

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 **CASCO-Agent: COST-AWARE SIMULATION CONFIGURATION VIA SURROGATE-GUIDED AGENTS**

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Configuring physics-based simulations requires balancing granularity against
012 computational budget, a dilemma we term **Cost-Aware Simulation-Based**
013 **Configuration Optimization (CASCO)**. Traditional methods, such as Bayesian op-
014 timization or manual expert design, often struggle with the curse of high dimen-
015 sionality or fail to generalize. Large Language Models (LLMs) offer promise for
016 automating such workflows but, as we show experimentally, lack inherent cost
017 awareness and frequently propose inefficient configurations. While inference-
018 time scaling can improve the exploration width to find cost-efficient configura-
019 tions, it demands prohibitively many simulator queries. We propose **Cost-Aware**
020 **Simulation Configuration Optimization Agent (CASCO-Agent)**, an agentic frame-
021 work guiding inference-time scaling via lightweight surrogates. The surrogate
022 here only predicts low-dimensional metrics (accuracy, cost) rather than com-
023 plete physics fields. This enables easier training and flexible adaptation to data
024 availability, e.g., using Gaussian Processes in data-scarce regimes or Neural Net-
025 works when data is abundant. In experiments across 3 typical PDE solvers (ellip-
026 tic, parabolic, and hyperbolic), **CASCO-Agent** consistently outperforms Bayesian
027 optimization and LLM-based baselines, achieving success rates comparable to
028 inference-time scaling with a ground truth simulator without incurring expensive
029 simulation overhead.

1 INTRODUCTION

030 Physics-based simulations are the backbone of modern engineering, playing critical roles in inverse
031 design (Loonen et al., 2022; Jabbar et al., 2022) and control (Lawrence et al., 2024). In these
032 pipelines, an outer optimization loop iteratively queries an inner simulator to conduct forward sim-
033 ulation, evaluate design objectives, and adjust control variables (Vlastelica et al., 2023; Molesky et al.,
034 2018). This process creates a fundamental dilemma regarding the computational budget: overly
035 coarse simulator configurations may yield misleading feedback that derails downstream tasks, while
036 finer configurations offer precision but rapidly exhaust resources. Achieving the balance between
037 sufficient precision and economical cost is an open challenge we term **Cost-Aware Simulation-Based**
038 **Configuration Optimization (CASCO)**.

039 Traditional approaches to **CASCO** fall short of scalability. 1) **Brute force search** is computa-
040 tionally intractable for scanning high-dimensional parameter spaces. 2) **Bayesian Optimization**
041 (**BO**) (Snoek et al., 2012; Yao et al., 2024) and evolutionary methods (Perera et al., 2023) offer
042 potentially higher efficiency but struggle to generalize across varying environments or incorporate
043 domain knowledge expressed in natural language. 3) **Expert manual design**, when available, is
044 effective but labor-intensive, creating a bottleneck that prevents scaling to new problems (Fromer
045 and Coley, 2024; Bharti et al., 2024).

046 Recently, Large Language Models (LLMs) have emerged as scientific agents (Ren et al., 2025) ca-
047 pable of automating design workflows (Zhong et al., 2024; Lv et al., 2025). This paradigm shows
048 potential for scaling up the manual, case-by-case tuning of simulator parameters. However, LLMs
049 often lack specific priors (e.g., cost-awareness), particularly for niche or specialized simulators, lead-
050 ing to potential performance degradation. To remedy this lack of prior knowledge, these agentic sys-
051 tems typically rely on **inference-time scaling**—generating and evaluating multiple reasoning paths
052 to select the best outcome (Roohani et al., 2025; Liu et al., 2024). While effective for increasing

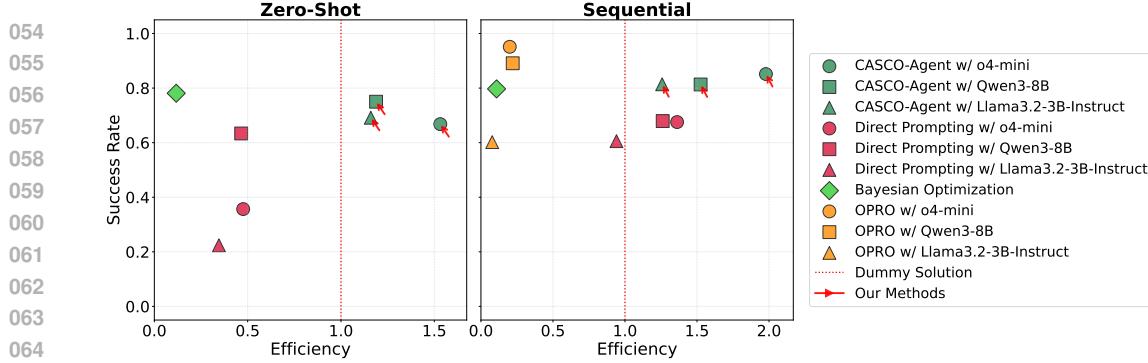


Figure 1: Performance on *Heat 1D*, *Euler 1D*, and *NS Transient 2D* simulators (Single-Turn left, Multi-Turn right). *Efficiency* (\uparrow) denotes normalized cost of successful runs; *Success Rate* (\uparrow) denotes the ratio of valid simulations. *CASCO-Agent* (Ours) achieves Pareto dominance over OPRO (Yang et al., 2023) and BO (Nogueira, 2014) across all base models.

exploration width, this strategy is disastrous for physics simulations: “verifying” every path requires querying the expensive simulator, rendering standard inference scaling prohibitively costly.

To mitigate this, some approaches employ neural networks (NN) as proxies for the simulator (Lyu et al., 2024). However, two main issues persist: 1) standard surrogates attempt to approximate complete high-dimensional physical fields, making them data-hungry and prone to overfitting specific conditions; and 2) they lack explicit cost-awareness. To address these challenges, we propose **Cost-Aware Simulation Configuration Optimization Agent (CASCO-Agent)**: a framework that shifts the surrogate target from high-dimensional physical fields to low-dimensional metrics (cost and accuracy). This strategy simplifies training to scalar targets and improves generalization, as cost dynamics are driven by universal parameters (e.g., mesh size, time integration) rather than specific physical conditions. Crucially, these lightweight surrogates are computationally negligible compared to the simulator, enabling *CASCO-Agent* to perform massive, parallel inference-time scaling to optimize exploration without incurring prohibitive costs.

Our contributions are summarized as follows:

1. We introduce *CASCO-Agent*, a framework integrating inference-time scaling with lightweight cost-efficiency surrogates. To our knowledge, this is the first method to explicitly consider efficiency along side from accuracy in LLM automating physics based simulations.
2. We demonstrate across three diverse PDE solvers (elliptic, parabolic, hyperbolic) that *CASCO-Agent* significantly outperforms Bayesian optimization and LLM baselines, achieving Pareto-optimal efficiency.
3. We release a comprehensive benchmark for cost-aware physics simulation design, including open-source environments and evaluation protocols.

2 RELATED WORK

Black-Box Optimization & Benchmarks. Bayesian optimization (BO) is an universal approach for tuning experimental parameters (Snoek et al., 2012; Knudsen et al., 2021), with recent advances integrating pre-trained surrogates to improve initial sampling (Wang et al., 2024a; Fan et al., 2022). There also exists BO benchmarks like Design-Bench (Trabucco et al., 2022) and Inverse-Bench (Zheng et al., 2025a) cover scientific problems, they rarely treat *computational cost* as part of the optimization target. This limits their utility to mature simulators where configurations are already established and the cost can be simplified as simulation counts. We address this gap by explicitly augmenting the usual accuracy metric with computational cost in our dataset. **We also incorporate BO methods, both general and cost-aware versions (which penalize the sampling probability of higher-cost runs)** (Gorecki et al., 2023; Bharti et al., 2024) as our baselines.

Scientific Agents & Related Benchmarks. LLMs have been applied to autonomous experiment design (Boiko et al., 2023; Lu et al., 2024) and hypothesis generation (Wang et al., 2024b; Zheng

108 et al., 2025b). However, these are largely feasibility studies; they demonstrate *capability* rather than
 109 *efficiency*. The usual high pass@k (e.g., k=1024) metrics in these works often hide the massive
 110 computational cost of failed trials. In this regard, MLEBench (Chan et al., 2025), which tracks training
 111 costs for ML tasks, is similar to our work in considering tool costs. However, no equivalent bench-
 112 mark exists for LLM agents in physics-based simulations. Our work brings this necessary attention
 113 to the community. We also incorporate a straightforward agentic workflowdirect promptingas a
 114 baseline.

115 **LLMs as Optimizers.** Approaches like OPRO (Yang et al., 2023) and LLM-assisted evolutionary
 116 algorithms (Hao et al., 2024) use LLMs as iterative optimizers. While promising, they create massive
 117 parallel paths, each requiring a simulator query, thereby incurring prohibitive costs. There have
 118 been very few attempts to include cost considerations in LLM agents (Song et al., 2024; Wu et al.,
 119 2024); however, these typically assume fixed tool costs (e.g., using function-as-a-service), failing to
 120 capture the relationship between cost and configuration parameters (e.g., mesh node number, time
 121 integration size). *CASCO-Agent* is the first work to systematically include cost considerations while
 122 solving the rigid cost assumption by modeling cost as FLOPs complexity, thus accurately capturing
 123 the relationship between cost and configurations.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Given design variable space \mathcal{X} (e.g., spatial/temporal resolution, spatial interpolation methods), environmental parameter space Θ (e.g., initial or boundary conditions), and output observation space \mathcal{Y} , we define the forward simulation-based experimental process as $\mathcal{F} : \mathcal{X} \times \Theta \rightarrow \mathcal{Y}$:

$$y = \mathcal{F}(x, \theta), \quad \text{where } x \in \mathcal{X}, \theta \in \Theta \quad (1)$$

With utility function $\Phi : \mathcal{Y} \times \Theta \rightarrow \mathbb{R}$ (e.g. representing accuracy or physical validity of simulated results) and cost function $\mathbf{C} : \mathcal{X} \times \mathcal{Y} \times \Theta \rightarrow \mathbb{R}$ (e.g. wall time, complexity analysis, RAM consumption), the *CASCO* problem becomes:

$$x^* = \arg \max_{x \in \mathcal{X}} \left(\Phi(y, \theta), -\mathbf{C}(x, y, \theta) \right) \quad (2)$$

In this work, we define computational cost as the number of floating point operations (consistent with complexity analysis) and normalize cost relative to a brute-force reference (dummy) solution z_θ that satisfies accuracy requirements with optimal cost (within a coarse search granularity):

$$\hat{\mathbf{C}}(x, y, \theta) = \frac{\mathbf{C}(x, y, \theta)}{\mathbf{C}(z_\theta, \theta)}. \quad (3)$$

Following previous works (Snoek et al., 2012; Fromer and Coley, 2024), we combine the normalized cost and utility objectives into a single reward metric for an experiment (x, y, θ) :

$$\mathcal{R}^0(x, y, \theta) = \frac{\Phi(y, \theta)}{\hat{\mathbf{C}}(x, y, \theta)} \quad (4)$$

We consider two variants of the *CASCO* problem: Single-Turn *CASCO*, where the algorithm proposes only one configuration, and Multi-Turn *CASCO*, where the algorithm proposes a trajectory of configurations for iterative refinement (Huan et al., 2024; Bharti et al., 2024)):

Definition 3.1 (Single-Turn Cost-Aware Simulation-Based Configuration Optimization (*CASCO*)).

$$\mathcal{Q}_0 : x^* = \arg \max_{x \in \mathcal{X}} \mathcal{R}^0(x, y, \theta), \quad (5)$$

Definition 3.2 (Multi-Turn Cost-Aware Simulation-Based Configuration Optimization (*CASCO*)).

$$\mathcal{Q}_m : \{x\}^* = \arg \max_{\{x_1, \dots, x_n\} \in \mathcal{X}^*} \mathcal{R}^s(\{x_1, \dots, x_n\}, \{y_1, \dots, y_n\}, \theta), \quad (6)$$

162 where \mathcal{X}^* is a sequence consisting of an arbitrary number of elements from \mathcal{X} . In this work, we
 163 allow multi-turn solutions with any length. $\{y\} = \{y_1, y_2, \dots, y_n\}$ are observations from sequence
 164 $\{x\} = \{x_1, x_2, \dots, x_n\}$, and the modified multi-turn reward \mathcal{R}^m is:
 165

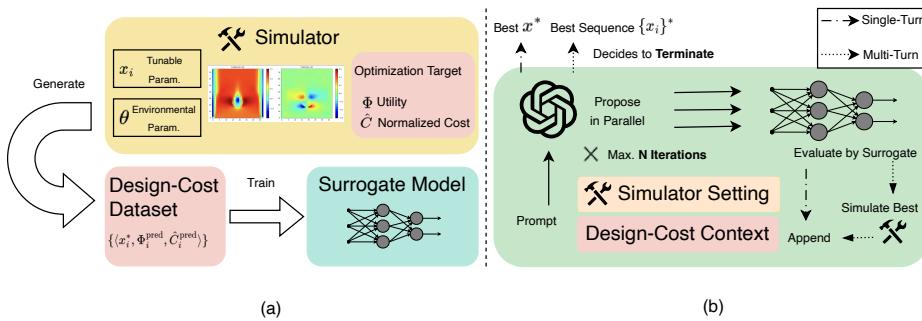
$$\mathcal{R}^m(\{x_1, \dots, x_n\}, \{y_1, \dots, y_n\}, \theta) = \frac{\max_i \Phi(y_i, \theta)}{\sum_i \hat{C}(x_i, y_i, \theta)}, \quad (7)$$

168 i.e., the ratio between maximum utility and total cost incurred by this sequence of proposals.
 169

170 The two variants of the *CASCO* problem, \mathcal{Q}_0 and \mathcal{Q}_m , are distinct and have different metrics with
 171 different reference solution z_θ . They evaluate different abilities of the solution: \mathcal{Q}_0 requires an in-
 172 tuitive choice of simulation parameter, while \mathcal{Q}_m requires adaptation based on simulation feedback.
 173 They are not to be recognized as the same task with a varying hyperparameter (number of turns).

