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ABSTRACT

While recent Large Vision-Language Models (LVLMs) have shown remarkable
performance in multi-modal tasks, they are prone to generating hallucinatory text
responses that do not align with the given visual input, which restricts their practical
applicability in real-world scenarios. In this work, inspired by the observation that
the text-to-image generation process is the inverse of image-conditioned response
generation in LVLMs, we explore the potential of leveraging text-to-image genera-
tive models to assist in mitigating hallucinations in LVLMs. We discover that gener-
ative models can offer valuable self-feedback for mitigating hallucinations at both
the response and token levels. Building on this insight, we introduce self-correcting
Decoding with Generative Feedback (DeGF), a novel training-free algorithm that
incorporates feedback from text-to-image generative models into the decoding pro-
cess to effectively mitigate hallucinations in LVLMs. Specifically, DeGF generates
an image from the initial response produced by LVLMs, which acts as an auxiliary
visual reference and provides self-feedback to verify and correct the initial response
through complementary or contrastive decoding. Extensive experimental results
validate the effectiveness of our approach in mitigating diverse types of hallucina-
tions, consistently surpassing state-of-the-art methods across six benchmarks.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across
various multi-modal tasks, such as image captioning and visual question answering, by extending
the capabilities of powerful large language models (LLMs) to incorporate visual inputs (Liu et al.,
2023; Li et al., 2023b; Dai et al., 2023; Bai et al., 2023; Ye et al., 2024). Despite their proficiency
in interpreting both visual and textual modalities, these models often suffer from hallucinations,
where LVLMs erroneously produce responses that are inconsistent with the visual input (Li et al.,
2023d; Gunjal et al., 2024; Yin et al., 2023; Wu et al., 2024). This potential for misinformation
raises significant concerns, limiting the models’ reliability and restricting their broader deployment
in real-world scenarios (Liu et al., 2024b; Bai et al., 2024; Chen et al., 2024b).

Recent research has revealed that a major cause of hallucinations in LVLMs is the over-reliance
on language priors due to biased training sets, which can override the visual content in response
generation (Bai et al., 2024; Liu et al., 2024b;d; Leng et al., 2024). In response, various strategies
have been developed to detect and mitigate these hallucinations by directly introducing additional
training (Chen et al., 2024a; Sun et al., 2023; Jiang et al., 2024; Chen et al., 2023; Zhang et al., 2024),
demonstrating promising results in reducing over-reliance. However, the need for additional data
and costly training processes hinders their deployment in downstream tasks. More recently, a new
paradigm of methods has emerged to tackle the hallucination problem in LVLMs by intervening
in the decoding process (Huang et al., 2024; Deng et al., 2024; Kim et al., 2024). Among these,
recent training-free contrastive decoding-based methods (Li et al., 2023c) have proven effective in
mitigating undesired hallucinations by contrasting token predictions derived from original visual
input with bias-inducing counterparts, such as no/distorted visual input (Favero et al., 2024; Leng
et al., 2024), disturbed instructions (Wang et al., 2024b), or premature layers (Chuang et al., 2024).

While these contrastive decoding-based methods effectively mitigate hallucinations arising from
language priors, we recognize that hallucinations can also originate beyond language bias, stemming
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Figure 1: Generative models can visualize and help correct various types of hallucinations in
the initial response. In the first query, we provide LLaVA-1.5 (Liu et al., 2023) with the prompt
“Describe this image in detail” to produce captions for two examples from LLaVA-Bench.
Based on the initial response conditioned solely on the original image v, we utilize Stable Diffusion
XL (Podell et al., 2024) to generate a new image v′, which effectively highlights hallucinations and
provides valuable self-feedback. In the second query, our approach incorporates both the original
image v and the generated image v′ into the decoding process, using the feedback to successfully
correct various types of hallucinations (as highlighted in red and green).

from visual deficiencies in LVLMs (Tong et al., 2024). For instance, in counting hallucinations, lan-
guage does not imply any count information; instead, miscounts largely arise from visual recognition
errors of LVLMs, as complex scenes include numerous, similar objects at ambiguous positions which
may confuse the LVLMs, leading to incorrect visual understanding and, consequently, hallucinated
answers. Therefore, we argue that current contrastive decoding-based methods may struggle to
generalize effectively across different types of hallucinations.

In this work, we explore the potential of leveraging powerful text-to-image generative models (e.g.,
Stable Diffusion (Rombach et al., 2022; Podell et al., 2024)) to mitigate various types of hallucinations
in LVLMs. Our work is based on a simple yet intuitive hypothesis: Given a visual input and a textual
prompt to an LVLM, if the generated response conditioned on the original image is accurate and non-
hallucinatory, a text-to-image generative model should be capable of reversing this process to produce
a similar image from that response. Alternatively, if there is a discrepancy between the original
image and the one generated from the response, this difference can serve as valuable self-feedback,
guiding the decoding process to correct potential hallucinations in the initial response. To verify this
hypothesis, we conduct an empirical study (in Section 3.2), demonstrating that generative models can
provide valuable self-feedback for mitigating hallucinations at both the response and token levels.

Building on this insight, we introduce self-correcting Decoding with Generative Feedback (DeGF),
a novel training-free decoding algorithm that effectively incorporates feedback from text-to-image
generative models to recursively enhance the accuracy of LVLM responses. Specifically, for each
instance, we generate a new image based on the initial response, which serves as an auxiliary visual
reference to assess and verify the accuracy of the initial output. We propose self-correcting decoding
that either enhances or contrasts predictions from the original and this reference based on the auxiliary
visual reference, confirming or revising the initial LVLM response based on the degree of divergence
between the two predictions. By integrating this additional visual reference and generative feedback,
LVLMs can gain enhanced visual insights and verify the initial response to ensure accurate visual
details in the text outputs. In Figure 1, we demonstrate that incorporating generative feedback in our
approach can reduce various types of hallucinations, including object existence, visual appearance,
counting, etc. To the best of our knowledge, we are the first work to explore the use of text-to-image
generative feedback as a self-correcting mechanism for mitigating hallucinations in LVLMs.

The effectiveness of DeGF is evaluated on LLaVA-1.5 (Liu et al., 2023), InstructBLIP (Dai
et al., 2023), and Qwen-VL (Bai et al., 2023) across six benchmarks: POPE (Li et al., 2023d),
CHAIR (Rohrbach et al., 2018), MME-Hallucination (Fu et al., 2023), MMBench (Liu et al.,
2025), MMVP (Tong et al., 2024), and LLaVA-Bench. Extensive experimental results validate
the effectiveness of our DeGF in mitigating various types of hallucinations in LVLMs. Qualitative
case studies and GPT-4V-aided evaluation on LLaVA-Bench further demonstrate that our approach
enhances both the accuracy and detailedness of the LVLM responses.
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The contributions of this paper are summarized as follows:

• We investigate the potential of text-to-image generative models in mitigating hallucinations in
LVLMs and demonstrate that text-to-image generative models can provide valuable self-feedback
for mitigating hallucinations at both the response and token levels.

• We propose self-correcting Decoding with Generative Feedback (DeGF), a novel training-free
decoding algorithm for LVLMs that recursively enhances the accuracy of responses by integrating
feedback from text-to-image generative models with complementary/contrastive decoding.

• Extensive experimental evaluations across six benchmarks demonstrate that our DeGF consistently
outperforms state-of-the-art approaches in effectively mitigating hallucinations in LVLMs.

2 RELATED WORK

Hallucination in LVLMs. With advances of autoregressive LLMs (Touvron et al., 2023; Chowdhery
et al., 2023; Brown et al., 2020; Chiang et al., 2023), researchers have extended these powerful models
to process visual inputs, leading to the development of LVLMs (Liu et al., 2023; Dai et al., 2023; Bai
et al., 2023; Ye et al., 2024). These models typically train a modality alignment module to project
visual tokens into the textual embedding space of the LLM, demonstrating impressive performance in
various multi-modal tasks such as visual question answering and image captioning (Liu et al., 2024b;
Bai et al., 2024). However, LVLMs are prone to hallucinations, where contradictions arise between the
visual content and the generated textual response (Li et al., 2023d; Liu et al., 2024b; Bai et al., 2024).

To mitigate hallucinations in LVLMs, early works have introduced various approaches, including
reinforcement learning from human feedback (RLHF) (Gunjal et al., 2024; Sun et al., 2023), applying
auxiliary supervision (Jiang et al., 2024; Chen et al., 2023), incorporating negative (Liu et al., 2024a)
or noisy data (Yue et al., 2024; Wang et al., 2024a), and training post-hoc revisors for correction (Zhou
et al., 2024; Yin et al., 2023). Despite promising results, these methods often lack practicality due to
their reliance on additional data and costly training processes. To address this, another line of work fo-
cuses on training-free methods that can be seamlessly integrated into existing LVLMs. Such methods
encompass contrastive decoding (Leng et al., 2024; Favero et al., 2024) and guided decoding with aux-
iliary information (Chen et al., 2024d; Deng et al., 2024; Woo et al., 2024). In this work, we present
a novel training-free approach that recursively enhances the accuracy of the LVLM response by incor-
porating text-to-image generative feedback. To the best of our knowledge, we are the first work to ef-
fectively utilize feedback from text-to-image generative models to mitigate hallucinations in LVLMs.

