
Published in Transactions on Machine Learning Research (08/2023)

Optimizing Learning Rate Schedules
for Iterative Pruning of Deep Neural Networks

Shiyu Liu shiyu_liu@u.nus.edu
Department of Electrical and Computer Engineering
College of Design and Engineering
National University of Singapore

Rohan Ghosh rghosh92@gmail.com
Department of Electrical and Computer Engineering
College of Design and Engineering
National University of Singapore

John Chong Min Tan johntancm@u.nus.edu.sg
Department of Electrical and Computer Engineering
College of Design and Engineering
National University of Singapore

Mehul Motani motani@nus.edu.sg
Department of Electrical and Computer Engineering
College of Design and Engineering
N.1 Institute for Health
Institute of Data Science
Institute for Digital Medicine (WisDM)
National University of Singapore

Reviewed on OpenReview: https: // openreview. net/ forum? id= nGW2Hotpq3

Abstract

The importance of learning rate (LR) schedules on network pruning has been observed in a
few recent works. As an example, Frankle and Carbin (2019) highlighted that winning tickets
(i.e., accuracy preserving subnetworks) can not be found without applying a LR warmup
schedule. Renda, Frankle and Carbin (2020) also demonstrated that rewinding the LR to
its initial state at the end of each pruning cycle can improve pruning performance. In this
paper, we go one step further by first providing a theoretical justification for the surprising
effect of LR schedules. Next, we propose a LR schedule for network pruning called SILO,
which stands for S-shaped Improved Learning rate Optimization. The advantages of SILO
over existing LR schedules are two-fold: (i) SILO has a strong theoretical motivation and
dynamically adjusts the LR during pruning to improve generalization. Specifically, SILO
increases the LR upper bound (max_lr) in an S-shape. This leads to an improvement of
2% - 4% in extensive experiments with various types of networks (e.g., Vision Transformers,
ResNet) on popular datasets such as ImageNet, CIFAR-10/100. (ii) In addition to the strong
theoretical motivation, SILO is empirically optimal in the sense of matching an Oracle, which
exhaustively searches for the optimal value of max_lr via grid search. We find that SILO
is able to precisely adjust the value of max_lr to be within the Oracle optimized interval,
resulting in performance competitive with the Oracle with significantly lower complexity.

1

Published in Transactions on Machine Learning Research (08/2023)

1 Introduction

Network pruning is the process of simplifying neural networks by pruning weights, filters or neurons. (LeCun
et al., 1990; Han et al., 2015b). Several state-of-the-art pruning methods (Renda et al., 2019; Frankle &
Carbin, 2019) have demonstrated that a significant quantity of parameters can be removed without sacrificing
accuracy. This greatly reduces the resource demand of neural networks, such as storage requirements and
energy consumption (He et al., 2020; Wang et al., 2021; Good & et al, 2022; Vysogorets & Kempe, 2023).

The inspiring performance of pruning methods hinges on a key factor - Learning Rate (LR). Specifically,
Frankle & Carbin (2019) proposed the Lottery Ticket Hypothesis and demonstrated that the winning tickets
(i.e., the pruned network that can train in isolation to full accuracy) can not be found without applying a
LR warmup schedule. In a follow-up work, Renda et al. (2019) proposed LR rewinding which rewinds the
LR schedule to its initial state during iterative pruning and demonstrated that it can outperform standard
fine-tuning. In summary, the results in both works suggest that, besides the pruning metric, LR also plays
an important role in network pruning and could be another key to improving the pruning performance.

In this paper, we take existing studies one step further and aim to optimize the choice of LR for iterative
network pruning. We explore a new perspective on adapting the LR schedule to improve the iterative pruning
performance. In the following, we summarize the workflow of our study together with our contributions.

1. Motivation and Theoretical Study. In Section 3.1, we explore the optimal choice of LR during
network pruning and find that the distribution of weight gradients tends to become narrower during pruning,
suggesting that a larger value of LR should be used to retrain the pruned network. This finding is further
verified by our theoretical development in Section 3.2. More importantly, our theoretical results suggest that
the optimal increasing trajectory of LR should follow an S-shape.

2. Proposed SILO. In Section 4, we propose a novel LR schedule for network pruning called SILO, which
stands for S-Shaped Improved Learning rate Optimization. Motivated by our theoretical development, SILO
precisely adjusts the LR by increasing the LR upper bound (max_lr) in an S-shape. We highlight that SILO
is method agnostic and works well with numerous pruning methods.

3. Experiments. In Section 5.2, we compare SILO to four LR schedule benchmarks via both classical and
state-of-the-art (SOTA) pruning methods. We observe that SILO outperforms LR schedule benchmarks,
leading to an improvement of 2% - 4% in extensive experiments with various networks (e.g., Vision Trans-
former (Dosovitskiy et al., 2020), ResNet (He et al., 2016), VGG (Simonyan & Zisserman, 2014), DenseNet-40
(Huang et al., 2017) and MobileNetV2 (Sandler et al., 2018)) on large-scale datasets such as ImageNet (Deng
et al., 2009) and popular datasets such as CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009).

4. Comparison to Oracle. In Section 5.4, we examine the optimality of SILO by comparing it to an
Oracle which exhaustively searches for the optimal value of max_lr via grid search. We find that SILO is
able to precisely adjust max_lr to be within the Oracle’s optimized max_lr interval at each pruning cycle,
resulting in performance competitive with the Oracle, but with significantly lower complexity.

2 Background

In Section 2.1, we first review prior works on network pruning. Next, in Section 2.2, we highlight the
important role of LR in network pruning and position our work in the context of network pruning.

2.1 Prior Works on Network Pruning

Network pruning is an established idea dating back to 1990 (LeCun et al., 1990). The motivation is that
networks tend to be overparameterized and redundant weights can be removed with a negligible loss in
accuracy (Arora et al., 2018; Allen-Zhu et al., 2019; Denil et al., 2013). Given a trained network, one
pruning cycle consists of three steps: (i) Prune the network according to certain heuristics; (ii) Freeze
pruned parameters as zero. (iii) Retrain the pruned network to recover the accuracy. Repeating the pruning
cycle multiple times until the target sparsity or accuracy is met is known as iterative pruning. Doing
so often results in better performance than one-shot pruning (i.e., perform only one pruning cycle) (Han

2

Published in Transactions on Machine Learning Research (08/2023)

et al., 2015b; Frankle & Carbin, 2019; Li et al., 2017). There are two types of network pruning - unstructured
pruning and structured pruning - which will be discussed in detail below.

Unstructured Pruning removes individual weights according to certain heuristics, such as magnitude (Han
et al., 2015b; Frankle & Carbin, 2019) or gradient (Hassibi & Stork, 1993; LeCun et al., 1990; Lee et al., 2019;
Xiao et al., 2019; Theis et al., 2018). Examples are (LeCun et al., 1990), which performed pruning based
on the Hessian Matrix, and (Theis et al., 2018), which used Fisher information to approximate the Hessian
Matrix. Similarly, Han et al. (2015b) removed weights with the smallest magnitude, and this approach was
further incorporated with the three-stage iterative pruning pipeline in (Han et al., 2015a).

Structured Pruning involves pruning weights in groups, neurons, channels or filters (Yang et al., 2019;
Molchanov et al., 2017; 2019; Luo et al., 2017; Yu et al., 2018; Tan & Motani, 2020; Wang et al., 2020b; Lin
et al., 2020; Zhang & Freris, 2023). Examples are (Hu et al., 2016), which removed neurons with high average
zero output ratio, and (Li et al., 2017), which pruned neurons with the lowest absolute summation values
of incoming weights. More recently, Yu et al. (2018) proposed the neuron importance score propagation
algorithm to evaluate the importance of network structures. Molchanov et al. (2019) used Taylor expansions
to approximate a filter’s contribution to the final loss and Wang et al. (2020a) optimized the neural network
architecture, pruning policy, and quantization policy together in a joint manner.