174 3.2 COST-AWARE SIMULATION CONFIGURATION OPTIMIZATION AGENT

176 **Overview.** We adopt the inference-time scaling framework of Optimization by PROmpting
 177 (OPRO) (Yang et al., 2023; Song et al., 2024; Chen et al., 2022), with the addition of a module
 178 that efficiently provides utility $\Phi(x, y, \theta)$ and cost $\hat{C}(x, y, \theta)$ information without calling the ex-
 179 pensive ground-truth simulations. Specifically, we train a neural-network surrogate to predict these
 180 scalar signals from the design variables and environmental parameters. Because the scalar outputs
 181 are strongly correlated with a few key design variables, signal model training converges with fewer
 182 samples and smaller model size, compared with full-physics surrogates (Ghafariasl et al., 2024; Hou
 183 and Evins, 2024); see C for details. The signal model then supplies feedback, the predicted utility
 184 and cost, to the LLMs proposed parameter designs. These feedback signals, recorded as designvalue
 185 pairs, are appended to the prompts history as in-context examples to aid the LLMs optimization
 186 output. See Figure 2 for an illustration of *CASCO-Agents* workflow.



198 Figure 2: Overview of *CASCO-Agent*. (a) For a given simulation-based experimental design prob-
 199 lem, *CASCO-Agent* samples uniformly within the design space to train a neural network surrogate
 200 for feedback signals of utility and cost. (b) At inference time, the LLM agent is prompted with
 201 explanations of the simulator’s setting and together with in-context examples of designvalue pairs.
 202 It then proposes an ensemble of candidate designs in parallel. The LLM queries the surrogate model
 203 for feedback and augments the context with the new designscore pairs for the next round of proposal
 204 generation (Single-Turn Setting), or it evaluates the surrogate-selected best candidate with the actual
 205 simulator to obtain ground-truth feedback (Multi-Turn Setting). The agent outputs the best design
 206 at the final iteration or terminates early when a satisfactory and stable solution has been reached.

207 **Signal Neural Network.** We train lightweight networks $\mathcal{S} : \mathcal{X} \times \Theta \rightarrow \mathbf{D}_\Phi \times \mathbb{R}$ to predict utility and
 208 cost signals only, where \mathbf{D}_Φ is the short-hand for the range of utility function Φ . Our experiments
 209 show that small fully connected neural networks can learn the function well for the experiments in
 210 this paper, though we note that architecture and model size can be adapted according to the need of
 211 specific solvers. See Appendix C for details on neural network implementation for this paper.

213 To provide rich, informative utility signals, as opposed to the binary boolean signals in prior works
 214 (Smucker et al., 2018; Huan et al., 2024), we design a reward shaping function f that maps the
 215 binary experiment outcome $b(y) \in \{0, 1\}$ to a scalar soft success measure $f(y) \in [0, 1]$ defined as
 follows.

216 **Definition 3.3** (Soft Utility Function). Following the notations in section 3.1, let \mathcal{Y} be the experiment's observation space, Θ be the environmental variable space, and Φ be the original utility function. Define the feasible set
 217 $\mathcal{G}_\theta := \{y \in \mathcal{Y} : \Phi(y, \theta) = 1\}.$ (8)

221 We call a mapping $f : \mathcal{Y} \times \Theta \rightarrow [0, 1]$ a *soft utility function* if it satisfies:
 222

- 223 (i) Feasibility calibration: $\forall y \in \mathcal{G}_\theta : f(y) = 1, \sup_{y \notin \mathcal{G}_\theta} f(y) < 1.$
- 224
- 225 (ii) Normalization: $0 \leq f(y) \leq 1, \forall y \in \mathcal{Y}.$
- 226 (iii) Monotone alignment: $\Phi(y_1) \preceq \Phi(y_2) \implies f(y_1) \leq f(y_2).$
- 227

228 The signal neural network \mathcal{S} learns the soft utility signal $f(y)$ in the place of $\Phi(y)$. We provide the
 229 following proposition that any soft utility function f guarantees an incremental performance over
 230 binary utility functions when integrated into our framework, and a well-designed f will lead to more
 231 significant improvements. Refer to Appendix D for our design of f and proofs of the proposition.
 232

233 **Definition 3.4** (Policies). Recall that $R^0(x, y, \theta)$ and $\mathcal{R}^m(\{x_1, \dots, x_n\}, \{y_1, \dots, y_n\}, \theta)$ are re-
 234 spectively single-turn and multi-turn reward defined in Eq.1). For a task instance θ , we define two
 235 policies:
 236

- 237 (i) **Binary-utility policy** $\pi_{\text{bin}}(x_t \mid \theta, h_{t-1})$: at step t , given history $h_{t-1} =$
 238 $\{(x_s, y_s, b(y_s, \theta))\}_{s=1}^{t-1}$, sample the next design x_t ; denote the induced distribution over
 239 the final design by $x \sim \pi_{\text{bin}}(\cdot \mid \theta).$
- 240 (ii) **Soft-utility policy** $\pi_f(x_t \mid \theta, h_{t-1})$: replace b with any soft utility f from Definition 3.3,
 241 i.e., the history stores $(x_s, y_s, f(y_s, \theta))$. Denote the resulting final-design distribution by
 242 $x \sim \pi_f(\cdot \mid \theta).$
- 243

244 **Proposition 3.5** (Soft utility dominates binary utility in expected reward). *Fix a base model and
 245 any soft utility f in Definition 3.3, the expected reward under the soft-utility policy is no worse than
 246 under the binary-utility policy:*

$$\mathbb{E}_\theta \mathbb{E}_{x \sim \pi_f^0(\cdot \mid \theta)} [R^0(x, \theta)] \geq \mathbb{E}_\theta \mathbb{E}_{x \sim \pi_{\text{bin}}^0(\cdot \mid \theta)} [R^0(x, \theta)].$$

$$\mathbb{E}_\theta \mathbb{E}_{\{x\} \sim \pi_f^m(\cdot \mid \theta)} [R^m(\{x\}, \theta)] \geq \mathbb{E}_\theta \mathbb{E}_{\{x\} \sim \pi_{\text{bin}}^m(\cdot \mid \theta)} [R^m(\{x\}, \theta)].$$

251 In summary, for a given simulation-based experimental design task, we train a lightweight network
 252 $\mathcal{S} : \mathcal{X} \times \Theta \rightarrow \mathbf{D}_\Phi \times \mathbb{R}$ to predict a certain design's utility and cost; in cases where utility function
 253 Φ is sparse and less informative, we substitute it with soft utility function f and learn soft utility
 254 signals, i.e. we learn $\mathcal{S} : \mathcal{X} \times \Theta \rightarrow \mathbf{D}_y \times \hat{\mathbf{C}}$, where \mathbf{D}_y is the range of f . The trained network \mathcal{S}
 255 provides feedback for the following agent's self-refinement.
 256

257 **Agentic Framework.** The agent leverages Optimization by PROmpting (OPRO) as the base LLM
 258 in-context optimization method, and use the signal network's feedback as in-context examples. We
 259 note that expanding to other inference-time scaling methods is straightforward and requires no
 260 change or re-training of the signal neural network. Pseudocode for our agent implementation is
 261 provided in Appendix B.

262 For Single-Turn CASCO, the agent starts with 5 (a hyper-parameter to adjust based on inference budget)
 263 uniformly-sampled tuples of (design variable, utility, efficiency) evaluated by surrogate neural
 264 network. Then the agent iteratively proposes ensembles of candidate design choices, receives neural
 265 network feedback for the entire ensemble, and append them to the example pool. The example pool
 266 is managed as a priority queue with key (utility, efficiency) and presented to the model in ascending
 267 order. The example pool only keeps top-10 samples (also a hyper-parameter) to concise the context.
 268 The process is repeated for a fixed number of iterations, and the best design in the example pool is
 269 chosen for the final design. The fixed number of iterations is another hyperparameter reflecting the
 270 allowed LLM inference budget.

270 To solve Multi-Turn *CASCO*, we warm-start with Single-Turn *CASCO* solution for the first round of
 271 ground truth simulator evaluation, and then append the results to the pool. This process is repeated
 272 for each iteration to find the most promising proposals for simulator evaluation. In short, the Single-
 273 Turn *CASCO* works as an acquisition function for each of the multi-turn steps. The loop terminates
 274 when either the LLM decides that a satisfactory solution is found or the computation cap is reached.
 275

276 4 EXPERIMENTS

277 4.1 EXPERIMENTAL ENVIRONMENT

280 We demonstrate the ability of *CASCO-Agent* on three physics simulators: (1) 1D heat conduction
 281 equation with mixed boundary conditions, (2) 1D compressible inviscid flow with Euler equation,
 282 and (3) 2D transient incompressible Navier–Stokes equation, referred to as *Heat 1D*, *Euler 1D* and
 283 *NS Transient 2D* respectively, for brevity. Appendix A contains details on the design variable space
 284 \mathcal{X} , observation space \mathcal{Y} , and parameter space Θ . We focus on spatial resolution tuning tasks, where
 285 the tunable parameter governs the spatial resolution of the simulation, creating a trade-off between
 286 simulation accuracy and computational cost. The tunable parameters in our experiments are:
 287

- 288 1. The number of grid numbers (*n_space*) for *Heat 1D* and *Euler 1D*
- 289 2. The grid resolution along X-axis (*resolution*) for *NS Transient 2D*

290 We design three precision level goals δ for each task, reflecting moderate to stringent accuracy
 291 requirements in real-world experiments. For each task and each precision level, we evaluate the
 292 methods on around 25 settings varying in environmental parameters.

293 For each problem instance characterized by θ , we first obtain a (near-)optimal design z_θ via brute-
 294 force search that guarantees successful convergence, e.g. through iteratively doubling the parameter
 295 until successful, serving as a reference point for both accuracy and cost. This is solely for the
 296 evaluation of our method and not necessary in practice. We then define the success of the simulation
 297 through the following utility function:

$$298 \Phi(\mathcal{F}(x, \theta), \theta) = \mathbf{1}\{ \|\mathcal{F}(x, \theta) - \mathcal{F}(z_\theta, \theta)\|_2 \leq \delta \}, \quad (9)$$

299 Where $\mathbf{1}$ is the indicator function, $\|\cdot\|_2$ is the root mean square error across dimensions of the
 300 observation space, and δ is a tolerance parameter reflecting various precision needs in real-world
 301 applications. The success rate is defined as the ratio of successful simulations where $\Phi(\mathcal{F}(x, \theta)) = 1$.
 302 The cost \mathbf{C} is defined as previously introduced in our problem formulation.

303 4.2 BASELINES AND SETTING

306 We compare our results against the following baselines. **Bayesian Optimization (BO)**: We use a
 307 classic implementation (Nogueira, 2014) with Gaussian Process (GP) (Rasmussen, 2004) and Upper
 308 Confidence Bound (UCB) (Berk et al., 2020). We used consistent training samples for the signal
 309 neural network *CASCO-Agent* and for the GP regressor to achieve a fair comparison. **Direct query**
 310 to **LLM medels** (*Direct Query*) and the original **Optimization by Prompting (OPRO)** (Yang et al.,
 311 2023) are LLM-based approaches. For all LLM-based methods (including our *CASCO-Agent*), we
 312 design a shared set of prompts explaining the Physics scenario, optimization target and simulator
 313 calling APIs; refer to E for examples. Notably, *OPRO* requires repeated evaluations of the ground-
 314 truth simulator; therefore, we restrict its use to the Multi-Turn setting.

