
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CASCO-Agent: COST-AWARE SIMULATION CONFIGU-
RATION VIA SURROGATE-GUIDED AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Configuring physics-based simulations requires balancing granularity against
computational budget, a dilemma we term Cost-Aware Simulation-Based
Configuration Optimization (CASCO). Traditional methods, such as Bayesian op-
timization or manual expert design, often struggle with the curse of high dimen-
sionality or fail to generalize. Large Language Models (LLMs) offer promise for
automating such workflows but, as we show experimentally, lack inherent cost
awareness and frequently propose inefficient configurations. While inference-
time scaling can improve the exploration width to find cost-efficient configura-
tions, it demands prohibitively many simulator queries. We propose Cost-Aware
Simulation Configuration Optimization Agent(CASCO-Agent), an agentic frame-
work guiding inference-time scaling via lightweight surrogates. The surrogate
here only predicts low-dimensional metrics (accuracy, cost) rather than com-
plete physics fields. This enables easier training and flexible adaptation to data
availability, e.g., using Gaussian Processes in data-scarce regimes or Neural Net-
works when data is abundant. In experiments across 3 typical PDE solvers (ellip-
tic, parabolic, and hyperbolic), CASCO-Agent consistently outperforms Bayesian
optimization and LLM-based baselines, achieving success rates comparable to
inference-time scaling with a ground truth simulator without incurring expensive
simulation overhead.

1 INTRODUCTION

Physics-based simulations are the backbone of modern engineering, playing critical roles in inverse
design (Loonen et al., 2022; Jabbar et al., 2022) and control (Lawrence et al., 2024). In these
pipelines, an outer optimization loop iteratively queries an inner simulator to conduct forward simu-
lation, evaluate design objectives, and adjust control variables (Vlastelica et al., 2023; Molesky et al.,
2018). This process creates a fundamental dilemma regarding the computational budget: overly
coarse simulator configurations may yield misleading feedback that derails downstream tasks, while
finer configurations offer precision but rapidly exhaust resources. Achieving the balance between
sufficient precision and economical cost is an open challenge we term Cost-Aware Simulation-Based
Configuration Optimization (CASCO).

Traditional approaches to CASCO fall short of scalability. 1) Brute force search is computa-
tionally intractable for scanning high-dimensional parameter spaces. 2) Bayesian Optimization
(BO) (Snoek et al., 2012; Yao et al., 2024) and evolutionary methods (Perera et al., 2023) offer
potentially higher efficiency but struggle to generalize across varying environments or incorporate
domain knowledge expressed in natural language. 3) Expert manual design, when available, is
effective but labor-intensive, creating a bottleneck that prevents scaling to new problems (Fromer
and Coley, 2024; Bharti et al., 2024).

Recently, Large Language Models (LLMs) have emerged as scientific agents (Ren et al., 2025) ca-
pable of automating design workflows (Zhong et al., 2024; Lv et al., 2025). This paradigm shows
potential for scaling up the manual, case-by-case tuning of simulator parameters. However, LLMs
often lack specific priors (e.g., cost-awareness), particularly for niche or specialized simulators, lead-
ing to potential performance degradation. To remedy this lack of prior knowledge, these agentic sys-
tems typically rely on inference-time scaling—generating and evaluating multiple reasoning paths
to select the best outcome (Roohani et al., 2025; Liu et al., 2024). While effective for increasing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5
Efficiency

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Zero-Shot

0.0 0.5 1.0 1.5 2.0
Efficiency

Sequential

CASCO-Agent w/ o4-mini
CASCO-Agent w/ Qwen3-8B
CASCO-Agent w/ Llama3.2-3B-Instruct
Direct Prompting w/ o4-mini
Direct Prompting w/ Qwen3-8B
Direct Prompting w/ Llama3.2-3B-Instruct
Bayesian Optimization
OPRO w/ o4-mini
OPRO w/ Qwen3-8B
OPRO w/ Llama3.2-3B-Instruct
Dummy Solution
Our Methods

Figure 1: Performance on Heat 1D , Euler 1D , and NS Transient 2D simulators (Single-Turn
left, Multi-Turn right). Efficiency (↑) denotes normalized cost of successful runs; Success Rate
(↑) denotes the ratio of valid simulations. CASCO-Agent (Ours) achieves Pareto dominance over
OPRO (Yang et al., 2023) and BO (Nogueira, 2014) across all base models.

exploration width, this strategy is disastrous for physics simulations: “verifying” every path requires
querying the expensive simulator, rendering standard inference scaling prohibitively costly.

To mitigate this, some approaches employ neural networks (NN) as proxies for the simulator (Lyu
et al., 2024). However, two main issues persist: 1) standard surrogates attempt to approximate com-
plete high-dimensional physical fields, making them data-hungry and prone to overfitting specific
conditions; and 2) they lack explicit cost-awareness. To address these challenges, we propose Cost-
Aware Simulation Configuration Optimization Agent (CASCO-Agent): a framework that shifts the
surrogate target from high-dimensional physical fields to low-dimensional metrics (cost and accu-
racy). This strategy simplifies training to scalar targets and improves generalization, as cost dynam-
ics are driven by universal parameters (e.g., mesh size, time integration) rather than specific physical
conditions. Crucially, these lightweight surrogates are computationally negligible compared to the
simulator, enabling CASCO-Agent to perform massive, parallel inference-time scaling to optimize
exploration without incurring prohibitive costs.

Our contributions are summarized as follows:

1. We introduce CASCO-Agent, a framework integrating inference-time scaling with
lightweight cost-efficiency surrogates. To our knowledge, this is the first method to ex-
plicitly consider efficiency along side from accuracy in LLM automating physics based
simulations.

2. We demonstrate across three diverse PDE solvers (elliptic, parabolic, hyperbolic) that
CASCO-Agent significantly outperforms Bayesian optimization and LLM baselines, achiev-
ing Pareto-optimal efficiency.

3. We release a comprehensive benchmark for cost-aware physics simulation design, includ-
ing open-source environments and evaluation protocols.

2 RELATED WORK

Black-Box Optimization & Benchmarks. Bayesian optimization (BO) is an universal approach
for tuning experimental parameters (Snoek et al., 2012; Knudsen et al., 2021), with recent ad-
vances integrating pre-trained surrogates to improve initial sampling (Wang et al., 2024a; Fan et al.,
2022). There also exists BO benchmarks like Design-Bench (Trabucco et al., 2022) and Inverse-
Bench (Zheng et al., 2025a) cover scientific problems, they rarely treat computational cost as part
of the optimization target. This limits their utility to mature simulators where configurations are
already established and the cost can be simplified as simulation counts. We address this gap by
explicitly augmenting the usual accuracy metric with computational cost in our dataset. We also
incorporate BO methods, both general and cost-aware versions (which penalize the sampling proba-
bility of higher-cost runs) (Gorecki et al., 2023; Bharti et al., 2024)as our baselines.

Scientific Agents & Related Benchmarks. LLMs have been applied to autonomous experiment
design (Boiko et al., 2023; Lu et al., 2024) and hypothesis generation (Wang et al., 2024b; Zheng

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2025b). However, these are largely feasibility studies; they demonstrate capability rather than
efficiency. The usual high pass@k (e.g., k=1024) metrics in these works often hide the massive com-
putational cost of failed trials. In this regard, MLEBench (Chan et al., 2025), which tracks training
costs for ML tasks, is similar to our work in considering tool costs. However, no equivalent bench-
mark exists for LLM agents in physics-based simulations. Our work brings this necessary attention
to the community. We also incorporate a straightforward agentic workflowdirect promptingas a
baseline.