Other Works. In addition to works mentioned above, several other works also share some deeper insights
in network pruning (Liu et al., 2019b; Wang et al., 2020c; Li & et al, 2022; Wang & et al, 2022). For
example, Liu et al. (2019a) demonstrated that training-from-scratch on the right sparse architecture yields
better results than pruning from pre-trained models. Similarly, Wang et al. (2020c) suggested that the fully-
trained network could reduce the search space for the pruned structure. More recently, Luo & Wu (2020)
addressed the issue of pruning residual connections with limited data and Ye et al. (2020) theoretically proved
the existence of small subnetworks with lower loss than the unpruned network. You & et al (2022) motivated
the use of the affine spline formulation of networks to analyze recent pruning techniques. Liu et al. (2022)
applied the network pruning technique in graph networks and approximated the subgraph edit distance.
One milestone paper (Frankle & Carbin, 2019) pointed out that re-initializing with the original parameters
(known as weight rewinding) plays an important role in pruning and helps to further prune the network with
negligible loss in accuracy. Some follow-on works (Zhou et al., 2019; Renda et al., 2019; Malach et al., 2020)
investigated this phenomenon more precisely and applied this method in other fields (e.g., transfer learning
(Mehta, 2019) and natural language processing (Yu et al., 2020)).

2.2 The Important Role of Learning Rate

Several recent works (Renda et al., 2019; Frankle & Carbin, 2019) have noticed the important role of LR
in network pruning. For example, Frankle & Carbin (2019) demonstrated that training VGG-19 with a
LR warmup schedule (i.e., increase LR to 1e-1 and decrease it to 1e-3) and a constant LR of 1e-2 results
in comparable accuracy for the unpruned network. However, as the network is iteratively pruned, the LR
warmup schedule leads to a higher accuracy (see Fig.7 in (Frankle & Carbin, 2019)). In a follow-up work,
Renda et al. (2019) further investigated this phenomenon and proposed a retraining technique called LR
rewinding which can always outperform the standard retraining technique called fine-tuning (Han et al.,
2015b). The difference is that fine-tuning trains the unpruned network with a LR warmup schedule, and
retrains the pruned network with a constant LR (i.e., the final LR of the schedule) in subsequent pruning
cycles (Liu et al., 2019b). LR rewinding retrains the pruned network by rewinding the LR warmup schedule
to its initial state, namely that LR rewinding uses the same schedule for every pruning cycle. As an example,
they demonstrated that retraining the pruned ResNet-50 using LR rewinding yields higher accuracy than
fine-tuning (see Figs.1 & 2 in (Renda et al., 2019)). In (Liu & et al, 2021), the authors also suggest that
when pruning happens during the training phase with a large LR, models can easily recover from pruning
than using a smaller LR. Overall, The results in these works suggest that, besides the pruning metric, LR
also plays an important role in network pruning and could be another key to improving network pruning.

Our work. In this paper, we explore a new perspective on adapting the LR schedule to improve the iterative
pruning performance of ReLU-based networks. The proposed LR schedule is method agnostic and can work
well with numerous pruning methods. We mainly focus on iterative pruning of ReLU-based networks for two

3

Published in Transactions on Machine Learning Research (08/2023)

Figure 1: (a) The distribution of all weight gradients when iteratively pruning a fully connected ReLU
network using global magnitude, where λ is the percent of weights remaining and σ is the standard deviation
of the distribution. (b) The corresponding distribution of hidden representations.

reasons: (i) Iterative pruning tends to provide better pruning performance than one-shot pruning as reported
in the literature (Frankle & Carbin, 2019; Renda et al., 2019). (ii) ReLU has been widely used in many
classical neural networks (e.g., ResNet, VGG, DenseNet) which have achieved outstanding performance in
various tasks (e.g., image classification, object detection) (He et al., 2016; Simonyan & Zisserman, 2014).

3 A New Insight on Network Pruning

In Section 3.1, we first provide a new insight in network pruning using experiments. Next, in Section 3.2, we
provide a theoretical justification for our observed new insight and present some relevant theoretical results.

3.1 Weight Gradients during Iterative Pruning

(1) Experiment Setup. To exclude the influence of other factors, we start from a simple fully connected
ReLU-based network with three hidden layers of 256 neurons each (results of other popular networks are
summarized later). We train the network using the training dataset of CIFAR-10 via SGD (Ruder, 2016)
(momentum = 0.9 and a weight decay of 1e-4) with a batch size of 128 for 500 epochs. All hyperparameters
are tuned for performance via grid search (e.g., LR from 1e-4 to 1e-2). We apply the global magnitude (Han
et al., 2015b) (i.e., remove weights with the smallest magnitude anywhere in the network) with a pruning
rate of 0.2 (i.e., prune 20% of the remaining parameters) to iteratively prune the network for 10 pruning
cycles and plot the distribution of all weight gradients when the network converges in Fig. 1(a), where λ
is the percent of weights remaining. In Fig. 1(a), there are 10 visible bins estimated by the Sturges’ Rule
(Scott, 2009) and each bin consists of three values (i.e., the probability distribution of networks with different
λ). The edge values range from -0.022 to 0.027 with a bin width of 0.004.

(2) Experiment Results. In Fig. 1(a), we observe that the distribution of weight gradients tends to
become narrower, i.e., the standard deviation of weight gradients σ reduces from 8.4e-3 to 3.3e-3 when the
network is iteratively pruned to λ = 13.4. As an example, the unpruned network (λ = 100) has more than
7% of weight gradients with values greater than 0.008 (rightmost 4 bars) or less than -0.012 (leftmost 2
bars), while the pruned network (λ = 13.4) has less than 1% of weight gradients falling into those regions.
It suggests that the magnitude of weight gradients tends to decrease as the network is iteratively pruned.

(3) New Insight. During the backpropagation, the weight update of wi is wi ← wi + α ∂L
∂wi

, where α is
the LR and L is the loss function. Assume that α is well-tuned to ensure the weight update (i.e., α ∂L

∂wi
) is

sufficiently large to prevent the network from getting stuck in local optimal points (Bengio, 2012; Goodfellow
et al., 2016). As shown in Fig. 1(a), the magnitude of the weight gradient (i.e., ∂L

∂wi
) tends to decrease as the

network is iteratively pruned. To preserve the same weight updating size and effect as before, a gradually
larger value of LR (i.e., α) should be used to retrain the pruned network during iterative pruning.

4

Published in Transactions on Machine Learning Research (08/2023)

(4) Result Analysis. We now provide an explanation for the change in the distribution of weight gradients.
First, we assume each xiwi (i.e., xi ∈ R is the neuron input and wi ∈ R is the associated weight) is an i.i.d.
random variable. Then, the variance of the neuron’s pre-activation output (

∑n
i=1 xiwi, n is the number of

inputs) will be
∑n

i=1 Var(xiwi). Pruning the network is equivalent to reducing the number of inputs from
n to n − k. This results in a smaller variance of

∑n−k
i=1 Var(xiwi), leading to a smaller standard deviation.

Hence, the distribution of the pre-activation output after pruning is narrower. Since ReLU returns its
raw input if the input is non-negative, the distribution of hidden representations (output of hidden layers)
becomes narrower as well. This can be verified from Fig. 1(b), where we plot the distribution of hidden
representations from the previous experiment. The key is that the weight gradient ∂L

∂wi
is proportional to

the hidden representation xi that associates with wi (i.e., ∂L
∂wi
∝ xi). As the network is iteratively pruned,

the distribution of hidden representations becomes narrower, leading to a narrower distribution of weight
gradients. As a result, a larger LR should be used to retrain the pruned network.

