
How Reliable Are Networks? A Bayesian Modeling Approach

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 Network analyses of white matter pathways linking brain regions—noninvasively
2 extracted from diffusion magnetic resonance imaging—hold great clinical application
3 promise. However, these networks display low reliability at the level of single
4 brain connections, severely limiting inference. We present a Bayesian modeling
5 framework to assess the reliability of network connections across repeated measure-
6 ments. We model connection strength as a mixture of two probabilistic components:
7 one representing the presence of a true connection, and its true absence. Using sim-
8 ultated, repeated-measures data, we estimate the posterior distribution of connection
9 strengths and quantify the reliability by examining the spread of these distributions.
10 The model was sensitive to connections with varying levels of reliability. However,
11 it underestimated the probability that a connection is absent, and failed to recover
12 the parameters after generating data with the same model.

13 1 Introduction

14 A wide range of conditions, including schizophrenia [Griffa et al., 2015] and bipolar disorder
15 [Fernandes et al., 2019], are thought to arise from altered brain connectivity. However, network
16 representations derived from diffusion MRI (dMRI) yield unreliable estimates [Maier-Hein et al.,
17 2017, Thomas et al., 2014, Nakuci et al., 2023], hindering biomarker discovery and clinical translation.
18 Post-processing methods such as streamline filtering [Smith et al., 2013] can improve robustness but
19 do not quantify residual uncertainty.

20 Bayesian approaches offer a principled way to assess edge uncertainty [Hinne et al., 2013], and have
21 been used to model disease-specific alterations [Peterson et al., 2020] and causal interactions [Dang
22 et al., 2018]. Here, we validate a Bayesian framework to (1) quantify the reliability of fiber density
23 estimates for each structural connection (SC), and (2) generate an atlas classifying connections
24 as likely present or absent. This approach produces connectivity estimates with explicit posterior
25 confidence for each edge, enabling more reliable interpretation of SC and, ultimately, improved
26 clinical applicability.

27 2 Methods

28 2.1 Model specification

29 We model white matter track density D as a mixture of two components: one for absent connections
30 ($C = 0$) and one for present connections ($C = 1$), where C is latent. Noise, motion, and processing
31 variability can yield nonzero densities even for $C = 0$; this component is modeled with a fast-decaying
32 exponential distribution. We model true connections ($C = 1$) to follow a normal distribution centered
33 on the connection strength, truncated at zero since fiber densities are nonnegative. The prevalence of
34 either component is modeled by the probability π_0 that the connection is truly absent:

$$\begin{aligned} P(D) &= P(D|C = 0)P(C = 0) + P(D|C = 1)P(C = 1) \\ P(D) &= \pi_0 \cdot \text{Exp}(\lambda) + (1 - \pi_0) \cdot \mathcal{N}^+(\mu, \sigma), \end{aligned} \tag{1}$$

35 where $\text{Exp}(\lambda)$ is a decaying exponential distribution with a rate λ , and $\mathcal{N}^+(\mu, \sigma)$ is a normal
36 distribution truncated at zero, with a mean μ and a standard deviation σ .

37 **Prior distributions.** We set $\pi_0 \sim \text{Beta}(2, 5)$ to model probabilities in [0,1], centering on
38 the 5–40The rate $\lambda \sim \text{Gamma}(1, 10)$ ensures positivity with flexible deviation, and $\sigma \sim$
39 $\text{HalfNormal}(0.6)$ reflects positive and small expected variability in fiber density. Because the real
40 dataset we will fit the model on includes only 36 repeated diffusion MRI sessions, we fixed μ to the
41 mean fiber density across repeats rather than estimating it.

42 **Model implementation.** We implement and fit the model using PyMC [Abril-Pla et al., 2023].
43 All experiments are conducted on an Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz, 36 cores,
44 62 GB of RAM, Ubuntu 20.04.6 LTS. For inference, we used the No-U-Turn Sampler (NUTS),
45 PyMC’s default Hamiltonian Monte Carlo algorithm, with 4 chains and 2000 posterior draws per
46 chain following 1000 tuning steps.