315 For the implementation of *CASCO-Agent*, we trained a lightweight neural network for each task
 316 (*Heat 1D*, *Euler 1D*, and *NS Transient 2D*) separately, each with approximately 10k parameters
 317 and trained on about 4k sampled points per problem. The networks outputs are the RMSE to the
 318 reference solution and the cost. At inference time, we map the predicted RMSE to a utility signal
 319 using the soft utility functions described in Definition 3.3; we also compare using the binary utility
 320 Φ in ablation studies. See Appendix C for details.

321 4.3 METRICS

323 For ease of future reference, we denote the optimization targets in 5 and 6 as respectively R^0 and
 R^m , referring to them as Single-Turn or Multi-Turn *Reward Functions*. We also report success rates

324 P^0 and P^m to help us better understand the qualities of proposed solutions.
325

326

$$327 R^0 = \frac{\Phi(\mathcal{F}(x, \theta), \theta)}{\hat{\mathbf{C}}(x, \theta)}, \quad R^m = \frac{\max_i \Phi(\mathcal{F}(x_i, \theta), \theta)}{\sum_i \hat{\mathbf{C}}(x_i, \theta)}$$

328

330

331 4.4 ANALYSIS

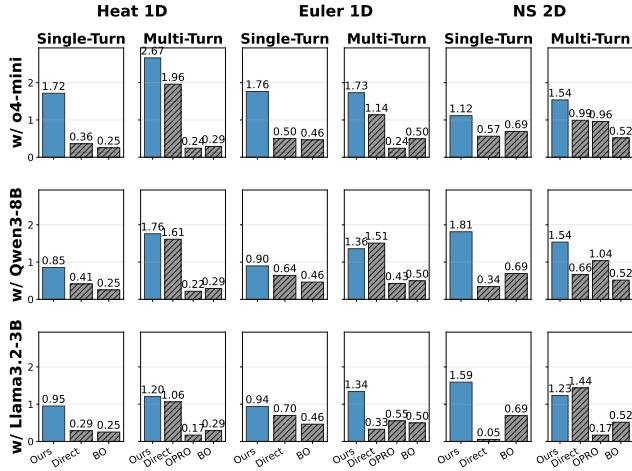
332

333 We refer readers to Table 3 of F for complete results in three scenarios; here we report the following
334 findings that help understand and verify the efficacy of our method.
335

336 **Our method outperforms most
337 baselines in terms of R^0 and R^m .**

338 As shown in Figure 3 and Figure 1,
339 our method outperforms all comparisons
340 in the Single-Turn setting and
341 all but a few exceptions in the Multi-
342 Turn setting. We argue that these sub-
343 optimal cases are due to the inferior
344 reasoning ability of open-source mod-
345 els, causing them to occasionally fail
346 to refine their solutions based on feed-
347 back. Note that in many cases, es-
348 pecially in the easier scenarios *Heat 1D* and *Euler 1D*, OPRO and BO are
349 significantly worse than Direct Query,
350 whereas our method is significantly
351 better. This is because convergence
352 is relatively easy in such scenarios, so
353 the additional ground-truth simulator
354 calls used by OPRO and BO incur ex-
355 tra cost without meaningfully impro-
356 ving the solution. Our method does not
357 require additional ground-truth simu-
358 lator queries.
359

360 **Our method delivers substantial reward gains over Direct Query, especially on medium- and
361 easy-difficulty tasks; on harder tasks, it consistently improves success rate.** As shown in Figure 4, reward improvements are most pronounced in easier scenarios (*Heat 1D* ; low-precision *Euler 1D*). In harder scenarios (medium- to high-precision *Euler 1D* ; *NS Transient 2D*), reward gains are smaller, but success rate improves steadily. This pattern suggests an intrinsic optimization behavior: for unfamiliar questions, *CASCO-Agent* first optimizes correctness, and then optimizes efficiency.
362



363 **Figure 3: Comparison of Single-Turn and Multi-Turn re-
364 wards for all methods.** Each bar shows the mean reward,
365 averaged over all precision levels of a task, for methods on
366 a given base model. As discussed in definition 4.2, OPRO is
367 only considered in the Multi-Turn scenarios. BO is plotted
368 alongside LLM methods for clarity of comparison.

369

370

371

372

373

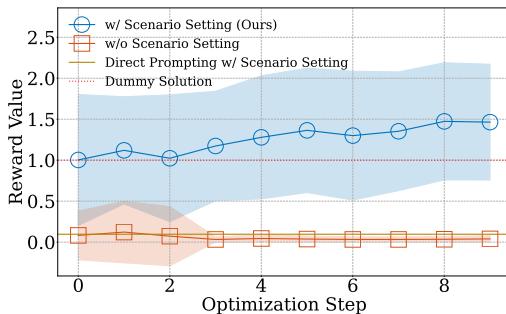
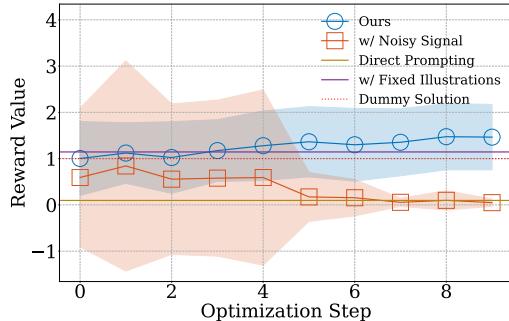
374

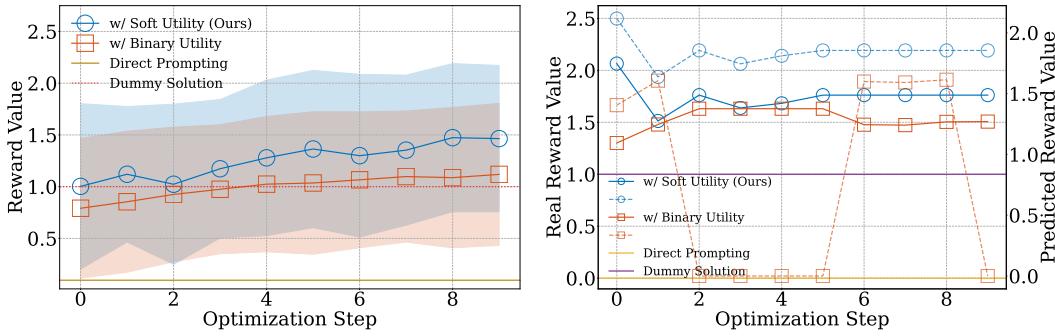
375

376

377

378 **Figure 4: Reward (R^0, R^m) and success rate (P^0, P^m) across all difficulty levels in the Single-
379 Turn setting (left) and the Multi-Turn setting (right).** Tasks are ordered by increasing difficulty:
380 *Heat 1D* , *Euler 1D* , *NS Transient 2D* . Our methods improvements in reward are largest on easy-to-
381 medium tasks and remain present on hard tasks.

378 4.5 ABLATIONS
379380 We present ablation studies for the two main components of *CASCO-Agent*: the surrogate neural
381 network and the LLM agent. All ablation studies are preformed on the same set of problems, *Euler*
382 *ID* with medium precision level, with base model OpenAI o4-mini (OpenAI et al., 2024).
383384
385 Figure 5: Mean Reward over optimization Steps
386 for *CASCO-Agent*, with or without scenario set-
387 ting description in prompt.
388389 Figure 6: Mean Reward over optimization Steps
390 for *CASCO-Agent*, either with surrogate signal,
391 noisy signal or fixed illustrations.
392393 **Physics prior knowledge is necessary to achieve in-context optimization in our tasks.** Figure
394 5 presents an ablation study on whether the scenario setting is included in the LLM’s prompt. We
395 argue that the merits of utilizing LLM in our framework lie in both their in-context optimization
396 abilities and their prior domain knowledge. For the alternative setting (orange lines in 5), we only
397 prompt the model to solve the problem as a numerical optimization problem; see the prompts in
398 E. Figure 5 shows that *CASCO-Agent* (blue lines), with physics prior knowledge, can consistently
399 improve reward to surpass baselines, whereas the trajectory without scenario description fails to
400 achieve improvements and converges to a low-reward local optimum. This behavior is also visible
401 in a case study illustrated in 11a.402 **Feedback signals are important for agent optimization in our tasks.** We study the effects of
403 our surrogate signal network and present the results in figure 6. We compare *CASCO-Agent* with (1)
404 in-context optimization with a fixed set of ground-truth examples for all problems, and (2) our agent
405 equipped with noisy signal from a poorly fitted surrogate model. We experiment on both Single-
406 Turn and Multi-Turn settings in *Euler ID*’s medium precision level with base model GPT-4o-mini.
407 As shown in Figure 6 and 11b, in both the dataset-level pattern and the case study, our method
408 starts from a worse point than that of fixed illustrations’, but surpasses it in later optimization steps;
409 the noisy signal fails to guide the model’s optimization after the first few steps, highlighting the
410 importance of an effective signal model.411 **Soft surrogate signals significantly improve optimization performance compared to binary sur-
412 rogate signals.** We verify the effectiveness of the soft utility (Definition 3.3). Specifically, we com-
413 pare Single-Turn results of our framework under two variants: (a) integrating surrogates with the
414 original binary utility function, and (b) our approach that uses a soft utility function in the surrogate
415 signals. As shown in Figure 7, the soft-utility variant achieves significantly better performance at
416 the dataset level and exhibits a steadier upward trend in the case study.417 We also present a case study in 7b, which plots the predicted reward (**dashed lines**) of the step-wise
418 optimal design for both methods besides the real reward in **solid lines**. As shown by the orange
419 dashed line in 7b, once the model receives a zero-utility signal from the surrogate at step 3, it stops
420 refining and remains at a local optimum. By contrast, the blue line shows that although the model
421 proposes the same point at step 3, the non-zero soft-utility signal it receives enables it to continue
422 refining the solution.423 Complete ablation study results are presented in Table 4 of Appendix F. We show that each com-
424 ponent of *CASCO-Agent*, including the physics prior, the signal NN, and the prompt design all
425 contribute to the final performance. *CASCO-Agent* achieves the Pareto optima of success rate and
426 efficiency for all settings, as shown in Figure 1.



(a) Mean Reward over Optimization Steps for *CASCO-Agent*, using different functions for surrogate signal. (b) Case study. An exemplar optimization trajectory in Single-Turn setting. Notations explained in 4.5.

Figure 7: **Study on soft utility functions vs. binary signals for surrogate signal for o4-mini.**

Surrogate Flexibility. Our framework is agnostic to the underlying surrogate model. While neural networks excel with abundant data, they struggle in data-scarce regimes (< 500 samples, see Table 1). To address this, we demonstrate that the neural backbone in *CASCO-Agent* can be seamlessly substituted with a Gaussian Process (GP) regressor (Brochu et al., 2010; Shahriari et al., 2016), utilizing its posterior mean and variance as feedback signals. This allows *CASCO-Agent* to match strong BO baselines even when data is limited. Since the LLM optimizes based on open-form numerical feedback rather than internal model states, users can adapt the surrogate (NN, GP, or others) to match their specific data availability.

Despite this flexibility, we suppose that the data-abundant regime, and thus the choice of neural networks, is the most practical default. The primary objective of *CASCO-Agent* is to automate parameter tuning in labs previously reliant on manual workflows. Such labs naturally possess extensive archives of historical simulation logs. By simply mining these logs (e.g., via file timestamps), we can construct the large datasets required for training.

Table 1: Performance comparison between *CASCO-Agent* with NN, *CASCO-Agent* with GP and Bayesian Optimization under varying sample sizes. The GP regressor integrated into *CASCO-Agent* is trained with exactly the same hyper-parameters and dataset as the one used for BO.

	50 samples	100 samples	500 samples	full samples ($\sim 4k$)
<i>CASCO-Agent</i> with NN	0.142	0.239	0.471	0.571
BO	0.459	0.418	0.392	0.391
<i>CASCO-Agent</i> with GP	0.465	0.354	0.205	0.342

5 CONCLUSION

We presented the Cost-Aware Simulation Configuration Optimization Agent, a LLM Agent framework for experimental design that focuses on cost-efficiency. Through experiments on three physics simulator environments, each with varying environmental setting and precision requirements, we demonstrated that *CASCO-Agent* consistently outperforms both classical Bayesian optimization baselines and state-of-the-art LLM-based optimizers. Our results highlight its ability to achieve high success rates and favorable cost-efficiency trade-offs, even when direct evaluations are prohibitively expensive. Our method introduces the novel contribution of utilizing a low-dimensional cost-efficiency signal neural network, which through our ablation studies we show significantly improves utility of both single-turn and multi-turn experiment design. These findings suggest that *CASCO-Agent* provides a practical and scalable path toward deploying agentic frameworks in experiment design in scientific discovery pipelines.