LLMs as Optimizers. Approaches like OPRO (Yang et al., 2023) and LLM-assisted evolutionary
algorithms (Hao et al., 2024) use LLMs as iterative optimizers. While promising, they create massive
parallel paths, each requiring a simulator query, thereby incurring prohibitive costs. There have
been very few attempts to include cost considerations in LLM agents (Song et al., 2024; Wu et al.,
2024); however, these typically assume fixed tool costs (e.g., using function-as-a-service), failing to
capture the relationship between cost and configuration parameters (e.g., mesh node number, time
integration size). CASCO-Agent is the first work to systematically include cost considerations while
solving the rigid cost assumption by modeling cost as FLOPs complexity, thus accurately capturing
the relationship between cost and configurations.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Given design variable space X (e.g., spatial/temporal resolution, spatial interpolation methods), en-
vironmental parameter space Θ (e.g., initial or boundary conditions), and output observation space
Y , we define the forward simulation-based experimental process as F : X ×Θ→ Y:

y = F(x, θ), where x ∈ X , θ ∈ Θ (1)

With utility function Φ : Y × Θ → R (e.g. representing accuracy or physical validity of simulated
results) and cost function C : X × Y × Θ → R (e.g. wall time, complexity analysis, RAM
consumption), the CASCO problem becomes:

x∗ = argmaxx∈X

(
Φ(y, θ), −C(x, y, θ)

)
(2)

In this work, we define computational cost as the number of floating point operations (consistent
with complexity analysis) and normalize cost relative to a brute-force reference (dummy) solution
zθ that satisfies accuracy requirements with optimal cost (within a coarse search granularity):

Ĉ(x, y, θ) =
C(x, y, θ)

C(zθ, θ)
. (3)

Following previous works (Snoek et al., 2012; Fromer and Coley, 2024), we combine the normalized
cost and utility objectives into a single reward metric for an experiment (x, y, θ):

R0(x, y, θ) =
Φ(y, θ)

Ĉ(x, y, θ)
(4)

We consider two variants of the CASCO problem: Single-Turn CASCO, where the algorithm pro-
poses only one configuration, and Multi-Turn CASCO, where the algorithm proposes a trajectory of
configurations for iterative refinement (Huan et al., 2024; Bharti et al., 2024)):

Definition 3.1 (Single-Turn Cost-Aware Simulation-Based Configuration Optimization (CASCO)).

Q0 : x∗ = argmaxx∈XR0(x, y, θ), (5)

Definition 3.2 (Multi-Turn Cost-Aware Simulation-Based Configuration Optimization (CASCO)).

Qm : {x}∗ = argmax{x1,...,xn}∈X∗Rs({x1, . . . , xn}, {y1, . . . , yn}, θ), (6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where X ∗ is a sequence consisting of an arbitrary number of elements from X . In this work, we
allow multi-turn solutions with any length. {y} = {y1, y2, ..., yn} are observations from sequence
{x} = {x1, x2, ..., xn}, and the modified multi-turn rewardRm is:

Rm({x1, . . . , xn}, {y1, . . . , yn}, θ) =
maxi Φ(yi, θ)∑

i Ĉ(xi, yi, θ)
, (7)

i.e., the ratio between maximum utility and total cost incurred by this sequence of proposals.

The two variants of the CASCO problem, Q0 and Qm, are distinct and have different metrics with
different reference solution zθ. They evaluate different abilities of the solution: Q0 requires an in-
tuitive choice of simulation parameter, while Qm requires adaptation based on simulation feedback.
They are not to be recognized as the same task with a varying hyperparameter (number of turns).

3.2 COST-AWARE SIMULATION CONFIGURATION OPTIMIZATION AGENT

Overview. We adopt the inference-time scaling framework of Optimization by PROmpting
(OPRO) (Yang et al., 2023; Song et al., 2024; Chen et al., 2022), with the addition of a module
that efficiently provides utility Φ(x, y, θ) and cost Ĉ(x, y, θ) information without calling the ex-
pensive ground-truth simulations. Specifically, we train a neural-network surrogate to predict these
scalar signals from the design variables and environmental parameters. Because the scalar outputs
are strongly correlated with a few key design variables, signal model training converges with fewer
samples and smaller model size, compared with full-physics surrogates (Ghafariasl et al., 2024; Hou
and Evins, 2024); see C for details. The signal model then supplies feedback, the predicted utility
and cost, to the LLMs proposed parameter designs. These feedback signals, recorded as designvalue
pairs, are appended to the prompts history as in-context examples to aid the LLMs optimization
output. See Figure 2 for an illustration of CASCO-Agents workflow.

Optimization Target

Utility
Normalized Cost

Simulator

Environmental

Param.

TrainDesign-Cost
Dataset

Surrogate Model

Design-Cost Context Append

(b)

Propose
in Parallel

Evaluate by Surrogate

Prompt

Max. N Iterations

Generate

 Simulator Setting
Simulate Best

Decides to Terminate

Best Best Sequence Single-Turn

Multi-Turn

(a)

Tunable

Param.

Figure 2: Overview of CASCO-Agent. (a) For a given simulation-based experimental design prob-
lem, CASCO-Agent samples uniformly within the design space to train a neural network surrogate
for feedback signals of utility and cost. (b) At inference time, the LLM agent is prompted with
explanations of the simulator’s setting and together with in-context examples of designvalue pairs.
It then proposes an ensemble of candidate designs in parallel. The LLM queries the surrogate model
for feedback and augments the context with the new designscore pairs for the next round of proposal
generation (Single-Turn Setting), or it evaluates the surrogate-selected best candidate with the actual
simulator to obtain ground-truth feedback (Multi-Turn Setting). The agent outputs the best design
at the final iteration or terminates early when a satisfactory and stable solution has been reached.

Signal Neural Network. We train lightweight networks S : X×Θ→ DΦ×R to predict utility and
cost signals only, where DΦ is the short-hand for the range of utility function Φ. Our experiments
show that small fully connected neural networks can learn the function well for the experiments in
this paper, though we note that architecture and model size can be adapted according to the need of
specific solvers. See Appendix C for details on neural network implementation for this paper.

To provide rich, informative utility signals, as opposed to the binary boolean signals in prior works
(Smucker et al., 2018; Huan et al., 2024), we design a reward shaping function f that maps the
binary experiment outcome b(y) ∈ {0, 1} to a scalar soft success measure f(y) ∈ [0, 1] defined as
follows.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Definition 3.3 (Soft Utility Function). Following the notations in section 3.1, let Y be the exper-
iment’s observation space, Θ be the environmental variable space, and Φ be the original utility
function. Define the feasible set

Gθ := { y ∈ Y : Φ(y, θ) = 1 }. (8)

We call a mapping f : Y ×Θ→ [0, 1] a soft utility function if it satisfies:

(i) Feasibility calibration: ∀y ∈ Gθ : f(y) = 1, supy/∈Gθ
f(y) < 1.

(ii) Normalization: 0 ≤ f(y) ≤ 1, ∀y ∈ Y .

(iii) Monotone alignment: Φ(y1) ⪯ Φ(y2) =⇒ f(y1) ≤ f(y2).

The signal neural network S learns the soft utility signal f(y) in the place of Φ(y). We provide the
following proposition that any soft utility function f guarantees an incremental performance over
binary utility functions when integrated into our framework, and a well-designed f will lead to more
significant improvements. Refer to Appendix D for our design of f and proofs of the proposition.

Definition 3.4 (Policies). Recall that R0(x, y, θ) and Rm({x1, . . . , xn}, {y1, . . . , yn}, θ) are re-
spectively single-turn and multi-turn reward defined in Eq.1). For a task instance θ , we define two
policies:

(i) Binary-utility policy πbin(xt | θ, ht−1): at step t, given history ht−1 =
{(xs, ys, b(ys, θ))}t−1

s=1, sample the next design xt; denote the induced distribution over
the final design by x ∼ πbin(· | θ).

(ii) Soft-utility policy πf (xt | θ, ht−1): replace b with any soft utility f from Definition 3.3,
i.e., the history stores (xs, ys, f(ys, θ)). Denote the resulting final-design distribution by
x ∼ πf (· | θ).

Proposition 3.5 (Soft utility dominates binary utility in expected reward). Fix a base model and
any soft utility f in Definition 3.3, the expected reward under the soft-utility policy is no worse than
under the binary-utility policy:

Eθ Ex∼π0
f (·|θ)

[
R0(x, θ)

]
≥ Eθ Ex∼π0

bin(·|θ)
[
R0(x, θ)

]
.