47 2.2 Validation

48 To simulate a single subject scanned 36 times (data we will leverage to quantify within-scanner edge-
49 wise reliability using the model), we repeated a reference SC matrix from the atlas Alemán-Gómez
50 et al. [2022] (CC-BY-4.0 license) with different realizations of bi-modal noise. We added Gaussian
51 noise $\mathcal{N}(0, 0.2)$ to all connections mimicking measurement noise and a stronger noise $\mathcal{N}(0, 0.5)$
52 to those below the 40th fiber-density percentile (≤ 4.76) to reflect the empirical observation that
53 weaker connections are less reliable. This simulation was used to validate our model through three
54 experiments. Parameter estimates were visualized as heatmaps, with connection groups highlighted
55 via transparency masks, and group differences tested using two-sample t-tests (ttest_ind, SciPy
56 [Virtanen et al., 2020]). The model was fit assuming independent edges, using four PyMC chains per
57 edge (cores=1) and up to 20 parallel joblib jobs (total runtime: 9 h 5 min; 107 s/edge).

58 **Experiment 1.** We evaluate whether the model could detect the varying levels of edge-wise
59 reliability we injected in the simulated SC, with reliability quantified as the standard deviation σ of
60 the normal component in the estimated posterior distribution.

61 **Experiment 2.** We assess whether the estimated π_0 correctly identified connections consistently
62 absent across all 66 subjects used to build the connectome atlas Alemán-Gómez et al. [2022] as truly
63 absent and all other connections as truly present.

64 **Experiment 3.** We systematically assess the model’s ability to recover known parameter values.
65 We generate SC matrices by fixing the true parameter values in Equation (1) and sampling from
66 the posterior distribution. For each configuration, we fit the Bayesian model to the simulated data
67 10–30 times and compute the relative root mean square error (RMSE) between the true values and the
68 posterior means. The true parameter values used are listed in Equation (2):

$$\begin{aligned} \pi_0 &= 0.1, \quad \lambda = 2.0, \quad \sigma = 0.5, \\ \mu &\in [0.1, 0.2, 0.5, 0.7, 1.0, 2.0, 3.0, 5.0, 8.0, 20.0, 30.0, 1000, 10000] \end{aligned} \quad (2)$$

69 Since fiber density best distinguishes true from false connections, we varied the mean connection
70 strength μ while keeping other parameters fixed. We set $\pi_0 = 0.1$ because the model consistently
71 estimated low π_0 across connections (Figure 2). The choices $\lambda = 2$ and $\sigma = 0.5$ match the noise
72 characteristics from the simulated SC matrices. The μ values span the observed range of average
73 streamline counts in the reference SC matrix. Each μ fit (30 repetitions) took about 7 min 40 s,
74 totaling roughly 1 h 40 min for all values.

75 3 Results and Discussion

76 **The model is sensitive to connections with varying levels of reliability.** Experiment 1 shows that
77 the estimated σ is systematically higher for connections with lower fiber density—those to which we
78 added more noise (Figure 1). The model identified the two latent C groups ($p < 0.001$).

79 **The model underestimates the probability of absence.** Figure 2 shows that, as expected, π_0 is
80 low for consistent connections (Panel B), but for truly absent ones (Panel A), it remains lower than
81 expected (max = 0.16 instead of ≈ 1).

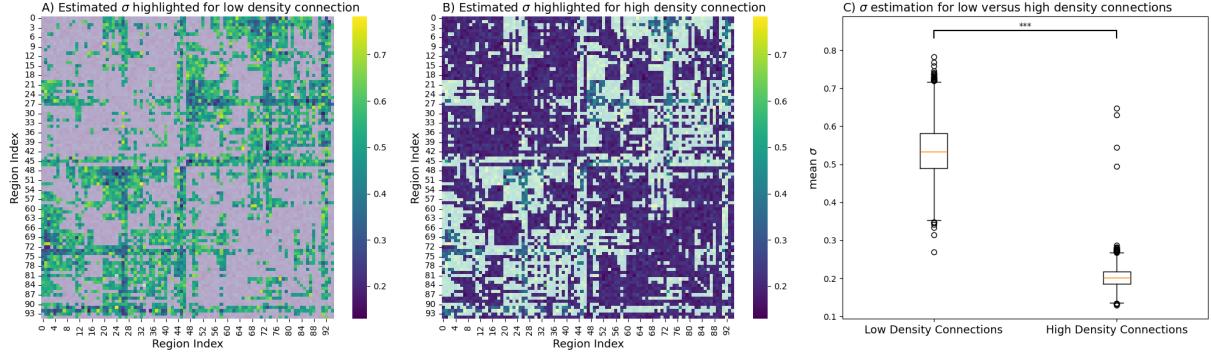


Figure 1: The model is sensitive to connections with varying levels of reliability.