Our approach has the following limitations to be explored in future work. The accuracy of *CASCO-Agent* depends on the fidelity of the surrogate, which may under-fit in highly complex or noisy experimental landscapes, and requires some degree of human tuning. Moreover, our data sampling strategy does not guarantee the minimization of sampling size while the model converges. Future work can aim to address these limitations by exploring richer surrogate models, adaptive sampling strategies,

486 and tighter coupling between surrogate predictions and target function evaluation to improve the
487 quality of feedback to LLM. Extending *CASCO-Agent* to multi-objective, higher-dimensional, or
488 real-world experimental systems will further test its scalability and practical utility, paving the way
489 toward more autonomous and cost-efficient experimental design agents.
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REPRODUCIBILITY
541542 We evaluate this work on three physics-solver environments that we implemented: *Heat 1D*, *Euler*
543 *1D*, and *NS Transient 2D* which include solvers, reference solutions, problem sets, and evaluation
544 pipelines. We plan to extend and organize these into a benchmark to aid the open-source commu-
545 nity in solving Cost-Aware Simulation-Based Configuration Optimization (*CASCO*) better. As the
546 benchmark is still in progress, our solvers, evaluation pipeline, etc. may not yet be robust enough
547 for convenient reproduction. Therefore, we consider it appropriate to open-source the code for this
548 work after acceptance, including not only a (subset) of the aforementioned benchmark but also the
549 neural-network training, the main framework, and the plotting components.550
551 ETHICS STATEMENT
552553 This work studies cost-aware experimental design agents for physics simulations (e.g., 1D Heat
554 Conduction and Euler equations) and does not involve human subjects, personal data, or sensitive
555 attributes. All data are synthetic or standard simulation benchmarks; no personally identifiable
556 information is used or created. We comply with licenses and usage terms for third-party software
557 and models; any proprietary APIs were accessed under their respective terms.558 Potential risks are limited. As our method can improve search efficiency, there is a generic risk
559 of misuse to optimize unsafe physical systems. To mitigate this, we focus on pedagogical and
560 widely used benchmark scenarios with explicit constraints and provide documentation intended for
561 scientific replication rather than domain-specific exploitation.562 Fairness and demographic bias considerations are not applicable to our setting. The environmental
563 impact is modest: we train lightweight surrogates on small datasets and use limited inference bud-
564 gets; we report hardware and runtime details to enable carbon accounting. For reproducibility, we
565 will release code, configurations, and seeds, and follow standard reporting checklists. We declare no
566 conflicts of interest and no concurrent submissions related to this work.567
568 THE USE OF LARGE LANGUAGE MODELS
569570 In this work, Large Language Models are primarily used for assisting in polishing the mathematical
571 formulation in 3.3, explaining the results in 4.5 and generating the plotting code for Figure 1, 3, 4,
572 5, 6 and 7.573 They are also used for polishing text in some sections. They were NOT used in research ideation
574 and/or writing.576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Roel C.G.M. Loonen, Samuel de Vries, and Francesco Goia. 15 - inverse design for advanced
597 building envelope materials, systems and operation. In Eugenia Gasparri, Arianna Brambilla,
598 Gabriele Lobaccaro, Francesco Goia, Annalisa Andaloro, and Alberto Sangiorgio, editors, *Re-*
599 *thinking Building Skins*, Woodhead Publishing Series in Civil and Structural Engineering, pages
600 377–402. Woodhead Publishing, 2022. ISBN 978-0-12-822477-9. doi: <https://doi.org/10.1016/B978-0-12-822477-9.00022-X>. URL <https://www.sciencedirect.com/science/article/pii/B978012822477900022X>.

603 Rahma Jabbar, Rateb Jabbar, and Slaheddine Kamoun. Recent progress in generative adversarial
604 networks applied to inversely designing inorganic materials: A brief review. *Computational Ma-*
605 *terials Science*, 213:111612, 2022. ISSN 0927-0256. doi: <https://doi.org/10.1016/j.commatsci.2022.111612>. URL <https://www.sciencedirect.com/science/article/pii/S092702562200355X>.

608 Nathan P. Lawrence, Seshu Kumar Damarla, Jong Woo Kim, Aditya Tulsyan, Faraz Amjad, Kai
609 Wang, Benoit Chachuat, Jong Min Lee, Biao Huang, and R. Bhushan Gopaluni. Machine learning
610 for industrial sensing and control: A survey and practical perspective. *Control Engineering
611 Practice*, 145:105841, April 2024. ISSN 0967-0661. doi: 10.1016/j.conengprac.2024.105841.
612 URL <http://dx.doi.org/10.1016/j.conengprac.2024.105841>.

613 Marin Vlastelica, Tatiana López-Guevara, Kelsey Allen, Peter Battaglia, Arnaud Doucet, and Kim-
614 berley Stachenfeld. Diffusion generative inverse design, 2023. URL <https://arxiv.org/abs/2309.02040>.

616 Sean Molesky, Zin Lin, Alexander Y. Piggott, Weiliang Jin, Jelena Vuckovi, and Alejandro W. Ro-
617 driguez. Inverse design in nanophotonics. *Nature Photonics*, 12(11):659–670, November 2018.
618 ISSN 1749-4893. doi: 10.1038/s41566-018-0246-9. URL <https://doi.org/10.1038/s41566-018-0246-9>.

621 J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning
622 algorithms. *Advances in neural information processing systems*, 25, 2012.

623 Y. Yao, F. Liu, J. Cheng, and Q. Zhang. Evolve cost-aware acquisition functions using large language
624 models. In *International Conference on Parallel Problem Solving from Nature*, pages 374–390.
625 Springer, 2024.

627 Y. S. Perera, D. Ratnaweera, C. H. Dasanayaka, and C. Abeykoon. The role of artificial intelligence-
628 driven soft sensors in advanced sustainable process industries: A critical review. *Engineering
629 Applications of Artificial Intelligence*, 121:105988, 2023.

630 J. C. Fromer and C. W. Coley. An algorithmic framework for synthetic cost-aware decision making
631 in molecular design. *Nature Computational Science*, 4(6):440–450, 2024.

633 A. Bharti, D. Huang, S. Kaski, and F. Briol. Cost-aware simulation-based inference. *arXiv preprint
634 arXiv:2410.07930*, 2024.

635 S. Ren, P. Jian, Z. Ren, C. Leng, C. Xie, and J. Zhang. Towards scientific intelligence: A survey of
636 llm-based scientific agents, 2025. URL <https://arxiv.org/abs/2503.24047>.

637 M. Zhong, C. An, W. Chen, J. Han, and P. He. Seeking neural nuggets: Knowledge transfer in large
638 language models from a parametric perspective, 2024. URL <https://arxiv.org/abs/2310.11451>.

641 Q. Lv, T. Liu, and H. Wang. Exploiting edited large language models as general scientific optimizers.
642 *arXiv preprint arXiv:2503.09620*, 2025.

643 Y. Roohani, A. Lee, Q. Huang, J. Vora, Z. Steinhart, K. Huang, A. Marson, P. Liang, and J. Leskovec.
644 *Biodiscoveryagent*: An ai agent for designing genetic perturbation experiments, 2025. URL
645 <https://arxiv.org/abs/2405.17631>.

647 T. Liu, N. Astorga, N. Seedat, and M. Schaar. Large language models to enhance bayesian optimiza-
648 tion, 2024. URL <https://arxiv.org/abs/2402.03921>.

648 B. Lyu, Y. Cao, D. Watson-Parris, L. Bergen, T. Berg-Kirkpatrick, and R. Yu. Adapting while
 649 learning: Grounding llms for scientific problems with intelligent tool usage adaptation. *arXiv*
 650 *preprint arXiv:2411.00412*, 2024.

651 C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen. Large language models as
 652 optimizers. In *The Twelfth International Conference on Learning Representations*, 2023.

653 F. Nogueira. Bayesian optimization: Open source constrained global optimization tool for python.
 654 <https://github.com/bayesian-optimization/BayesianOptimization>,
 655 2014. Accessed: 2025-08-25.

656 M. D. Knudsen, L. Georges, K. S. Skeie, and S. Petersen. Experimental test of a black-box economic
 657 model predictive control for residential space heating. *Applied energy*, 298:117227, 2021.

658 Zi Wang, George E Dahl, Kevin Swersky, Chansoo Lee, Zachary Nado, Justin Gilmer, Jasper Snoek,
 659 and Zoubin Ghahramani. Pre-trained gaussian processes for bayesian optimization. *Journal of*
 660 *Machine Learning Research*, 25(212):1–83, 2024a.

661 Zhou Fan, Xinran Han, and Zi Wang. Hyperbo+: Pre-training a universal prior for bayesian opti-
 662 mization with hierarchical gaussian processes. *arXiv preprint arXiv:2212.10538*, 2022.

663 B. Trabucco, X. Geng, A. Kumar, and S. Levine. Design-bench: Benchmarks for data-driven of-
 664 fline model-based optimization. In *International Conference on Machine Learning*, pages 21658–
 665 21676. PMLR, 2022.

666 H. Zheng, W. Chu, B. Zhang, Z. Wu, A. Wang, B. T. Feng, C. Zou, Y. Sun, N. Kovachki, Z. E. Ross,
 667 and . others. Inversebench: Benchmarking plug-and-play diffusion priors for inverse problems in
 668 physical sciences. *arXiv preprint arXiv:2503.11043*, 2025a.

669 Mila Goretzki, Jakob H Macke, and Michael Deistler. Amortized bayesian decision making for
 670 simulation-based models. *arXiv preprint arXiv:2312.02674*, 2023.

671 D. A. Boiko, R. MacKnight, B. Kline, and G. Gomes. Autonomous chemical research with large
 672 language models. *Nature*, 624(7992):570–578, 2023.

673 C. Lu, C. Lu, R. T. Lange, J. Foerster, J. Clune, and D. Ha. The ai scientist: Towards fully automated
 674 open-ended scientific discovery. *arXiv preprint arXiv:2408.06292*, 2024.

675 D. Wang, Y. Wang, X. Jiang, Y. Zhang, Y. Pang, and M. Zhang. When large language models meet
 676 optical networks: paving the way for automation. *Electronics*, 13(13):2529, 2024b.

677 T. Zheng, Z. Deng, H. T. Tsang, W. Wang, J. Bai, Z. Wang, and Y. Song. From automation to auton-
 678 omy: A survey on large language models in scientific discovery. *arXiv preprint arXiv:2505.13259*,
 679 2025b.

680 J. S. Chan, N. Chowdhury, O. Jaffe, J. Aung, D. Sherburn, E. Mays, G. Starace, K. Liu, L. Maksin,
 681 T. Patwardhan, L. Weng, and A. Mdry. Mle-bench: Evaluating machine learning agents on ma-
 682 chine learning engineering, 2025. URL <https://arxiv.org/abs/2410.07095>.

683 H. Hao, X. Zhang, and A. Zhou. Large language models as surrogate models in evolutionary algo-
 684 rithms: A preliminary study. *Swarm and Evolutionary Computation*, 91:101741, 2024.

685 X. Song, O. Li, C. Lee, B. Yang, D. Peng, S. Perel, and Y. Chen. Omnipred: Language models as
 686 universal regressors. *arXiv preprint arXiv:2402.14547*, 2024.

687 D. Wu, J. Wang, Y. Meng, Y. Zhang, L. Sun, and Z. Wang. Catp-llm: Empowering large language
 688 models for cost-aware tool planning. *arXiv preprint arXiv:2411.16313*, 2024.

689 X. Huan, J. Jagalur, and Y. Marzouk. Optimal experimental design: Formulations and computations.
 690 *Acta Numerica*, 33:715840, July 2024. ISSN 1474-0508. doi: 10.1017/s0962492924000023.
 691 URL <http://dx.doi.org/10.1017/S0962492924000023>.

692 Y. Chen, X. Song, C. Lee, Z. Wang, R. Zhang, D. Dohan, K. Kawakami, G. Kochanski, A. Doucet,
 693 M. Ranzato, and . others. Towards learning universal hyperparameter optimizers with transfor-
 694 mers. *Advances in Neural Information Processing Systems*, 35:32053–32068, 2022.

702 P. Ghafariasl, A. Mahmoudan, M. Mohammadi, A. Nazarpavar, S. Hoseinzadeh, M. Fathali,
 703 S. Chang, M. Zeinalnezhad, and D. A. Garcia. Neural network-based surrogate modeling and
 704 optimization of a multigeneration system. *Applied Energy*, 364:123130, 2024.

705 D. Hou and R. Evins. A protocol for developing and evaluating neural network-based surrogate
 706 models and its application to building energy prediction. *Renewable and Sustainable Energy
 707 Reviews*, 193:114283, 2024.

708 B. Smucker, M. Krzywinski, and N. Altman. Optimal experimental design. *Nat. Methods*, 15(8):
 709 559–560, 2018.

710 C. E. Rasmussen. *Gaussian Processes in Machine Learning*, pages 63–71. Springer Berlin Heidelberg,
 711 Berlin, Heidelberg, 2004. ISBN 978-3-540-28650-9. doi: 10.1007/978-3-540-28650-9_4.
 712 URL https://doi.org/10.1007/978-3-540-28650-9_4.