Eθ E{x}∼πm
f (·|θ)[R

m({x}, θ)] ≥ Eθ E{x}∼πm
bin(·|θ)[R

m({x}, θ)] .

In summary, for a given simulation-based experimental design task, we train a lightweight network
S : X × Θ → DΦ × R to predict a certain design’s utility and cost; in cases where utility function
Φ is sparse and less informative, we substitute it with soft utility function f and learn soft utility
signals, i.e. we learn S : X × Θ → Dy × Ĉ, where Dy is the range of f . The trained network S
provides feedback for the following agent’s self-refinement.

Agentic Framework. The agent leverages Optimization by PROmpting (OPRO) as the base LLM
in-context optimization method, and use the signal network’s feedback as in-context examples. We
note that expanding to other inference-time scaling methods is straightforward and requires no
change or re-training of the signal neural network. Pseudocode for our agent implementation is
provided in Appendix B.

For Single-Turn CASCO, the agent starts with 5 (a hyper-parameter to adjust based on inference bud-
get) uniformly-sampled tuples of (design variable, utility, efficiency) evaluated by surrogate neural
network. Then the agent iteratively proposes ensembles of candidate design choices, receives neural
network feedback for the entire ensemble, and append them to the example pool. The example pool
is managed as a priority queue with key (utility, efficiency) and presented to the model in ascending
order.The example pool only keeps top-10 samples (also a hyper-parameter) to concise the context.
The process is repeated for a fixed number of iterations, and the best design in the example pool is
chosen for the final design. The fixed number of iterations is another hyperparameter reflecting the
allowed LLM inference budget.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To solve Multi-Turn CASCO, we warm-start with Single-Turn CASCO solution for the first round of
ground truth simulator evaluation, and then append the results to the pool. This process is repeated
for each iteration to find the most promising proposals for simulator evaluation. In short, the Single-
Turn CASCO works as an acquisition function for each of the multi-turn steps. The loop terminates
when either the LLM decides that a satisfactory solution is found or the computation cap is reached.

4 EXPERIMENTS

4.1 EXPERIMENTAL ENVIRONMENT

We demonstrate the ability of CASCO-Agent on three physics simulators: (1) 1D heat conduction
equation with mixed boundary conditions, (2) 1D compressible inviscid flow with Euler equation,
and (3) 2D transient incompressible Navier–Stokes equation, referred to as Heat 1D , Euler 1D and
NS Transient 2D respectively, for brevity. Appendix A contains details on the design variable space
X , observation space Y , and parameter space Θ. We focus on spatial resolution tuning tasks, where
the tunable parameter governs the spatial resolution of the simulation, creating a trade-off between
simulation accuracy and computational cost. The tunable parameters in our experiments are:

1. The number of grid numbers (n_space) for Heat 1D and Euler 1D
2. The grid resolution along X-axis (resolution) for NS Transient 2D

We design three precision level goals δ for each task, reflecting moderate to stringent accuracy
requirements in real-world experiments. For each task and each precision level, we evaluate the
methods on around 25 settings varying in environmental parameters.

For each problem instance characterized by θ, we first obtain a (near-)optimal design zθ via brute-
force search that guarantees successful convergence, e.g. through iteratively doubling the parameter
until successful, serving as a reference point for both accuracy and cost. This is solely for the
evaluation of our method and not necessary in practice. We then define the success of the simulation
through the following utility function:

Φ(F(x, θ), θ) = 1{ ||F(x, θ)−F(zθ, θ)||2 ≤ δ } , (9)
Where 1 is the indicator function, || · ||2 is the root mean square error across dimensions of the
observation space, and δ is a tolerance parameter reflecting various precision needs in real-world
applications. The success rate is defined as the ratio of successful simulations where Φ(F(x, θ)) = 1.
The cost C is defined as previously introduced in our problem formulation.

4.2 BASELINES AND SETTING

We compare our results against the following baselines. Bayesian Optimization (BO): We use a
classic implementation (Nogueira, 2014) with Gaussian Process (GP) (Rasmussen, 2004) and Upper
Confidence Bound (UCB) (Berk et al., 2020). We used consistent training samples for the signal
neural network CASCO-Agent and for the GP regressor to achieve a fair comparison. Direct query
to LLM medels (Direct Query) and the original Optimization by Prompting (OPRO) (Yang et al.,
2023) are LLM-based approaches. For all LLM-based methods (including our CASCO-Agent), we
design a shared set of prompts explaining the Physics scenario, optimization target and simulator
calling APIs; refer to E for examples. Notably, OPRO requires repeated evaluations of the ground-
truth simulator; therefore, we restrict its use to the Multi-Turn setting.

For the implementation of CASCO-Agent, we trained a lightweight neural network for each task
(Heat 1D , Euler 1D , and NS Transient 2D) separately, each with approximately 10k parameters
and trained on about 4k sampled points per problem. The networks outputs are the RMSE to the
reference solution and the cost. At inference time, we map the predicted RMSE to a utility signal
using the soft utility functions described in Definition 3.3; we also compare using the binary utility
Φ in ablation studies. See Appendix C for details.

4.3 METRICS

For ease of future reference, we denote the optimization targets in 5 and 6 as respectively R0 and
Rm, referring to them as Single-Turn or Multi-Turn Reward Functions. We also report success rates

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

P 0 and Pm to help us better understand the qualities of proposed solutions.

R0 =
Φ(F(x, θ), θ)

Ĉ(x, θ)
, Rm =

maxi Φ(F(xi, θ), θ)∑
i Ĉ(xi, θ)

4.4 ANALYSIS

We refer readers to Table 3 of F for complete results in three scenarios; here we report the following
findings that help understand and verify the efficacy of our method.

0

1

2

w
/ o

4-
m

in
i

1.72

0.36 0.25

Single-Turn
2.67

1.96

0.240.29

Multi-Turn

1.76

0.50 0.46

Single-Turn

1.73
1.14

0.24
0.50

Multi-Turn

1.12
0.57 0.69

Single-Turn

1.54
0.990.96

0.52

Multi-Turn

0

1

2

w
/ Q

w
en

3-
8B

0.85
0.41 0.25

1.761.61

0.220.29

0.90
0.64 0.46

1.361.51

0.430.50

1.81

0.34
0.69

1.54

0.66
1.04

0.52

Ours
Direct BO

0

1

2

w
/ L

la
m

a3
.2

-3
B

0.95

0.29 0.25

Ours
Direct

OPRO BO

1.201.06

0.170.29

Ours
Direct BO

0.94 0.70 0.46

Ours
Direct

OPRO BO

1.34

0.330.550.50

Ours
Direct BO

1.59

0.05

0.69

Ours
Direct

OPRO BO

1.231.44

0.17
0.52

Heat 1D Euler 1D NS 2D

Figure 3: Comparison of Single-Turn and Multi-Turn re-
wards for all methods. Each bar shows the mean reward,
averaged over all precision levels of a task, for methods on
a given base model. As discussed in definition 4.2, OPRO is
only considered in the Multi-Turn scenarios. BO is plotted
alongside LLM methods for clarity of comparison.

Our method outperforms most
baselines in terms of R0 and Rm.
As shown in Figure 3 and Figure 1,
our method outperforms all compar-
isons in the Single-Turn setting and
all but a few exceptions in the Multi-
Turn setting. We argue that these sub-
optimal cases are due to the inferior
reasoning ability of open-source mod-
els, causing them to occasionally fail
to refine their solutions based on feed-
back. Note that in many cases, es-
pecially in the easier scenarios Heat
1D and Euler 1D , OPRO and BO are
significantly worse than Direct Query,
whereas our method is significantly
better. This is because convergence
is relatively easy in such scenarios, so
the additional ground-truth simulator
calls used by OPRO and BO incur ex-
tra cost without meaningfully improv-
ing the solution. Our method does not
require additional ground-truth simu-
lator queries.