(5) More Generalized Results. (i) Effect of Batch Normalization (BN) (Ioffe & Szegedy, 2015): BN
is a popular technique to reformat the distribution of hidden representations, so as to address the issue of
internal covariate shift. We note that similar performance trends can be observed after applying BN as
well (see Fig. 4 in the Appendix). (ii) Popular CNN Networks and Pruning Methods: In addition to the
global magnitude used before, two unstructured pruning methods (i.e., layer magnitude, global gradient)
suggested by (Blalock et al., 2020) and one structured pruning method (L1 norm pruning) (Li et al., 2017)
are examined as well. Those methods are used to iteratively prune AlexNet (Krizhevsky & Hinton, 2010),
ResNet-20 and VGG-19 using CIFAR-10. The results using these popular neural networks largely mirror
those in Figs. 1(a) & (b) as well. We refer the interested reader to Figs. 5 - 7 in the Appendix.

3.2 Theoretical Study and Motivation

In this subsection, we theoretically investigate how network pruning can influence the value of the desired
LR. The proofs of the results given here are provided in the Appendix. First, we present some definitions.

Definition 1. Average Activation Norm (EAA): Given a network with fixed weights, input X from a
distribution P , and a layer H = {h1(X), ..., hN (X)} with N nodes where hi(X) represents the function at
the ith node. Then EAA(H) = EX [1

N

∑
i hi(X)2]. This quantity reflects the average strength of the layer’s

activations.

Definition 2. Average Gradient Norm (EW G): Let W = [w1, ..., wk] and W ′ = [w′
1, ..., w′

k] represent
the flattened weight vector before and after one epoch of training (via backpropagation). Then EW G is
the average change in weight magnitude in a single training epoch (for the active unpruned weights), i.e.,
EW G(W, W ′) = Ei[(wi − w′

i)2]. EW G quantifies how much the weights change after one epoch of training.

We now demonstrate the impact of network pruning on the average activation norm of hidden layers.

Theorem 1. Consider a ReLU activated neural network represented as X
W1−−→ H

W2−−→ Y , where X ∈ Rd

is the input, H = {H1(X), H2(X), ..., HN (X)} is of infinite width (N = ∞), and Y is the network output.
W1 and W2 represent network parameters (weights, biases). Furthermore, let X ∼ N (0, σ2

X
I) and W1 ∼

N (0, σ2
W

I), where I is the identity matrix and σX , σW are scalars. Now, let us consider an iterative pruning
method, where in each iteration a fraction 0 ≤ p ≤ 1 of the smallest magnitude weights are pruned (layer-wise
pruning). Then, after k iterations of pruning, it holds that

(1)4EAA(H) ≥ σ2
W + dσ2

Xσ2
W

(
(1− p)k +

√
4
π

erf-1
(

1− (1− p)k
)

e−(erf-1(1−(1−p)k))2)
where erf-1(.) is the inverse error function.

Next, based on the above result, the following theorem establishes how the average gradient norm depends
on the LR of the neural network, and the pruning iteration.
Theorem 2. In the setting of Theorem 1, we consider a single epoch of weight update for the network
across a training dataset S = {(X1, Y1), .., (Xn, Yn)} using the cross-entropy loss, where Yi ∈ {0, 1}. Let

5

Published in Transactions on Machine Learning Research (08/2023)

α denote the learning rate. Let us denote the R.H.S of equation 1 by C(σX , σW , p, k). Let the final layer
weights before and after one training epoch be W2 and W ′

2 respectively. We have,

E
W2∼Nk(0,σ2

W I)
[EW G (W2, W ′

2)] ≥ α2γC(σX , σW , p, k), (2)

for some constant γ, whereNk(0, σ2
W

I) represents the distribution of W2 after being initialized as the Gaussian
N (0, σ2

W
I) and pruned for k iterations.

Remark 1. (Pruning and LR) Theorems 1 and 2 together establish how the choice of LR influences the
lower bound of average gradient norm. Theorem 1 shows that the lower bound of activation norm of the
hidden layer decreases as the network is pruned, and as Theorem 2 shows, this also reduces the lower bound
of average gradient norm per epoch. Thus, to counter this reduction, it is necessary to increase the learning
rate α as the number of pruning cycles grows, in order to ensure that the R.H.S of equation 2 remains fixed.
Remark 2. (S-shape of LR During Iterative Pruning) We fix the average gradient norm to negate
the impact of weight gradients reducing while pruning (see Fig. 1). Theorem 2 implies that to maintain
a fixed average gradient norm of EW2∼Nk(0,σ2

W I)[EW G(W2, W ′
2)] = K, we must have the learning rate α ≤

(K/γC(σX , σW , p, k))1/2. We find that this upper bound resembles an S-shape trajectory during iterative
pruning (see the red line in Fig. 2).
Remark 3. (Additional Results) Note that we extend Theorem 1’s result to the case of fully connected
neural networks of arbitrary depth in Proposition 1 of the Appendix. Similarly, we extend Theorem 2’s result
to the case of networks of arbitrary depth in Corollary 1 of the Appendix. Although Theorem 1 assumes
2-layer neural networks of infinite width, we extend it to the case of finite hidden neurons (see Proposition 2
of Appendix), yielding a probabilistic bound of the same form as Theorem 1. Note that the results in both
Theorems are empirically verified in Section B of the Appendix.

4 A New Learning Rate Schedule

In Section 4.1, we shortlist four LR benchmarks for comparison. In Section 4.2, we introduce SILO and
highlight the difference with existing works. In Section 4.3, we detail the algorithm for SILO.

4.1 LR Schedule Benchmarks

Learning rate is the most important hyperparameter in training neural networks (Goodfellow et al., 2016).
The LR schedule is to adjust the value of LR during training by a pre-defined schedule. Three common LR
schedules are summarized as follows.

1. LR Decay starts with a large LR and linearly decays it by a certain factor after a pre-defined number
of epochs. Several recent works (You et al., 2019; Ge et al., 2019; An et al., 2017) have demonstrated that
decaying LR helps the neural network to converge better and avoids undesired oscillations in optimization.
2. LR Warmup is to increase the LR to a large value over certain epochs and then decreases the LR by
a certain factor. It is a popular schedule used by many practitioners for transfer learning (He et al., 2019)
and network pruning (Frankle & Carbin, 2019; Frankle et al., 2020).
3. Cyclical LR (Smith, 2017) varies the LR cyclically between a pre-defined lower and upper bound. It
has been widely used in many tasks (You et al., 2019).

All the three LR schedules described above and constant LR will be used as benchmarks for
performance comparison. We note that, in addition to LR schedules which vary LR by a pre-defined
schedule, adaptive LR optimizers such as AdaDelta (Zeiler, 2012) and Adam (Kingma & Ba, 2014) provide
heuristic based approaches to adaptively vary the step size of weight update based on observed statistics of
the past gradients. All of them are sophisticated optimization algorithms and much work (Gandikota et al.,
2021; Jentzen et al., 2021) has been done to investigate their mechanisms. In this paper, the performance of
all benchmarks and SILO will be evaluated using SGD with momentum = 0.9 and a weight decay of 1e-4
(same as (Renda et al., 2019; Frankle & Carbin, 2019)). The effect of those adaptive LR optimizers on SILO
will be discussed in Section 6.

6

Published in Transactions on Machine Learning Research (08/2023)

Le
ar

ni
ng

R
at

e

λ = 100 ← Percent of Weights Remaining → λ = 0

First Pruning Cycle Pruning Cycle q Subsequent Pruning Cycles

δ + ϵ

ϵmax_lr max_lr

max_lr

max_lr

No Growth Slow Growth I
Fast

Growth

Slow Growth II

Figure 2: Illustration of SILO during pruning. The S-shape red line is motivated from Theorem 2.

4.2 SILO Learning Rate Schedule

To ensure the pruned network is properly trained during iterative pruning, we propose an S-shaped Improved
Learning rate Schedule, called SILO, for iterative pruning of networks. As illustrated in Fig. 2, the main idea
of the proposed SILO is to apply the LR warmup schedule at every pruning cycle, with a gradual increase
of the LR upper bound (i.e., max_lr) in an S-shape as the network is iteratively pruned. This LR warmup
schedule is meant to be flexible and can change depending on different networks and datasets.