Text-to-Image Synthesis. Text-to-image synthesis aims to create realistic images from textual
descriptions (Zhu et al., 2019; Ge et al., 2023). In recent years, significant progress has been achieved
in this area, largely due to the advent of deep generative models (Zhan et al., 2023; Goodfellow
et al., 2014). These advances include Generative Adversarial Networks (GAN) (Sauer et al., 2023;
Kang et al., 2023), autoregressive models (Chang et al., 2023; Yu et al., 2022), and diffusion
models (Ho et al., 2020; Karras et al., 2022; Nichol et al., 2022; Saharia et al., 2022; Rombach
et al., 2022). Among these, diffusion-based methods have been particularly distinguished due to
their ability to generate high-quality, detailed images with fine-grained control over the synthesis
process (Yang et al., 2023; Croitoru et al., 2023). Pre-trained on large-scale text-image datasets
such as LAION (Schuhmann et al., 2022), diffusion-based methods have demonstrated strong vision-
language alignment, making them valuable for downstream tasks such as classification (Li et al.,
2023a) and semantic segmentation (Amit et al., 2021; Wolleb et al., 2022).

More recently, Jiao et al. (2024) incorporate text-to-image generative models to enhance fine-grained
image recognition in LVLMs by introducing the Img-Diff dataset, which generates pairs of similar
images using Stable Diffusion XL (Podell et al., 2024). Their results demonstrate that fine-tuning
LVLMs with this additional data leads to improved performance on several VQA tasks. In contrast,
in this work, we directly leverage a pre-trained diffusion model to provide valuable self-feedback
for refining the generated responses of LVLMs in the decoding process, dynamically improving the
accuracy and consistency of the model’s response without modifying the underlying LVLMs.

3 METHOD

In this work, we present DeGF, a novel training-free algorithm that recursively improves the accuracy
of LVLM responses using text-to-image generative feedback, as illustrated in Figure 2.
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Figure 2: Overview of our proposed DeGF. Our method follows a two-step process: first, a
generative model produces a high-quality image based on the initial response; second, this image acts
as an auxiliary visual reference, providing feedback to refine the next-token predictions. Additionally,
we introduce self-correcting decoding, which either enhances or contrasts the next-token predictions
conditioned on the original and generated images to mitigate hallucinations in the LVLM response.

3.1 PRELIMINARY: DECODING OF LVLMS

We consider an LVLM parameterized by θ, which processes an input image v and a textual query
x, aiming to autoregressively generate a fluent sequence of textual responses y. The visual input v is
first processed by a vision encoder and then projected into visual tokens within the textual input space
using a vision-language alignment module (e.g., Q-Former (Li et al., 2023b) or linear projection (Liu
et al., 2023)). These visual tokens, along with the textual query tokens, are then fed into the language
encoder for conditioned autoregressive generation. We denote the autoregressive generation process as

yt ∼ pθ(yt|v,x,y<t) ∝ exp fθ(yt|v,x,y<t), (1)

where yt represents the token at time step t, y<t ≜ [y0, . . . , yt−1] denotes the sequence of tokens
generated before time step t, and fθ is the logit distribution (unnormalized log-probabilities)
produced by the LVLM over a vocabulary of textual tokens V . At each step t ∈ [0, . . . , T ], the
response token yt is sampled from the probability distribution pθ(yt|v,x,y<t), and this generative
process continues iteratively until the response sequence y ≜ [y0, . . . , yT ] is complete.

3.2 VISUAL REFERENCE GENERATION

In our method, we incorporate generative feedback from diffusion models to guide the decoding
process. Specifically, given a visual input v and a textual query x, we first prompt the LVLMs to
generate an initial response τ , which includes relevant descriptions of the visual input with potential
hallucinations. Subsequently, we leverage a pre-trained diffusion model G to generate a new image v′
based on the initial response:

v′ = G(τ , xT ), where xT ∼ N (0, I). (2)

Here, xT denotes a sample from the standard Gaussian distribution, which serves as the initial
noisy input to the diffusion model. Starting from this pure noise image xT , the diffusion model G
iteratively applies T steps of the denoising process to obtain xT , xT−1, . . . , x0, where the final output
x0 corresponds to the final generated image v′. Through this diffusion process, the generative model
visualizes the initial response, providing a visual reference that helps mitigate potential hallucinations
and produce a more accurate and consistent output.

Effectiveness of Text-to-Image Generative Models in Reflecting Hallucinations. We validate the
effectiveness of generative models in reflecting hallucinations through an empirical study, as shown
in Figure 3.1 The experimental results demonstrate that text-to-image generative models can provide
valuable self-feedback for mitigating hallucinations at both the response and token levels.

1For Figure 3, we evaluate 1,000 CHAIR samples (Left) and 3,000 POPE samples (Right).
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Figure 3: Text-to-image generative models can provide
feedback for reflecting hallucinations. (Left) Density plot
of CLIP similarities and bar plot of average CHAIRI in
each bin on the CHAIR benchmark; (Right) Density plots
of token-level JS divergence for both hallucinatory and non-
hallucinatory tokens on the POPE benchmark.

We conduct the following two exper-
iments: (1) We generate an image v′

using diffusion model based on the
initial caption provided by LLaVA-
1.5 and compute the CLIP image sim-
ilarities between the original image
v and the generated image v′ using
OpenCLIP (Cherti et al., 2023) ViT-
H/14 backbone. Following prior work,
we use the CHAIR (Rohrbach et al.,
2018) benchmark, a rule-based metric
on MS-COCO (Lin et al., 2014) for
evaluating object hallucination from
generated captions. We report the
average per-instance metric CHAIRI

within each bin of CLIP similarity,
which evaluates the object hallucina-
tion rates in the entire initial response.
As shown in Figure 3 (Left), a clear negative correlation between hallucination rates and CLIP sim-
ilarities is observed (with a correlation coefficient of ρ = −0.63). This indicates that lower similarity
between the original image and generated image corresponds to higher rates of hallucinations at the
response level. (2) Similarly, we generate an image v′ based on the initial response given by LLaVA-
1.5 for each instance on the POPE (Li et al., 2023d) benchmark. In Figure 3 (Right), we present the
density plot of Jensen-Shannon (JS) divergence between the predicted probabilities for both images,
i.e., pθ(yt|v,x,y<t) and pθ(yt|v′,x,y<t), for hallucinatory and non-hallucinatory tokens.2 The re-
sults show that the density of JS divergence follows a long-tail distribution, with hallucinatory tokens
exhibiting significantly longer tails and higher JS divergence. This shows JS divergence between prob-
abilities derived from the original and the generated image corresponds well to hallucinations at the
token level. These observations provide insights into the effectiveness of generative models in reflect-
ing hallucinations, and motivate us to incorporate the generative feedback during the decoding process.

3.3 SELF-CORRECTING DECODING WITH GENERATIVE FEEDBACK

In this section, we focus on effectively utilizing generative feedback during the decoding process to
mitigate potential hallucinations. Specifically, we propose a self-correcting decoding approach that
leverages generative feedback to confirm or revise the initial response by selectively enhancing or
contrasting the logits for each generated token based on the measured divergence between the two
predicted probability distributions.

Specifically, to predict a specific token yt, we utilize LVLMs to generate two output distributions,
each conditioned on either the original image v or the synthesized visual reference v′, expressed as:

pθ(yt|v,x,y<t)=Softmax[fθ(yt|v,x,y<t)], pθ(yt|v′,x,y<t)=Softmax[fθ(yt|v′,x,y<t)] .
(3)

We define and compute the following distance metric based on Jensen-Shannon (JS) divergence at
each timestep t to quantify the discrepancy between two next-token probability distributions:

dt(v, v
′) = DJS (pθ (yt|v,x,y<t) ∥ pθ (yt|v′,x,y<t)) ,

where DJS(P ∥ Q) =
1

2
DKL(P ∥ M) +

1

2
DKL(Q ∥ M), and M =

1

2
(P +Q). (4)

Here, DKL represents the Kullback-Leibler (KL) divergence. Note that dt(v, v′) ∈ [0, 1] is a
symmetric metric, providing a fine-grained measure of how closely the two distributions align as the
model predicts each subsequent token.