Our method delivers substantial reward gains over Direct Query, especially on medium- and
easy-difficulty tasks; on harder tasks, it consistently improves success rate. As shown in Fig-
ure 4, reward improvements are most pronounced in easier scenarios (Heat 1D ; low-precision Euler
1D). In harder scenarios (medium- to high-precision Euler 1D ; NS Transient 2D), reward gains are
smaller, but success rate improves steadily. This pattern suggests an intrinsic optimization behavior:
for unfamiliar questions, CASCO-Agent first optimizes correctness, and then optimizes efficiency.

Hea
t 1

d L
ow

Hea
t 1

d M
ed

ium

Hea
t 1

d H
igh

Eu
ler

 1d
 Lo

w

Eu
ler

 1d
 Med

ium

Eu
ler

 1d
 High

NS 2
d L

ow

NS 2
d M

ed
ium

NS 2
d H

igh
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Hea
t 1

d L
ow

Hea
t 1

d M
ed

ium

Hea
t 1

d H
igh

Eu
ler

 1d
 Lo

w

Eu
ler

 1d
 Med

ium

Eu
ler

 1d
 High

NS 2
d L

ow

NS 2
d M

ed
ium

NS 2
d H

igh
0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
wa

rd

CASCO-Agent w/ o4-mini (Success Rate)
CASCO-Agent w/ o4-mini (Reward)

Direct Prompting w/ o4-mini (Success Rate)
Direct Prompting w/ o4-mini (Reward)

Figure 4: Reward (R0, Rm) and success rate (P 0, Pm) across all difficulty levels in the Single-
Turn setting (left) and the Multi-Turn setting (right). Tasks are ordered by increasing difficulty:
Heat 1D , Euler 1D , NS Transient 2D . Our methods improvements in reward are largest on easy-to-
medium tasks and remain present on hard tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.5 ABLATIONS

We present ablation studies for the two main components of CASCO-Agent: the surrogate neural
network and the LLM agent. All ablation studies are preformed on the same set of problems, Euler
1D with medium precision level, with base model OpenAI o4-mini (OpenAI et al., 2024).

0 2 4 6 8
Optimization Step

0.0

0.5

1.0

1.5

2.0

2.5

R
ew

ar
d

Va
lu

e

w/ Scenario Setting (Ours)
w/o Scenario Setting
Direct Prompting w/ Scenario Setting
Dummy Solution

Figure 5: Mean Reward over optimization Steps
for CASCO-Agent, with or without scenario set-
ting description in prompt.

0 2 4 6 8
Optimization Step

1

0

1

2

3

4

R
ew

ar
d

Va
lu

e

Ours
w/ Noisy Signal
Direct Prompting
w/ Fixed Illustrations
Dummy Solution

Figure 6: Mean Reward over optimization Steps
for CASCO-Agent, either with surrogate signal,
noisy signal or fixed illustrations.

Physics prior knowledge is necessary to achieve in-context optimization in our tasks. Figure
5 presents an ablation study on whether the scenario setting is included in the LLM’s prompt. We
argue that the merits of utilizing LLM in our framework lie in both their in-context optimization
abilities and their prior domain knowledge. For the alternative setting (orange lines in 5), we only
prompt the model to solve the problem as a numerical optimization problem; see the prompts in
E. Figure 5 shows that CASCO-Agent (blue lines), with physics prior knowledge, can consistently
improve reward to surpass baselines, whereas the trajectory without scenario description fails to
achieve improvements and converges to a low-reward local optimum. This behavior is also visible
in a case study illustrated in 11a.

Feedback signals are important for agent optimization in our tasks. We study the effects of
our surrogate signal network and present the results in figure 6. We compare CASCO-Agentwith (1)
in-context optimization with a fixed set of ground-truth examples for all problems, and (2) our agent
equipped with noisy signal from a poorly fitted surrogate model. We experiment on both Single-
Turn and Multi-Turn settings in Euler 1D ’s medium precision level with base model GPT-4o-mini.
As shown in Figure 6 and 11b, in both the dataset-level pattern and the case study, our method
starts from a worse point than that of fixed illustrations’, but surpasses it in later optimization steps;
the noisy signal fails to guide the model’s optimization after the first few steps, highlighting the
importance of an effective signal model.

Soft surrogate signals significantly improve optimization performance compared to binary sur-
rogate signals. We verify the effectiveness of the soft utility (Definition 3.3). Specifically, we com-
pare Single-Turn results of our framework under two variants: (a) integrating surrogates with the
original binary utility function, and (b) our approach that uses a soft utility function in the surrogate
signals. As shown in Figure 7, the soft-utility variant achieves significantly better performance at
the dataset level and exhibits a steadier upward trend in the case study.

We also present a case study in 7b, which plots the predicted reward (dashed lines) of the step-wise
optimal design for both methods besides the real reward in solid lines. As shown by the orange
dashed line in 7b, once the model receives a zero-utility signal from the surrogate at step 3, it stops
refining and remains at a local optimum. By contrast, the blue line shows that although the model
proposes the same point at step 3, the non-zero soft-utility signal it receives enables it to continue
refining the solution.

Complete ablation study results are presented in Table 4 of Appendix F. We show that each com-
ponent of CASCO-Agent, including the physics prior, the signal NN, and the prompt design all
contribute to the final performance. CASCO-Agent achieves the Pareto optima of success rate and
efficiency for all settings, as shown in Figure 1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2 4 6 8
Optimization Step

0.5

1.0

1.5

2.0

2.5

R
ew

ar
d

Va
lu

e

w/ Soft Utility (Ours)
w/ Binary Utility
Direct Prompting
Dummy Solution

(a) Mean Reward over Optimization Steps for CASCO-
Agent, using different functions for surrogate signal.

0 2 4 6 8
Optimization Step

0.0

0.5

1.0

1.5

2.0

2.5

R
ea

l R
ew

ar
d

Va
lu

e

w/ Soft Utility (Ours)

w/ Binary Utility

Direct Prompting
Dummy Solution 0.0

0.5

1.0

1.5

2.0

Pr
ed

ic
te

d
R

ew
ar

d
Va

lu
e

(b) Case study. An exemplar optimization trajectory in
Single-Turn setting. Notations explained in 4.5.

Figure 7: Study on soft utility functions vs. binary signals for surrogate signal for o4-mini.

Surrogate Flexibility. Our framework is agnostic to the underlying surrogate model. While neu-
ral networks excel with abundant data, they struggle in data-scarce regimes (< 500 samples, see
Table 1). To address this, we demonstrate that the neural backbone in CASCO-Agent can be seam-
lessly substituted with a Gaussian Process (GP) regressor (Brochu et al., 2010; Shahriari et al., 2016),
utilizing its posterior mean and variance as feedback signals. This allows CASCO-Agent to match
strong BO baselines even when data is limited. Since the LLM optimizes based on open-form nu-
merical feedback rather than internal model states, users can adapt the surrogate (NN, GP, or others)
to match their specific data availability.

Despite this flexibility, we suppose that the data-abundant regime, and thus the choice of neural
networks, is the most practical default. The primary objective of CASCO-Agent is to automate pa-
rameter tuning in labs previously reliant on manual workflows. Such labs naturally possess extensive
archives of historical simulation logs. By simply mining these logs (e.g., via file timestamps), we
can construct the large datasets required for training.

Table 1: Performance comparison between CASCO-Agent with NN, CASCO-Agent with GP and
Bayesian Optimization under varying sample sizes. The GP regressor integrated into CASCO-Agent
is trained with exactly the same hyper-parameters and dataset as the one used for BO.