The S-shape in SILO is inspired by Theorem 2 (see Remark 2) and will be further verified by comparing to
an Oracle. We divide the S-shape into four phases and provide the intuition behind each phase as follows.

1. Phase-1: No Growth, SILO does not increase max_lr until the pruning cycle q (see Fig. 2). It is because
the unpruned network often contains a certain amount of weights with zero magnitude. Those parameters
are likely to be pruned at the first few pruning cycles, and removing such weights has negligible effect on
the distribution of weight gradients.

2. Phase-2: Slow Growth I, the pruning algorithm has removed most zero magnitude weights and started
pruning weights with small magnitude. Pruning such weights has a small effect on distribution of weight
gradients. Hence, we slightly increase max_lr after pruning cycle q.

3. Phase-3: Fast Growth, SILO greatly increases max_lr. It is because the pruning algorithm now starts
removing weights with large magnitude and the distribution of weight gradients becomes much narrower.
This requires a much larger LR for meaningful weight updates.

4. Phase-4: Slow Growth II, the network is now heavily pruned and very few parameters left in the
network. By using the same pruning rate, a very small portion of the weights will be pruned. This could
cause a marginal effect on the distribution of weight gradients. Hence, SILO slightly increases max_lr.

We note that SILO is designed based on the assumption that existing pruning methods tend to prune weights
with small magnitude. The key difference with existing LR schedules (e.g., LR warmup) is that SILO
is adaptive and able to precisely increase the value of max_lr as the network is iteratively pruned, while
existing LR schedules do not factor in the need to change max_lr during different pruning cycles.

4.3 Implementation of SILO

As for the implementation of SILO, we designed a function to estimate the value of max_lr as shown below.

max_lr = δ

1 + (γ
1−γ)−β

+ ϵ, (3)

where γ = 1 − (1 − p)m−q is the input of the function and max_lr is the output of the function. When
computing the value of γ, the parameter p is the pruning rate and m is the number of completed pruning
cycles. In equation 3, the parameters β and q are used to control the shape of the S curve. The larger the
β, the later the curve enters the Fast Growth phase. The parameter q determines at which pruning cycle
SILO enters the Slow Growth I phase. When q = 0, the No Growth phase will be skipped and γ will be

7

Published in Transactions on Machine Learning Research (08/2023)

Algorithm 1 Algorithm for the proposed S-shaped Improved Learning rate Optimization (SILO)
Input: lower bound ϵ, upper bound δ + ϵ, pruning rate p, number of pruning cycles L, number of training

epochs t, S-shape control term β, delay term q.
1: for m = 0 to L do
2: if m ≤ q then
3: max_lr = ϵ
4: else
5: max_lr = δ

1+(γ
1−γ)−β + ϵ, γ = 1− (1− p)m−q

6: for i = 0 to t do
7: (1) linearly warmup the LR to max_lr
8: (2) drop the value of LR by 10 at certain epochs

the proportion of pruned weights at the current pruning cycle. The parameters ϵ and δ determine the value
range of max_lr. As the network is iteratively pruned, γ increases and max_lr increases from ϵ to ϵ + δ
accordingly. The details of the SILO algorithm are summarized in Algorithm 1.

Parameter Selection for SILO. Algorithm 1 requires several inputs for implementation. The value of
ϵ can be tuned using the validation accuracy of the unpruned network while the value of δ can be tuned
using the validation accuracy of the pruned network with targeted sparsity. The pruning rate p and pruning
cycles L are chosen to meet the target sparsity. The number of training epochs t should be large enough
to guarantee the network convergence. Let q = 1 and β = 5 could be a good choice and yield promising
results as we demonstrate in Section 5. Furthermore, based on our experience, the value of q and β could
be tuned in the range of [0, 3] and [3, 6], respectively. Lastly, we note that the sensitivity of parameters in
the proposed SILO will be further examined in Section 5.3.

5 Performance Evaluation

In Sections 5.1, we first summarize the experiment setup. In Section 5.2, compare the performance of the
proposed SILO to four LR schedule benchmarks. In Section 5.3, we examine the sensitivity of parameters
in SILO. In Section 5.4, we present the value of max_lr estimated by the proposed SILO at each pruning
cycle and compare it to an Oracle which exhaustively searches for the optimal max_lr via grid search.

5.1 Experimental Setup

We demonstrate that SILO can work well with different pruning methods across a wide range of networks and
datasets. We shortlist two classical pruning methods (global weight, global gradient) suggested by (Blalock
et al., 2020) and three state-of-the-art pruning method (Iterative Magnitude Pruning (IMP) (Frankle &
Carbin, 2019), Layer-adaptive Magnitude-based Pruning (LAMP) (Lee et al., 2020)) and Lookahead Pruning
(LAP) (Park et al., 2020). The details for each experiment are as follows.

1. Pruning ResNet-20 (He et al., 2016) on CIFAR-10 via global magnitude.

2. Pruning VGG-19 (Simonyan & Zisserman, 2014) on CIFAR-10 via global gradient.

3. Pruning DenseNet-40 (Huang et al., 2017) on the CIFAR-100 dataset using LAMP.

4. Pruning MobileNetV2 (Sandler et al., 2018) on the CIFAR-100 dataset using LAP.

5. Pruning ResNet-50 on ImageNet (i.e., ImageNet-1000) (Deng et al., 2009) using IMP.

6. Pruning Vision Transformer (ViT-B-16) (Dosovitskiy et al., 2020) on CIFAR-10 using IMP.

In each experiment, to demonstrate the robustness of parameters in the proposed SILO, we
compare SILO with a fixed value of (q = 1, β =5) to constant LR and the three shortlisted LR
schedules: (i) LR decay, (ii) cyclical LR and (iii) LR warmup (described in Section 4.1). The implementation
details of each LR schedule are summarized in Table 1.

8

Published in Transactions on Machine Learning Research (08/2023)

Schedule Description (Iters: Iterations)

LR decay (a, b) linearly decay the value of LR from a over b Iters.
cyclical LR (a, b, c) linearly vary between a and b with a step size of c Iters.
LR warmup (a, b, c, d, e) increase to a over b Iters, 10x drop at c, d, e Iters.

SILO (ϵ, δ, b, c, d, e) LR warmup (max_lr, b, c, d, e), where max_lr increases
from ϵ to ϵ + δ during iterative pruning (see equation 3).

Table 1: Descriptions of LR schedule benchmarks and the proposed SILO.

(1) Methodology. We train the network using the training dataset via SGD with momentum = 0.9 and
a weight decay of 1e-4 (same as (Renda et al., 2019; Frankle & Carbin, 2019)). Next, we prune the trained
network with a pruning rate of 0.2 (i.e., 20% of remaining weights are pruned) in 1 pruning cycle. We repeat
25 pruning cycles in 1 run and use early-stop top-1 test accuracy (i.e., the corresponding test accuracy when
early stopping criteria for validation error is met) to evaluate the performance. The results are averaged
over 5 runs and the corresponding standard deviation are summarized in Tables 2 - 7, where the results
of pruning ResNet-20, VGG-19, DenseNet-40, MobileNetV2, ResNet-50 and Vision Transformer (ViT-B-16)
are shown, respectively. Some additional details (e.g., training epochs, optimizer, batch size, etc)
and results for more values of λ are given in Tables 16 - 21 in the Appendix.

(2) SOTA LR Schedules. To ensure fair comparison against prior SOTA LR schedules, we use LR
schedules reported in the literature. Specifically, LR schedules (i.e., LR-warmup) from Table 2 - 6 are from
(Frankle & Carbin, 2019), (Frankle et al., 2020), (Zhao et al., 2019), (Chin et al., 2020) and (Renda et al.,
2019), respectively. The LR schedule (i.e., cosine decay) in Table 7 is from (Dosovitskiy et al., 2020).