We consider two scenarios based on the token-level generative feedback: (1) If the two predictions
are aligned and both images agree on a specific token prediction, we confirm the original prediction
as correct, and the auxiliary prediction from the generated image can be combined with the original

2Note that POPE benchmark contains yes-or-no questions about object existence. In this experiment, we
evaluate only the first response token (i.e., yes or no) to determine the presence of hallucinations.
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prediction for enhancement (complementary decoding (Woo et al., 2024)). (2) Conversely, if there
is a significant discrepancy between the predictions, indicating that the original prediction is likely
hallucinatory, we revise the original response by using the generated visual input as a contrasting
reference to refine the initial next-token prediction (contrastive decoding (Leng et al., 2024)). To
implement this, we introduce a distance threshold γ and develop two corresponding decoding
approaches as follows:

yt ∼ pθ(yt) =

{
Softmax [fθ(yt|v,x,y<t) + α1 fθ(yt|v′,x,y<t)] , if dt(v, v′) < γ;

Softmax [(1 + α2) fθ(yt|v,x,y<t)− α2 fθ(yt|v′,x,y<t)] , if dt(v, v′) ≥ γ,
(5)

where α1 and α2 are hyperparameters that control the influence of the generated visual reference in
the final prediction. Note that setting α1 = 0 or α2 = 0 degrades this process to regular decoding.
The final generated token yt is sampled from the multinomial distribution with probabilities pθ(yt).

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our method in mitigating hallucinations in LVLMs
across a range of benchmarking scenarios, comparing it with existing state-of-the-art approaches.

4.1 EXPERIMENTAL SETTINGS

Evaluated LVLMs. We evaluate the effectiveness of our method on three state-of-the-art open-source
LVLMs: LLaVA-1.5 (Liu et al., 2024c), InstructBLIP (Dai et al., 2023), and Qwen-VL (Bai et al.,
2023). Both LLaVA-1.5 and InstructBLIP utilize Vicuna-7B (Chiang et al., 2023) as the language
encoder, which is instruction-tuned from LLaMA (Touvron et al., 2023). In contrast, Qwen-VL (Bai
et al., 2023) is based on the Qwen 7B backbone. Specifically, we implement our approach using
weights of the Qwen-VL-Chat model.

Benchmarks. We conduct extensive experiments on six benchmarks: (1) POPE (Li et al., 2023d) is
a widely used benchmark for assessing object hallucinations in LVLMs, which tests the models with
yes-or-no questions regarding the presence of specific objects, such as, “Is there a {object} in
the image?” (2) CHAIR (Rohrbach et al., 2018) evaluates object hallucinations in open-ended
captioning tasks. It prompts the LVLMs to describe specific images selected from a random sample
of 500 images from the MSCOCO validation set; (3) MME-Hallucination (Fu et al., 2023) is a
comprehensive benchmark for LVLMs consisting of four subsets: existence and count for object-level
hallucinations, and position and color for attribute-level hallucinations; (4) MMBench (Liu et al.,
2025) serves as a comprehensive benchmark designed to assess the multi-modal understanding
capabilities of LVLMs across 20 dimensions; (5) MMVP (Tong et al., 2024) collects CLIP-blind
pairs and evaluates the fine-grained visual recognition capabilities of LVLMs. It consists of 150
image pairs, each accompanied by a binary-option question; (6) LLaVA-Bench provides 24 images
featuring complex scenes, memes, paintings, and sketches, along with 60 challenging questions.

Baselines. As a simple baseline, we include results from regular decoding, where the next token
is sampled directly from the post-softmax probability distribution. Additionally, we compare the
performance of our method with three state-of-the-art decoding approaches: VCD (Leng et al., 2024),
M3ID (Favero et al., 2024), and RITUAL (Woo et al., 2024). For evaluations on the CHAIR (Rohrbach
et al., 2018) and MME-Hallucination (Fu et al., 2023) benchmark, we further include comparisons
with Woodpecker (Chen et al., 2024d), HALC (Chen et al., 2024d), DoLa (Chuang et al., 2024)
and OPERA (Huang et al., 2024). We report the performance of these baselines based on our
re-implementation using their released code bases.

Implementation Details. In our experiments, we adhere to the default query format for the input data
used in both LLaVA-1.5 (Liu et al., 2024c) and InstructBLIP (Dai et al., 2023). Additionally, we set
α1 = 3, α2 = 1, and γ = 0.1 by default in our decoding process. We follow VCD (Leng et al., 2024)
to implement adaptive plausibility constraints (Li et al., 2023c), where we set β = 0.1 in open-ended
CHAIR benchmark and β = 0.25 for other tasks. To ensure the reliability of our results, we conduct
MME experiments three times with different initialization seeds and report the mean accuracy along
with the standard deviation. All experiments are conducted on a single 48GB NVIDIA RTX 6000
Ada GPU. More implementation details are provided in Section B of the Appendix.
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Table 1: Results on POPE (Li et al., 2023d) benchmark. Higher (↑) accuracy, precision, recall,
and F1 indicate better performance. The best results are bolded, and the second-best are underlined.

Setup Method
LLaVA-1.5 InstructBLIP Qwen-VL

Acc. ↑ Prec. ↑ F1 ↑ Acc. ↑ Prec. ↑ F1 ↑ Acc. ↑ Prec. ↑ F1 ↑

M
S-

C
O

C
O

Random

Regular 83.13 81.94 83.44 83.07 83.02 83.08 87.43 93.56 86.48
VCD 87.00 86.13 87.15 86.23 88.14 85.88 88.80 93.89 88.11
M3ID 87.50 87.38 87.52 86.67 88.09 86.41 89.83 95.44 89.17
RITUAL 88.87 89.23 88.81 88.83 90.48 88.60 89.47 96.32 88.62
Ours 89.03 91.20 88.74 88.83 93.73 87.71 89.73 93.19 89.31

Popular

Regular 81.17 78.28 82.08 77.00 73.82 78.44 84.70 88.24 83.96
VCD 83.10 79.96 83.94 80.07 77.67 80.89 85.13 87.27 84.69
M3ID 84.30 81.58 84.95 80.97 77.93 81.85 86.27 89.19 85.73
RITUAL 85.83 84.17 86.17 81.97 78.90 82.87 84.57 84.09 84.67
Ours 86.63 87.75 86.28 82.73 84.02 82.10 86.50 89.87 85.71

Adversarial

Regular 77.43 73.31 79.26 74.60 71.26 76.45 79.83 80.13 79.73
VCD 77.17 72.18 79.47 77.20 74.29 78.49 81.33 80.60 81.55
M3ID 78.23 73.51 80.22 77.47 73.68 79.14 82.03 81.47 82.19
RITUAL 78.80 74.43 80.54 78.73 74.57 80.39 82.80 83.15 82.71
Ours 81.63 80.59 81.94 80.30 80.90 80.11 83.47 84.49 82.98

A
-O

K
V

Q
A

Random

Regular 81.90 76.63 83.53 80.63 76.82 81.92 86.27 90.66 85.48
VCD 83.83 78.05 85.34 84.20 80.90 85.00 87.87 90.06 87.53
M3ID 84.67 79.25 85.97 85.43 81.77 86.23 88.13 92.06 87.55
RITUAL 85.17 79.79 86.40 87.13 83.92 87.71 87.73 92.49 87.01
Ours 86.93 84.28 87.42 87.40 87.67 87.26 87.90 89.16 87.58

Popular

Regular 75.07 68.58 78.77 75.17 70.15 77.91 84.60 87.99 83.88
VCD 76.63 69.59 80.19 78.63 73.53 80.72 86.23 87.30 86.03
M3ID 77.80 70.9 80.91 78.80 73.38 81.00 86.50 89.59 85.95
RITUAL 78.83 71.99 81.68 78.73 72.83 81.17 86.36 88.73 86.20
Ours 80.90 75.68 82.66 81.47 78.61 82.35 86.43 90.74 86.52

Adversarial

Regular 67.23 61.56 73.70 69.87 64.54 74.54 76.90 75.59 77.48
VCD 67.40 61.39 74.21 71.00 65.41 75.45 79.13 76.04 80.30
M3ID 68.60 62.22 75.11 70.10 64.28 75.16 79.50 77.54 80.21
RITUAL 68.57 62.26 74.99 70.27 64.15 75.55 80.20 79.08 80.58
Ours 72.70 66.70 76.86 73.93 69.36 76.67 80.75 80.37 80.46

G
Q

A

Random

Regular 82.23 76.32 84.03 79.67 76.05 80.99 84.90 89.51 83.96
VCD 83.23 76.73 85.05 82.83 80.16 83.56 85.21 92.05 84.21
M3ID 84.20 78.00 85.77 83.07 80.06 83.87 85.69 93.11 84.67
RITUAL 86.10 80.30 87.31 84.87 82.52 85.39 86.13 93.78 84.81
Ours 87.40 83.51 88.09 85.40 85.64 85.12 85.95 94.22 85.08

Popular

Regular 73.47 66.83 77.84 73.33 68.72 76.26 81.33 83.38 80.74
VCD 72.37 65.27 77.58 76.13 71.10 78.68 81.97 82.82 81.73
M3ID 73.87 66.70 78.49 75.17 69.94 78.04 82.13 84.58 81.48
RITUAL 74.80 67.50 79.15 74.50 69.17 77.61 81.13 85.48 81.03
Ours 78.10 71.56 80.98 76.90 73.89 78.27 82.10 86.39 81.85