50 samples 100 samples 500 samples full samples (∼4k)

CASCO-Agent with NN 0.142 0.239 0.471 0.571
BO 0.459 0.418 0.392 0.391
CASCO-Agent with GP 0.465 0.354 0.205 0.342

5 CONCLUSION

We presented the Cost-Aware Simulation Configuration Optimization Agent, a LLM Agent frame-
work for experimental design that focuses on cost-efficiency. Through experiments on three physics
simulator environments, each with varying environmental setting and precision requirements, we
demonstrated that CASCO-Agent consistently outperforms both classical Bayesian optimization
baselines and state-of-the-art LLM-based optimizers. Our results highlight its ability to achieve
high success rates and favorable cost-efficiency trade-offs, even when direct evaluations are pro-
hibitively expensive. Our method introduces the novel contribution of utilizing a low-dimensional
cost-efficiency signal neural network, which through our ablation studies we show significantly im-
proves utility of both single-turn and multi-turn experiment design. These findings suggest that
CASCO-Agent provides a practical and scalable path toward deploying agentic frameworks in exper-
iment design in scientific discovery pipelines.

Our approach has the following limitations to be explored in future work. The accuracy of CASCO-
Agent depends on the fidelity of the surrogate, which may under-fit in highly complex or noisy experi-
mental landscapes, and requires some degree of human tuning. Moreover, our data sampling strategy
does not guarantee the minimization of sampling size while the model converges. Future work can
aim to address these limitations by exploring richer surrogate models, adaptive sampling strategies,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

and tighter coupling between surrogate predictions and target function evaluation to improve the
quality of feedback to LLM. Extending CASCO-Agent to multi-objective, higher-dimensional, or
real-world experimental systems will further test its scalability and practical utility, paving the way
toward more autonomous and cost-efficient experimental design agents.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY

We evaluate this work on three physics-solver environments that we implemented: Heat 1D , Euler
1D , and NS Transient 2D which include solvers, reference solutions, problem sets, and evaluation
pipelines. We plan to extend and organize these into a benchmark to aid the open-source commu-
nity in solving Cost-Aware Simulation-Based Configuration Optimization (CASCO) better. As the
benchmark is still in progress, our solvers, evaluation pipeline, etc. may not yet be robust enough
for convenient reproduction. Therefore, we consider it appropriate to open-source the code for this
work after acceptance, including not only a (subset) of the aforementioned benchmark but also the
neural-network training, the main framework, and the plotting components.

ETHICS STATEMENT

This work studies cost-aware experimental design agents for physics simulations (e.g., 1D Heat
Conduction and Euler equations) and does not involve human subjects, personal data, or sensitive
attributes. All data are synthetic or standard simulation benchmarks; no personally identifiable
information is used or created. We comply with licenses and usage terms for third-party software
and models; any proprietary APIs were accessed under their respective terms.

Potential risks are limited. As our method can improve search efficiency, there is a generic risk
of misuse to optimize unsafe physical systems. To mitigate this, we focus on pedagogical and
widely used benchmark scenarios with explicit constraints and provide documentation intended for
scientific replication rather than domain-specific exploitation.

Fairness and demographic bias considerations are not applicable to our setting. The environmental
impact is modest: we train lightweight surrogates on small datasets and use limited inference bud-
gets; we report hardware and runtime details to enable carbon accounting. For reproducibility, we
will release code, configurations, and seeds, and follow standard reporting checklists. We declare no
conflicts of interest and no concurrent submissions related to this work.

THE USE OF LARGE LANGUAGE MODELS

In this work, Large Language Models are primarily used for assisting in polishing the mathematical
formulation in 3.3, explaining the results in 4.5 and generating the plotting code for Figure 1, 3, 4,
5, 6 and 7.

They are also used for polishing text in some sections. They were NOT used in research ideation
and/or writing.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Roel C.G.M. Loonen, Samuel de Vries, and Francesco Goia. 15 - inverse design for advanced
building envelope materials, systems and operation. In Eugenia Gasparri, Arianna Brambilla,
Gabriele Lobaccaro, Francesco Goia, Annalisa Andaloro, and Alberto Sangiorgio, editors, Re-
thinking Building Skins, Woodhead Publishing Series in Civil and Structural Engineering, pages
377–402. Woodhead Publishing, 2022. ISBN 978-0-12-822477-9. doi: https://doi.org/10.1016/
B978-0-12-822477-9.00022-X. URL https://www.sciencedirect.com/science/
article/pii/B978012822477900022X.

Rahma Jabbar, Rateb Jabbar, and Slaheddine Kamoun. Recent progress in generative adversarial
networks applied to inversely designing inorganic materials: A brief review. Computational Ma-
terials Science, 213:111612, 2022. ISSN 0927-0256. doi: https://doi.org/10.1016/j.commatsci.
2022.111612. URL https://www.sciencedirect.com/science/article/pii/
S092702562200355X.

Nathan P. Lawrence, Seshu Kumar Damarla, Jong Woo Kim, Aditya Tulsyan, Faraz Amjad, Kai
Wang, Benoit Chachuat, Jong Min Lee, Biao Huang, and R. Bhushan Gopaluni. Machine learn-
ing for industrial sensing and control: A survey and practical perspective. Control Engineering
Practice, 145:105841, April 2024. ISSN 0967-0661. doi: 10.1016/j.conengprac.2024.105841.
URL http://dx.doi.org/10.1016/j.conengprac.2024.105841.

Marin Vlastelica, Tatiana López-Guevara, Kelsey Allen, Peter Battaglia, Arnaud Doucet, and Kim-
berley Stachenfeld. Diffusion generative inverse design, 2023. URL https://arxiv.org/
abs/2309.02040.

Sean Molesky, Zin Lin, Alexander Y. Piggott, Weiliang Jin, Jelena Vuckovi, and Alejandro W. Ro-
driguez. Inverse design in nanophotonics. Nature Photonics, 12(11):659–670, November 2018.
ISSN 1749-4893. doi: 10.1038/s41566-018-0246-9. URL https://doi.org/10.1038/
s41566-018-0246-9.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning
algorithms. Advances in neural information processing systems, 25, 2012.

Y. Yao, F. Liu, J. Cheng, and Q. Zhang. Evolve cost-aware acquisition functions using large language
models. In International Conference on Parallel Problem Solving from Nature, pages 374–390.
Springer, 2024.

Y. S. Perera, D. Ratnaweera, C. H. Dasanayaka, and C. Abeykoon. The role of artificial intelligence-
driven soft sensors in advanced sustainable process industries: A critical review. Engineering
Applications of Artificial Intelligence, 121:105988, 2023.

J. C. Fromer and C. W. Coley. An algorithmic framework for synthetic cost-aware decision making
in molecular design. Nature Computational Science, 4(6):440–450, 2024.

A. Bharti, D. Huang, S. Kaski, and F. Briol. Cost-aware simulation-based inference. arXiv preprint
arXiv:2410.07930, 2024.

S. Ren, P. Jian, Z. Ren, C. Leng, C. Xie, and J. Zhang. Towards scientific intelligence: A survey of
llm-based scientific agents, 2025. URL https://arxiv.org/abs/2503.24047.

M. Zhong, C. An, W. Chen, J. Han, and P. He. Seeking neural nuggets: Knowledge transfer in large
language models from a parametric perspective, 2024. URL https://arxiv.org/abs/
2310.11451.

Q. Lv, T. Liu, and H. Wang. Exploiting edited large language models as general scientific optimizers.
arXiv preprint arXiv:2503.09620, 2025.

Y. Roohani, A. Lee, Q. Huang, J. Vora, Z. Steinhart, K. Huang, A. Marson, P. Liang, and J. Leskovec.
Biodiscoveryagent: An ai agent for designing genetic perturbation experiments, 2025. URL
https://arxiv.org/abs/2405.17631.

T. Liu, N. Astorga, N. Seedat, and M. Schaar. Large language models to enhance bayesian optimiza-
tion, 2024. URL https://arxiv.org/abs/2402.03921.