(3) Parameters for other LR schedules. For the other schedules without a single "best" LR in the
literature, we tune the value of LR for each of them via a grid search with a range from 1e-4 to 1e-1 using
the validation accuracy. Other related parameters (e.g., step size) are also tuned in the same manner. Lastly,
we highlight that all LR schedules used, including SILO, are rewound to the initial state at the beginning of
each pruning cycle, which is the same as the LR rewinding in (Renda et al., 2019).

(4) Source Code & Devices: We use Tesla V100 devices for our experiments, and the source code is
available at https://github.com/Martin1937/SILO.

5.2 Performance Comparison

(1) Reproducing SOTA results. By using the implementations reported in the literature, we have
correctly reproduced SOTA results. For example, the benchmark results of LR warmup in our Tables 2 - 7
are comparable to Fig. 11 and Fig. 9 of (Blalock et al., 2020), Table 4 in (Liu et al., 2019b), Fig. 3 in (Chin
et al., 2020), Fig. 10 in (Frankle et al., 2020), Table 5 in (Dosovitskiy et al., 2020), respectively.

(2) SILO outperforms SOTA results. The key innovation of SILO is that the LR precisely increases
as the network is pruned, by increasing max_lr in an S-shape as λ decreases. This results in a much higher
accuracy than all LR schedule benchmarks studied. For example, in Table 2, the top-1 test accuracy of SILO
is 1.8% higher than the best performing schedule (i.e., LR-warmup) at λ = 5.72. SILO also obtains the best
performance when using larger models in Table 3 (i.e., 2.6% higher at λ = 5.72) and using more difficult
datasets in Table 4 (i.e., 4.0% higher at λ = 5.72).

(3) Performance on ImageNet. In Table 6, we show the performance of SILO using IMP (i.e., the lottery
ticket hypothesis pruning method) via ResNet-50 on ImageNet which contains over 1.2 million images from
1000 different classes. We observe that SILO still outperforms the best performing LR schedule benchmark
(LR-warmup) by 1.9% at λ = 8.59. This improvement increases to 3.2% when λ reduces to 5.72.

(4) Performance on SOTA networks (Vision Transformer). Several recent works (Liu et al., 2021;
Yuan et al., 2021) demonstrated that transformer based networks tend to provide excellent performance

9

Published in Transactions on Machine Learning Research (08/2023)

Original Top-1 Test Accuracy = 91.7% (λ = 100)
λ 32.8 26.2 8.59 5.72

constant LR 88.1 ± 0.9 87.5 ± 0.7 82.8 ± 0.9 79.1 ± 0.8
LR decay 89.8 ± 0.4 89.0 ± 0.7 83.9 ± 0.6 79.8 ± 0.7
cyclical LR 89.7 ± 0.6 88.2 ± 0.7 84.1 ± 0.8 80.3 ± 0.7
LR-warmup 90.3 ± 0.4 89.8 ± 0.6 85.9 ± 0.9 81.2 ± 1.1
SILO (Ours) 90.8 ± 0.5 90.3 ± 0.4 87.5 ± 0.8 82.7 ± 1.2

Table 2: Top-1 test accuracy ± standard deviation of pruning ResNet-20 on CIFAR-10 via global magnitude.

Original Top-1 Test Accuracy = 92.2% (λ = 100)
λ 32.8 26.2 8.59 5.72

constant LR 88.8 ± 0.6 87.4 ± 0.7 82.2 ± 1.4 73.7 ± 1.3
LR decay 89.4 ± 0.4 88.6 ± 0.5 83.3 ± 0.8 75.4 ± 0.9
cyclical LR 89.8 ± 0.5 89.1 ± 0.6 83.7 ± 1.0 75.7 ± 1.2
LR-warmup 90.2 ± 0.5 89.8 ± 0.8 84.5 ± 0.9 76.5 ± 1.0
SILO (Ours) 90.6 ± 0.6 90.3 ± 0.6 86.1 ± 0.8 78.5 ± 1.0

Table 3: Top-1 test accuracy ± standard deviation of pruning VGG-19 on CIFAR-10 using global gradient.

Original Top-1 Test Accuracy = 74.6% (λ = 100)
λ 32.8 26.2 8.59 5.72

constant LR 70.3 ± 0.8 68.1 ± 0.7 60.8 ± 1.1 59.1 ± 1.2
LR decay 71.2 ± 0.8 69.0 ± 0.6 62.6 ± 1.2 60.3 ± 1.4
cyclical LR 70.9 ± 0.6 69.4 ± 0.6 63.0 ± 1.1 60.8 ± 1.3
LR-warmup 71.5 ± 0.7 69.6 ± 0.8 63.9 ± 1.0 61.2 ± 0.9
SILO (Ours) 72.4 ± 0.7 70.8 ± 0.8 65.7 ± 1.2 63.7 ± 1.0

Table 4: Top-1 test accuracy ± standard deviation of pruning DenseNet-40 on CIFAR-100 using LAMP.

Original Top-1 Test Accuracy = 73.7% (λ = 100)
λ 32.8 26.2 8.59 5.72

constant LR 69.8 ± 1.1 68.2 ± 0.9 63.8 ± 1.1 62.1 ± 1.2
LR decay 70.9 ± 1.0 69.4 ± 0.6 65.1 ± 0.8 64.0 ± 1.1
cyclical LR 71.5 ± 0.7 69.6 ± 0.6 65.3 ± 1.1 64.3 ± 1.2
LR-warmup 72.1 ± 0.8 70.5 ± 0.9 66.2 ± 1.1 64.8 ± 1.5
SILO (Ours) 72.5 ± 0.6 71.0 ± 0.7 68.8 ± 0.8 66.8 ± 1.4

Table 5: Top-1 test accuracy ± standard deviation of pruning MobileNetV2 on CIFAR-100 using LAP.

in computer vision tasks (e.g., classification). We now examine the performance of SILO using Vision
Transformer (i.e., ViT-B16 with a resolution of 384). We note that the ViT-B16 uses Gaussian Error Linear
Units (GELU, GELU(x) = xΦ(x), where Φ(x) is the standard Gaussian cumulative distribution function) as
the activation function. We note that both ReLU and GELU have the unbounded output, suggesting that
SILO could be helpful for pruning GELU based models as well.

We repeat the same experiment setup as above and compare the performance of SILO to other LR schedules
using ViT-B16 in Table 7. We observe that SILO is able to outperform the standard implementation (cosine
decay, i.e., decay the learning rate via the cosine function) by 1.3% at λ = 8.59 in top-1 test accuracy. This
improvement increases to 1.6% when λ reduces to 5.72.

10

Published in Transactions on Machine Learning Research (08/2023)

Original Top-1 Test Accuracy = 77.0% (λ = 100)
λ 32.8 26.2 8.59 5.72

constant LR 74.2 ± 0.8 73.9 ± 0.7 70.5 ± 0.6 69.2 ± 0.9
LR decay 75.6 ± 0.5 75.1 ± 0.5 72.7 ± 0.8 70.5 ± 0.6
cyclical LR 76.5 ± 0.5 75.5 ± 0.6 73.4 ± 0.8 71.2 ± 0.7
LR-warmup 76.6 ± 0.2 75.8 ± 0.3 73.8 ± 0.5 71.5 ± 0.4
SILO (Ours) 76.8 ± 0.4 76.1 ± 0.7 75.2 ± 0.8 73.8 ± 0.6

Table 6: Top-1 test accuracy ± standard deviation of pruning ResNet-50 on ImageNet using IMP.

Original Top-1 Test Accuracy = 98.0% (λ = 100)
λ 32.8 26.2 8.59 5.72

constant LR 96.4 ± 0.5 96.0 ± 0.7 83.0 ± 0.9 80.1 ± 0.8
cosine decay 97.2 ± 0.2 96.5 ± 0.6 84.1 ± 1.0 81.6 ± 1.1
cyclical LR 97.0 ± 0.2 96.5 ± 0.6 83.4 ± 0.6 81.0 ± 1.1
LR-warmup 97.3 ± 0.6 96.8 ± 0.7 84.4 ± 0.8 82.1 ± 0.9
SILO (Ours) 97.7 ± 0.5 97.4 ± 0.6 85.5 ± 0.9 83.4 ± 0.8

Table 7: Top-1 test accuracy ± standard deviation of pruning Vision Transformer on CIFAR-10 using IMP.

