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Abstract
In this paper we use multimodal embeddings from
the ESM-3 protein language model to predict
protein flexibility. ESM-3’s multi-modality al-
lows for simultaneous integration of structural,
sequence-based, and functional information into
a residue-level embedding, yielding informative
protein representations that can be used to pre-
dict protein flexibility. We demonstrate improved
RMSF prediction compared to established meth-
ods such as CABS-flex. Additionally, we present
a practical application of ESM-3 embeddings for
loop design by sampling novel loop sequences
conditioned on fixed structural and functional con-
texts. Such an approach may efficiently identify
potential loop designs with increased rigidity.

1. Introduction
Protein loops are known for their structural flexibility and
functional roles (Fiser et al., 2000; Malabanan et al., 2010).
Loops are connecting regions between regular secondary
structure and are often located on the protein surface. In the
post-AlphaFold era (Jumper et al., 2021), it is still challeng-
ing to model long loops accurately (Stevens & He, 2022;
Wang et al., 2024a), if treating crystal (static) structures
from the Protein Data Bank (PDB, Berman et al., 2000)
as the ground truth. However, loops may exhibit dynamic
movement and have the flexibility to adopt multiple distinct
conformations, and these may not be represented among
PDB structures or be adequately sampled via prediction
methods (Marks et al., 2018; Barozet et al., 2021). Account-
ing for loop dynamics has thus been recognized to be a
key ingredient of emerging applications in protein design
(Corbella et al., 2023).

A generally accepted approach to quantify the flexibility
of protein backbones in silico is via root-mean-square fluc-
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tuations (RMSFs) from molecular dynamics (MD) simu-
lation trajectories (Karplus & McCammon, 2002). Such
MD-based RMSFs tend to more informative for protein
dynamics compared to indirect measures from experimen-
tal techniques (e.g., B-factors) or plDDT outputs from Al-
phaFold (Ma et al., 2023; Vander Meersche et al., 2024).
However, one hindrance to widely using MD for screening
large numbers of protein sequences, e.g., as necessary in de-
sign applications, is its computational cost. Hence, various
faster methods have been developed to predict per-residue
RMSF, whether from sequence only (Narwani et al., 2019),
from a given structure (Kurcinski et al., 2019; Nithin et al.,
2024), or with the help of experimental data (e.g., cryo-
EM maps, Song et al., 2024). With the advent of protein
language models (pLMs) and structure encoders, RMSFs
have also been predicted using different structure tokenizers
(Yuan et al., 2025).

RMSFs of loop residues tend to be higher than those of
regular secondary structure elements, e.g., as seen in the AT-
LAS database of MD simulations (Vander Meersche et al.,
2024). However, this pattern is not uniform, as there are
also many rigid loops (having low RMSFs) with structures
that are easier to predict (Feng et al., 2021). Loop rigidity
and stability are often associated, and hence loop rigidity is
an important consideration in protein engineering (Nestl &
Hauer, 2014), e.g., to increase the stability of an active site
(Xie et al., 2014; Yu et al., 2017).

Computational design of protein loops to achieve specific
structure and function has a long history (e.g., Hu et al.,
2007; Kundert & Kortemme, 2019; Schmitz et al., 2021;
Jiang et al., 2024), based on the idea of optimizing energy
functions and was often laborious. Inverse folding based on
pLMs (e.g., ESM-IF, Hsu et al., 2022) and deep learning
models (e.g., ProteinMPNN, Dauparas et al., 2022) have
demonstrated potential to accelerate the generation of plau-
sible protein sequences, but are limited to a single modality,
namely the sequence-structure relationship. The recent de-
velopment of multimodal pLMs such as ESM-3 (Hayes
et al., 2025), which can simultaneously condition on se-
quence, structure, and function (among other input tracks),
may help further streamline this process. The specific ap-
plications of ESM-3 to predict loop flexibility (in terms of
RMSFs) and to rigidify loops with a given structure and
function, appear to be open directions for exploration.