Adversarial

Regular 68.60 62.43 74.84 68.60 63.94 73.10 79.03 80.43 78.54
VCD 68.83 62.26 75.43 71.00 65.75 75.14 80.87 81.07 80.80
M3ID 68.67 62.16 75.28 71.17 65.79 75.36 81.03 82.93 80.94
RITUAL 68.23 61.75 75.10 70.17 64.76 74.78 81.07 83.29 80.41
Ours 74.07 67.42 78.22 73.63 70.08 75.11 81.13 84.18 80.57

4.2 RESULTS AND DISCUSSIONS

Results on POPE. In Table 1, we compare the performance of our method against other baselines on
the POPE benchmark under three different negative sampling settings, across three datasets. As shown
in the table, our method consistently outperforms other decoding methods on both LVLMs, achieving
state-of-the-art accuracies across all 18 settings, with improvements of up to 5.24% in accuracy, 6.33%
in precision, and 2.79% in F1 score compared to the second-best approach. This suggests that incorpo-
rating a generative reference enables the LVLMs to perceive more fine-grained visual details, thereby
effectively addressing object hallucinations. Moreover, while most decoding methods tend to be
overconfident in their responses, the self-correcting decoding mechanism in our method makes it more
conservative in responding Yes, as evidenced by significantly higher precision across all settings. This
highlights its enhanced performance in filtering out false positives and suppressing misinformation.
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Table 2: Results on CHAIR (Rohrbach et al., 2018) benchmark. We limit the maximum number
of new tokens to 64. Lower (↓) CHAIRS , CHAIRI and higher (↑) recall and length indicate better
performance. The best results in each setting are bolded, and the second-best are underlined.

Method
LLaVA-1.5 InstructBLIP

CHAIRS ↓ CHAIRI ↓ Recall ↑ Length ↑ CHAIRS ↓ CHAIRI ↓ Recall ↑ Length ↑
Regular 26.2 9.4 58.5 53.4 31.2 11.1 59.0 53.6
VCD 24.4 7.9 63.3 54.2 30.0 10.1 61.8 54.2
M3ID 21.4 6.3 64.4 53.5 30.8 10.4 62.6 53.4
RITUAL 22.4 6.9 63.0 54.9 26.6 8.9 63.4 55.3
Woodpecker 24.9 7.5 60.8 49.7 31.2 10.8 62.3 51.3
HALC 21.7 7.1 63.4 53.4 24.5 8.0 63.8 55.1
Ours 18.4 6.1 62.7 54.1 24.0 7.7 67.2 55.5

Table 3: Results on MME-Hallucination (Fu et al., 2023) and MMBench (Liu et al., 2025)
benchmark. We report the average MME scores along with the standard deviation across three
random seeds for each subset. We also report the overall accuracy achieved by the different methods
on the MMBench benchmark in the final column. Higher scores (↑) indicate better performance.
The best results are bolded, and the second-best are underlined.

Method
Object-level Attribute-level

MME Score ↑ MMBench ↑
Existence ↑ Count ↑ Position ↑ Color ↑

Regular 173.75 (±4.79) 121.67 (±12.47) 117.92 (±3.69) 149.17 (±7.51) 562.50 (±3.96) 64.1
DoLa 176.67 (±2.89) 113.33 (±10.41) 90.55 (±8.22) 141.67 (±7.64) 522.22 (±16.78) 63.8
OPERA 183.33 (±6.45) 137.22 (±6.31) 122.78 (±2.55) 155.00 (±5.00) 598.33 (±10.41) 64.4
VCD 186.67 (±5.77) 125.56 (±3.47) 128.89 (±6.73) 139.45 (±12.51) 580.56 (±15.13) 64.6
M3ID 186.67 (±5.77) 128.33 (±10.41) 131.67 (±5.00) 151.67 (±20.88) 598.11 (±20.35) 64.4
RITUAL 187.50 (±2.89) 139.58 (±7.64) 125.00 (±10.27) 164.17 (±6.87) 616.25 (±20.38) 63.8
Ours 188.33 (±2.89) 150.00 (±7.64) 133.89 (±3.85) 172.22 (±3.47) 644.44 (±9.18) 65.5

Another notable finding is that our method shows significantly improved performance in the popular
and adversarial settings, which are more challenging than the random setting. In the popular
and adversarial settings, non-existent negative objects frequently appear and co-occur with other
objects (Li et al., 2023d), making them more susceptible to hallucination by LVLMs, as evidenced by
the varying degrees of performance degradation across all baselines. However, our method exhibits a
lower performance drop compared to other baselines, demonstrating its effectiveness in addressing
hallucinations arising from object co-occurrence.

Results on CHAIR. We also compare the performance of our methods and other state-of-the-art
methods in the open-ended captioning task and report the CHAIR scores, recall, and the average
length of responses in Table 2 and Table C1. The results, evaluated across two different LVLMs,
consistently demonstrate performance improvements achieved by our method over the compared
approaches. Specifically, our method outperforms the second-best approach by 3.0% and 2.6% on
the CHAIRS metric, while also enhancing the detailedness of generated responses compared to
regular decoding, as indicated by the higher recall and increased response length. These results
demonstrate that by incorporating generative feedback into the decoding process of LVLMs, our
method effectively mitigates object hallucinations in open-ended captioning tasks.

Results on MME-Hallucination and MMBench. Beyond object hallucinations, we further com-
pare the performance of our method with other approaches using the more comprehensive MME-
Hallucination benchmark, which includes both object-level and attribute-level hallucinations. The
results in Table 3 and Table C2 demonstrate that our method significantly outperforms the compared
methods, with substantial margins in the total score metric (e.g., +18.19 on LLaVA-1.5 and +21.11 on
InstructBLIP) and consistently superior performance across various evaluation settings, achieving the
best results in 6 out of 8 settings. Moreover, our method shows notable improvements on the attribute-
level color subset, which is particularly challenging as it requires models to accurately capture subtle
attribute information. This further illustrates the effectiveness of our approach in addressing a wide
range of hallucinations, both at the object existence level and in finer-grained attribute recognition.
Additionally, our proposed DeGF enhances the general multi-modal understanding capabilities of
LVLMs, as evidenced by its superior performance on the MMBench benchmark.
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Figure 4: Results on MMVP (Tong et al., 2024).
We apply our approach to LLaVA-1.5 (Liu et al.,
2024c) and compare its performance against
other hallucination mitigation methods.

Method
LLaVA-1.5 InstructBLIP

Acc. ↑ Det. ↑ Acc. ↑ Det. ↑

Regular 2.88 3.29 3.42 3.96
Ours 4.29 4.54 4.38 4.79

VCD 3.62 3.83 3.71 4.21
Ours 4.04 4.38 4.17 4.58

M3ID 3.88 4.08 4.00 4.33
Ours 4.04 4.29 4.08 4.50

Table 4: GPT-4V-aided evaluation on LLaVA-
Bench. Higher accuracy and detailedness (↑) in-
dicate better performance. The evaluation is per-
formed on LLaVA-1.5 (Liu et al., 2024c).

Figure 5: Case study on the LLaVA-Bench benchmark. We compare the responses generated
by regular decoding and our method using LLaVA-1.5. GPT-4V-aided evaluation results are also
provided alongside the responses. Hallucinated and accurate content is highlighted in red and green.

Results on MMVP. We conduct experiments on the MMVP benchmark to assess the fine-grained
visual recognition capabilities of LVLMs. As shown in Figure 4, applying our self-correcting
decoding approach to LLaVA-1.5 significantly improves performance from 22.67% to 27.33%. Our
approach also demonstrates notable advantages over other hallucination mitigation baselines, further
showcasing its superiority in handling nuanced visual recognition tasks. These results suggest that our
approach significantly enhances the model’s capacity to discern and correctly interpret fine-grained
distinctions between images with similar appearances but different contents. By integrating generative
feedback, our approach effectively reduces misinterpretations and improves the precision of visual
recognition tasks, contributing to more reliable and accurate performance in complex scenarios.

Results on LLaVA-Bench. In Figure 5, we present a case study on LLaVA-Bench comparing our
method’s response with the response generated by regular decoding using the LLaVA-1.5 model.
Specifically, regular decoding often leads to hallucinated or inaccurate content, such as describ-
ing “the island below the mountain”. Besides, the response generated by regular decoding
tends to focus on elements like the “cloudy sky” and “cohesive and captivating island
landscape” without providing specific information about the central features of the image. In con-
trast, our response is more detailed, mentioning the volcano, the road, the surrounding greenery, and
the inhabited areas, which gives a clearer understanding of the image’s content. The GPT-4V-aided
evaluation shown in Table 4 further confirms that our method enhances both the accuracy and detailed-
ness of the generated response, outperforming other hallucination mitigation approaches such as VCD
and M3ID. Due to the page limit, please refer to Section D of the Appendix for more case studies.

4.3 ABLATION STUDIES

Analysis of Distance Threshold γ. In Section 3.3, we introduce a distance threshold γ to determine
the appropriate decoding algorithm for each generated token. Table 5 presents an analysis of our
method’s performance with various values of γ across three benchmarks. For simplicity, we report

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Sensitivity analysis of distance thresh-
old γ. We present the performance of our ap-
proach, based on the LLaVA-1.5 backbone, across
three benchmarks for varying values of γ.