Percent of Weights Remaining, λ 32.8 26.2 8.59 5.72
LR-warmup (benchmark) 90.3 ± 0.4 89.8 ± 0.6 85.9 ± 0.9 81.2 ± 1.2
SILO (q = 1, β = 5) 90.8 ± 0.5 90.3 ± 0.4 87.5 ± 0.8 82.7 ± 1.2
SILO (q = 2, β = 5) 90.5 ± 0.6 90.1 ± 0.2 86.9 ± 0.4 82.4 ± 1.1
SILO (q = 3, β = 4) 90.9 ± 0.4 90.2 ± 0.5 87.1 ± 0.9 82.2 ± 1.4
SILO (q = 1, β = 3) 90.5 ± 0.9 90.6 ± 0.8 87.5 ± 0.6 83.1 ± 1.6
SILO (q = 1, β = 7) 90.4 ± 0.2 89.2 ± 0.7 85.1 ± 1.2 80.8 ± 1.9
SILO (q = 5, β = 5) 90.2 ± 0.3 89.8 ± 0.5 85.5 ± 1.0 80.5 ± 1.6

Table 8: Performance (Top-1 test accuracy ± standard deviation) of SILO with different values of q and β
when pruning ResNet-20 on CIFAR-10 via global magnitude.

Percent of Weights Remaining, λ 32.8 26.2 8.59 5.72
LR-warmup (benchmark) 90.2 ± 0.5 89.8 ± 0.8 84.5 ± 0.9 76.5 ± 1.0
SILO (q = 1, β = 5) 90.6 ± 0.6 90.3 ± 0.6 86.1 ± 0.8 78.5 ± 1.0
SILO (q = 2, β = 5) 90.7 ± 0.5 90.0 ± 0.4 86.5 ± 0.9 79.2 ± 1.3
SILO (q = 3, β = 4) 90.3 ± 0.2 90.4 ± 0.3 85.8 ± 0.6 78.8 ± 0.9
SILO (q = 1, β = 3) 90.8 ± 0.8 90.1 ± 0.6 85.5 ± 0.9 78.2 ± 1.1
SILO (q = 1, β = 7) 90.0 ± 0.4 88.5 ± 0.9 82.1 ± 1.4 75.3 ± 1.3
SILO (q = 5, β = 5) 90.1 ± 0.5 89.1 ± 0.6 83.2 ± 1.1 75.7 ± 1.5

Table 9: Performance (Top-1 test accuracy ± standard deviation) of SILO with different values of q and β
when pruning VGG-19 on CIFAR-10 via global gradient.

5.3 Sensitivity of Parameters in SILO

In Section 5.2, we demonstrate the robustness of parameters in SILO by using a fixed value of q = 1, β = 5
and compare it to benchmark schedulers using different networks, datasets and pruning methods. We now
repeat the setup in Tables 2 - 3 and examine the sensitivity of these two parameters in Tables 8 - 9.

11

Published in Transactions on Machine Learning Research (08/2023)

Percent of Weights Remaining, λ 100 51.3 32.9 21.1 5.72

Oracle optimized max_lr (×10−2) 4 4.6 9.0 9.8 10.2
Oracle optimized interval (×10−2) [3.6, 4.2] [4.2, 5.4] [8.0, 9.6] [9.2, 10.4] [9.8, 10.6]
SILO’s estimated max_lr (×10−2) 4 4.32 9.2 9.9 9.99

Table 10: Comparison between Oracle optimized max_lr, Oracle optimized interval (both obtained via grid
search) and the value of max_lr estimated by SILO when iteratively pruning VGG-19 on CIFAR-10.

Percent of Weights Remaining, λ 100 51.3 41.1 32.9 21.1

Oracle optimized max_lr (×10−2) 3.4 3.8 4.6 5.6 6.2
Oracle optimized interval (×10−2) [2.8, 3.6] [3.4, 4.2] [3.8, 5.2] [5.4, 6.6] [5.4, 6.8]
SILO estimated max_lr (×10−2) 3 3.2 4.7 6.4 6.9

Table 11: Comparison between Oracle tuned max_lr, Oracle optimized max_lr interval (both obtained via
grid search) and max_lr estimated by SILO when iteratively pruning ResNet-20 on the CIFAR-10 dataset.

The takeaway message from Tables 8 - 9 is three-fold: (i) The parameters of SILO can provide promising
results (i.e., outperform benchmark schedulers) within the suggested value range, i.e., 0 ≤ q ≤ 3, 3 ≤ β ≤ 6
(see first 5 rows in Tables 8 - 9). (ii) When the value of q and β fall outside the suggested range, SILO may
fail to outperform benchmarks (see last 2 rows in Tables 8 - 9). (iii) It also suggests that q and β could be
tuned within a relatively small range and does not require as much effort as tuning the hyperparameters.

5.4 Comparing SILO to an Oracle

Our new insight suggests that, due to the change in distribution of hidden representations during iterative
pruning, LR should be re-tuned at each pruning cycle. SILO provides a method to adjust the max_lr in an
S-shape, which is backed up by a theoretical result (see Theorem 2). We now further examine the S-shape
trajectory of SILO by comparing SILO’s estimated max_lr to an Oracle, which uses the same LR warmup
structure as SILO but exhaustively searches for the optimal value of max_lr at each pruning cycle. The
Oracle’s max_lr at the current pruning cycle is chosen by grid search ranging from 1e-4 to 1e-1 and the
best performing value (i.e., determined by validation accuracy) is used to train the network. The results of
max_lr determined this way when iteratively pruning a VGG-19 on CIFAR-10 using the global magnitude
are detailed in Table 10 via two metrics:

1. Oracle optimized max_lr: The value of max_lr that provides the best validation accuracy.

2. Oracle optimized interval: The range of max_lr which provides comparable performance to Oracle
optimized max_lr (i.e., within 0.5% of the best validation accuracy).

SILO vs Oracle (Performance): In Table 10, the max_lr estimated by SILO falls in the Oracle opti-
mized max_lr interval at each pruning cycle, suggesting that SILO can precisely adjust max_lr to provide
competitive performance with Oracle. This further verifies the S-shape trajectory of max_lr used in SILO.

SILO vs Oracle (Complexity): The process of finding the Oracle tuned max_lr requires a significantly
larger computational complexity in tuning due to the grid search. Assume that max_lr is searched from a
sampling space of [θ1, · · ·, θn] for k pruning cycles. Hence, the complexity of the Oracle will be O(nk). On
the other hand, SILO controls the variation of max_lr at each pruning cycle via four parameters: ranges of
max_lr: [ϵ, ϵ + δ], delay term q and S-shape control term β. Similar to the Oracle, both ϵ and δ can be
searched from a range of n values. As we have recommended before, q and β can be tuned in the range of [0,
3], [3, 6], respectively. As a result, SILO has a complexity of O(n2), which is exponentially less complex than
the Oracle’s complexity, but with competitive performance. Lastly, we highlight that similar performance
trends can be observed using ResNet-20 via global magnitude (see Table 11).

12

Published in Transactions on Machine Learning Research (08/2023)

Params: 227K; Train Steps: 63K Iters; Batch: 128; Pruning Rate: 0.2

λ 100 32.9 21.1 5.72 2.03
constant LR 88.4±0.4 84.8±0.6 83.5±0.6 75.5±1.2 67.1±1.7
LR decay 88.6±0.3 87.1±0.7 83.7±0.9 76.1±0.8 66.0±1.3
cyclical LR 88.9±0.3 86.9±0.5 84.1±0.3 77.0±0.9 64.4±1.1
LR-warmup 89.1±0.3 87.2±0.4 84.5±0.6 75.2±1.1 65.1±1.9
SILO 89.2±0.2 87.9±0.3 86.3±0.5 79.5±1.7 71.7±2.3

Table 12: Performance comparison (averaged top-1 test accuracy ± std over 5 runs) of iteratively pruning
ResNet-20 on CIFAR-10 dataset using global magnitude and Adam optimizer (Kingma & Ba, 2014).