1



Multimodal Protein Language Models for Flexibility Prediction and Loop Design

Thus, the contributions of this paper are two-fold. First, we
leverage the multimodal embeddings of ESM-3 to develop
a more accurate per-residue predictive model for RMSF.
Via ablations, we examine the relative importance of the
input modalities for prediction accuracy. Second, we apply
our RMSF model to screen ESM-3-generated sequences
(conditioned on structure and function) for rigidity, thereby
providing a preliminary case study for the potential multi-
modal design of rigid loops.

2. Methods
2.1. Benchmark Dataset

We consider the main ATLAS database of MD simulations
(Vander Meersche et al., 2024), using the latest version
from November 18, 2024. ATLAS consists of 1,938 protein
chains, representing the diversity of the PDB, for which
standardized MD simulations have been run. RMSFs are
reported for each protein residue, and we treat the average
RMSFs of the three MD replicates as the ground truth labels.

2.2. Protein Annotations

For each PDB structure in the ATLAS dataset, we generated
8-class secondary structure (SS8) annotations via DSSP
(Joosten et al., 2010) and solvent accessibility surface area
(SASA) annotations via the algorithm implementation in
biotite (Shrake & Rupley, 1973). We defined a loop to
be four or more residues without regular secondary struc-
tures (DSSP classifications ‘T’, ‘S’, or ‘-’), as in Wang et al.
(2024b). To annotate specific functional regions, we ob-
tained residue numbers of binding sites by querying the
PDBe-KB (Varadi et al., 2020).

2.3. ESM-3

ESM-3 (Hayes et al., 2025) is a multimodal pLM that em-
ploys a transformer encoder to process multiple input tracks:
(1) the primary amino acid sequence, (2) 3D structure co-
ordinates, (3) SS8, (4) per-residue SASA, and (5) func-
tional annotations. These inputs are used to generate em-
beddings for each residue that leverage the context provided
by the various input tracks. We leverage these residue-level
embeddings as features to predict protein backbone flexi-
bility, as measured by RMSF. We use the ESM-3 variant
esm3-sm-open-v1 to tokenize the input tracks and pro-
duce embeddings. This model comprises 1.4 billion param-
eters and is the smallest and most computationally efficient
member of the ESM-3 family.

2.4. RMSF predictive model

We frame RMSF prediction as a per-residue regression task
given multimodal ESM-3 embeddings, in order to quantify

local disorder relevant for loop modelling.

For a protein of length L we obtain a feature matrix x ∈
RL×din 1 from the ESM-3 model (after removing the ESM-3
prefix (suffix) BOS (EOS) tokens). A linear projection maps
each residue vector into the model space:

h0 = Wx+ b, W ∈ Rdmodel×din

Sinusoidal positional encodings PE(·) (Vaswani et al., 2017)
are added to preserve absolute indices h0 ← h0 + PE(L).
The sequence passes through a 4-layer Transformer encoder;
for ℓ = 0, . . . , 3,

hℓ+1 = Tℓ

(
hℓ

)
Tℓ = MHSA(nheads) ◦ FFN(dff) ◦ DO(p)

where MHSA denotes multi-head self-attention, FFN a
position-wise feed-forward network, and DO the dropout
operation. The Transformer encoder yields contextualised
representations h4 ∈ RL×dmodel , where each residue embed-
ding is informed by the entire sequence capturing long-range
dependencies and structural context across the protein. A fi-
nal two-layer MLP with hidden size dmlp, ReLU activations
and dropout p produces scalar predictions:

ŷ = MLP(h4) ∈ RL

The network contains ≈ 36M trainable parameters; ESM-
3’s 1.4B parameters remain frozen, making training much
faster compared to a finetuning approach of ESM-3 and
mitigating catastrophic forgetting (Kirkpatrick et al., 2017).
The architecture parameters are listed in Table 1.