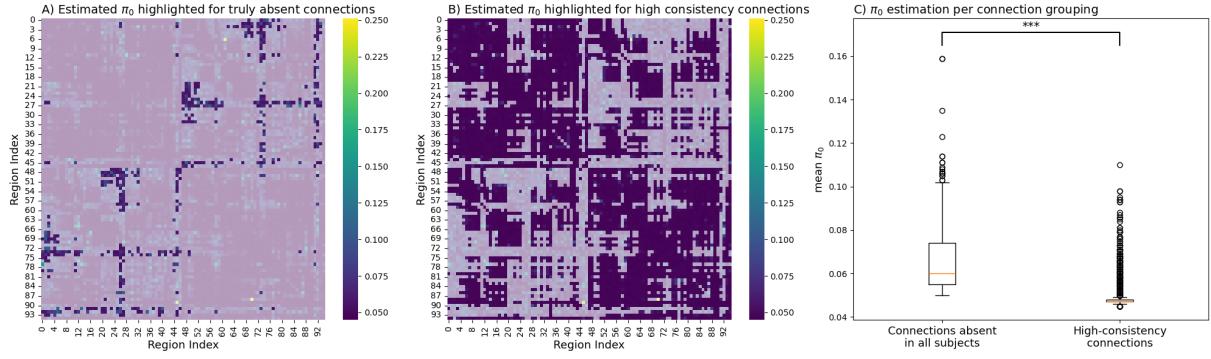


Figure 2: The model correctly predicts low π_0 for connections consistent across subjects, but underestimates π_0 when connections are truly absent.

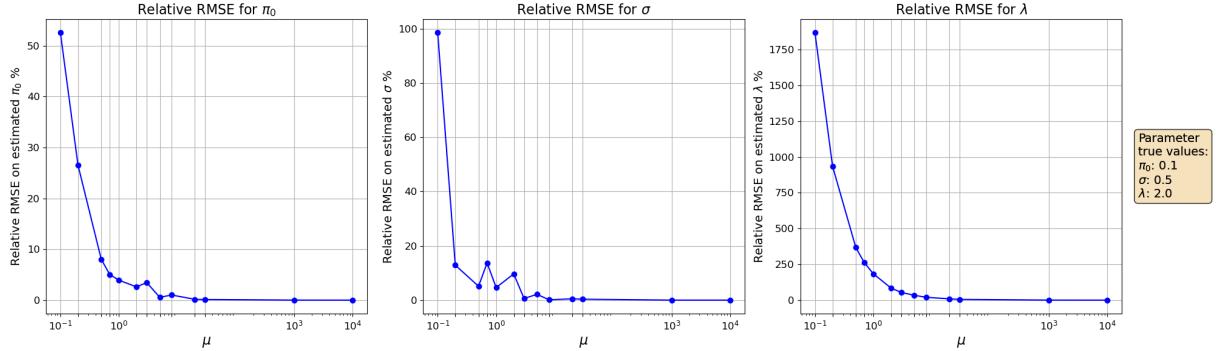


Figure 3: The model does not accurately estimate parameter values when the normal component of the posterior distribution is centered near zero.

82 **The model does not accurately estimate parameter values when the normal component of the**
 83 **posterior distribution is centered near zero.** Figure 3 shows that relative RMSE is high when μ
 84 is near zero, indicating poor parameter recovery, but estimation improves markedly as μ increases.
 85 To avoid misestimating π_0 for truly absent connections, this limitation should be addressed before
 86 applying the model to the real SC matrices.

87 4 Conclusion

88 This study establishes a foundation for embedding uncertainty into network representations, in
 89 particular, structural brain connectivity extracted with dMRI.

90 **References**

91 Oriol Abril-Pla, Virgile Andreani, Colin Carroll, Larry Dong, Christopher J. Fonnesbeck, Maxim
92 Kochurov, Ravin Kumar, Junpeng Lao, Christian C. Luhmann, Osvaldo A. Martin, Michael
93 Osthege, Ricardo Vieira, Thomas Wiecki, and Robert Zinkov. PyMC: a modern, and comprehensive
94 probabilistic programming framework in Python. *PeerJ Computer Science*, 9:e1516, September
95 2023. ISSN 2376-5992. doi: 10.7717/peerj-cs.1516. URL <https://peerj.com/articles/cs-1516>. Publisher: PeerJ Inc.