713 J. Berk, S. Gupta, S. Rana, and S. Venkatesh. Randomised gaussian process upper confidence bound
 714 for bayesian optimisation, 2020. URL <https://arxiv.org/abs/2006.04296>.

715 . OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
 716 J. Altenschmidt, S. Altman, S. Anadkat, R. Avila, I. Babuschkin, S. Balaji, V. Balcom, P. Bal-
 717 tescu, H. Bao, M. Bavarian, J. Belgum, I. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner,
 718 L. Bogdonoff, O. Boiko, M. Boyd, A. Brakman, G. Brockman, T. Brooks, M. Brundage, K. But-
 719 ton, T. Cai, R. Campbell, A. Cann, B. Carey, C. Carlson, R. Carmichael, B. Chan, C. Chang,
 720 F. Chantzis, D. Chen, S. Chen, R. Chen, J. Chen, M. Chen, B. Chess, C. Cho, C. Chu, H. W.
 721 Chung, D. Cummings, J. Currier, Y. Dai, C. Decareaux, T. Degry, N. Deutsch, D. Deville, A. Dhar,
 722 D. Dohan, S. Dowling, S. Dunning, A. Ecoffet, A. Eleti, T. Eloundou, D. Farhi, L. Fedus, N. Fe-
 723 lix, S. P. Fishman, J. Forte, I. Fulford, L. Gao, E. Georges, C. Gibson, V. Goel, T. Gogineni,
 724 G. Goh, R. Gontijo-Lopes, J. Gordon, M. Grafstein, S. Gray, R. Greene, J. Gross, S. S. Gu,
 725 Y. Guo, C. Hallacy, J. Han, J. Harris, Y. He, M. Heaton, J. Heidecke, C. Hesse, A. Hickey,
 726 W. Hickey, P. Hoeschele, B. Houghton, K. Hsu, S. Hu, X. Hu, J. Huizinga, S. Jain, S. Jain,
 727 J. Jang, A. Jiang, R. Jiang, H. Jin, D. Jin, S. Jomoto, B. Jonn, H. Jun, T. Kaftan, . Kaiser,
 728 A. Kamali, I. Kanitscheider, N. S. Keskar, T. Khan, L. Kilpatrick, J. W. Kim, C. Kim, Y. Kim,
 729 J. H. Kirchner, J. Kiro, M. Knight, D. Kokotajlo, . Kondraciuk, A. Kondrich, A. Konstantinidis,
 730 K. Kosic, G. Krueger, V. Kuo, M. Lampe, I. Lan, T. Lee, J. Leike, J. Leung, D. Levy, C. M. Li,
 731 R. Lim, M. Lin, S. Lin, M. Litwin, T. Lopez, R. Lowe, P. Lue, A. Makanju, K. Malfacini, S. Man-
 732 ning, T. Markov, Y. Markovski, B. Martin, K. Mayer, A. Mayne, B. McGrew, S. M. McKinney,
 733 C. McLeavey, P. McMillan, J. McNeil, D. Medina, A. Mehta, J. Menick, L. Metz, A. Mishchenko,
 734 P. Mishkin, V. Monaco, E. Morikawa, D. Mossing, T. Mu, M. Murati, O. Murk, D. Mély, A. Nair,
 735 R. Nakano, R. Nayak, A. Neelakantan, R. Ngo, H. Noh, L. Ouyang, C. O’Keefe, J. Pachocki,
 736 A. Paino, J. Palermo, A. Pantuliano, G. Parascandolo, J. Parish, E. Parparita, A. Passos, M. Pavlov,
 737 A. Peng, A. Perelman, F. Avila Belbute Peres, M. Petrov, H. P. Oliveira Pinto, . Michael, . Poko-
 738 rny, M. Pokrass, V. H. Pong, T. Powell, A. Power, B. Power, E. Proehl, R. Puri, A. Radford,
 739 J. Rae, A. Ramesh, C. Raymond, F. Real, K. Rimbach, C. Ross, B. Rotsted, H. Roussez, N. Ryder,
 740 M. Saltarelli, T. Sanders, S. Santurkar, G. Sastry, H. Schmidt, D. Schnurr, J. Schulman, D. Sel-
 741 sam, K. Sheppard, T. Sherbakov, J. Shieh, S. Shoker, P. Shyam, S. Sidor, E. Sigler, M. Simens,
 742 J. Sitkin, K. Slama, I. Sohl, B. Sokolowsky, Y. Song, N. Staudacher, F. P. Such, N. Summers,
 743 I. Sutskever, J. Tang, N. Tezak, M. B. Thompson, P. Tillet, A. Tootoonchian, E. Tseng, P. Tuggle,
 744 N. Turley, J. Tworek, J. F. C. Uribe, A. Vallone, A. Vijayvergiya, C. Voss, C. Wainwright, J. J.
 745 Wang, A. Wang, B. Wang, J. Ward, J. Wei, C. Weinmann, A. Welihinda, P. Welinder, J. Weng,
 746 L. Weng, M. Wiethoff, D. Willner, C. Winter, S. Wolrich, H. Wong, L. Workman, S. Wu, J. Wu,
 747 M. Wu, K. Xiao, T. Xu, S. Yoo, K. Yu, Q. Yuan, W. Zaremba, R. Zellers, C. Zhang, M. Zhang,
 748 S. Zhao, T. Zheng, J. Zhuang, W. Zhuk, and B. Zoph. Gpt-4 technical report, 2024. URL
 749 <https://arxiv.org/abs/2303.08774>.

750 Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian optimization of expensive
 751 cost functions, with application to active user modeling and hierarchical reinforcement learning,
 752 2010. URL <https://arxiv.org/abs/1012.2599>.

753 Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the
 754 human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1):
 755 148–175, 2016. doi: 10.1109/JPROC.2015.2494218.

756 Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
757 *Mathematical Programming*, 45(1):503–528, August 1989. ISSN 1436-4646. doi: 10.1007/
758 BF01589116. URL <https://doi.org/10.1007/BF01589116>.

759

760 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
761 Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Prettenhofer,
762 Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu
763 Brucher, Matthieu Perrot, and Édouard Duchiensnay. Scikit-learn: Machine learning in python,
764 2018. URL <https://arxiv.org/abs/1201.0490>.

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A EXPERIMENTAL ENVIRONMENT
811812 **Heat Transfer 1D. (Heat 1D)** This solver addresses the 1D heat conduction equation:

813
814
$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$

815

816 using explicit finite difference methods with natural convection boundary conditions at $x = 0$ and
817 adiabatic conditions at $x = L$. The tunable parameters include the spatial resolution (n_space)
818 and the CFL number (cfl) that determines the simulation time step by:

819
820
$$\Delta t = cfl \times \frac{(\Delta x)^2}{2\alpha},$$

821

822 where α is the thermal diffusivity. The computational cost follows the relationship $C = n_{\text{space}} \times$
823 n_t , where n_t is the number of time steps accumulated in the solver. The metric for convergence
824 is the RMSE of the heat flux at the convection boundary at the final time step. This simulation has
825 25 different profiles with varying initial uniform temperatures and physical properties, generating
826 148 tasks in total, counting both Single-Turn and Multi-Turn settings.827 **Euler 1D. (Euler 1D)** This solver implements the 1D Euler equations for compressible flow:

828
829
$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} = 0$$

830

831 using the MUSCL-Roe method with superbee limiter for high-resolution shock capturing. The tun-
832 able parameters include the CFL number (cfl) that determines the simulation time step by:

833
834
$$\Delta t = cfl \times \frac{\Delta x}{|\lambda|_{\max}},$$

835

836 where $|\lambda|_{\max}$ is the maximum eigenvalue of the flux Jacobian, the spatial resolution (n_space), the
837 limiter parameter beta for generalized minmod flux limiter, and the blending parameter k between
838 0-th and 1-st order interpolation scheme. The computational cost follows the relationship $C =$
839 $n_{\text{space}} \times n_t$, where n_t is the number of time steps accumulated in the solver. Convergence
840 is evaluated through multiple criteria: RMSE of the solution fields, positivity preservation of density
841 and pressure, and shock consistency validation. The dataset encompasses 3 classical benchmark
842 profiles (Sod shock tube, Lax problem, and Mach 3), generating a total of 134 tasks, counting both
843 Single-Turn and Multi-Turn settings.844 **Transient Navier-Stokes 2D. (NS Transient 2D)** This solver implements the 2D transient incom-
845 pressible Navier-Stokes equations:

846
847
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

848
849
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

850
851
$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{\partial p}{\partial y} + \frac{1}{Re} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$

852

853 where u, v are velocity components, p is pressure, and Re is the Reynolds number. The tunable
854 parameters include the spatial resolution (resolution) that determines the computational grid
855 size, the CFL number (cfl) controlling time step stability through $\Delta t = cfl \times \Delta x$, the relaxation
856 factor (relaxation_factor) for pressure correction convergence, and the residual threshold
857 (residual_threshold) for pressure solver convergence. The computational cost follows the
858 relationship $C = 2 \times \text{resolution}^2 \times (\text{num_steps} + \text{total_pressure_iterations})$,
859 where the factor of 2 accounts for the fixed aspect ratio domain configuration with $x_{\text{resolution}} =$
860 $2 \times \text{resolution}$. Convergence is evaluated through normalized velocity RMSE criteria, with
861 temporal evolution tracked throughout the simulation. The dataset encompasses 18 benchmark
862 profiles across 6 different boundary conditions (simple circular obstacles, complex geometries, random
863 obstacle fields, dual inlet/outlet configurations, dense obstacle arrays, and dragon-shaped obstacles)
864 tested at three Reynolds numbers ($Re=1000, 3000, 6000$), generating a total of 44 tasks across dif-
865 ferent precision levels and geometric complexities.

864 **Dummy Solution Search.** For each task, we find optimal solutions that meet both accuracy requirements and have the lowest cost using brute-force search. Given our parameters have a monotonic relationship between cost and accuracy (i.e., they are spatial resolution), we start with a coarse value and Multi-Turnly refine it with fixed ratios (e.g., halve the time step size, double the spatial resolution) until the distance between adjacent runs is within the accuracy threshold. For single-turn tasks, we set the reference cost to the optimal cost found by brute-force search. For multi-turn tasks, we set the reference cost to the accumulated cost incurred during the brute-force search.

872 B ALGORITHMIC DIAGRAM

874 **Algorithm 1** *Solve*, Single-Turn CASCO-Agent Framework

875 1: **Input:** Forward experimental process \mathcal{F} , design space \mathcal{X} , environment parameters θ , neural
 876 surrogate \mathcal{S} , number of iteration N , history context length K , initial sample size m .
 877 2: Initialize LLM design-value history as a priority queue \mathcal{M}
 878 3: Push to \mathcal{M} uniformly sampled initial design-value pairs $\{(x_j, \Phi_j^{pred}, \hat{\mathbf{C}}_j^{pred})\}_{j=1}^m$, evaluated by
 879 \mathcal{S}
 880 4: **repeat**
 881 5: LLM proposes candidate designs $\{x_i\}_{i=1}^k$
 882 6: Evaluate candidates with neural surrogate: $(\Phi_i^{pred}, \hat{\mathbf{C}}_i^{pred}) \leftarrow \mathcal{S}(x_i, \theta)$ for $i = 1, \dots, k$
 883 7: Push $\{(x_i, \Phi_i^{pred}, \hat{\mathbf{C}}_i^{pred})\}$ to \mathcal{M} , keeping only top- K samples.
 884 8: **until** Number of iterations N reached
 885 9: **Output:** $x^* = \arg \max_{x_i} \frac{\Phi(\mathcal{S}(x_i, \theta), \theta)}{\mathbf{C}'(x_i, \theta)}$ from design-value history.