Values of γ POPE Acc. CHAIRS CHAIRI MME Score

γ = 0 87.93 21.0 7.2 622.50
γ = 0.01 88.07 21.0 6.8 632.22
γ = 0.05 88.67 19.4 6.3 637.50
γ = 0.1 89.03 18.4 6.1 644.44
γ = 0.5 88.73 19.8 6.4 646.67
γ = 1 88.43 21.6 6.6 638.33

Table 6: Effects of different generative models.
We report the performance of different variants
of our method, utilizing various stable diffusion
models, on the LLaVA-1.5 backbone.

Models POPE Acc. CHAIRS CHAIRI MME Score

Regular 83.13 26.2 9.4 562.50
SD-v1.1 88.37 19.3 6.5 638.33
SD-v1.5 89.03 18.4 6.1 644.44
SD-v2.1 88.70 18.8 6.7 632.22
SD-XL-v0.9 88.87 18.6 6.1 642.50
SD-XL-v1.0 88.60 17.9 5.8 648.33

the performance on the MS-COCO dataset with random setting for all POPE results in the ablation
studies. Notably, when γ is set to either 0 or 1—corresponding to the exclusive use of contrastive or
complementary decoding for all tokens—the performance exhibits a significant decline, by 0.6% and
1.1% in POPE accuracy, respectively. Moreover, our default setting of γ = 0.1 achieves the optimal
performance in 3 out of 4 evaluated metrics. Additional sensitivity analyses for other hyperparameters
are provided in Section C of the Appendix.

Effects of Different Generative Models. Table 6 presents the performance of various variants of
our method that incorporate different generative models (i.e., different versions of Stable Diffusion)
while using the same LLaVA-1.5 backbone. The results indicate that the effectiveness of our DeGF is
robust to the choice of generative models, as performance remains largely unaffected by the specific
model used, and all variants demonstrate consistent improvements over the original regular decoding
approach. Although utilizing SD-XL-v1.0 (Podell et al., 2024) yields slightly better performance, we
opt for SD-v1.5 as the default due to its faster image generation speed (3.8 s/image vs. 11.3 s/image).

4.4 EFFICIENCY COMPARISON

Table 7: Efficiency comparison. For each method,
we present the average inference latency per in-
stance and peak GPU memory. Experiments are
conducted on a single RTX A6000 Ada GPU.

Method Avg. Latency ↓ GPU Memory ↓ CHAIRS ↓
Regular 3.44 s (×1.00) 15778 MB (×1.00) 55.0
VCD 6.91 s (×2.01) 16634 MB (×1.05) 54.4
OPERA 24.70 s (×7.18) 22706 MB (×1.44) 52.6
Woodpecker 10.68 s (×3.10) 22199 MB (×1.41) 57.6
HALC 22.61 s (×6.51) 23084 MB (×1.46) 51.0
Ours 13.89 s (×4.04) 19119 MB (×1.21) 48.8

In Table 7, we compare the efficiency of our
approach with other methods on the CHAIR
benchmark using the LLaVA-1.5 model, with
the maximum token length set to 128. Our ap-
proach involves two queries and incorporates
a text-to-image generation model to mitigate
hallucinations, resulting in a 4.04× increase in
latency and a 1.21× increase in GPU memory
usage. Specifically, our method consists of three
stages: initial response generation, image gener-
ation, and response self-correction, which take
an average of 3.4 seconds, 3.8 seconds, and 6.6 seconds per instance, respectively. Compared to
other approaches, while our method is slower than regular decoding and contrastive decoding-based
methods, it demonstrates efficiency advantages over OPERA and HALC. Note that our approach also
achieves the lowest hallucination rates among all compared methods. In Appendix C.8, we discuss
several strategies to accelerate our approach, such as limiting the length of the initial response and
reducing the number of inference steps in the diffusion process.

5 CONCLUSION

In this work, we present self-correcting Decoding with Generative Feedback (DeGF), a novel training-
free approach that leverages feedback from text-to-image generative models to recursively improve
the accuracy of generated responses. Specifically, we generate a new image based on the initial
response given by LVLMs, which serves as a visual reference and provides token-level feedback for
mitigating hallucinations. Building on this, we propose a corresponding self-correcting decoding
algorithm that measures the discrepancy between next-token predictions conditioned on the original
and generated images, selecting either contrastive or complementary decoding to reduce the likelihood
of hallucinatory responses. Extensive experimental results across six benchmarks demonstrate that
our DeGF consistently outperforms state-of-the-art methods in mitigating hallucinations in LVLMs.
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ETHICS STATEMENT

Our work focuses on developing methods to mitigate hallucinations in large vision-language models,
aiming to enhance the reliability of AI-generated content. Our research does not involve human
subjects, sensitive data, or any practices that pose privacy or security concerns. Additionally, we
discuss the broader ethical and societal implications of this work in Section A of the Appendix.

REPRODUCIBILITY STATEMENT

The large vision-language models utilized in our experiments, such as LLaVA and InstructBLIP,
are open-source and publicly available. We have detailed our experimental setup, including hyper-
parameter configurations, prompts, and other key design choices, in Section 4 of the main paper
and Section B of the Appendix to ensure reproducibility. Please also be assured that the code
implementation of this work will be made publicly accessible upon the acceptance of this paper.
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SELF-CORRECTING DECODING WITH GENERATIVE
FEEDBACK FOR MITIGATING HALLUCINATIONS IN
LARGE VISION-LANGUAGE MODELS

APPENDIX

In this supplementary document, we provide additional details and experimental results to enhance
understanding and insights into our method. This supplementary document is organized as follows:

• The limitations and broader impacts of this work are discussed in Section A.
• Additional experimental details, including further implementation details, descriptions of other

implemented baselines, and license information for the utilized code and datasets, are provided in
Section B.

• Additional experimental results are presented in Section C.
• More case studies and GPT-4V-aided evaluations are provided in Section D.
• Potential directions for future work are discussed in Section E.

A LIMITATIONS AND BROADER IMPACTS

Limitations. Although our method effectively mitigates hallucinations in LVLMs, it relies on pre-
trained text-to-image generative models, which introduces additional computational complexity. The
process of generating images also adds time, potentially slowing down LVLM response generation
and making it less suitable for real-time applications. However, our method is training-free, reducing
the overhead typically associated with fine-tuning large models, and offering broader applicability
across various tasks. Moreover, the use of generative feedback improves the model’s ability to verify
and correct responses, particularly in complex scenarios. Thus, while the computational trade-offs
may limit real-time performance, our method excels in settings where accuracy and reliability are
prioritized over speed. We also hope that advances in efficient diffusion-based models will improve
the feasibility of our approach in real-world applications in the future.

Broader Impacts. In this work, our goal is to develop more reliable large vision-language models
(LVLMs) by incorporating feedback from generative models. By using this feedback mechanism, we
aim to address a critical issue faced by current multi-modal models: hallucinations, where models
produce responses that are inconsistent with the visual input. Hallucinations not only degrade model
performance but also pose risks in real-world applications by generating inaccurate or misleading
information. Our approach leverages the strengths of generative models to detect and mitigate these
hallucinations, improving the overall accuracy and reliability of LVLMs. In doing so, we contribute
to enhancing trustworthiness and reducing the spread of misinformation in systems that rely on
multi-modal AI, making them safer and more effective for a wide range of applications.

B MORE EXPERIMENTAL DETAILS

B.1 BENCHMARKS AND METRICS

We conduct extensive experiments on the following benchmarks:

• POPE (Li et al., 2023d) is a widely used benchmark for assessing object hallucinations in LVLMs.
It tests the models with yes-or-no questions regarding the presence of specific objects, such as, “Is
there a {object} in the image?” The benchmark draws data from three existing datasets:
MSCOCO (Lin et al., 2014), A-OKVQA (Schwenk et al., 2022), and GQA (Hudson & Manning,
2019), and comprises three distinct subsets—random, popular, and adversarial—based on how
the negative samples are generated. For each dataset setting, the benchmark provides 6 questions
per image, resulting in 3,000 test instances. We evaluate the performance of different methods
using four metrics: accuracy, precision, recall, and F1 score.
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• CHAIR (Rohrbach et al., 2018) evaluates object hallucinations in open-ended captioning tasks.
It prompts the LVLMs to describe specific images selected from a random sample of 500 images
from the MSCOCO validation set and assesses performance based on two metrics:

CHAIRI =
# hallucinated objects

# all objects mentioned
, CHAIRS =

# sentences with hallucinated object
# all sentences

. (6)

Additionally, we assess the recall and the average length of the generated responses.
• MME-Hallucination (Fu et al., 2023) is a comprehensive benchmark for LVLMs consisting

of four subsets: existence and count for object-level hallucinations, and position and color for
attribute-level hallucinations. Each subset includes 30 images and 60 questions, with two questions
per image. Similar to POPE (Li et al., 2023d), these questions are structured as yes-or-no queries,
and performance is assessed based on binary accuracy. Following the official implementation, the
reported score is calculated by combining accuracy and accuracy+, where accuracy is based on
individual questions, and accuracy+ is based on images where both questions are answered correctly.