97 Yasser Alemán-Gómez, Alessandra Griffa, Jean-Christophe Houde, Elena Najdenovska, Stefano
98 Magon, Meritxell Bach Cuadra, Maxime Descoteaux, and Patric Hagmann. A multi-scale
99 probabilistic atlas of the human connectome. *Scientific Data*, 9(1):516, August 2022. ISSN
100 2052-4463. doi: 10.1038/s41597-022-01624-8. URL <https://www.nature.com/articles/s41597-022-01624-8>. Publisher: Nature Publishing Group.

102 Shilpa Dang, Santanu Chaudhury, Brejesh Lall, and Prasun K. Roy. Tractography-Based Score
103 for Learning Effective Connectivity From Multimodal Imaging Data Using Dynamic Bayesian
104 Networks. *IEEE Transactions on Biomedical Engineering*, 65(5):1057–1068, 2018. doi: 10.1109/TBME.2017.2738035.

106 Henrique M. Fernandes, Joana Cabral, Tim J. van Harteveld, Louis-David Lord, Carsten Glees-
107 borg, Arne Møller, Gustavo Deco, Peter C. Whybrow, Predrag Petrovic, Anthony C. James, and
108 Morten L. Kringelbach. Disrupted brain structural connectivity in Pediatric Bipolar Disorder with
109 psychosis. *Scientific Reports*, 9(1):13638, September 2019. ISSN 2045-2322. doi: 10.1038/s41598-019-50093-4.
110 URL <https://www.nature.com/articles/s41598-019-50093-4>.
111 Publisher: Nature Publishing Group.

112 Alessandra Griffa, Philipp Sebastian Baumann, Carina Ferrari, Kim Quang Do, Philippe Conus,
113 Jean-Philippe Thiran, and Patric Hagmann. Characterizing the connectome in schizophrenia
114 with diffusion spectrum imaging. *Human Brain Mapping*, 36(1):354–366, January 2015. ISSN
115 1097-0193. doi: 10.1002/hbm.22633.

116 Max Hinne, Tom Heskes, Christian F. Beckmann, and Marcel A. J. van Gerven. Bayesian infer-
117 ence of structural brain networks. *NeuroImage*, 66:543–552, February 2013. ISSN 1053-8119.
118 doi: 10.1016/j.neuroimage.2012.09.068. URL <https://www.sciencedirect.com/science/article/pii/S105381191200986X>.

120 Klaus H. Maier-Hein, Peter F. Neher, Jean-Christophe Houde, Marc-Alexandre Côté, Eleftherios
121 Garyfallidis, Jidan Zhong, Maxime Chamberland, and others. The challenge of mapping the
122 human connectome based on diffusion tractography. *Nature Communications*, 8:1349, 2017. doi:
123 10.1038/s41467-017-01285-x.

124 Johan Nakuci, Nick Wasylyshyn, Matthew Cieslak, James C. Elliott, Kanika Bansal, Barry Gies-
125 brecht, Scott T. Grafton, Jean M. Vettel, Javier O. Garcia, and Sarah F. Muldoon. Within-
126 subject reproducibility varies in multi-modal, longitudinal brain networks. *Scientific Reports*,
127 13(1):6699, April 2023. ISSN 2045-2322. doi: 10.1038/s41598-023-33441-3. URL <https://www.nature.com/articles/s41598-023-33441-3>. Publisher: Nature Publishing Group.

129 Christine B. Peterson, Nathan Osborne, Francesco C. Stingo, Pierrick Bourgeat, James D. Doecke,
130 and Marina Vannucci. Bayesian modeling of multiple structural connectivity networks during the
131 progression of Alzheimer’s disease. *Biometrics*, 76(4):1120–1132, 2020. doi: 10.1111/biom.13235.

132 Robert E. Smith, Jacques-Donald Tournier, Fernando Calamante, and Alan Connelly. SIFT: Spherical-
133 deconvolution informed filtering of tractograms. *NeuroImage*, 67:298–312, 2013. doi: 10.1016/j.
134 neuroimage.2012.11.049.