Params: 227K; Train Steps: 63K Iters; Batch: 128; Pruning Rate: 0.2

λ 100 32.9 21.1 5.72 2.03
constant LR 87.9±0.3 83.4±0.4 81.5±0.9 65.5±1.9 55.1±2.3
LR decay 88.4±0.2 84.8±0.6 77.8±0.9 67.1±1.4 58.3±1.6
cyclical LR 88.1±0.3 84.7±0.5 81.9±0.7 67.5±0.9 56.3±1.7
LR-warmup 88.9±0.2 85.1±0.5 81.7±0.4 67.3±1.3 57.1±1.4
SILO 88.7±0.3 86.1±0.4 83.1±0.6 72.5±1.3 63.5±1.9

Table 13: Performance comparison (top-1 test accuracy ± std over 5 runs) of iteratively pruning ResNet-20
on CIFAR-10 dataset using global magnitude and RMSProp optimizer (Tieleman & Hinton, 2012).

6 Reflections

In summary, SILO is an adaptive LR schedule for network pruning with theoretical justification. SILO
outperforms existing benchmarks by 2.1% - 3.2% via classical networks and datasets. For SOTA networks
(e.g., Vision Transformer) and large scale datasets (e.g., ImageNet), it leads to an improvement of 3% -
5.6%. More importantly, via the S-shape trajectory, SILO can obtain comparable performance to Oracle
with significantly lower complexity. We now conclude the paper by presenting some reflections.

(1) The gain of SILO. As compared to existing LR schedules, the advantage of SILO is three-fold: (i)
SILO is specially designed for network pruning which gradually increases the value of LR in an S-shape
as the network is gradually pruned. (ii) The S-shape trajectory is theoretically justified and empirically
examined by comparing to an Oracle. The results suggest that SILO can obtain a comparable performance
to the Oracle with a significantly lower complexity. (iii) As for its performance, SILO outperforms existing
LR schedules by 2% - 4%, which is demonstrated via extensive experiments.

(2) Connection to Prior Work. Our work explores the important role of LR in network pruning and
provides a new insight – as the ReLU-based network is iteratively pruned, a larger LR should be used to retrain
the pruned network. This new insight could be used to explain the surprising effect of LR schedules observed
in prior works. Specifically, Frankle & Carbin (2019) highlighted that they can only find winning tickets after
applying a LR warmup schedule. Using insights from our analysis, we attribute this to LR warmup increasing
the LR to a large value (e.g., Frankle & Carbin (2019) increases LR to 1e-1 when training VGG-19) which
is better for pruned networks. Similarly, Renda et al. (2019) proposed LR rewinding and demonstrated that
it outperforms standard fine-tuning. We attribute this to LR rewinding ensuring that a relatively larger LR
(as compared to fine-tuning) is used to better train pruned networks in every pruning cycle.

(3) Performance using Adaptive LR Optimizers. In the main paper, we only evaluate the performance
of SILO using SGD. We note that the weight update mechanism is different for other adaptive learning rate
optimizers, which may potentially affect the performance of SILO. In Tables 12 - 13, we conduct a similar
performance comparison using Adam (Kingma & Ba, 2014) and RMSprop (Tieleman & Hinton, 2012), and
SILO still outperforms all LR schedule benchmarks studied.

13

Published in Transactions on Machine Learning Research (08/2023)

Percent of Weights Remaining, λ 30.4 24.7 7.29

(i) LR-Warmup 88.5 ± 0.9 87.1 ± 1.2 82.2 ± 1.4
(ii) SILO (q = 1, β = 3) 89.4 ± 0.8 88.5 ± 1.4 83.9 ± 1.7

(iii) LR-Warmup 87.4 ± 0.7 85.2 ± 0.9 80.8 ± 1.6
(iv) SILO (q = 1, β = 3) 88.1 ± 0.6 87.1 ± 1.1 82.3 ± 1.4

Table 14: Performance comparison between SILO and LR-warmup when pruning VGG-19 (rows (i) and (ii))
and ResNet-20 (rows (iii) and (iv)) using L1 Norm filter pruning (Li et al., 2017) on CIFAR-10 dataset.

(4) Extension of SILO to Structured Pruning. In Section 3.1, we have examined the distribution of
weight gradients using structured pruning and shown that structured pruning also suffer from the issue of
decreasing weight gradients (see Fig. 7 in the Appendix for more details). This suggests that SILO could be
applicable to structured pruning as well.

In Table 14, we compare the performance of SILO to LR-warmup using L1 Norm filter pruning (Li et al.,
2017) on ResNet-20 and VGG-19. We observe that SILO still outperforms the benchmark LR schedule,
leading to an improvement of 2.0% (compare SILO at row (ii) to LR-warmup at row (i) when λ = 7.29). We
note that the performance improvement is not as significant as that of working with unstructured pruning.
We suspect it is due to that the distribution of weight gradients may change differently when the network is
structurely pruned. In such a case, SILO may need to be re-designed for a larger performance gain.

(5) Effect of SILO on Weight Update and Generalization. We also examine the effect of SILO on
distribution of weight update (weight gradient × learning rate) and the experimental results demonstrate
that, with SILO, the distribution of weight update of pruned networks becomes less centralized, suggesting
that SILO helps to mitigate the issue of decreasing weight gradients. As a result, the pruned network is
better trained with SILO, leading to a much better generalization performance. We refer the interested
reader to Figs. 8 - 10 in the Appendix.

(6) Future Research. (i) We demonstrate the performance of SILO on ReLU-based networks (ResNet,
VGG) and GELU-based networks (Vision Transformer). We note that similar LR schedules could be used
for networks with other activation functions (e.g., PReLU) and we plan to explore this in future research.
(ii) Moreover, the main motivation for SILO is that the distribution of weight gradients tends to become
narrower after pruning. An approach to automatically determine the value of max_lr from the distribution
of weight gradients is definitely worth deeper thought. (iv) As mentioned above, when it comes to the case of
structured pruning, the improvement of SILO is not as large as that of working with unstructured pruning.
This could be due to that the distribution of weight gradients may change differently when the network is
structurely pruned. In such a case, SILO may need to be re-designed for a larger performance gain.

Acknowledgements

This research is supported by A*STAR, CISCO Systems (USA) Pte. Ltd and the National University of
Singapore under its Cisco-NUS Accelerated Digital Economy Corporate Laboratory (Award I21001E0002).
Additionally, we would like to thank the members of the Kent-Ridge AI research group at the National
University of Singapore for helpful feedback and interesting discussions on this work.

References
Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-

parameterization. In Proceedings of the International Conference on Machine Learning (ICML), volume 97,
pp. 242–252, 2019.

Wangpeng An et al. Exponential decay sine wave learning rate for fast deep neural network training. In
2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE, 2017.

14

Published in Transactions on Machine Learning Research (08/2023)

Larry C. Andrews. Special functions of mathematics for engineers, volume 49. Spie Press, 1998.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration
by overparameterization. In Proceedings of the International Conference on Machine Learning (ICML),
volume 80, pp. 244–253, 2018.

Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In Neural
Networks: Tricks of the trade, pp. 437–478. Springer, 2012.

Davis Blalock et al. What is the state of neural network pruning? In Proceedings of the Machine Learning
and Systems (MLSys), 2020.

Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Marculescu. Towards efficient model compression via
learned global ranking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1518–1528, 2020.

Jia Deng et al. Imagenet: A large-scale hierarchical image database. In 2009 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 248–255, 2009.