• MMBench (Liu et al., 2025) is a comprehensive evaluation benchmark designed to assess
the multimodal understanding and reasoning capabilities of AI models. It focuses on tasks
requiring the integration of visual and textual information, testing a model’s ability to handle
diverse, real-world scenarios. In particular, MMBench employs a hierarchical ability taxonomy,
designating Perception and Reasoning as Level-1 (L-1) abilities. It further refines the taxonomy
by incorporating more detailed ability dimensions, organizing them into six Level-2 (L-2) and
twenty Level-3 (L-3) dimensions.

• MMVP (Tong et al., 2024) collects CLIP-blind pairs and evaluates the fine-grained visual
recognition capabilities of LVLMs. It consists of 150 image pairs, each accompanied by a
binary-option question. Each image is queried independently, and for a given pair, the LVLM’s
response is considered correct only if both associated questions are answered accurately.

• LLaVA-Bench3 provides 24 images featuring complex scenes, memes, paintings, and sketches,
along with 60 challenging questions. We select examples from this dataset to provide qualitative
comparisons between the responses generated by different decoding methods. We also follow Yin
et al. (2023) to evaluate the accuracy and detailedness of generated responses of different methods
using the advanced LVLM, GPT-4V4.

B.2 MORE IMPLEMENTATION DETAILS

In our experiments, we adhere to the default query format for the input data used in both LLaVA-
1.5 (Liu et al., 2023) and InstructBLIP (Dai et al., 2023). Additionally, we set α1 = 3, α2 = 1,
and γ = 0.1 by default in our decoding process. We follow VCD (Leng et al., 2024) to implement
adaptive plausibility constraints (Li et al., 2023c):

pθ(yt) = 0, if yt /∈ V(y<t)

where V(y<t) = {yt ∈ V : pθ(yt|v,x,y<t) ≥ βmax
w

pθ(w|v,x,y<t)} (7)

Here, V is the whole vocabulary of LVLM, and hyperparameter β ∈ [0, 1] controls the truncation
of the next token distribution. A larger β indicates more aggressive truncation, keeping only the
high-probability tokens. In our implementation, we set the logits for yt /∈ V(y<t) to −∞. By default,
we set β = 0.1 in the open-ended CHAIR benchmark and β = 0.25 for other tasks. All experiments
are conducted on a single 48GB NVIDIA RTX 6000 Ada GPU.

Recall that in our method, we use a text-to-image generative model to reverse the image-to-text
response generation process by producing a new image from the initial response. To ensure the new
image is both high-quality and relevant, we aim to generate specific descriptions for the given visual
content. Thus, we slightly modify the initial query prompt for each evaluated benchmark:

• POPE (Li et al., 2023d), MME-Hallucination (Fu et al., 2023), and MMVP (Tong et al., 2024).
In POPE, MME-Hallucination, and MMVP benchmarks, models are tested with yes-or-no/binary
selection questions, such as, “Is there a {object} in the image?” To obtain more detailed
explanations and descriptions of the original image, we modify the prompt by adding, “Briefly

3https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild.
4https://openai.com/index/gpt-4v-system-card.
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describe relevant details.” This encourages the model to provide not only a yes-or-no
answer but also additional visual information.

• CHAIR (Rohrbach et al., 2018). For the CHAIR benchmark, we retain the original prompt,
“Please describe this image in detail.” as it effectively prompts the model to provide
comprehensive visual details from the original image.

Note that for the second query, where both the original and generated images are used as input, we
apply the original prompt to ensure a fair comparison.

B.3 DETAILS OF OTHER BASELINES

In this work, we mainly compare the performance of our DeGF with three state-of-the-art approaches:
VCD (Leng et al., 2024), M3ID (Favero et al., 2024), and RITUAL (Woo et al., 2024). The method
and implementation details for these approaches are provided below:

• VCD (Leng et al., 2024) contrasts output distributions derived from original and distorted visual
inputs. Specifically, given a textual query x and a visual input v, the model generates two distinct
output distributions: one conditioned on the original v and the other on the distorted visual input v′,
which is derived by applying pre-defined distortions (i.e., Gaussian noise mask) to v. Then, a new
contrastive probability distribution is computed by:

pvcd (yt) = Softmax [(1 + α)fθ (y|v,x,y<t)− αfθ (y|v′,x,y<t)] . (8)

In our implementation, we follow the default setting in VCD (Leng et al., 2024) and set α = 1 for
reproduction. To generate v′, we use a total of 500 noise steps.

• M3ID (Favero et al., 2024) contrasts output distributions derived from original visual inputs and
pure text inputs without visual information. The final probability distribution is

pm3id (yt) = Softmax

[
fθ (y|v,x,y<t) +

1− e−λt

e−λt
(fθ (y|v,x,y<t)− fθ (y|x,y<t))

]
. (9)

Similarly, we follow their recommended best practice and set the hyperparameter λ, which balances
the conditioned model and unconditioned model, to 0.02.

• RITUAL (Woo et al., 2024) applies common image transformations (e.g., crop, flip, color jitter,
etc.) to the original visual input v, This results in a transformed version of the visual input, v(T ).
Then, RITUAL utilizes both the original and transformed images to generate the response and this
dual-input approach significantly reduces the likelihood of hallucinatory outputs. The probability
distribution is calculated as follows:

pritual (yt) = Softmax
[
fθ (y|v,x,y<t) + κfθ

(
y|v(T ),x,y<t

)]
. (10)

Here, κ is a balancing hyperparameter, adjusting the contribution of the transformed input relative
to the original. We follow their official implementation to set κ = 3 in default.

B.4 DATASET AND CODE LICENSING

Datasets. We list the known license information for the datasets below: POPE (Li et al., 2023d)
and MMVP (Tong et al., 2024) benchmarks are licensed under MIT License. CHAIR (Rohrbach
et al., 2018) is made available under the BSD 2-Clause License. LLaVA-Bench is available under
Apache-2.0 License. MME-Hallucination (Fu et al., 2023) benchmark dataset is collected by Xiamen
University for academic research only.

Code. In this work, we also use some code implementations from the existing codebase: LLaVA (Liu
et al., 2023) and VCD (Leng et al., 2024) are licensed under the Apache-2.0 License. Instruct-
BLIP (Dai et al., 2023) is under BSD-3-Clause License. RITUAL (Woo et al., 2024) is licensed under
MIT License.

C MORE EXPERIMENTAL RESULTS AND ANALYSIS
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Table C1: Results on CHAIR (Rohrbach et al., 2018) benchmark. We limit the maximum number
of new tokens to 128. Lower (↓) CHAIRS , CHAIRI and higher (↑) recall and length indicate better
performance. The best results in each setting are bolded, and the second-best are underlined.

Method
LLaVA-1.5 InstructBLIP

CHAIRS ↓ CHAIRI ↓ Recall ↑ Length ↑ CHAIRS ↓ CHAIRI ↓ Recall ↑ Length ↑
Regular 55.0 16.3 71.9 97.3 57.0 17.6 68.3 100.4
VCD 54.4 16.6 75.1 97.0 60.4 17.8 72.5 99.9
M3ID 56.6 15.7 76.8 94.5 62.2 18.1 71.9 99.8
RITUAL 49.6 14.8 74.7 96.2 48.4 14.5 72.2 100.0
Woodpecker 57.6 16.7 70.3 93.2 60.8 17.6 69.7 97.6
HALC 51.0 14.8 75.3 95.8 53.8 15.7 71.9 99.1
Ours 48.8 14.6 76.0 96.4 49.2 14.4 72.2 98.9

Table C2: Results on MME-Hallucination (Fu et al., 2023) benchmark. We report the average
MME scores along with the standard deviation across three random seeds for each subset. We also
report the total scores achieved by the different methods across all four subsets in the final column.
Higher scores (↑) indicate better performance. The best results are bolded, and the second-best are
underlined.