888 **Algorithm 2** Multi-Turn CASCO-Agent Framework

889 1: **Input:** Forward experimental process \mathcal{F} , design space \mathcal{X} , environment parameters θ , neural
 890 surrogate \mathcal{S} , number of iteration for Single-Turn solution N , history context length K , initial
 891 sample size m , maximum allowed number of ground-truth evaluation T .
 892 2: Obtain Single-Turn solution $x = \text{Solve}(\mathcal{F}, \mathcal{X}, \theta, \mathcal{S}, N, K, m)$
 893 3: Initialize solution sequence as a queue $\mathcal{A} = \{x_0\}$
 894 4: Initialize LLM ground-truth design-value history as a priority queue \mathcal{M}
 895 5: Evaluate with ground-truth simulator $(\Phi_0^{gt}, \hat{\mathbf{C}}_0^{gt}) \leftarrow \mathcal{F}(\emptyset, \theta)$
 896 6: Push $(x_0, \Phi_0^{gt}, \hat{\mathbf{C}}_0^{gt})$ to \mathcal{M}
 897 7: **repeat**
 898 8: LLM agent proposes candidate designs $\{x_i\}_{i=1}^k$
 899 9: Evaluate candidates with neural surrogate: $(\Phi_i^{pred}, \hat{\mathbf{C}}_i^{pred}) \leftarrow \mathcal{S}(x_i, \theta)$ for $i = 1, \dots, k$
 900 10: Add top surrogate-evaluated pair $(x_i, \Phi_i^{pred}, \hat{\mathbf{C}}_i^{pred})$ to solution sequence \mathcal{A}
 901 11: Evaluate with ground-truth simulator $(\Phi_i^{gt}, \hat{\mathbf{C}}_i^{gt}) \leftarrow \mathcal{F}(x_i, \theta)$
 902 12: Push $\{(x_i, \Phi_i^{gt}, \hat{\mathbf{C}}_i^{gt})\}$ to \mathcal{M} , keeping only top- K samples
 903 13: **until** LLM outputs *should_stop* = *True* or number of iterations reaches T
 904 14: Outputs \mathcal{A}

906 C NEURAL NETWORK TRAINING

909 We train one neural-network for each problem (*Heat 1D*, *Euler 1D*, *NS Transient 2D*)’s all precision
 910 levels; each network’s input and output dimension are as described in 3.2.

911 We uniformly sample design and environmental parameters on coarse grids. We specifically in-
 912 clude environmental parameters to enable interpolation across conditions while avoiding training
 913 and tracking multiple network instances for different environment combinations. We provide the
 914 range of inputs (environmental parameters and tunable parameters) as follows, from which we per-
 915 formed uniform sampling, and statistics of sampled targets in Table 2. We stress that while our
 916 target dimensions have drastically different ranges and high variance, we perform in-dimension nor-
 917 malization as shown in Figure 9, therefore achieving satisfactory training results shown in Figure
 918 8.

```

918
919
920 Heat 1D:
921   Environmental Parameters:
922     L: [0.1, 0.3] # Wall thickness [m] - uniform random in range
923     k: [0.5, 1.0] # Thermal conductivity [W/m-K] - uniform random in
924     # range
925     h: [0.1, 10000] # Convection coefficient [W/mš-K] - log-uniform
926     # random in range
927     rho: [1000, 2000] # Density [kg/mš] - uniform random in range
928     cp: [800, 1000] # Specific heat [J/kg-K] - uniform random in range
929     T_inf: [-40, 40] # Ambient temperature [šC] - uniform random in
930     # range
931     T_init: [0, 30] # Initial temperature [šC] - uniform random in
932     # range
933     record_dt: 10.0 # Time interval between recordings [s] - fixed
934     end_frame: 24 # Simulation end frames - fixed
935
936   Tunable Parameters:
937     n_space: [64, 2048] # Number of spatial points (iterative search:
938     # initial=64, factor=2, max_iter=6)
939
940 Euler 1D:
941   Environmental Parameters:
942     L: 1.0 # Domain length - fixed
943     gamma: 1.4 # Ratio of specific heats - fixed
944     case: {"sod", "lax", "mach_3"} # Initial condition name - 3
945     # discrete values across profiles
946     record_dt: {0.02, 0.012, 0.009} # Time interval between recordings
947     # - specific values per case
948     end_frame: 10 # Simulation end frames - fixed
949
950   Tunable Parameters:
951     n_space: [256, 4096] # Number of grid cells (iterative search:
952     # initial=256, factor=2, max_iter=7)
953
954 NS Transient 2D:
955   Environmental Parameters:
956     boundary_condition: {1, 2, 3, 4, 5, 6} # 6 boundary condition types
957     # across 18 profiles
958     reynolds_num: {1000, 3000, 6000} # Reynolds number - 3 discrete
959     # values
960     vorticity_confinement: 0.0 # Fixed across profiles
961     total_runtime: 1.0 # Fixed across profiles - fixed
962     no_dye: False # Fixed across profiles
963     cpu: False # Fixed across profiles
964     visualization: 0 # Fixed across profiles
965     advection_scheme: "cip" # Fixed across profiles
966
967   Tunable Parameters:
968     resolution: [50, 400] # Grid resolution (iterative search:
969     # initial=50, factor=2, max_iter=4)
970

```

Table 2: Dataset Statistics.

	RMSE Loss	Cost	N. samples
<i>Heat 1D</i>	$4.47e^{-4} \pm 9.50e^{-4}$	$8.33e^7 \pm 1.27e^8$	4440
<i>Euler 1D</i>	$3.48e^{-2} \pm 3.60e^{-2}$	$2.76e^6 \pm 2.42e^6$	4020
<i>NS Transient 2D</i>	$2.55e^{-1} \pm 1.90e^{-1}$	$2.11e^8 \pm 1.94e^8$	1320

For all problems, we train neural-network with the same structure as shown in 9; to achieve optimal results for individual problems, we compare the training results with three sets of structures for

972 each problem and choose the one with the best test loss. Specifically, we experiment with the
 973 combinations of :

```
975
976 h: {2, 3, 4, 6}
977 d: {64, 128, 256}
```

979 Where h, d follow the notation in 9, and the hyper-parameters we used are shown as follows:
 980

```
981
982 activation_mod: ReLU
983 layer_norm: False
984 res_connection: False
985
986 batch: 16
987 epochs: 40
988 steps_per_epoch: 200
989
990 peak_lr: 1e-3
991 weight_decay: 1e-4
992 warmup_steps: 100
993 decay_steps: 1000
994 gnorm_clip: 1.0
995 accumulation_steps: 100
```

996 We show the results of our best checkpoints for the three problems in 8.
 997

D SOFT UTILITY FUNCTION

1000 *Proof of Proposition 3.5.* Let $b(y, \theta) := \mathbf{1}\{\Phi(y, \theta) = 1\}$ be the binary utility and let $s_f(y, \theta) :=$
 1001 $f(y, \theta)$ be any soft utility satisfying Definition 3.3. By *normalization* (Def. 3.3(ii)), $f(y, \theta) \in [0, 1]$,
 1002 and by *feasibility calibration* (Def. 3.3(i)), $f(y, \theta) = 1$ iff $y \in \mathcal{G}_\theta = \{y : \Phi(y, \theta) = 1\}$ and
 1003 $\sup_{y \notin \mathcal{G}_\theta} f(y, \theta) < 1$. Hence the postprocessing map

$$1004 \tau : [0, 1] \rightarrow \{0, 1\}, \quad \tau(u) := \mathbf{1}\{u = 1\}$$

1005 is well-defined (by normalization) and satisfies $b(y, \theta) = \tau(f(y, \theta))$ for all (y, θ) (by feasibility
 1006 calibration). Thus the binary signal is a deterministic garbling of the soft signal.
 1007

1008 Fix a base model and budget $T \geq 1$, and write the histories $h_{t-1}^{\text{bin}} = \{(x_s, y_s, b(y_s, \theta))\}_{s=1}^{t-1}$ and
 1009 $h_{t-1}^f = \{(x_s, y_s, f(y_s, \theta))\}_{s=1}^{t-1}$; then $h_{t-1}^{\text{bin}} = \tau(h_{t-1}^f)$ coordinate-wise. Given any binary-utility
 1010 policy π_{bin} , define a soft-signal policy $\tilde{\pi}_f$ that *simulates* it via

$$1011 \tilde{\pi}_f(\cdot | \theta, h_{t-1}^f) := \pi_{\text{bin}}(\cdot | \theta, \tau(h_{t-1}^f)).$$

1012 Under identical environment randomness, $\tilde{\pi}_f$ induces the same trajectory distribution as π_{bin} , hence

$$1013 \mathbb{E}_{x_T \sim \tilde{\pi}_f(\cdot | \theta)}[R^0(x_T, \theta)] = \mathbb{E}_{x_T \sim \pi_{\text{bin}}(\cdot | \theta)}[R^0(x_T, \theta)] \quad \text{for all } \theta.$$

1014 Taking expectation over the task distribution yields equality in expectation.

1015 By *monotone alignment* (Def. 3.3(iii)), if $\Phi(y_1, \theta) \preceq \Phi(y_2, \theta)$ then $f(y_1, \theta) \leq f(y_2, \theta)$; hence
 1016 ranking by f is orderpreserving with respect to Φ . Since $R^0(x, \theta)$ (Eq. (4)) is nondecreasing in Φ
 1017 (its numerator) and $f = 1$ iff $\Phi = 1$ (by feasibility calibration), using f to refine decisions cannot
 1018 decrease the expected reward relative to $\tilde{\pi}_f$, and is strictly better whenever such refinements occur
 1019 with positive probability.

1020 Now let π_f denote any soft-signal policy produced by our framework. Since π_f can always ignore
 1021 the extra information and implement $\tilde{\pi}_f$, we have

$$1022 \mathbb{E}_\theta \mathbb{E}_{x_T \sim \pi_f(\cdot | \theta)}[R^0(x_T, \theta)] \geq \mathbb{E}_\theta \mathbb{E}_{x_T \sim \tilde{\pi}_f(\cdot | \theta)}[R^0(x_T, \theta)]. \quad (*)$$

1023 The case $T = 1$ (zero-shot) follows verbatim by replacing x_T with the single-step x . \square

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

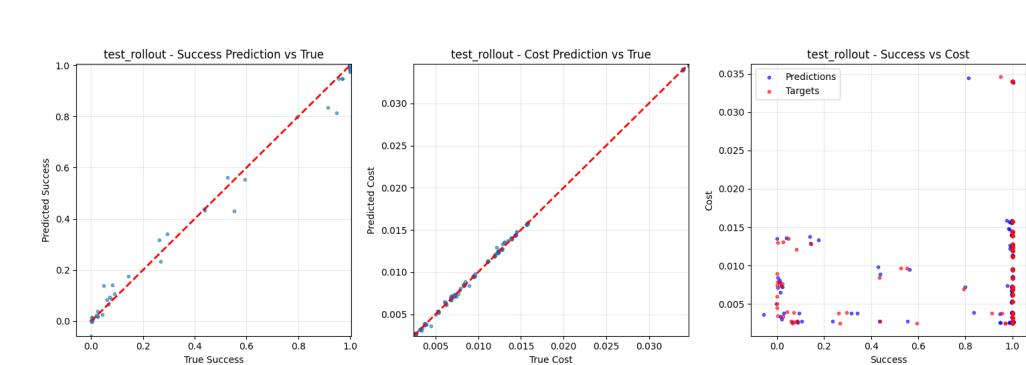
1063

1064

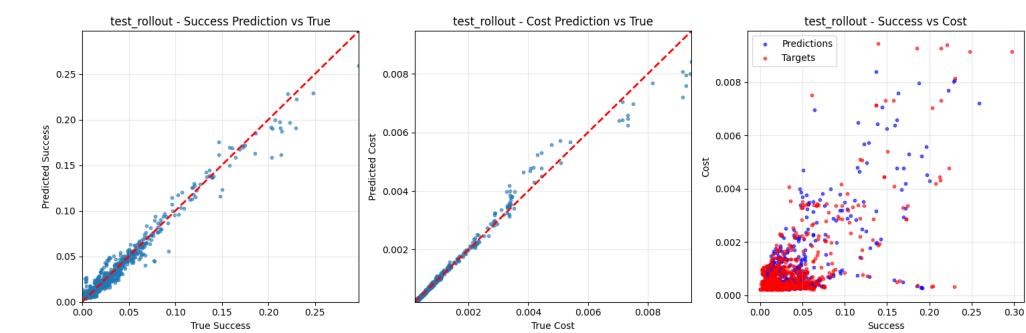
1065

1066

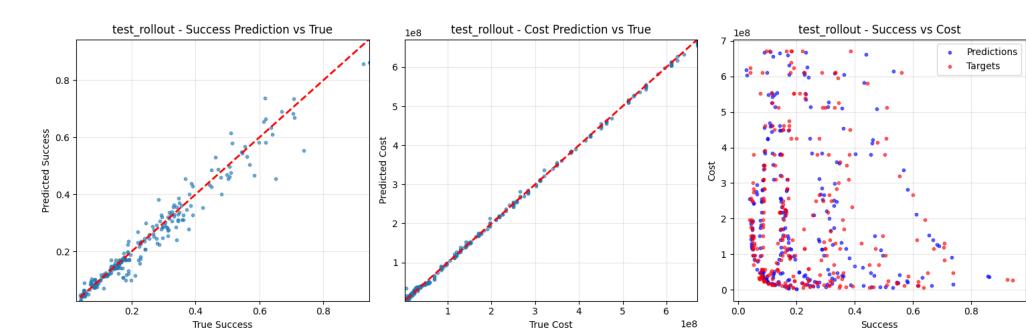
1067



(a) Heat ID



(b) Euler ID



(c) NS Transient 2D

Figure 8: Test results of our best neural network for each task. The plots from left to right respectively mean: (left) soft utility signal of true RMSE loss vs. soft utility signal of predicted RMSE loss, (middle) true cost vs. predicted cost, (right) distribution in the cost-utility space of predicted vs. true points.