135 Cibu Thomas, Frank Q. Ye, M. Okan Irfanoglu, Pooja Modi, Kadharbatcha S. Saleem, David A.
136 Leopold, and Carlo Pierpaoli. Anatomical accuracy of brain connections derived from diffusion
137 MRI tractography is inherently limited. *Proceedings of the National Academy of Sciences of the
138 United States of America*, 111(46):16574–16579, November 2014. doi: 10.1073/pnas.1405672111.
139 URL www.pnas.org/cgi/doi/10.1073/pnas.1405672111. Publisher: National Academy of
140 Sciences.

141 Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
142 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
143 Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
144 Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
145 Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
146 Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
147 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nature
148 Methods*, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

149 NeurIPS Paper Checklist

150 1. Claims

151 Question: Do the main claims made in the abstract and introduction accurately reflect the
152 paper's contributions and scope?

153 Answer: **[Yes]**

154 Justification: The abstract and introduction clearly state that the paper introduces and
155 validates a Bayesian model to quantify connection reliability and infer presence/absence in
156 brain networks, which are exactly the contributions evaluated in the experiments.

157 Guidelines:

- 158 • The answer NA means that the abstract and introduction do not include the claims
159 made in the paper.
- 160 • The abstract and/or introduction should clearly state the claims made, including the
161 contributions made in the paper and important assumptions and limitations. A No or
162 NA answer to this question will not be perceived well by the reviewers.
- 163 • The claims made should match theoretical and experimental results, and reflect how
164 much the results can be expected to generalize to other settings.
- 165 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
166 are not attained by the paper.

167 2. Limitations

168 Question: Does the paper discuss the limitations of the work performed by the authors?

169 Answer: **[Yes]**

170 Justification: The limitations are discussed in the Results and Discussion section, especially
171 regarding the model's inability to clearly identify truly absent connections when μ is close
172 to zero.

173 Guidelines:

- 174 • The answer NA means that the paper has no limitation while the answer No means that
175 the paper has limitations, but those are not discussed in the paper.
- 176 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 177 • The paper should point out any strong assumptions and how robust the results are to
178 violations of these assumptions (e.g., independence assumptions, noiseless settings,
179 model well-specification, asymptotic approximations only holding locally). The authors
180 should reflect on how these assumptions might be violated in practice and what the
181 implications would be.
- 182 • The authors should reflect on the scope of the claims made, e.g., if the approach was
183 only tested on a few datasets or with a few runs. In general, empirical results often
184 depend on implicit assumptions, which should be articulated.
- 185 • The authors should reflect on the factors that influence the performance of the approach.
186 For example, a facial recognition algorithm may perform poorly when image resolution
187 is low or images are taken in low lighting. Or a speech-to-text system might not be
188 used reliably to provide closed captions for online lectures because it fails to handle
189 technical jargon.
- 190 • The authors should discuss the computational efficiency of the proposed algorithms
191 and how they scale with dataset size.

192 • If applicable, the authors should discuss possible limitations of their approach to
193 address problems of privacy and fairness.
194 • While the authors might fear that complete honesty about limitations might be used by
195 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
196 limitations that aren't acknowledged in the paper. The authors should use their best
197 judgment and recognize that individual actions in favor of transparency play an impor-
198 tant role in developing norms that preserve the integrity of the community. Reviewers
199 will be specifically instructed to not penalize honesty concerning limitations.

200 **3. Theory assumptions and proofs**

201 Question: For each theoretical result, does the paper provide the full set of assumptions and
202 a complete (and correct) proof?

203 Answer: [NA]

204 Justification: The paper does not contain formal theoretical results or proofs; it presents a
205 probabilistic model validated via simulation.

206 Guidelines:

207 • The answer NA means that the paper does not include theoretical results.
208 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
209 referenced.
210 • All assumptions should be clearly stated or referenced in the statement of any theorems.
211 • The proofs can either appear in the main paper or the supplemental material, but if
212 they appear in the supplemental material, the authors are encouraged to provide a short
213 proof sketch to provide intuition.
214 • Inversely, any informal proof provided in the core of the paper should be complemented
215 by formal proofs provided in appendix or supplemental material.
216 • Theorems and Lemmas that the proof relies upon should be properly referenced.

217 **4. Experimental result reproducibility**

218 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
219 perimental results of the paper to the extent that it affects the main claims and/or conclusions
220 of the paper (regardless of whether the code and data are provided or not)?

221 Answer: [Yes]

222 Justification: All details about the model, priors, simulation setup, parameter values, hard-
223 ware/software, and sampling configurations are included in Section 2. Moreover, the code is
224 publicly available so that every detail can be retrieved.

