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Abstract

Motion generation across heterogeneous embodiments is a
significant challenge in robotics. The Real-to-Sim-to-Real
framework provides a promising paradigm for transfer-
ring human demonstrations to robotic systems. Trajectory-
based imitation learning requires learning dynamical mod-
els, which corresponds to constructing simulation models of
demonstrator dynamics [1]. The learned dynamical model
guides the imitator to track the desired trajectory gener-
ated by the model, enabling motion imitation across differ-
ent embodiments, such as human-to-robot dynamic motion
transfer. Previous approaches, however, have struggled to
handle multi-timescale dynamics, where slow steady mo-
tions coexist with fast transient dynamics.

Traditional motion models can handle dynamic behav-
iors composed of steady closed orbits, but it remains unclear
whether transient dynamics can be reliably extracted from
demonstration data. In other words, transient motion gener-
ation is essentially a generalization problem, since transient
behavior determines the modification of trajectories from
out-of-distribution states toward the desired demonstration
state. Therefore, multi-timescale dynamical modeling and
representation are common challenges not only for imita-
tion learning but also for the broader Real-to-Sim-to-Real.

Our published paper [2], as shown in Fig. 1, intro-
duced a novel variational inference approach for learning
latent dynamical models, which explicitly represents tran-
sient and steady dynamics via phase-amplitude reduction,
a special case of Koopman operators. The method decom-
poses the demonstrator’s behavior into transient and steady
latent components, and enables the independent generation
of both. The original work proposed the phase-amplitude-
based imitation learning method and a latent state feedback
framework to adapt the robot (imitator) behavior to the hu-
man (demonstrator) dynamical model. This framework al-
lows multi-timescale comparison of demonstrator and imi-
tator dynamics in latent space and improves the imitator’s
ability to reproduce both the steady and transient behaviors
of the demonstrator.
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Figure 1. Phase-Amplitude-Based Imitation Learning

The contributions of our work are:

1. A variational inference-based dynamics learning ap-
proach that incorporates flexible graphical model-based
loss function design and introduces an alternative
likelihood-based loss function.

2. A phase-amplitude-based latent dynamical model that
represents steady and transient behavior, together with a
feedback system for tracking multi-timescale dynamics.
The feedback system regenerates the “’desired trajectory”
for tracking the imitator and modifies its behavior.

3. A real-world human-to-robot transfer demonstration:
the transfer of human baton-swinging motion to a robotic
arm without adaptation using imitator data.

Our proposed model learning method is applicable
not only to imitation learning but also to a wide range
of heterogeneous-embodiment motion generation and the
analysis of latent dynamical structures in robot agents.
Demonstrator dynamics modeling enhances robustness and
generalization by generating the desired trajectory for out-
of-distribution behavior. Furthermore, phase-amplitude-
based modeling can encode the imitator dynamics and ap-
ply the model within Sim2Real or model predictive control
(MPC) frameworks. By integrating it with reinforcement
learning and foundation models, it is expected to enable
modeling and simulation of real-world data across multiple
timescales.

040

041
042
043
044
045
046
047
048
049
050
051
052

053
054
055
056
057
058
059
060
061
062
063
064
065



CORL LSRW CORL LSRW

#***** #*****

CORL LSRW 2025 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

066 References

067 [1] Yunhai Han, Mandy Xie, Ye Zhao, and Harish Ravichandar.

068 On the utility of koopman operator theory in learning dexter-
069 ous manipulation skills. In Proceedings of the Conference on
070 Robot Learning, pages 106-126, 2023. 1

071 [2] Satoshi Yamamori and Jun Morimoto. Phase-amplitude
072 reduction-based imitation learning. Advanced Robotics, 39
073 (3):156-170, 2024. https://doi.org/10.1080/
074 01691864.2024.2441242. 1


https://doi.org/10.1080/01691864.2024.2441242
https://doi.org/10.1080/01691864.2024.2441242
https://doi.org/10.1080/01691864.2024.2441242