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

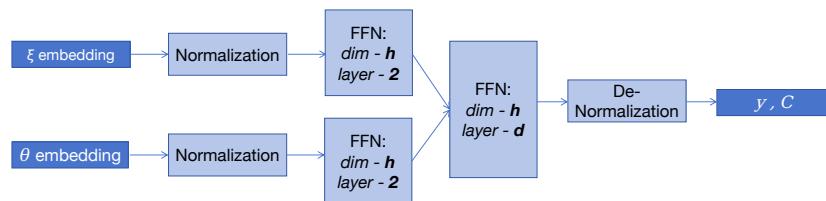


Figure 9: Neural-Network Structure

1080
1081

In this work, we define the soft utility function $f(r)$ as follows:

1082
1083
1084
1085
1086

$$f(r) = \begin{cases} 1.0 & \text{if } d \leq \epsilon \\ \alpha e^{-\beta(r-1)^\gamma} + (1 - \alpha) \left(\frac{1}{1 + \omega(r-1)^\delta} \right) & \text{if } d > \epsilon, \end{cases} \quad (10)$$

1087
1088
1089
1090

where $r = \frac{d}{\epsilon}$. The parameters are set to $\alpha = 0.6$, $\beta = 0.43$, $\gamma = 1.5$, $\omega = 0.3$, and $\delta = 2.2$.

1091

This function is designed so that the utility value drops to approximately 0.5 when the distance d is double the tolerance ϵ (i.e., $r = 2$), and it decays rapidly towards zero as the distance increases further, becoming negligible for distances approaching 10ϵ (i.e., $r = 10$). A plot of $f(r)$ is shown in Figure 10.

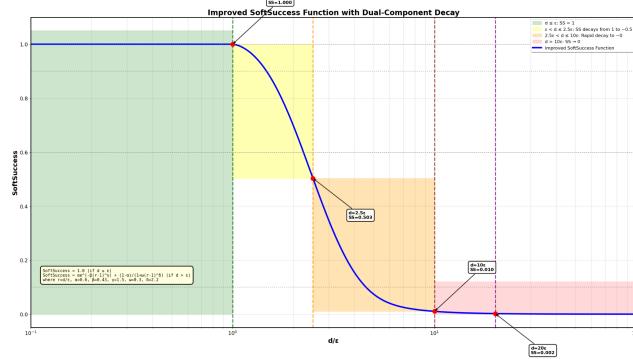
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
11021103
1104
1105

Figure 10: Plot of the soft utility function $f(r)$. The function maintains a maximum utility of 1.0 for normalized distances $r \leq 1$, drops to approximately 0.5 at $r = 2$, and rapidly decays towards zero for larger values of r .

1106
1107
1108

E PROMPTS USED IN AGENT FRAMEWORK

1109

Prompt Example for Euler 1D Single-Turn w/ Scenario Setting

1110

Instruction

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Your task is to find the optimal parameter, solving the 1D Euler equations for compressible inviscid flow, using a 2nd order MUSCL scheme with Roe flux and generalized superbee limiter. This serves as a simplified model for compressible fluid dynamics. You should try to minimize the total cost incurred by function calls, but your primary goal is to successfully meet the convergence criteria. You should always use the tool call function to finish the problem.

Workflow: `n_space` (Number of grid cells) determines the spatial discretization resolution: $\Delta x = L/n_space$ where L is the domain length. You may `**only**` change '`n_space`'. The value of `k` is `**-1.0**`, `beta` is `**1.0**`, `cfl` is `**0.25**`. `**You must not change them!**` You have only one opportunity to choose an optimal value for `n_space`. No trial-and-error or iterative optimization is permitted. Your goal is to select a value that provides adequate spatial resolution while keeping computational cost reasonable.

Step 1: Make your best `**one-shot**` guess for `n_space`.

Step 2: Call the Convergence Test Function and check if converged.

Step 3: Output final answer with no further tool calls.

Input

QID: 1

Problem: Euler 1D Equations with 2nd Order MUSCL-Roe Method

This simulation solves the 1D Euler equations for compressible inviscid flow, using a 2nd order MUSCL scheme with Roe flux and generalized superbee limiter:

Conservative form:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} = 0$$

1134
1135

Where the conservative variables and flux are:

1136
1137
1138

$$\mathbf{U} = \begin{pmatrix} \rho \\ \rho u \\ \rho E \end{pmatrix}, \quad \mathbf{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ u(\rho E + p) \end{pmatrix}$$

1139

Primitive variables:

1140

- ρ = density
- u = velocity
- p = pressure
- E = specific total energy

1145

Equation of state:

1146
1147
1148

$$p = (\gamma - 1)\rho \left(E - \frac{u^2}{2} \right)$$

1149

where γ is the ratio of specific heats.1150
1151Spatial Discretization: The spatial discretization uses MUSCL reconstruction with blending parameter k :1152
1153
1154
1155
1156

$$\begin{aligned} \mathbf{U}_{j+\frac{1}{2}}^L &= \mathbf{U}_j + \frac{1+k}{4} \psi(r_j) (\mathbf{U}_{j+1} - \mathbf{U}_j) \\ \mathbf{U}_{j+\frac{1}{2}}^R &= \mathbf{U}_{j+1} - \frac{1+k}{4} \psi(r_{j+1}) (\mathbf{U}_{j+2} - \mathbf{U}_{j+1}) \end{aligned}$$

1157
1158where k is a blending coefficient between central ($k = 1$) and upwind ($k = -1$) scheme, and $\psi(r)$ is the slope limiter function.

1159

Slope Limiting: The slope limiter uses a generalized superbee limiter:

1160

$$\psi(r) = \max [0, \max [\min(\beta r, 1), \min(r, \beta)]]$$

1161
1162where β is the limiter parameter controlling dissipation.The slope ratio r at interface j is defined as:1163
1164
1165

$$r_j = \frac{\mathbf{U}_{j+1} - \mathbf{U}_j}{\mathbf{U}_{j+2} - \mathbf{U}_{j+1}}$$

1166
1167

This ratio indicates the local non-smoothness, which will be the input into the slope limiter to achieve the TVD condition.

1168

Flux Computation: The interface flux is computed using the Roe approximate Riemann solver:

1169
1170
1171

$$\mathbf{F}_{j+\frac{1}{2}} = \frac{1}{2} [\mathbf{F}(\mathbf{U}^L) + \mathbf{F}(\mathbf{U}^R)] - \frac{1}{2} |\mathbf{A}| (\mathbf{U}^R - \mathbf{U}^L)$$

1172
1173where $|\mathbf{A}|$ is the Roe matrix with Roe-averaged quantities.

Initial condition cases:

1174
1175
1176
1177

- sod: Left: $\rho = 1.0, u = 0.0, p = 1.0$; Right: $\rho = 0.125, u = 0.0, p = 0.1$
- lax: Left: $\rho = 0.445, u = 0.6977, p = 3.528$; Right: $\rho = 0.5, u = 0.0, p = 0.571$
- mach_3: Left: $\rho = 3.857, u = 0.92, p = 10.333$; Right: $\rho = 1.0, u = 3.55, p = 1.0$

1178

Parameter Information:

1179
1180

- cfl: Courant-Friedrichs-Lowy number, $CFL = \frac{(|u|+c)\Delta t}{\Delta x}$ where $c = \sqrt{\gamma p / \rho}$ is the speed of sound
- beta: Limiter parameter for generalized superbee
- k: Blending parameter between central and upwind fluxes
- n_space: Number of grid cells for spatial discretization, determines spatial resolution: $\Delta x = L/n_{space}$

1181
1182
1183
1184
1185

Physical Parameters:

1186

- Domain length: 1.0

```

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

```

- Gamma (ratio of specific heats): 1.4
- Case: sod

Convergence Check:

- Errors between the simulation based on your solution and the simulation based on the self-refined solution are computed to assess convergence.
- Convergence is confirmed if the following validation criteria are satisfied.

Validation Criteria:

- **Current Problem Precision Level:** HIGH
- **Required RMSE Tolerance:** ≤ 0.01
- Relative RMSE must meet this tolerance compared to self-refined solution
- Positivity preservation: pressure and density must remain positive at all times
- Shock speed consistency: pressure gradients should not exceed physical bounds

Available functions:

Function Name: `euler_1d_check_converge_n_space`

Description: Conduct a 1D Euler PDE simulation and evaluate its spatial convergence by doubling `n_space`. It returns the following results:

- `RMSE`: float
- `is_converged`: boolean
- `accumulated_cost`: integer
- The cost of the solver simulating the environment: integer
- The cost of the solver verifying convergence (This will not be included in your `accumulated_cost`): integer
- `metrics1`: object
- `metrics2`: object

Parameters:

- `cfl` (float): CFL number
- `beta` (float): Limiter parameter for generalized superbee
- `k` (float): Blending parameter for MUSCL reconstruction
- `n_space` (integer): Current number of grid cells for spatial discretization

Required parameters: `cfl, beta, k, n_space` **Design-Value History**

Below are some previous `n_space` values and their simulation accuracy and efficiency indicators. The values are arranged in ascending order based on accuracy, where higher values indicate a closer simulation result to ground truth. The efficiency indicator is also important, where higher values mean a more cost-efficient `n_space` choice.

```

<n_space> 240 </n_space>
  Accuracy Indicator:
  0.9834
  Efficiency Indicator:
  1.1479

<n_space> 512 </n_space>
  Accuracy Indicator:
  1.0000
  Efficiency Indicator:
  0.2717

```

```

1242
1243 <n_space> 400 </n_space>
1244   Accuracy Indicator:
1245   1.0000
1246   Efficiency Indicator:
1247   0.4255
1248
1249 <n_space> 300 </n_space>
1250   Accuracy Indicator:
1251   1.0000
1252   Efficiency Indicator:
1253   0.7290
1254
1255 <n_space> 288 </n_space>
1256   Accuracy Indicator:
1257   1.0000
1258   Efficiency Indicator:
1259   0.7897
1260
1261 <n_space> 260 </n_space>
1262   Accuracy Indicator:
1263   1.0000
1264   Efficiency Indicator:
1265   0.9707
1266
1267 <n_space> 258 </n_space>
1268   Accuracy Indicator:
1269   1.0000
1270   Efficiency Indicator:
1271   0.9865
1272
1273 <n_space> 257 </n_space>
1274   Accuracy Indicator:
1275   1.0000
1276   Efficiency Indicator:
1277   0.9946
1278
1279 <n_space> 256 </n_space>
1280   Accuracy Indicator:
1281   1.0000
1282   Efficiency Indicator:
1283   1.0027
1284
1285 <n_space> 252 </n_space>
1286   Accuracy Indicator:
1287   1.0000
1288   Efficiency Indicator:
1289   1.0364
1290
1291   Output final answer in the requested format with a new n_space value
1292   ↳ that is different from all values above. You should first ensure
1293   ↳ an accurate simulation by achieving 1.0 in accuracy indicator,
1294   ↳ then gradually increase efficiency by choosing a coarser n_space
1295   ↳ value.

```

Prompt Example for Euler 1D Single-Turn w/o Scenario Setting

Instruction

Your task is to optimize a one-dimensional black-box function with a given parameter. You will be prompted with a list of history of parameter and values, where values include an accuracy indicator and success indicator. You are required to first optimize accuracy until it reaches

1296
 1297 1.0, then optimize efficiency for as high as possible. The parameter in history will start with
 1298 <n_space> and end with </n_space>. Please return a parameter value different from all values
 1299 given in the history that you think will optimize the function value as requested. Please return
 1300 your answer by starting with <n_space> and ending with </task> as well. **You may NOT use**
 1301 **any form of prior knowledge, and treat all parameter names, function names, etc. as**
 1302 **purely arbitrary.**

1303 **Input**

1304 **Design-Value History**

1305
 1306 Below are some previous n_space values and their simulation accuracy
 1307 → and efficiency indicators. The values are arranged in ascending
 1308 → order based on accuracy, where higher values indicate a closer
 1309 → simulation result to ground truth. The efficiency indicator is
 1310 → also important, where higher values mean a more cost-efficient
 1311 → n_space choice.