12

https://www.sciencedirect.com/science/article/pii/B978012822477900022X
https://www.sciencedirect.com/science/article/pii/B978012822477900022X
https://www.sciencedirect.com/science/article/pii/S092702562200355X
https://www.sciencedirect.com/science/article/pii/S092702562200355X
http://dx.doi.org/10.1016/j.conengprac.2024.105841
https://arxiv.org/abs/2309.02040
https://arxiv.org/abs/2309.02040
https://doi.org/10.1038/s41566-018-0246-9
https://doi.org/10.1038/s41566-018-0246-9
https://arxiv.org/abs/2503.24047
https://arxiv.org/abs/2310.11451
https://arxiv.org/abs/2310.11451
https://arxiv.org/abs/2405.17631
https://arxiv.org/abs/2402.03921

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B. Lyu, Y. Cao, D. Watson-Parris, L. Bergen, T. Berg-Kirkpatrick, and R. Yu. Adapting while
learning: Grounding llms for scientific problems with intelligent tool usage adaptation. arXiv
preprint arXiv:2411.00412, 2024.

C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen. Large language models as
optimizers. In The Twelfth International Conference on Learning Representations, 2023.

F. Nogueira. Bayesian optimization: Open source constrained global optimization tool for python.
https://github.com/bayesian-optimization/BayesianOptimization,
2014. Accessed: 2025-08-25.

M. D. Knudsen, L. Georges, K. S. Skeie, and S. Petersen. Experimental test of a black-box economic
model predictive control for residential space heating. Applied energy, 298:117227, 2021.

Zi Wang, George E Dahl, Kevin Swersky, Chansoo Lee, Zachary Nado, Justin Gilmer, Jasper Snoek,
and Zoubin Ghahramani. Pre-trained gaussian processes for bayesian optimization. Journal of
Machine Learning Research, 25(212):1–83, 2024a.

Zhou Fan, Xinran Han, and Zi Wang. Hyperbo+: Pre-training a universal prior for bayesian opti-
mization with hierarchical gaussian processes. arXiv preprint arXiv:2212.10538, 2022.

B. Trabucco, X. Geng, A. Kumar, and S. Levine. Design-bench: Benchmarks for data-driven of-
fline model-based optimization. In International Conference on Machine Learning, pages 21658–
21676. PMLR, 2022.

H. Zheng, W. Chu, B. Zhang, Z. Wu, A. Wang, B. T. Feng, C. Zou, Y. Sun, N. Kovachki, Z. E. Ross,
and . others. Inversebench: Benchmarking plug-and-play diffusion priors for inverse problems in
physical sciences. arXiv preprint arXiv:2503.11043, 2025a.

Mila Gorecki, Jakob H Macke, and Michael Deistler. Amortized bayesian decision making for
simulation-based models. arXiv preprint arXiv:2312.02674, 2023.

D. A. Boiko, R. MacKnight, B. Kline, and G. Gomes. Autonomous chemical research with large
language models. Nature, 624(7992):570–578, 2023.

C. Lu, C. Lu, R. T. Lange, J. Foerster, J. Clune, and D. Ha. The ai scientist: Towards fully automated
open-ended scientific discovery. arXiv preprint arXiv:2408.06292, 2024.

D. Wang, Y. Wang, X. Jiang, Y. Zhang, Y. Pang, and M. Zhang. When large language models meet
optical networks: paving the way for automation. Electronics, 13(13):2529, 2024b.

T. Zheng, Z. Deng, H. T. Tsang, W. Wang, J. Bai, Z. Wang, and Y. Song. From automation to auton-
omy: A survey on large language models in scientific discovery. arXiv preprint arXiv:2505.13259,
2025b.

J. S. Chan, N. Chowdhury, O. Jaffe, J. Aung, D. Sherburn, E. Mays, G. Starace, K. Liu, L. Maksin,
T. Patwardhan, L. Weng, and A. Mdry. Mle-bench: Evaluating machine learning agents on ma-
chine learning engineering, 2025. URL https://arxiv.org/abs/2410.07095.

H. Hao, X. Zhang, and A. Zhou. Large language models as surrogate models in evolutionary algo-
rithms: A preliminary study. Swarm and Evolutionary Computation, 91:101741, 2024.

X. Song, O. Li, C. Lee, B. Yang, D. Peng, S. Perel, and Y. Chen. Omnipred: Language models as
universal regressors. arXiv preprint arXiv:2402.14547, 2024.

D. Wu, J. Wang, Y. Meng, Y. Zhang, L. Sun, and Z. Wang. Catp-llm: Empowering large language
models for cost-aware tool planning. arXiv preprint arXiv:2411.16313, 2024.

X. Huan, J. Jagalur, and Y. Marzouk. Optimal experimental design: Formulations and computations.
Acta Numerica, 33:715840, July 2024. ISSN 1474-0508. doi: 10.1017/s0962492924000023.
URL http://dx.doi.org/10.1017/S0962492924000023.

Y. Chen, X. Song, C. Lee, Z. Wang, R. Zhang, D. Dohan, K. Kawakami, G. Kochanski, A. Doucet,
M. Ranzato, and . others. Towards learning universal hyperparameter optimizers with transform-
ers. Advances in Neural Information Processing Systems, 35:32053–32068, 2022.

13

https://github.com/bayesian-optimization/BayesianOptimization
https://arxiv.org/abs/2410.07095
http://dx.doi.org/10.1017/S0962492924000023

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

P. Ghafariasl, A. Mahmoudan, M. Mohammadi, A. Nazarparvar, S. Hoseinzadeh, M. Fathali,
S. Chang, M. Zeinalnezhad, and D. A. Garcia. Neural network-based surrogate modeling and
optimization of a multigeneration system. Applied Energy, 364:123130, 2024.

D. Hou and R. Evins. A protocol for developing and evaluating neural network-based surrogate
models and its application to building energy prediction. Renewable and Sustainable Energy
Reviews, 193:114283, 2024.

B. Smucker, M. Krzywinski, and N. Altman. Optimal experimental design. Nat. Methods, 15(8):
559–560, 2018.

C. E. Rasmussen. Gaussian Processes in Machine Learning, pages 63–71. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2004. ISBN 978-3-540-28650-9. doi: 10.1007/978-3-540-28650-9_4.
URL https://doi.org/10.1007/978-3-540-28650-9_4.

J. Berk, S. Gupta, S. Rana, and S. Venkatesh. Randomised gaussian process upper confidence bound
for bayesian optimisation, 2020. URL https://arxiv.org/abs/2006.04296.

. OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, R. Avila, I. Babuschkin, S. Balaji, V. Balcom, P. Bal-
tescu, H. Bao, M. Bavarian, J. Belgum, I. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner,
L. Bogdonoff, O. Boiko, M. Boyd, A. Brakman, G. Brockman, T. Brooks, M. Brundage, K. But-
ton, T. Cai, R. Campbell, A. Cann, B. Carey, C. Carlson, R. Carmichael, B. Chan, C. Chang,
F. Chantzis, D. Chen, S. Chen, R. Chen, J. Chen, M. Chen, B. Chess, C. Cho, C. Chu, H. W.
Chung, D. Cummings, J. Currier, Y. Dai, C. Decareaux, T. Degry, N. Deutsch, D. Deville, A. Dhar,
D. Dohan, S. Dowling, S. Dunning, A. Ecoffet, A. Eleti, T. Eloundou, D. Farhi, L. Fedus, N. Fe-
lix, S. P. Fishman, J. Forte, I. Fulford, L. Gao, E. Georges, C. Gibson, V. Goel, T. Gogineni,
G. Goh, R. Gontijo-Lopes, J. Gordon, M. Grafstein, S. Gray, R. Greene, J. Gross, S. S. Gu,
Y. Guo, C. Hallacy, J. Han, J. Harris, Y. He, M. Heaton, J. Heidecke, C. Hesse, A. Hickey,
W. Hickey, P. Hoeschele, B. Houghton, K. Hsu, S. Hu, X. Hu, J. Huizinga, S. Jain, S. Jain,
J. Jang, A. Jiang, R. Jiang, H. Jin, D. Jin, S. Jomoto, B. Jonn, H. Jun, T. Kaftan, . Kaiser,
A. Kamali, I. Kanitscheider, N. S. Keskar, T. Khan, L. Kilpatrick, J. W. Kim, C. Kim, Y. Kim,
J. H. Kirchner, J. Kiros, M. Knight, D. Kokotajlo, . Kondraciuk, A. Kondrich, A. Konstantinidis,
K. Kosic, G. Krueger, V. Kuo, M. Lampe, I. Lan, T. Lee, J. Leike, J. Leung, D. Levy, C. M. Li,
R. Lim, M. Lin, S. Lin, M. Litwin, T. Lopez, R. Lowe, P. Lue, A. Makanju, K. Malfacini, S. Man-
ning, T. Markov, Y. Markovski, B. Martin, K. Mayer, A. Mayne, B. McGrew, S. M. McKinney,
C. McLeavey, P. McMillan, J. McNeil, D. Medina, A. Mehta, J. Menick, L. Metz, A. Mishchenko,
P. Mishkin, V. Monaco, E. Morikawa, D. Mossing, T. Mu, M. Murati, O. Murk, D. Mély, A. Nair,
R. Nakano, R. Nayak, A. Neelakantan, R. Ngo, H. Noh, L. Ouyang, C. O’Keefe, J. Pachocki,
A. Paino, J. Palermo, A. Pantuliano, G. Parascandolo, J. Parish, E. Parparita, A. Passos, M. Pavlov,
A. Peng, A. Perelman, F. Avila Belbute Peres, M. Petrov, H. P. Oliveira Pinto, . Michael, . Poko-
rny, M. Pokrass, V. H. Pong, T. Powell, A. Power, B. Power, E. Proehl, R. Puri, A. Radford,
J. Rae, A. Ramesh, C. Raymond, F. Real, K. Rimbach, C. Ross, B. Rotsted, H. Roussez, N. Ryder,
M. Saltarelli, T. Sanders, S. Santurkar, G. Sastry, H. Schmidt, D. Schnurr, J. Schulman, D. Sel-
sam, K. Sheppard, T. Sherbakov, J. Shieh, S. Shoker, P. Shyam, S. Sidor, E. Sigler, M. Simens,
J. Sitkin, K. Slama, I. Sohl, B. Sokolowsky, Y. Song, N. Staudacher, F. P. Such, N. Summers,
I. Sutskever, J. Tang, N. Tezak, M. B. Thompson, P. Tillet, A. Tootoonchian, E. Tseng, P. Tuggle,
N. Turley, J. Tworek, J. F. C. Uribe, A. Vallone, A. Vijayvergiya, C. Voss, C. Wainwright, J. J.
Wang, A. Wang, B. Wang, J. Ward, J. Wei, C. Weinmann, A. Welihinda, P. Welinder, J. Weng,
L. Weng, M. Wiethoff, D. Willner, C. Winter, S. Wolrich, H. Wong, L. Workman, S. Wu, J. Wu,
M. Wu, K. Xiao, T. Xu, S. Yoo, K. Yu, Q. Yuan, W. Zaremba, R. Zellers, C. Zhang, M. Zhang,
S. Zhao, T. Zheng, J. Zhuang, W. Zhuk, and B. Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning,
2010. URL https://arxiv.org/abs/1012.2599.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2016. doi: 10.1109/JPROC.2015.2494218.

14

https://doi.org/10.1007/978-3-540-28650-9_4
https://arxiv.org/abs/2006.04296
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1012.2599

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45(1):503–528, August 1989. ISSN 1436-4646. doi: 10.1007/
BF01589116. URL https://doi.org/10.1007/BF01589116.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu
Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in python,
2018. URL https://arxiv.org/abs/1201.0490.

15

https://doi.org/10.1007/BF01589116
https://arxiv.org/abs/1201.0490

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL ENVIRONMENT

Heat Transfer 1D. (Heat 1D) This solver addresses the 1D heat conduction equation:

∂T

∂t
= α

∂2T

∂x2

using explicit finite difference methods with natural convection boundary conditions at x = 0 and
adiabatic conditions at x = L. The tunable parameters include the spatial resolution (n_space)
and the CFL number (cfl) that determines the simulation time step by:

∆t = cfl× (∆x)2

2α
,

where α is the thermal diffusivity. The computational cost follows the relationshipC = n_space×
n_t, where n_t is the number of time steps accumulated in the solver. The metric for convergence
is the RMSE of the heat flux at the convection boundary at the final time step. This simulation has
25 different profiles with varying initial uniform temperatures and physical properties, generating
148 tasks in total, counting both Single-Turn and Multi-Turn settings.

Euler 1D. (Euler 1D) This solver implements the 1D Euler equations for compressible flow:

∂U

∂t
+
∂F(U)

∂x
= 0

using the MUSCL-Roe method with superbee limiter for high-resolution shock capturing. The tun-
able parameters include the CFL number (cfl) that determines the simulation time step by:

∆t = cfl× ∆x

|λ|max
,

where |λ|max is the maximum eigenvalue of the flux Jacobian, the spatial resolution (n_space), the
limiter parameter beta for generalized minmod flux limiter, and the blending parameter k between
0-th and 1-st order interpolation scheme. The computational cost follows the relationship C =
n_space × n_t, where n_t is the number of time steps accumulated in the solver. Convergence
is evaluated through multiple criteria: RMSE of the solution fields, positivity preservation of density
and pressure, and shock consistency validation. The dataset encompasses 3 classical benchmark
profiles (Sod shock tube, Lax problem, and Mach 3), generating a total of 134 tasks, counting both
Single-Turn and Multi-Turn settings.

Transient Navier-Stokes 2D. (NS Transient 2D) This solver implements the 2D transient incom-
pressible Navier-Stokes equations:

∂u

∂x
+
∂v

∂y
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
where u, v are velocity components, p is pressure, and Re is the Reynolds number. The tunable
parameters include the spatial resolution (resolution) that determines the computational grid
size, the CFL number (cfl) controlling time step stability through ∆t = cfl×∆x, the relaxation
factor (relaxation_factor) for pressure correction convergence, and the residual threshold
(residual_threshold) for pressure solver convergence. The computational cost follows the
relationship C = 2 × resolution2 × (num_steps + total_pressure_iterations),
where the factor of 2 accounts for the fixed aspect ratio domain configuration with x_resolution =
2 × resolution. Convergence is evaluated through normalized velocity RMSE criteria, with
temporal evolution tracked throughout the simulation. The dataset encompasses 18 benchmark pro-
files across 6 different boundary conditions (simple circular obstacles, complex geometries, random
obstacle fields, dual inlet/outlet configurations, dense obstacle arrays, and dragon-shaped obstacles)
tested at three Reynolds numbers (Re=1000, 3000, 6000), generating a total of 44 tasks across dif-
ferent precision levels and geometric complexities.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Dummy Solution Search. For each task, we find optimal solutions that meet both accuracy re-
quirements and have the lowest cost using brute-force search. Given our parameters have a mono-
tonic relationship between cost and accuracy (i.e., they are spatial resolution), we start with a coarse
value and Multi-Turnly refine it with fixed ratios (e.g., halve the time step size, double the spatial
resolution) until the distance between adjacent runs is within the accuracy threshold. For single-turn
tasks, we set the reference cost to the optimal cost found by brute-force search. For multi-turn tasks,
we set the reference cost to the accumulated cost incurred during the brute-force search.

B ALGORITHMIC DIAGRAM

Algorithm 1 Solve, Single-Turn CASCO-Agent Framework

1: Input: Forward experimental process F , design space X , environment parameters θ, neural
surrogate S , number of iteration N , history context length K, initial sample size m.

2: Initialize LLM design-value history as a priority queueM
3: Push toM uniformly sampled initial design-value pairs {(xj ,Φpred

j , Ĉpred
j)}mj=1, evaluated by

S
4: repeat
5: LLM proposes candidate designs {xi}ki=1

6: Evaluate candidates with neural surrogate: (Φpred
i , Ĉpred

i)← S(xi, θ) for i = 1, . . . , k

7: Push {(xi,Φpred
i , Ĉpred

i)} toM, keeping only top-K samples.
8: until Number of iterations N reached
9: Output: x∗ = argmaxxi

Φ(S(xi,θ),θ)
C′(xi,θ)

from design-value history.

