperGeom(mmax,mtrue,mest). We also note, and use repeatedly
below, that TP |(mmax,mtrue,mest) ∼ HyperGeom(mmax,mtrue,mest), and hence E(TP |mmax,mtrue,mest) =

mest·mtrue
mmax

.

We will compute the expectation and quantiles for each of these four adjacency metrics: Recall, F1, negative predictive
value (NPV), and specificity.

Recall: We write recall as a function of TP,mmax,mtrue and mest:

recall =
TP

TP + FN

=
TP

TP +mtrue − TP

=
TP
mtrue

.

Since this is a linear function of TP, the conditional expectation given (mmax,mtrue, mest) is

E(recall |mmax,mtrue,mest) =
1

mtrue
E(TP |mmax,mtrue,mest)

=
1

mtrue
mest

mtrue

mmax

=
mest

mmax

and the kth quantile of the recall distribution, conditional on (mmax,mtrue,mest), is given by

1

mtrue
q(k,mmax,mtrue,mest).
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F1: We write the F1 score as a function of TP,mmax,mtrue and mest:

F1 =
2 · TP

2 · TP + FP + FN

=
2 · TP

2 · TP +mest − TP +mtrue − TP

=
2 · TP

mest +mtrue
.

Since this is a linear function of TP, the conditional expectation given (mmax,mtrue, mest) is

E(F1 |mmax,mtrue,mest) =
2 · E(TP |mmax,mtrue,mest)

mest +mtrue

=
2 · mest·mtrue

mmax

mest +mtrue

=
2 ·mest ·mtrue

mmax · (mest +mtrue)

and the kth quantile of the F1 distribution, conditional on (mmax,mtrue,mest), is given by

2 · q(k,mmax,mtrue,mest)

mest +mtrue
.

NPV: We write the negative predictive value (NPV) as a function of TP,mmax,mtrue and mest:

NPV =
TN

TN + FN

=
mmax −mest −mtrue + TP

mmax −mest −mtrue + TP + FN

=
mmax −mest −mtrue + TP

mmax −mest
.

Since this is a linear function of TP, the conditional expectation given (mmax,mtrue, mest) is

E(NPV |mmax,mtrue,mest) =
mmax −mest −mtrue + E(TP |mmax,mtrue,mest)

mmax −mest

=
mmax −mest −mtrue +

mest·mtrue
mmax

mmax −mest

= 1− mtrue

mmax

= 1− E(precision |mmax,mtrue,mest)

and the kth quantile of the NPV distribution, conditional on (mmax,mtrue,mest), is given by

mmax −mest −mtrue + q(k,mmax,mtrue,mest)

mmax −mest
.

Specificity: We write specificity as a function of TP,mmax,mtrue and mest:

specificity =
TN

TN + FP

=
mmax −mest −mtrue + TP

mmax −mest −mtrue + TP + FP

=
mmax −mest −mtrue + TP

mmax −mtrue
.



Since this is a linear function of TP, the conditional expectation given (mmax,mtrue, mest) is

E(specificity |mmax,mtrue,mest) =
mmax −mest −mtrue + E(TP |mmax,mtrue,mest)

mmax −mtrue

=
mmax −mest −mtrue +

mest·mtrue
mmax

mmax −mtrue

= 1− mest

mmax

= 1− E(recall |mmax,mtrue,mest)

and the kth quantile of the specificity distribution, conditional on (mmax,mtrue,mest), is given by

mmax −mest −mtrue + q(k,mmax,mtrue,mest)

mmax −mtrue
.

C DETAILS ABOUT PC ALGORITHM SIMULATION STUDY

Let G be the true graph and Ĝ be an estimate. We consider the following metrics:

Structural Hamming distance: The structural Hamming distance (SHD) counts the number of edge reversals, removals
and additions needed in order to transform Ĝ into G [Tsamardinos et al., 2006].

Adjacency precision and recall: Precision and recall computed from the adjacency/skeleton confusion matrix, as described
in Section 2.