Table 1. Architecture hyper-parameters.

Component Symbol Value

Input dim. din 1536
Model dim. dmodel 1024
FFN dim. dff 2048
# Transformer layers NT 4
# Heads nheads 8
Dropout p 0.20
MLP hidden dim. dmlp 512

RMSF values are strictly positive and left-skewed, posing a
challenge from a learning perspective (Thompson & Frans-
son, 2016). We fit a Box–Cox power transform BCλ(·)
given by z =

(
yλ − 1

)
/λ on the N training samples and

train our model with a mean-squared error loss function in
the transformed domain:

L =
1

N

N∑
i=1

(
ẑi − zi

)2
zi = BCλ(yi), ẑi = BCλ(ŷi).

1Our ESM-3 configuration outputs din = 1536.
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At inference time the inverse transform BC−1
λ (·) is used to

recover the Å-scaled prediction.

The proteins in ATLAS (Vander Meersche et al., 2024) are
randomly partitioned into training and validation sets in an
80:20 ratio, while ensuring that sequence similarity between
the two sets remains minimal. Specifically, we aligned each
pair of sequences using the pairwise2 module in BioPython
(Cock et al., 2009). Pairs of proteins sharing at least 40%
sequence similarity are kept together, and these pairs are
then randomly assigned entirely to either the training or
validation set, to help avoid data leakage from sequence
homology. Once created, this train-validation split remains
fixed across all experimental configurations. The model
was trained over 50 epochs, which is sufficient for the val-
idation loss to stabilize. Parameters are learned via the
AdamW-optimizer (learning rate η = 1 × 10−4, weight
decay 1 × 10−4) (Loshchilov & Hutter, 2017). The learn-
ing rate is dynamically adjusted via the ‘reduce on plateau’
scheduler that reduces η by a factor γ = 0.5 when validation
loss fails to improve for a specified number of epochs (sched-
uler patience psch = 5). To mitigate the risk of exploding
gradients, gradient norms are clipped to ∥∇θ∥2 ≤ 1.0 (Pas-
canu et al., 2013). A fixed batch size of 32 is used through-
out all experiments. The model hyper-parameters are sum-
marized in Table 2.

Table 2. Optimizer and training hyper-parameters.

Description Value

Initial learning rate η 1×10−4

Weight decay 1×10−4

LR scheduler γ = 0.5, psch = 2
Batch size 32
Epochs 50
Gradient clipping ∥∇θ∥2 ≤ 1.0

3. Results
3.1. RMSF prediction

We present the results of our RMSF prediction model evalu-
ated on a held-out validation set comprised of 388 proteins
(i.e., 20% of the ATLAS dataset), using the train-validation
split described in Section 2.4.

As a performance benchmark, we use CABS-flex 2.0 (Kuri-
ata et al., 2018), a coarse-grained simulator that employs
Monte Carlo dynamics to efficiently estimate flexibility
without requiring full MD simulations. While CABS-flex
is significantly faster than traditional atomistic MD, it re-
mains relatively computationally intensive for large proteins
(up to ∼1 hr of CPU time). In contrast, our model incurs a
one-time training cost, but inference is substantially more ef-

ficient (<1s per protein given ESM-3 embeddings), making
it well-suited for large-scale screening once trained.