Misha Denil et al. Predicting parameters in deep learning. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), pp. 2148–2156, 2013.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In Proceedings of the International Conference on Learning Representations (ICLR), 2019.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the lottery
ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

Jonathan Frankle et al. Linear mode connectivity and the lottery ticket hypothesis. In Proceedings of the
International Conference on Machine Learning (ICML), pp. 3259–3269, 2020.

Venkata Gandikota et al. vqsgd: Vector quantized stochastic gradient descent. In Proceedings of the Inter-
national Conference on Artificial Intelligence and Statistics, pp. 2197–2205, 2021.

Itai Gat, Yossi Adi, Alex Schwing, and Tamir Hazan. On the importance of gradient norm in pac-bayesian
bounds. Advances in Neural Information Processing Systems (NeurIPS), 35:16068–16081, 2022.

Rong Ge et al. The step decay schedule: A near optimal, geometrically decaying learning rate procedure for
least squares. arXiv preprint arXiv:1904.12838, 2019.

Aidan Good and et al. Recall distortion in neural network pruning and the undecayed pruning algorithm.
Advances in Neural Information Processing Systems (NeurIPS), 35:32762–32776, 2022.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han et al. Learning both weights and connections for efficient neural network. In Proceedings of the
Advances in Neural Information Processing Systems (NeurIPS), pp. 1135–1143, 2015b.

Babak Hassibi and David G. Stork. Second order derivatives for network pruning: Optimal brain surgeon.
In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), pp. 164–171, 1993.

Kaiming He et al. Deep residual learning for image recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

15

Published in Transactions on Machine Learning Research (08/2023)

Tong He et al. Bag of tricks for image classification with convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 558–567, 2019.

Yang He et al. Learning filter pruning criteria for deep convolutional neural networks acceleration. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

Hengyuan Hu et al. Network trimming: A data-driven neuron pruning approach towards efficient deep
architectures. arXiv preprint arXiv:1607.03250, 2016.

Gao Huang et al. Densely connected convolutional networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the International Conference on Machine Learning (ICML),
volume 37, pp. 448–456, 2015.

Arnulf Jentzen et al. Strong error analysis for stochastic gradient descent optimization algorithms. IMA
Journal of Numerical Analysis, 41(1):455–492, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

Alex Krizhevsky and Geoff Hinton. Convolutional deep belief networks on cifar-10. Unpublished manuscript,
40(7):1–9, 2010.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 2015.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Proceedings of the Advances in
Neural Information Processing Systems (NeurIPS), pp. 598–605, 1990.

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity for the
magnitude-based pruning. In International Conference on Learning Representations (ICLR), 2020.

Namhoon Lee et al. SNIP: Single-shot network pruning based on connection sensitivity. In Proceedings of
the International Conference on Learning Representations (ICLR), 2019.

Hao Li et al. Pruning filters for efficient convnets. In Proceedings of the International Conference on Learning
Representations (ICLR), 2017.

Yawei Li and et al. Revisiting random channel pruning for neural network compression. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 191–201, 2022.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling Shao.
Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1529–1538, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In Proceedings
of the International Conference on Learning Representations (ICLR), 2019a.

Linfeng Liu, Xu Han, Dawei Zhou, and Liping Liu. Towards accurate subgraph similarity computation
via neural graph pruning. Transactions on Machine Learning Research (TMLR), 2022. URL https:
//openreview.net/forum?id=CfzIsWWBlo.

Shiwei Liu and et al. Sparse training via boosting pruning plasticity with neuroregeneration. In Advances
in Neural Information Processing Systems (NeurIPS), volume 34, pp. 9908–9922, 2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 10012–10022, 2021.

16

Published in Transactions on Machine Learning Research (08/2023)

Zhuang Liu et al. Rethinking the value of network pruning. In Proceedings of the International Conference
on Learning Representations (ICLR), 2019b.

Jian-Hao Luo and Jianxin Wu. Neural network pruning with residual-connections and limited-data. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1458–1467, 2020.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network
compression. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp.
5058–5066, 2017.

Eran Malach et al. Proving the lottery ticket hypothesis: Pruning is all you need. In Proceedings of the
International Conference on Machine Learning (ICML), pp. 6682–6691, 2020.

Rahul Mehta. Sparse transfer learning via winning lottery tickets. In Proceedings of the Advances in Neural
Information Processing Systems Workshop on Learning Transferable Skills, 2019.

Pavlo Molchanov et al. Pruning convolutional neural networks for resource efficient inference. Proceedings
of the International Conference on Learning Representations (ICLR), 2017.

Pavlo Molchanov et al. Importance estimation for neural network pruning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11264–11272, 2019.

Sejun Park, Jaeho Lee, Sangwoo Mo, and Jinwoo Shin. Lookahead: A far-sighted alternative of magnitude-
based pruning. 2020.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural network
pruning. In International Conference on Learning Representations (ICLR), 2019.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747,
2016.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4510–4520, 2018.

David W Scott. Sturges’ rule. Wiley Interdisciplinary Reviews: Computational Statistics, 1(3):303–306,
2009.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Leslie N. Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 464–472. IEEE, 2017.

Chong Min John Tan and Mehul Motani. Dropnet: Reducing neural network complexity via iterative
pruning. In Proceedings of the International Conference on Machine Learning (ICML), pp. 9356–9366.
PMLR, 2020.

Lucas Theis et al. Faster gaze prediction with dense networks and fisher pruning. arXiv preprint
arXiv:1801.05787, 2018.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

Artem Vysogorets and Julia Kempe. Connectivity matters: Neural network pruning through the lens of
effective sparsity. Journal of Machine Learning Research, 24(99):1–23, 2023.

Huan Wang and et al. Recent advances on neural network pruning at initialization. In Proceedings of the
International Joint Conference on Artificial Intelligence, IJCAI, Vienna, Austria, pp. 23–29, 2022.

17

Published in Transactions on Machine Learning Research (08/2023)

Tianzhe Wang et al. Apq: Joint search for network architecture, pruning and quantization policy. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2020a.

Yulong Wang et al. Dynamic network pruning with interpretable layerwise channel selection. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pp. 6299–6306, 2020b.

Yulong Wang et al. Pruning from scratch. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 12273–12280, 2020c.

Zi Wang, Chengcheng Li, and Xiangyang Wang. Convolutional neural network pruning with structural
redundancy reduction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 14913–14922, June 2021.

Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran. Autoprune: Automatic network pruning by regu-
larizing auxiliary parameters. In Proceedings of the Advances in Neural Information Processing Systems
(NeurIPS), pp. 13681–13691, 2019.

He Yang et al. Filter pruning via geometric median for deep convolutional neural networks acceleration. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4335–4344,
2019.

Mao Ye et al. Good subnetworks provably exist: Pruning via greedy forward selection. In Proceedings of the
International Conference on Machine Learning (ICML), pp. 10820–10830. PMLR, 2020.

Haoran You and et al. Max-affine spline insights into deep network pruning. Transactions on Machine
Learning Research (TMLR), 2022. ISSN 2835-8856.

Kaichao You et al. How does learning rate decay help modern neural networks? arXiv preprint
arXiv:1908.01878, 2019.

Hao nan Yu et al. Playing the lottery with rewards and multiple languages: lottery tickets in RL and NLP.
In Proceedings of the International Conference on Learning Representations (ICLR), 2020.

Ruichi Yu et al. Nisp: Pruning networks using neuron importance score propagation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9194–9203, 2018.

Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, and Shuicheng Yan. Volo: Vision outlooker for visual
recognition. arXiv preprint arXiv:2106.13112, 2021.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

Yuyao Zhang and Nikolaos M Freris. Adaptive filter pruning via sensitivity feedback. IEEE Transactions
on Neural Networks and Learning Systems (TNNLS), 2023.

Chenglong Zhao et al. Variational convolutional neural network pruning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2780–2789, 2019.

Hattie Zhou et al. Deconstructing lottery tickets: Zeros, signs, and the supermask. In Proceedings of the
Advances in Neural Information Processing Systems (NeurIPS), 2019.

18