Orientation precision and recall: Precision and recall computed from a conditional orientation confusion matrix. The
conditional orientation confusion matrix is contructed as follows: For all edges that are both in G and Ĝ, each edge
endpoint is classified as:

• True positive if there is an arrowhead both in G and Ĝ.
• True negative if there is a tail both in G and Ĝ.
• False positive if there is an arrowhead in Ĝ, but a tail in G.
• False negative if there is a tail in Ĝ, but an arrowhead in G.

Proportion recovered v-structures: v-structures are node triples with the structure A → B ← C where A and C are
non-adjacent. This metric counts how many such structures are correctly recovered by Ĝ, divided by the total number
of v-structures in G. If there are no v-structures in G, the value is set to 1 (interpreted as all structures being recovered).

Structural intervention distance: The structural intervention distance (SID) counts the number of node pairs (Xi, Xj)

for which Ĝ does not provide a valid adjustment set for the total causal effect of Xi on Xj (assuming G is the truth)
[Peters and Bühlmann, 2015]. This property is only well-defined for DAG-DAG comparisons: If Ĝ is a CPDAG, it may
have undirected edges and hence the total causal effects may not be identifed. In this case, one instead computes the
SID for each DAG in the equivalence class specified by the CPDAG and reports the minimum and maximum values as
bounds. For computing SIDs, we use the SID R package [Peters, 2023] with default settings1.

We now provide a step-by-step example of how the negative controls are computed and used, following the template from
Section 6. We focus on a single metric (SHD) and setting (dense). We proceed as follows:

1. Standard simulation study: We draw 1000 random Erdős-Rényi type DAGs over 10 nodes, each with mtrue = 30 edges.
From each DAG, we simulate 400 independent Gaussian observations with randomly drawn regression parameters
and error variances2. For each dataset, we apply the PC algorithm using a test for vanishing partial correlations with
significance level α = 0.05.

(a) We compare each of the 1000 true DAGs with the corresponding estimated CPDAG provided by the PC algorithm
by computing their SHDs. We find a mean SHD of 27.33 with a 95% confidence interval of (21; 33) (based on
the empirical quantiles).

1Note that some cases result in warnings due to the estimated graph not being a proper CPDAG, or having large connected components.
In both cases, SID is computed based on local expansions of the graphs.

2We use default options for regression parameters and error variances from the simGausFromDAG() function in the causalDisco
R package [Petersen, 2022].



(b) We store the true DAGs as well as the distribution of the estimated number of edges across the 1000 applications
of the PC algorithm. The number of estimated edges from PC range from 7 to 19 with a mean of 13.3.

2. Negative control simulation: We draw 1000 random CPDAGs over 10 nodes with number of edges independently
sampled from the mest distribution from Step 1 (b).

3. Negative control evaluation: For each of the 1000 negative controls, we compare with a true DAG from Step 1 by
computing the SHD. We find a mean SHD of 30.23 (95% CI: 26; 36).

4. Comparison: We conduct pairwise comparisons of SHD values obtained by PC and negative controls. We find

p =
1

1000

1000∑
i=1

1
(

SHD(Gi
true, Ĝ

i
PC) ≥ SHD(Gi

true, Ĝ
i
NC)

)
= 0.202

and hence conclude that PC is not significantly different from the negative controls.

D DETAILS ABOUT SACHS DATA APPLICATION

For PC, LiNGAM, GES and BOSS, we apply the algorithms in Tetrad version 7.6.7 [Ramsey et al., 2018] with default
settings. For NOTEARS, we report SHD and number of edges as provided in [Zheng et al., 2018].

The negative control DAGs are simulated as Erdős-Rényi type DAGs. The negative control CPDAGs are constructed by first
simulating an Erdős-Rényi type DAG, and secondly constructing the CPDAG corresponding to its Markov equivalence class.

We use the 20 edge "truth" version of the Sachs dataset because that is also what was used to evaluate the NOTEARS
algorithm in [Zheng et al., 2018]. We obtain both the ground truth graph and the Sachs dataset from this repository:
https://github.com/cmu-phil/example-causal-datasets.

https://github.com/cmu-phil/example-causal-datasets
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