225 Guidelines:

226 • The answer NA means that the paper does not include experiments.
227 • If the paper includes experiments, a No answer to this question will not be perceived
228 well by the reviewers: Making the paper reproducible is important, regardless of
229 whether the code and data are provided or not.
230 • If the contribution is a dataset and/or model, the authors should describe the steps taken
231 to make their results reproducible or verifiable.
232 • Depending on the contribution, reproducibility can be accomplished in various ways.
233 For example, if the contribution is a novel architecture, describing the architecture fully
234 might suffice, or if the contribution is a specific model and empirical evaluation, it may
235 be necessary to either make it possible for others to replicate the model with the same
236 dataset, or provide access to the model. In general, releasing code and data is often
237 one good way to accomplish this, but reproducibility can also be provided via detailed
238 instructions for how to replicate the results, access to a hosted model (e.g., in the case
239 of a large language model), releasing of a model checkpoint, or other means that are
240 appropriate to the research performed.
241 • While NeurIPS does not require releasing code, the conference does require all submis-
242 sions to provide some reasonable avenue for reproducibility, which may depend on the
243 nature of the contribution. For example

244 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
245 to reproduce that algorithm.
246 (b) If the contribution is primarily a new model architecture, the paper should describe
247 the architecture clearly and fully.
248 (c) If the contribution is a new model (e.g., a large language model), then there should
249 either be a way to access this model for reproducing the results or a way to reproduce
250 the model (e.g., with an open-source dataset or instructions for how to construct
251 the dataset).
252 (d) We recognize that reproducibility may be tricky in some cases, in which case
253 authors are welcome to describe the particular way they provide for reproducibility.
254 In the case of closed-source models, it may be that access to the model is limited in
255 some way (e.g., to registered users), but it should be possible for other researchers
256 to have some path to reproducing or verifying the results.

257 5. Open access to data and code

258 Question: Does the paper provide open access to the data and code, with sufficient instruc-
259 tions to faithfully reproduce the main experimental results, as described in supplemental
260 material?

261 Answer: **[Yes]**

262 Justification: The links to the code and data used in this study will happen to the final
263 paper, but were removed in this submission to abide to the double blind review rules.

264 Guidelines:

- 265 • The answer NA means that paper does not include experiments requiring code.
- 266 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 267 • While we encourage the release of code and data, we understand that this might not be
268 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
269 including code, unless this is central to the contribution (e.g., for a new open-source
270 benchmark).
- 271 • The instructions should contain the exact command and environment needed to run to
272 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 273 • The authors should provide instructions on data access and preparation, including how
274 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 275 • The authors should provide scripts to reproduce all experimental results for the new
276 proposed method and baselines. If only a subset of experiments are reproducible, they
277 should state which ones are omitted from the script and why.
- 278 • At submission time, to preserve anonymity, the authors should release anonymized
279 versions (if applicable).
- 280 • Providing as much information as possible in supplemental material (appended to the
281 paper) is recommended, but including URLs to data and code is permitted.

284 6. Experimental setting/details

285 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
286 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
287 results?

288 Answer: **[Yes]**

289 Justification: Section 2 of the paper details the simulation design, noise parameters, prior
290 choices, sampler choice, and sampling hyperparameters (e.g., number of chains, draws,
291 tuning steps), enabling reproducibility.

292 Guidelines:

- 293 • The answer NA means that the paper does not include experiments.
- 294 • The experimental setting should be presented in the core of the paper to a level of detail
295 that is necessary to appreciate the results and make sense of them.
- 296 • The full details can be provided either with the code, in appendix, or as supplemental
297 material.

298 **7. Experiment statistical significance**

299 Question: Does the paper report error bars suitably and correctly defined or other appropriate
300 information about the statistical significance of the experiments?

301 Answer: [Yes]

302 Justification: Statistical significance is reported for group comparisons (e.g., t-tests in
303 Experiment 1) and estimation error is quantified using relative RMSE in Experiment 3.