Table 3 presents the RMSF prediction performance across
various combinations of ESM-3 input tracks: primary se-
quence (Seq), backbone coordinates (Struc), secondary
structure (SS8), functional annotations (Func), and solvent
accessibility (SASA). Prediction accuracy is quantified us-
ing root mean squared error (RMSE) and mean absolute er-
ror (MAE) between true and predicted RMSF values. To see
the contributions of each input modality, we trained identical
models—matched in architecture, training data, and hyper-
parameters—on ESM-3 embeddings derived from different
subsets of input tracks. The fully-informed model (incor-
porating all available tracks) achieves the highest accuracy
(RMSE = 1.184 Å, MAE = 0.562 Å). Omitting secondary
structure (SS8) information (while retaining all other inputs)
yields a moderate increase in RMSE to 1.279 Å, highlighting
the benefit of explicit secondary structure context. Further
removing functional annotations results in an additional
modest error increase (RMSE = 1.308 Å); conversely, ex-
cluding solvent accessibility (SASA) yields a slightly larger
degradation (RMSE = 1.339 Å), indicating solvent exposure
information is potentially more influential than functional
context in the absence of explicit secondary structure infor-
mation. When examining the impact of removing a single
input modality from the ESM-3 embeddings, Table 3 sug-
gests that the relative importance of each track (from most
to least impactful) is structural coordinates, sequence, func-
tional annotations, and secondary structure (SS8). Gener-
ally, prediction accuracy decreases as fewer input modalities
are included. In the simplest case, analogous to traditional
single-modality approaches, we consider sequence-only and
structure-only models. These yield the poorest performance
among the ESM-3-based models, most notably under the
sequence-only modality (RMSE = 1.555 Å, MAE = 0.782
Å); the corresponding structure-only model only provides a
modest increase in performance, illustrating that these two
modalities have comparable predictive power when used in
isolation. These results thus highlight the benefit of mul-
timodal embeddings. Overall, each model evaluated here
outperforms the established baseline CABS-flex (RMSE =
1.769 Å, MAE = 0.982 Å).

The consistently large gap between RMSE and
MAE—observed across all models (including CABS-
flex)—indicates that residues with high RMSF values
remain particularly difficult to predict, in line with previous
findings (Narwani et al., 2019; Feng et al., 2025).

Using our model with all available input tracks, Figure 1
presents two representative examples from the validation set.
Figure 1(a) illustrates RMSF predictions across a protein
with relatively rigid loops (PDB ID: 1BX7). In this case,
CABS-flex tends to overestimate flexibility while our model
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Table 3. RMSF prediction accuracy (RMSE and MAE in Å) across
388 proteins under different ESM-3 input track configurations.
Each row corresponds to a model trained using a specific combi-
nation of input tracks. The final row corresponds to CABS-flex
predictions.

Seq Struc SS8 Func SASA RMSE MAE

✓ ✓ ✓ ✓ ✓ 1.184 0.562
✓ ✓ × ✓ ✓ 1.279 0.641
✓ ✓ ✓ × ✓ 1.301 0.642
✓ ✓ × × ✓ 1.308 0.642
× ✓ ✓ ✓ ✓ 1.320 0.634
✓ ✓ × ✓ × 1.339 0.707
✓ × ✓ ✓ ✓ 1.340 0.640
✓ ✓ ✓ × × 1.378 0.661
✓ ✓ × × × 1.473 0.699
× ✓ × × × 1.536 0.704
✓ × × × × 1.555 0.782

CABS-flex 1.769 0.982

more closely follows the MD-derived ground-truth RMSF.
As a further example, Figure 1(b) shows RMSF predictions
for a protein containing both flexible and rigid loops (PDB
ID: 2FB5). Contrary to the previous case, CABS-flex tends
to underestimate flexibility overall. Among loop regions,
its predicted RMSFs can be too low (e.g., loops at residues
35–42 and 71–76) or too high (e.g., loop at residues 127–
136), whereas our model accurately characterizes both low-
and high-flexibility regions. These examples illustrate our
model’s superior predictive performance over the bench-
mark CABS-flex, both in terms of capturing the overall
flexibility of the protein and the variations in flexibility
across regions within a protein.

Furthermore, as the flexibility of loop regions tends to be
more variable than in regular secondary structures, we seg-
ment predictive performance for loop versus non-loop re-
gions (see Table 4). Our model consistently outperforms
CABS-flex in both categories. For both methods, lower
prediction errors are observed in non-loop residues, which
is expected given the inherently higher flexibility (and thus
prediction difficulty) of loop regions.