Model Method
Object-level Attribute-level

Total Score ↑
Existence ↑ Count ↑ Position ↑ Color ↑

LLaVA-1.5

Regular 173.75 (±4.79) 121.67 (±12.47) 117.92 (±3.69) 149.17 (±7.51) 562.50 (±3.96)

DoLa 176.67 (±2.89) 113.33 (±10.41) 90.55 (±8.22) 141.67 (±7.64) 522.22 (±16.78)

OPERA 183.33 (±6.45) 137.22 (±6.31) 122.78 (±2.55) 155.00 (±5.00) 598.33 (±10.41)

VCD 186.67 (±5.77) 125.56 (±3.47) 128.89 (±6.73) 139.45 (±12.51) 580.56 (±15.13)

M3ID 186.67 (±5.77) 128.33 (±10.41) 131.67 (±5.00) 151.67 (±20.88) 598.11 (±20.35)

RITUAL 187.50 (±2.89) 139.58 (±7.64) 125.00 (±10.27) 164.17 (±6.87) 616.25 (±20.38)

Ours 188.33 (±2.89) 150.00 (±7.64) 133.89 (±3.85) 172.22 (±3.47) 644.44 (±9.18)

InstructBLIP

Regular 160.42 (±5.16) 79.17 (±8.22) 79.58 (±8.54) 130.42 (±17.34) 449.58 (±24.09)

DoLa 175.00 (±5.00) 55.00 (±5.00) 48.89 (±3.47) 113.33 (±6.67) 392.22 (±7.88)

OPERA 175.00 (±3.33) 61.11 (±3.47) 53.89 (±1.92) 120.55 (±2.55) 410.56 (±9.07)

VCD 158.89 (±5.85) 91.67 (±18.34) 66.11 (±9.76) 121.67 (±12.58) 438.33 (±16.07)

M3ID 160.00 (±5.00) 87.22 (±22.63) 69.44 (±9.18) 125.00 (±7.64) 441.67 (±17.32)

RITUAL 182.50 (±6.45) 74.58 (±5.99) 67.08 (±10.31) 139.17 (±0.96) 463.33 (±12.40)

Ours 186.67 (±2.89) 89.44 (±8.22) 58.33 (±4.41) 150.00 (±1.89) 484.44 (±11.34)

Qwen-VL

Regular 155.00 (±3.54) 127.67 (±13.36) 131.67 (±7.73) 173.00 (±9.75) 587.33 (±31.06)

VCD 156.00 (±6.52) 131.00 (±6.19) 128.00 (±3.61) 181.67 (±5.14) 596.67 (±11.61)

M3ID 178.33 (±2.89) 143.33 (±2.89) 150.00 (±2.89) 175.00 (±5.00) 646.66 (±8.50)

RITUAL 178.33 (±2.89) 142.22 (±16.19) 156.66 (±2.89) 178.33 (±2.89) 655.55 (±14.99)

Ours 180.00 (±0.00) 148.89 (±6.74) 155.00 (±7.64) 178.33 (±2.89) 662.22 (±4.37)

C.1 ADDITIONAL RESULTS ON CHAIR

In Table C1, we present performance comparisons on the CHAIR benchmark with maximum number
of tokens set to 128. The results indicate that our approach also achieves competitive performance
across two LVLMs in mitigating hallucinations during long-sequence generation scenarios.

C.2 FULL RESULTS ON MME-HALLUCINATION

In Table C2, we present the full results on the MME-Hallucination benchmark across three LVLMs.

C.3 FULL RESULTS ON MMBENCH

In Table C3, we present the overall performance on the MMBench benchmark, as well as the
detailed performance across six Level-2 abilities: Logical Reasoning (LR), Attribute Reasoning (AR),
Relation Reasoning (RR), Fine-grained Perception - Single Instance (FP-S), Fine-grained Perception
- Cross Instance (FP-C), and Coarse Perception (CP). We follow VCD (Leng et al., 2024) to conduct
experiments on the MMBench-dev set.
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Table C3: Detailed results on MMBench benchmark. Abbreviations adopted: LR for Logical
Reasoning; AR for Attribute Reasoning; RR for Relation Reasoning; FP-S for Fine-grained Perception
(Single Instance); FP-C for Fine-grained Perception (Cross Instance); CP for Coarse Perception. The
best results are bolded.

Method LR AR RR FP-S FP-C CP Overall

Regular 30.51 71.36 52.17 67.58 58.74 76.35 64.09
VCD 30.51 73.37 53.04 67.92 57.34 77.03 64.60
M3ID 30.51 72.36 53.04 67.58 57.34 77.36 64.43
RITUAL 28.81 72.86 54.78 65.87 58.04 76.01 63.83
Ours 31.36 70.85 60.87 68.60 58.74 77.36 65.46

Table C4: Results on POPE using greedy decoding.

Values
POPE

Acc. Prec. Rec. F1

Greedy 87.73 88.19 87.13 87.66
VCD 87.47 86.64 88.60 87.61
M3ID 89.07 89.54 88.47 89.00
RITUAL 89.23 90.17 88.07 89.11
Ours 89.40 94.44 83.73 88.76

C.4 RESULTS ON POPE USING GREEDY DECODING

In Table C4, we present performance comparisons on the POPE benchmark with random sampling
from the MS-COCO dataset. The experiment is conducted using the LLaVA-1.5 backbone.

C.5 EFFECTS OF α1 AND α2 IN SELF-CORRECTING DECODING

In Section 3, we present two decoding approaches: complementary decoding and contrastive decoding.
We also introduce two balancing hyperparameters, α1 and α2, which control the relative influence of
the original and generated images in next-token prediction. In Table C5 and Table C6, we analyze
the effect of varying α1 or α2 while keeping all other hyperparameters at their default settings.
The results indicate that our default choice of α1 = 3 and α2 = 1 consistently yields the best
performance across two benchmarks. Moreover, compared to setting these hyperparameters to 0,
which effectively reduces complementary/contrastive decoding to standard decoding, the performance
improvements demonstrate that our proposed decoding approaches significantly contribute to the
overall effectiveness of DeGF in mitigating hallucinations in LVLMs.

C.6 EFFECT OF β IN ADAPTIVE PLAUSIBILITY CONSTRAINT

We further conduct an ablation study on β introduced in Equation (7), where we vary β from 0 to 0.5
while keeping all other hyperparameters fixed. The results in Table C7 show that setting β = 0, which
imposes no constraint, results in suboptimal performance across both benchmarks. Additionally, in
the POPE benchmark, where LVLMs handle yes-or-no questions, a more aggressive truncation with
β = 0.25 yields the best performance. In contrast, for the open-ended CHAIR benchmark, a lower
value of β = 0.1 leads to the best results.

C.7 SCALING UP THE LVLMS

We further extend our evaluation to larger-scale 13B variants of the LLaVA-1.5 model to assess the
scalability of our approach. Table C8 compares our experimental results with other state-of-the-art
approaches across all three subsets of the POPE benchmark using the 13B-sized LLaVA-1.5 model.
We observe that scaling up the LLaVA-1.5 model does not alleviate the hallucination issues, as
evidenced by the comparable performance of both the 7B and 13B models. Using the 13B-sized
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Table C5: Sensitivity analysis of hyperparameter α1. We present the performance of our approach,
based on the LLaVA-1.5 backbone, across two benchmarks for varying values of α1. Note that we fix
α2 = 1 in this experiment.

Values
POPE CHAIR

Acc. Prec. Rec. F1 CHAIRS CHAIRI

α1 = 0 87.50 86.71 87.49 87.10 22.8 7.6
α1 = 1 87.97 87.28 87.34 87.31 20.6 6.9
α1 = 2 88.90 89.39 87.75 88.56 19.4 6.3
α1 = 3 89.03 91.20 86.40 88.74 18.4 6.1
α1 = 4 88.67 90.56 85.28 87.84 22.6 8.1

Table C6: Sensitivity analysis of hyperparameter α2. We present the performance of our approach,
based on the LLaVA-1.5 backbone, across two benchmarks for varying values of α2. Note that we fix
α1 = 3 in this experiment.

Values
POPE CHAIR

Acc. Prec. Rec. F1 CHAIRS CHAIRI

α2 = 0 86.77 85.17 86.58 85.87 23.6 8.2
α2 = 1 89.03 91.20 86.40 88.74 18.4 6.1
α2 = 2 88.73 89.86 86.66 88.23 21.8 7.5
α2 = 3 88.03 87.97 86.28 87.12 22.8 7.3
α2 = 4 87.13 86.52 86.16 86.34 23.6 7.9

model, our DeGF consistently achieves improved performance across all subsets compared to other
approaches, demonstrating its general effectiveness and scalability.

C.8 SPEEDING UP OUR APPROACH

In this section, we propose two strategies to accelerate our approach: limiting the length of the initial
response and reducing the number of inference steps in the diffusion process.

• Reducing Diffusion Inference Steps. By default, we set the number of diffusion inference steps
to 50 to ensure high-quality image generation. To improve the response generation speed, we
can reduce the number of diffusion steps. In Table C9, we report the performance on the CHAIR
benchmark after reducing the diffusion inference steps in the model. By reducing the diffusion
inference steps from 50 to 10, the average latency decreases by 2.85 seconds per instance, while
the performance on CHAIR remains robust. This demonstrates that reducing the inference steps of
the diffusion model is an effective way to speed up our approach.

• Restricting Length of Initial Response. Our method involves two queries to the LVLM for
self-correcting decoding. To enhance efficiency, we can limit the length of the initial response.
In Table C10, we present the efficiency and CHAIR performance results after decreasing the
maximum token limit for the initial response. We can see that reducing the maximum number of
tokens in the initial response from 128 to 96 decreases the latency by 0.72 seconds per instance
while maintaining competitive performance. However, further reductions result in performance
degradation, as a shorter initial response fails to adequately cover the entire scene, limiting its
ability to generate an image that effectively reflects and mitigates hallucinations.