304 Guidelines:

- 305 • The answer NA means that the paper does not include experiments.
- 306 • The authors should answer "Yes" if the results are accompanied by error bars, confi-
307 dence intervals, or statistical significance tests, at least for the experiments that support
308 the main claims of the paper.
- 309 • The factors of variability that the error bars are capturing should be clearly stated (for
310 example, train/test split, initialization, random drawing of some parameter, or overall
311 run with given experimental conditions).
- 312 • The method for calculating the error bars should be explained (closed form formula,
313 call to a library function, bootstrap, etc.)
- 314 • The assumptions made should be given (e.g., Normally distributed errors).
- 315 • It should be clear whether the error bar is the standard deviation or the standard error
316 of the mean.
- 317 • It is OK to report 1-sigma error bars, but one should state it. The authors should
318 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
319 of Normality of errors is not verified.
- 320 • For asymmetric distributions, the authors should be careful not to show in tables or
321 figures symmetric error bars that would yield results that are out of range (e.g. negative
322 error rates).
- 323 • If error bars are reported in tables or plots, The authors should explain in the text how
324 they were calculated and reference the corresponding figures or tables in the text.

325 **8. Experiments compute resources**

326 Question: For each experiment, does the paper provide sufficient information on the com-
327 puter resources (type of compute workers, memory, time of execution) needed to reproduce
328 the experiments?

329 Answer: [Yes]

330 Justification: The paper details the local machine (Intel i9 CPU, 62GB RAM), software
331 stack, runtime per job, number of chains, number of repetitions, and total compute time
332 (Section 2.1).

333 Guidelines:

- 334 • The answer NA means that the paper does not include experiments.
- 335 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
336 or cloud provider, including relevant memory and storage.
- 337 • The paper should provide the amount of compute required for each of the individual
338 experimental runs as well as estimate the total compute.
- 339 • The paper should disclose whether the full research project required more compute
340 than the experiments reported in the paper (e.g., preliminary or failed experiments that
341 didn't make it into the paper).

342 **9. Code of ethics**

343 Question: Does the research conducted in the paper conform, in every respect, with the
344 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

345 Answer: [Yes]

346 Justification: The research is conducted using simulated data and public atlases, involves no
347 human subject interaction, and aligns with the NeurIPS Code of Ethics.

348 Guidelines:

349 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
350 • If the authors answer No, they should explain the special circumstances that require a
351 deviation from the Code of Ethics.
352 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
353 eration due to laws or regulations in their jurisdiction).

354 **10. Broader impacts**

355 Question: Does the paper discuss both potential positive societal impacts and negative
356 societal impacts of the work performed?

357 Answer: [NA]

358 Justification: The paper discusses how incorporating uncertainty into structural connectivity
359 modeling may be a first step towards improving clinical translation and interpretation of
360 brain networks, but is only a first step in a vast multitude of other steps needed to make a
361 concrete impact. We anticipate the interest in this model to be very niche among researchers
362 interested in repeated measures reliability.

363 Guidelines:

364 • The answer NA means that there is no societal impact of the work performed.
365 • If the authors answer NA or No, they should explain why their work has no societal
366 impact or why the paper does not address societal impact.
367 • Examples of negative societal impacts include potential malicious or unintended uses
368 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
369 (e.g., deployment of technologies that could make decisions that unfairly impact specific
370 groups), privacy considerations, and security considerations.
371 • The conference expects that many papers will be foundational research and not tied
372 to particular applications, let alone deployments. However, if there is a direct path to
373 any negative applications, the authors should point it out. For example, it is legitimate
374 to point out that an improvement in the quality of generative models could be used to
375 generate deepfakes for disinformation. On the other hand, it is not needed to point out
376 that a generic algorithm for optimizing neural networks could enable people to train
377 models that generate Deepfakes faster.
378 • The authors should consider possible harms that could arise when the technology is
379 being used as intended and functioning correctly, harms that could arise when the
380 technology is being used as intended but gives incorrect results, and harms following
381 from (intentional or unintentional) misuse of the technology.
382 • If there are negative societal impacts, the authors could also discuss possible mitigation
383 strategies (e.g., gated release of models, providing defenses in addition to attacks,
384 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
385 feedback over time, improving the efficiency and accessibility of ML).

386 **11. Safeguards**

387 Question: Does the paper describe safeguards that have been put in place for responsible
388 release of data or models that have a high risk for misuse (e.g., pretrained language models,
389 image generators, or scraped datasets)?

390 Answer: [NA]

391 Justification: The model is trained solely on simulated data and does not involve potentially
392 misusable assets.

393 Guidelines:

394 • The answer NA means that the paper poses no such risks.
395 • Released models that have a high risk for misuse or dual-use should be released with
396 necessary safeguards to allow for controlled use of the model, for example by requiring
397 that users adhere to usage guidelines or restrictions to access the model or implementing
398 safety filters.
399 • Datasets that have been scraped from the Internet could pose safety risks. The authors
400 should describe how they avoided releasing unsafe images.

