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Abstract001

Motion generation across heterogeneous embodiments is a002
significant challenge in robotics. The Real-to-Sim-to-Real003
framework provides a promising paradigm for transfer-004
ring human demonstrations to robotic systems. Trajectory-005
based imitation learning requires learning dynamical mod-006
els, which corresponds to constructing simulation models of007
demonstrator dynamics [1]. The learned dynamical model008
guides the imitator to track the desired trajectory gener-009
ated by the model, enabling motion imitation across differ-010
ent embodiments, such as human-to-robot dynamic motion011
transfer. Previous approaches, however, have struggled to012
handle multi-timescale dynamics, where slow steady mo-013
tions coexist with fast transient dynamics.014

Traditional motion models can handle dynamic behav-015
iors composed of steady closed orbits, but it remains unclear016
whether transient dynamics can be reliably extracted from017
demonstration data. In other words, transient motion gener-018
ation is essentially a generalization problem, since transient019
behavior determines the modification of trajectories from020
out-of-distribution states toward the desired demonstration021
state. Therefore, multi-timescale dynamical modeling and022
representation are common challenges not only for imita-023
tion learning but also for the broader Real-to-Sim-to-Real.024

Our published paper [2], as shown in Fig. 1, intro-025
duced a novel variational inference approach for learning026
latent dynamical models, which explicitly represents tran-027
sient and steady dynamics via phase-amplitude reduction,028
a special case of Koopman operators. The method decom-029
poses the demonstrator’s behavior into transient and steady030
latent components, and enables the independent generation031
of both. The original work proposed the phase-amplitude-032
based imitation learning method and a latent state feedback033
framework to adapt the robot (imitator) behavior to the hu-034
man (demonstrator) dynamical model. This framework al-035
lows multi-timescale comparison of demonstrator and imi-036
tator dynamics in latent space and improves the imitator’s037
ability to reproduce both the steady and transient behaviors038
of the demonstrator.039
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Figure 1. Phase-Amplitude-Based Imitation Learning

The contributions of our work are: 040

1. A variational inference-based dynamics learning ap- 041
proach that incorporates flexible graphical model-based 042
loss function design and introduces an alternative 043
likelihood-based loss function. 044

2. A phase-amplitude-based latent dynamical model that 045
represents steady and transient behavior, together with a 046
feedback system for tracking multi-timescale dynamics. 047
The feedback system regenerates the ”desired trajectory” 048
for tracking the imitator and modifies its behavior. 049

3. A real-world human-to-robot transfer demonstration: 050
the transfer of human baton-swinging motion to a robotic 051
arm without adaptation using imitator data. 052

Our proposed model learning method is applicable 053
not only to imitation learning but also to a wide range 054
of heterogeneous-embodiment motion generation and the 055
analysis of latent dynamical structures in robot agents. 056
Demonstrator dynamics modeling enhances robustness and 057
generalization by generating the desired trajectory for out- 058
of-distribution behavior. Furthermore, phase-amplitude- 059
based modeling can encode the imitator dynamics and ap- 060
ply the model within Sim2Real or model predictive control 061
(MPC) frameworks. By integrating it with reinforcement 062
learning and foundation models, it is expected to enable 063
modeling and simulation of real-world data across multiple 064
timescales. 065
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