Note that these two strategies are not conflicting; instead, they are complementary. Setting the
diffusion steps to 10 and limiting the maximum number of tokens in the initial response to 96 further
reduces the inference latency to 10.21 seconds per instance while maintaining robust performance.
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Table C7: Sensitivity analysis of hyperparameter β. We present the performance of our approach,
based on the LLaVA-1.5 backbone, across two benchmarks for varying values of β.

Values
POPE CHAIR

Acc. Prec. Rec. F1 CHAIRS CHAIRI

β = 0 87.17 87.45 85.30 86.36 21.2 7.1
β = 0.05 88.27 89.85 86.12 87.95 19.1 6.3
β = 0.1 88.33 89.04 86.04 87.52 18.4 6.1
β = 0.25 89.03 91.20 86.40 88.74 19.3 6.5
β = 0.5 87.80 88.79 85.48 87.10 20.2 6.9

Table C8: Results on POPE (Li et al., 2023d) benchmark using 13B-sized LLaVA-1.5. Higher
(↑) accuracy, precision, recall, and F1 indicate better performance.

Setup Method
LLaVA-1.5

Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑

M
S-

C
O

C
O

Random

Regular 82.53 78.57 89.47 83.67
VCD 84.80 80.67 91.53 85.76
M3ID 85.37 81.30 91.87 86.26
RITUAL 87.80 84.45 92.67 88.37
Ours 88.40 88.14 88.61 88.37

Popular

Regular 80.53 76.17 88.87 82.03
VCD 82.23 76.88 92.20 83.84
M3ID 82.60 77.91 91.00 83.95
RITUAL 84.07 79.00 92.80 85.35
Ours 85.30 84.18 86.93 85.53

Adversarial

Regular 75.80 70.41 89.00 78.62
VCD 77.33 71.44 91.07 80.07
M3ID 77.43 71.65 90.80 80.09
RITUAL 78.00 71.72 92.47 80.78
Ours 81.43 78.61 87.04 82.61

C.9 QUANTITATIVE ASSESSMENT OF GENERATED IMAGE QUALITY

Our approach incorporates a text-to-image generation model to mitigate hallucinations. We evaluate
the quality of the generated images on all 4 subsets on the MME benchmark using CLIPScore (Hessel
et al., 2021). Specifically, we utilize the CLIP backbone with ViT-B/32 backbone for our evaluation.
We list the results in Table C11. As we can see from the table, our text-to-image generative model
(specifically, SD-v1.5) achieves an average CLIPScore of over 30 across all subsets. For comparison,
the advanced DALL-E 3 model achieves a score of 32.0, while DALL-E 2 achieves 31.4.5 These
results highlight the capability of our model to generate high-quality images that closely align with
the initial response.

D MORE CASE STUDIES

D.1 DETAILS ABOUT GPT-4V-AIDED EVALUATION

Following VCD (Leng et al., 2024), we use GPT-4V to evaluate responses in open-ended generation
scenarios, scoring them based on accuracy and detailedness. Leveraging the strong human-like
capabilities of GPT-4V, it can detect incorrect colors, positions, and relationships, providing a
comprehensive evaluation of the responses. Specifically, we apply the prompt provided in Table D12
to instruct GPT-4V to rate the two responses on a scale of 1 to 10 for both accuracy and detailedness:

5These results are sourced from the technical report on DALL-E 3, available at: https://cdn.openai.
com/papers/dall-e-3.pdf.
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Table C9: Effect of reducing diffusion inference
steps.

Diff. Steps Avg. Latency ↓ CHAIRS ↓ CHAIRI ↓
50 13.89 s 48.8 14.6
30 12.56 s 48.9 14.7
20 11.87 s 49.2 14.8
10 11.04 s 48.8 14.9

Table C10: Effect of restricting the number of
tokens in the initial response.

# Tokens Avg. Latency ↓ CHAIRS ↓ CHAIRI ↓
128 13.89 s 48.8 14.6
96 13.17 s 48.8 14.9
64 12.20 s 49.5 14.8
32 11.33 s 51.2 14.9

Table C11: CLIPScore evaluation across different MME subsets.

MME Subset Existence Count Position Color
Avg. CLIPScore 31.34 30.69 30.09 31.69

• Accuracy measures the consistency between the responses/descriptions generated by the LVLMs
and the given image. A lower score is assigned if GPT-4V detects any inconsistencies in the content
of the responses.

• Detailedness evaluates the depth and specificity of the responses provided by the LVLMs. A higher
score is awarded if the response includes comprehensive descriptions, captures fine-grained details
of the image, and provides well-elaborated explanations. Conversely, a lower score is given if the
response is vague or lacks sufficient detail.

D.2 MORE QUALITATIVE RESULTS

In Figure D1 and Figure D2, we provide additional case studies on LLaVA-Bench to qualitatively
demonstrate the effectiveness of our methods in mitigating hallucinations. We also included GPT-4V
evaluations of accuracy and detailedness scores for each instance.

In Figure D3-D6, we provide qualitative evaluations of the images generated by the generative model,
including both success and failure cases, across all four subsets of the MME benchmark to better
understand the effectiveness of the generative models. Our results show that, despite occasional failure
cases, the generative model consistently produces high-quality and realistic images that accurately
visualize the initial response, providing effective self-feedback.

E FUTURE WORK

In future work, we aim to extend the evaluation of our method to a broader range of LVLMs, such as
Mini-GPT4 (Zhu et al., 2024) and mPLUG-Owl2 (Ye et al., 2024), as well as additional benchmarks,
including R-Bench (Wu et al., 2024), which focuses on relation hallucination, and ROPE (Chen et al.,
2024c), which addresses multiple-object hallucination. This expanded evaluation will allow us to
more comprehensively assess the generalizability and effectiveness of our approach across diverse
models and tasks.

Furthermore, we plan to investigate integrating generative feedback directly into the instruction
tuning phase. This integration has the potential to eliminate the computational overhead associated
with applying our method during inference, thereby significantly improving efficiency without
compromising performance. By pursuing these directions, we hope to further enhance the practical
applicability and scalability of our approach.
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Description:
AI that scores image description accuracy and detailedness.

Instructions:
You are an AI designed to evaluate and score the performance of two AI assistants in
describing a given image. Your primary focus is on the accuracy and detailedness of their
descriptions. You will assess the accuracy by checking for hallucinations - any part of the
description that is inconsistent with the image content. For detailedness, you will consider
how rich the response is in necessary details, excluding any hallucinated parts. You will
provide scores on a scale from 1 to 10 for each assistant separately, based on these criteria.
After scoring, you will offer an explanation for your evaluation, ensuring it is free from bias
and not influenced by the order of presentation of the responses.

Input format:

[Assistant 1]
{Response 1}
[End of Assistant 1]

[Assistant 2]
{Response 2}
[End of Assistant 2]

Output format:

Accuracy:
Scores of the two answers:
Reason:

Detailedness:
Scores of the two answers:
Reason:

Table D12: GPT-4V-aided evaluation setup. We present the prompt we provided to GPT-4V to
evaluate the LVLM responses based on accuracy and detailedness.
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Figure D1: Case studies on the LLaVA-Bench benchmark. We compare the responses generated
by regular decoding and our method using LLaVA-1.5. GPT-4V-aided evaluation results are also
provided alongside the responses. Hallucinated and accurate content is highlighted in red and green.
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Figure D2: Case studies on the LLaVA-Bench benchmark. We compare the responses generated
by regular decoding and our method using LLaVA-1.5. GPT-4V-aided evaluation results are also
provided alongside the responses. Hallucinated and accurate content is highlighted in red and green.
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Figure D3: Qualitative evaluation of images generated by the generative model on the existence
subset of the MME benchmark. Specifically, the left displays the original image input, the middle
presents the initial response generated by the LVLMs, and the right shows the image generated based
on this response. This figure showcases four success cases and one failure case of our Diffusion
models in generating high-quality images that align with the initial response.
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Figure D4: Qualitative evaluation of images generated by the generative model on the count
subset of the MME benchmark. Specifically, the left displays the original image input, the middle
presents the initial response generated by the LVLMs, and the right shows the image generated based
on this response. This figure showcases four success cases and one failure case of our Diffusion
models in generating high-quality images that align with the initial response.
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Figure D5: Qualitative evaluation of images generated by the generative model on the position
subset of the MME benchmark. Specifically, the left displays the original image input, the middle
presents the initial response generated by the LVLMs, and the right shows the image generated based
on this response. This figure showcases four success cases and one failure case of our Diffusion
models in generating high-quality images that align with the initial response.
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Figure D6: Qualitative evaluation of images generated by the generative model on the color
subset of the MME benchmark. Specifically, the left displays the original image input, the middle
presents the initial response generated by the LVLMs, and the right shows the image generated based
on this response. This figure showcases four success cases and one failure case of our Diffusion
models in generating high-quality images that align with the initial response.
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