1312 <n_space> 240 </n_space>
 1313 Accuracy Indicator:
 1314 0.9834
 1315 Efficiency Indicator:
 1316 1.1479

1317 <n_space> 512 </n_space>
 1318 Accuracy Indicator:
 1319 1.0000
 1320 Efficiency Indicator:
 1321 0.2717

1322 <n_space> 400 </n_space>
 1323 Accuracy Indicator:
 1324 1.0000
 1325 Efficiency Indicator:
 1326 0.4255

1327 <n_space> 300 </n_space>
 1328 Accuracy Indicator:
 1329 1.0000
 1330 Efficiency Indicator:
 1331 0.7290

1332 <n_space> 288 </n_space>
 1333 Accuracy Indicator:
 1334 1.0000
 1335 Efficiency Indicator:
 1336 0.7897

1337 <n_space> 260 </n_space>
 1338 Accuracy Indicator:
 1339 1.0000
 1340 Efficiency Indicator:
 1341 0.9707

1342 <n_space> 258 </n_space>
 1343 Accuracy Indicator:
 1344 1.0000
 1345 Efficiency Indicator:
 1346 0.9865

1347 <n_space> 257 </n_space>
 1348 Accuracy Indicator:
 1349

```

1350
1351     Efficiency Indicator: 1.0000
1352     Accuracy Indicator: 0.9946
1353
1354     <n_space> 256 </n_space>
1355     Accuracy Indicator: 1.0000
1356     Efficiency Indicator: 1.0027
1357
1358     <n_space> 252 </n_space>
1359     Accuracy Indicator: 1.0000
1360     Efficiency Indicator: 1.0364
1361
1362
1363     Output final answer in the requested format with a new n_space value
1364     ↳ that is different from all values above. You should first ensure
1365     ↳ an accurate simulation by achieving 1.0 in accuracy indicator,
1366     ↳ then gradually increase efficiency by choosing a coarser n_space
1367     ↳ value.
1368
1369
1370
1371 Statistics Appended to Prompts

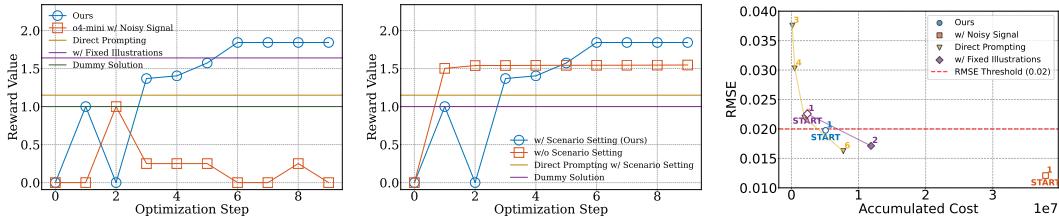
```

Below is the statistical information extracted from historical samples concerning task values and scores concerning accuracy and efficiency:

1. **Overall scale of {task}**
 - Typical x range: {x_range}
 - Mean x value: {x_mean:.4f}
2. **Best and worst observed samples**
 - Best sample: x = {x_best}, y = {y_best:.4f}
 - Worst sample: x = {x_worst}, y = {y_worst:.4f}
3. **Global trend between x and y**
 - Pearson correlation between x and y: {pearson_corr:.4f}
 - Fitted model for global trend: {fitted_model_description}

Please respond strictly according to the json format specified before.
Return your answer in JSON format.

F DETAILED RESULTS



(a) An exemplar optimization trajectory in Single-Turn setting for CASCO-Agent with vs. without scenario setting.
(b) An exemplar optimization trajectory in Single-Turn setting for CASCO-Agent with various signals.
(c) An exemplar optimization trajectory in Mingle-Turn setting for CASCO-Agent with various signals.

Figure 11: Case studies for ablations, with base model OpenAI o4-mini.

Full results of the comprehensive benchmark are presented in table 3. The case studies as introduced in 4.5 are shown in Figure 11.

The full ablation results are presented in table 4. Our ablations on surrogate neural network and prior knowledge are conducted on *Euler 1D* 's medium precision level tasks; we report reward R^0, R^m and success rates P^0, P^m for both Single-Turn and Multi-Turn settings. Our base model is fixed as

Table 3: Main evaluation results in both Single-Turn and Multi-Turn settings. Values in each box is the mean of tasks evaluated in three precision levels. Note that we report both reward R^0 , R^m and for-reference quantities P^0 and P^m . Values in bold font are the best-achieving ones, and values with \uparrow indicate a significant rise compared to direct prompting.

(a) Single-Turn *CASCO-Agent*

Method	Base Model	Heat ID		Euler ID		NS Transient 2D	
		R^0	P^0	R^0	P^0	R^0	P^0
BO (Nogueira, 2014)	–	0.253	1.000	0.464	0.125	0.814	0.718
Base LLM	Llama3.2-3B-Instruct	0.288	0.347	0.698	0.174	0.052	0.151
	Qwen-8B	0.412	0.633	0.642	0.268	0.342	1.000
	o4-mini	0.362	0.253	0.501	0.301	0.565	0.516
<i>CASCO-Agent</i> (Ours)	Llama3.2-3B-Instruct	0.950 \uparrow	0.773 \uparrow	0.939 \uparrow	0.516 \uparrow	1.591 \uparrow	0.785 \uparrow
	Qwen-8B	0.853 \uparrow	0.759 \uparrow	0.897 \uparrow	0.789 \uparrow	1.813 \uparrow	0.702
	o4-mini	1.239 \uparrow	0.679 \uparrow	1.764 \uparrow	0.733 \uparrow	0.842 \uparrow	0.536

(b) Multi-Turn *CASCO-Agent*

Method	Base Model	Heat ID		Euler ID		NS Transient 2D	
		R^m	P^m	R^m	P^m	R^m	P^m
BO (Nogueira, 2014)	–	0.290	1.000	0.496	0.625	0.517	0.766
Base LLM	Llama3.2-3B-Instruct	1.060	0.837	0.328	0.531	1.232	0.448
	Qwen-8B	1.613	0.756	1.511	0.421	0.662	0.861
	o4-mini	1.960	0.960	1.135	0.392	0.991	0.674
OPRO (Yang et al., 2023)	Llama3.2-3B-Instruct	0.170	0.917	0.290	0.600	0.275	0.877
	Qwen-8B	0.217	0.917	0.323	0.680	0.326	1.000
	o4-mini	0.241	0.917	0.974	0.520	0.957	1.000
<i>CASCO-Agent</i> (Ours)	Llama3.2-3B-Instruct	1.204 \uparrow	0.946 \uparrow	1.339 \uparrow	0.572	1.435	0.925 \uparrow
	Qwen-8B	1.760	0.900 \uparrow	1.359	0.624 \uparrow	1.535 \uparrow	0.944
	o4-mini	1.981	0.986	1.571 \uparrow	0.443	1.538 \uparrow	0.972 \uparrow

o4-mini. Note that although *CASCO-Agent* without Physics prior is achieving a higher mean reward in Single-Turn setting, its success rate is much lower than our method, indicating its frequent choice of coarse designs that leads to high reward in only a few tasks. We argue that this is a form of reward hacking as it contradicts with our expectation to carry out experiments correctly and efficiently.

Table 4: Ablation results averaged over all tasks.

Setting	Single-Turn Setting		Multi-Turn Setting	
	R^0	P^0	R^m	P^m
<i>CASCO-Agent</i> (Ours)	0.571	0.708	0.834	1
<i>CASCO-Agent</i> w/ Sparse Surrogate Signal	0.42	0.5	0.635	0.875
<i>CASCO-Agent</i> w/ Random Signal	0.142	0.583	0.426	0.583
<i>CASCO-Agent</i> w/ In-Context Signal	0.42	0.5	0.572	0.958
<i>CASCO-Agent</i> w/o Physics Prior	0.595	0.152	0.475	0.375
Direct Prompting	0.096	0.125	0.116	0.167

G IMPLEMENTATION DETAILS

We include a detailed and explicit description of all baseline implementation in this section.

Bayesian Optimization

1458

1459

1460 **Surrogate Model.** We use Gaussian Process regressor with Matern Kernel. We initialize the kernel
 1461 with smoothness parameter = 2, length scale = 1.

1462 **Optimizer for Surrogate Model Training.** We use L-BFGS (Liu and Nocedal, 1989) implemented
 1463 in sk-learn (Pedregosa et al., 2018). We use

- 1464 1. $\alpha = 0.6$, i.e. the amount of observation noise added to the diagonal of the covariance
 1465 matrix during training
- 1466 2. $n_restarts_optimizer = 10$, i.e. number of times to restart L-BFGS.
- 1467 3. $length_scale_bounds = (1e^{-2}, 1e^1)$, i.e. the admissible range for the ARD length-
 1468 scale parameters during hyperparameter optimization.

1469 **Acquisition Function.** We use UCB with confidence width (kappa) = 2.576

1470

1471 Direct Prompting

1472

1473 temperature = 0.8, maximum new tokens = 64, top-K = 50, top-P = 0.9

1474

1475 OPRO

1476

1477 temperature = 0.8, maximum new tokens = 64, top-K = 50, top-P = 0.9, number of iterations
 1478 = 5, number of generation branches each step = 4

1479

1480 CASC0-Agent

1481

1482 temperature = 0.8, maximum new tokens = 64, top-K = 50, top-P = 0.9, number of iterations
 1483 = 5, number of generation branches each step = 4

1484

1485 H EXPERIMENTAL BUDGETS

1486

1487 We list computational budgets in Table 5 and Table 6

1488

1489 Table 5: Computational budgets of methods in single-turn setting. ^a: Using the best proposal selected
 1490 from 20 sampled responses (temperature = 0.7). ^b: Sampling 4 responses (temperature = 0.7) for 5
 1491 optimization steps. ^c: Computation time excluding simulator runtime, averaged across all problems.

1492

1493 Method	1494 Runtime per problem ^c	1495 # of Calls to simulators per problem	1496 # of calls to LLMs per problem
1497 BO	1498 16.7s	1499 1	1500 N/A
1501 Direct Prompting	1502 122.6s	1503 1	1504 20 ^a
1505 Ours	1506 140.52s	1507 1	1508 $5 \times 4 = 20$ ^b

1509 Table 6: Computational budgets of methods in multi-turn setting. ^a: Termination of the multi-turn
 1510 query process is determined by the agent; the maximum number of allowed steps is 10. ^b: t denotes
 1511 the number of steps taken before the agent decides to terminate for each trajectory; 4 trajectories
 1512 are sampled for all methods (temperature = 0.7). ^c: Computation time excluding simulator runtime,
 1513 averaged across all problems. ^d: Lower values arise because agents within the CAED-Agent frame-
 1514 work tend to converge earlier and thus terminate the multi-turn process in fewer steps.

1515

1516 Method	1517 Runtime per problem ^c	1518 # of Calls to simulators per problem	1519 # of calls to LLMs per problem
1520 BO	1521 34.71s	1522 10	1523 N/A
1524 Direct Prompting	1525 96.80s	1526 $1 \sim 10^a$	1527 $4t^b$
1528 OPro	1529 115.58s	1530 $1 \sim 10^a$	1531 $4t^b$
1532 Ours	1533 60.57s ^d	1534 $1 \sim 10^a$	1535 $4t^b$

1520

1521

1522 I ADDITIONAL ABLATION EXPERIMENTS

1523

1524 Using a separate surrogate model for evaluation is more effective than providing samples di-

1525

1526 rectly to the LLM. To illustrate necessity of introducing a separately trained neural surrogate to

1512 evaluate candidate designs, instead of simply exposing the LLM to the training examples (or summary
 1513 statistics) through prompting or fine-tuning, we designed an additional set of experiments.
 1514 Specifically, we compare the original CAED-Agent against:

1515

- 1516 1. Few-shot prompting with 5/10/20 in-context illustrations (Fewshot-5/10/20). As in our
 1517 original ablation, the illustrations are randomly sampled from samples with the same con-
 1518 ditions in the training dataset, arranged in ascending order, and appended to the prompt we
 1519 previously used. (See Appendix E.)
- 1520 2. Direct Prompting with statistics derived from all training samples for the neural surrogate.
 1521 (DP+stats) The following statistics are provided: variable range, best/worst samples, Pear-
 1522 son correlation, fitted model (using quadratic regression) descriptions. See the appended
 1523 statistics under "Statistics Appended to Prompts" in Appendix E.
- 1524 3. CAED-Agent appended with 5/10/20 in-context illustrations (CAED-Fewshot-5/10/20).
 1525 The samples are chosen in the same manner as (1), and appended to the prompt. The
 1526 querying of neural surrogate and iterative update of the illustrations are the same as our
 1527 original method.

1528 Table 7: Ablation studies on few-shot prompting and direct prompting with statistics. Done on
 1529 euler_1d n_space, single-turn.

	CAED-Agent	Fewshot	DP+Stats	CAED-Fewshot
5 Illustrations		0.476		0.622
10 Illustrations	0.571	0.42	0.289	0.635
20 Illustrations		0.365		1.058

1530
 1531 See Table 7 for results: (1) Providing only summary statistics consistently underperforms.
 1532 Simulation-design tuning is a fine-grained task requiring relational information beyond what sta-
 1533 tistical descriptors can convey. (2) Few-shot prompting variants also fail to surpass our method, and
 1534 the variant using an extended context (20 illustrations) performs even worse. Our failure-mode anal-
 1535 ysis suggests that LLMs tend to copy solutions from illustrations, leading to suboptimal proposals.
 1536 (3) Augmenting CAED-Agents prompts with few-shot illustrations improves the agents exploratory
 1537 behavior, yielding the strongest performance among all tested configurations.

1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565