401 • We recognize that providing effective safeguards is challenging, and many papers do
402 not require this, but we encourage authors to take this into account and make a best
403 faith effort.

404 **12. Licenses for existing assets**

405 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
406 the paper, properly credited and are the license and terms of use explicitly mentioned and
407 properly respected?

408 Answer: [Yes]

409 Justification: The structural connectivity atlas from [Alemán-Gómez et al., 2022]) is properly
410 cited and its license is mentioned. PyMC and other software libraries are also acknowledged
411 with appropriate references.

412 Guidelines:

413 • The answer NA means that the paper does not use existing assets.
414 • The authors should cite the original paper that produced the code package or dataset.
415 • The authors should state which version of the asset is used and, if possible, include a
416 URL.
417 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
418 • For scraped data from a particular source (e.g., website), the copyright and terms of
419 service of that source should be provided.
420 • If assets are released, the license, copyright information, and terms of use in the
421 package should be provided. For popular datasets, paperswithcode.com/datasets
422 has curated licenses for some datasets. Their licensing guide can help determine the
423 license of a dataset.
424 • For existing datasets that are re-packaged, both the original license and the license of
425 the derived asset (if it has changed) should be provided.
426 • If this information is not available online, the authors are encouraged to reach out to
427 the asset's creators.

428 **13. New assets**

429 Question: Are new assets introduced in the paper well documented and is the documentation
430 provided alongside the assets?

431 Answer: [NA]

432 Justification: No new datasets or trained models are released in this paper.

433 Guidelines:

434 • The answer NA means that the paper does not release new assets.
435 • Researchers should communicate the details of the dataset/code/model as part of their
436 submissions via structured templates. This includes details about training, license,
437 limitations, etc.
438 • The paper should discuss whether and how consent was obtained from people whose
439 asset is used.
440 • At submission time, remember to anonymize your assets (if applicable). You can either
441 create an anonymized URL or include an anonymized zip file.

442 **14. Crowdsourcing and research with human subjects**

443 Question: For crowdsourcing experiments and research with human subjects, does the paper
444 include the full text of instructions given to participants and screenshots, if applicable, as
445 well as details about compensation (if any)?

446 Answer: [NA]

447 Justification: The paper does not involve any research with human subjects or crowdsourcing.

448 Guidelines:

449 • The answer NA means that the paper does not involve crowdsourcing nor research with
450 human subjects.

451 • Including this information in the supplemental material is fine, but if the main contribu-
452 tion of the paper involves human subjects, then as much detail as possible should be
453 included in the main paper.
454 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
455 or other labor should be paid at least the minimum wage in the country of the data
456 collector.

457 **15. Institutional review board (IRB) approvals or equivalent for research with human
458 subjects**

459 Question: Does the paper describe potential risks incurred by study participants, whether
460 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
461 approvals (or an equivalent approval/review based on the requirements of your country or
462 institution) were obtained?

463 Answer: [NA]

464 Justification: The study does not involve human subjects and thus does not require IRB
465 approval.

466 Guidelines:

467 • The answer NA means that the paper does not involve crowdsourcing nor research with
468 human subjects.
469 • Depending on the country in which research is conducted, IRB approval (or equivalent)
470 may be required for any human subjects research. If you obtained IRB approval, you
471 should clearly state this in the paper.
472 • We recognize that the procedures for this may vary significantly between institutions
473 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
474 guidelines for their institution.
475 • For initial submissions, do not include any information that would break anonymity (if
476 applicable), such as the institution conducting the review.

477 **16. Declaration of LLM usage**

478 Question: Does the paper describe the usage of LLMs if it is an important, original, or
479 non-standard component of the core methods in this research? Note that if the LLM is used
480 only for writing, editing, or formatting purposes and does not impact the core methodology,
481 scientific rigorousness, or originality of the research, declaration is not required.

482 Answer: [NA]

483 Justification: LLMs were used to help improve the text formulation and correct grammatical
484 mistakes in the manuscript. It was also leveraged through GitHub Copilot to produce code
485 faster, but was not involved in the core method development.

486 Guidelines:

487 • The answer NA means that the core method development in this research does not
488 involve LLMs as any important, original, or non-standard components.
489 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
490 for what should or should not be described.