Table 4. RMSE and MAE comparison of the proposed model vs.
CABS-flex across loop and non-loop regions in the validation set.

Region Proposed model CABS-flex
RMSE MAE RMSE MAE

Non-loop 1.184 0.522 1.564 0.883
Loop 1.599 0.796 2.130 1.185

3.2. Rigid loop design

Next, we explore the feasibility of rigidifying loops through
generative sampling with ESM-3. We select a representative

(a) Example 1 (PDB ID: 1BX7)

(b) Example 2 (PDB ID: 2FB5)

Figure 1. Per-residue RMSF predictions for two representative pro-
teins from the validation set with varying levels of loop flexibility.
Black curves show MD-derived ground-truth RMSF values, blue
curves our model’s predictions, and red curves CABS-flex predic-
tions. Orange-shaded spans mark loop regions.

case study protein (PDB ID: 2VMC), focusing on the loop
spanning residues 35–51. This loop was chosen due to its
functional relevance (containing binding interface residues)
and exhibiting elevated flexibility (higher RMSFs) relative
to its surrounding context of regular secondary structures.

We implement a generative sampling procedure by masking
only the amino acid sequence within the selected loop re-
gion, preserving all other contextual annotations (structural
coordinates, SS8, SASA, and functional sites). ESM-3 is
then prompted to generate novel sequences conditioned on
these fixed contextual tracks which ensures structural and
functional consistency.

For each of the N = 500 sampled sequences, we integrate
the newly generated loop embeddings into the original pro-
tein context and predict loop flexibility using our RMSF
model. The resulting RMSF distributions are shown in
Figure 2. The generated loop sequences exhibit substan-
tial variation in predicted RMSF with multiple sequences
exhibiting reduced flexibility compared to the original MD-
based RMSF profile. To assess the fidelity of the sampled
sequences to the target loop structure, we also performed a
forward folding pass with ESM-3; five candidates exhibited
both increased rigidity and a reconstructed loop RMSD <3
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Figure 2. Loop flexibility distributions for the 2VMC protein re-
gion (residues 35–51). Light blue violins show per-residue distri-
bution of RMSF predictions across 500 generated loop sequence
variants (right tail clipped, 0–95th percentile shown). For the origi-
nal structure (before loop design), the dark blue curve is the RMSF
prediction of the model, and the black curve is the true RMSF
(from MD simulations).

Å to the original one.2 Results suggest that sequence-level
sampling from multimodal embeddings is a promising strat-
egy for rationally designing loops with targeted flexibility
characteristics.

4. Discussion
In this study we have shown that the multimodal embeddings
from the ESM-3 (Hayes et al., 2025) model can be leveraged
effectively to predict protein backbone flexibility (quanti-
fied via residue-level RMSF values). Results suggest that
incorporating sequence, structural coordinates, functional
annotations, secondary structure, and solvent accessibility
into the ESM-3 contextualized embeddings significantly en-
hances predictive performance relative to sequence-only or
single-modality approaches. The case study on rigid loop
design illustrates the potential of conditioning ESM-3 se-
quence generation on fixed additional structural, functional,
solvency contexts to sample novel sequences. Preliminary
results suggest this approach may be beneficial for designing
loops, potentially leading to improved protein stability.

Multiple promising directions for future research remain.
Firstly, incorporating additional outputs from ESM-3, such
as structural logits or entropy measures of the distribution
of sampled tokens may yield a more informative feature set
from which a more accurate RMSF prediction model can be
trained. Secondly, to improve loop design one could utilize
a more sophisticated generative scheme such as including it-
erative refinement (Lin et al., 2024) or structure-conditioned
sequence sampling integrated directly into the training pro-
cedure (Krapp et al., 2024).

2We find this reduction in loop accuracy to be a byproduct of
ESM-3’s structure encoder and decoder, which is limited in its
ability to preserve detailed local structure, see Yuan et al. (2025).
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