Algorithm 2 Multi-Turn CASCO-Agent Framework

1: Input: Forward experimental process F , design space X , environment parameters θ, neural
surrogate S , number of iteration for Single-Turn solution N , history context length K, initial
sample size m, maximum allowed number of ground-truth evaluation T .

2: Obtain Single-Turn solution x = Solve(F ,X , θ,S,N ,K,m)
3: Initialize solution sequence as a queue A = {x0}
4: Initialize LLM ground-truth design-value history as a priority queueM
5: Evaluate with ground-truth simulator (Φgt

0 , Ĉ
gt
0)← F(§′, θ)

6: Push (x0,Φ
gt
0 , Ĉ

gt
0) toM

7: repeat
8: LLM agent proposes candidate designs {xi}ki=1

9: Evaluate candidates with neural surrogate: (Φpred
i , Ĉpred

i)← S(xi, θ) for i = 1, . . . , k

10: Add top surrogate-evaluated pair (xi,Φ
pred
i , Ĉpred

i) to solution sequence A
11: Evaluate with ground-truth simulator (Φgt

i , Ĉ
gt
i)← F(xi, θ)

12: Push {(xi,Φgt
i , Ĉ

gt
i) toM, keeping only top-K samples

13: until LLM outputs should_stop = True or number of iterations reaches T
14: Outputs A

C NEURAL NETWORK TRAINING

We train one neural-network for each problem (Heat 1D , Euler 1D , NS Transient 2D)’s all precision
levels; each network’s input and output dimension are as described in 3.2.

We uniformly sample design and environmental parameters on coarse grids. We specifically in-
clude environmental parameters to enable interpolation across conditions while avoiding training
and tracking multiple network instances for different environment combinations. We provide the
range of inputs (environmental parameters and tunable parameters) as follows, from which we per-
formed uniform sampling, and statistics of sampled targets in Table 2. We stress that while our
target dimensions have drastically different ranges and high variance, we perform in-dimension nor-
malization as shown in Figure 9, therefore achieving satisfactory training results shown in Figure
8.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Heat 1D:
Environmental Parameters:
L: [0.1, 0.3] # Wall thickness [m] - uniform random in range
k: [0.5, 1.0] # Thermal conductivity [W/m-K] - uniform random in

range↪→
h: [0.1, 10000] # Convection coefficient [W/mš-K] - log-uniform

random in range↪→
rho: [1000, 2000] # Density [kg/mş] - uniform random in range
cp: [800, 1000] # Specific heat [J/kg-K] - uniform random in range
T_inf: [-40, 40] # Ambient temperature [řC] - uniform random in

range↪→
T_init: [0, 30] # Initial temperature [řC] - uniform random in

range↪→
record_dt: 10.0 # Time interval between recordings [s] - fixed
end_frame: 24 # Simulation end frames - fixed

Tunable Parameters:
n_space: [64, 2048] # Number of spatial points (iterative search:

initial=64, factor=2, max_iter=6)↪→

Euler 1D:
Environmental Parameters:
L: 1.0 # Domain length - fixed
gamma: 1.4 # Ratio of specific heats - fixed
case: {"sod", "lax", "mach_3"} # Initial condition name - 3

discrete values across profiles↪→
record_dt: {0.02, 0.012, 0.009} # Time interval between recordings

- specific values per case↪→
end_frame: 10 # Simulation end frames - fixed

Tunable Parameters:
n_space: [256, 4096] # Number of grid cells (iterative search:

initial=256, factor=2, max_iter=7)↪→

NS Transient 2D:
Environmental Parameters:
boundary_condition: {1, 2, 3, 4, 5, 6} # 6 boundary condition types

across 18 profiles↪→
reynolds_num: {1000, 3000, 6000} # Reynolds number - 3 discrete

values↪→
vorticity_confinement: 0.0 # Fixed across profiles
total_runtime: 1.0 # Fixed across profiles - fixed
no_dye: False # Fixed across profiles
cpu: False # Fixed across profiles
visualization: 0 # Fixed across profiles
advection_scheme: "cip" # Fixed across profiles

Tunable Parameters:
resolution: [50, 400] # Grid resolution (iterative search:

initial=50, factor=2, max_iter=4)↪→

Table 2: Dataset Statistics.

RMSE Loss Cost N. samples

Heat 1D 4.47e−4 ± 9.50e−4 8.33e7 ± 1.27e8 4440
Euler 1D 3.48e−2± 3.60e−2 2.76e6 ± 2.42e6 4020
NS Transient 2D 2.55e−1 ± 1.90e−1 2.11e8 ± 1.94e8 1320

For all problems, we train neural-network with the same structure as shown in 9; to achieve optimal
results for individual problems, we compare the training results with three sets of structures for

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

each problem and choose the one with the best test loss. Specifically, we experiment with the
combinations of :

h: {2, 3, 4, 6}
d: {64, 128, 256}

Where h, d follow the notation in 9, and the hyper-parameters we used are shown as follows:

activation_mod: ReLU
layer_norm: False
res_connection: False

batch: 16
epochs: 40
steps_per_epoch: 200

peak_lr: 1e-3
weight_decay: 1e-4
warmup_steps: 100
decay_steps: 1000
gnorm_clip: 1.0
accumulation_steps: 100

We show the results of our best checkpoints for the three problems in 8.

D SOFT UTILITY FUNCTION

Proof of Proposition 3.5. Let b(y, θ) := 1{Φ(y, θ) = 1} be the binary utility and let sf (y, θ) :=
f(y, θ) be any soft utility satisfying Definition 3.3. By normalization (Def. 3.3(ii)), f(y, θ) ∈ [0, 1],
and by feasibility calibration (Def. 3.3(i)), f(y, θ) = 1 iff y ∈ Gθ = {y : Φ(y, θ) = 1} and
supy/∈Gθ

f(y, θ) < 1. Hence the postprocessing map

τ : [0, 1]→ {0, 1}, τ(u) := 1{u = 1}
is well-defined (by normalization) and satisfies b(y, θ) = τ(f(y, θ)) for all (y, θ) (by feasibility
calibration). Thus the binary signal is a deterministic garbling of the soft signal.

Fix a base model and budget T ≥ 1, and write the histories hbint−1 = {(xs, ys, b(ys, θ))}t−1
s=1 and

hft−1 = {(xs, ys, f(ys, θ))}t−1
s=1; then hbint−1 = τ(hft−1) coordinate-wise. Given any binary-utility

policy πbin, define a soft-signal policy π̃f that simulates it via

π̃f (· | θ, hft−1) := πbin(· | θ, τ(hft−1)).

Under identical environment randomness, π̃f induces the same trajectory distribution as πbin, hence

ExT∼π̃f (·|θ)
[
R0(xT , θ)

]
= ExT∼πbin(·|θ)

[
R0(xT , θ)

]
for all θ.

Taking expectation over the task distribution yields equality in expectation.

By monotone alignment (Def. 3.3(iii)), if Φ(y1, θ) ⪯ Φ(y2, θ) then f(y1, θ) ≤ f(y2, θ); hence
ranking by f is orderpreserving with respect to Φ. Since R0(x, θ) (Eq. (4)) is nondecreasing in Φ
(its numerator) and f = 1 iff Φ = 1 (by feasibility calibration), using f to refine decisions cannot
decrease the expected reward relative to π̃f , and is strictly better whenever such refinements occur
with positive probability.

Now let πf denote any soft-signal policy produced by our framework. Since πf can always ignore
the extra information and implement π̃f , we have

Eθ ExT∼πf (·|θ)
[
R0(xT , θ)

]
≥ Eθ ExT∼π̃f (·|θ)

[
R0(xT , θ)

]
. (∗)

The case T = 1 (zero-shot) follows verbatim by replacing xT with the single-step x.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Heat 1D

(b) Euler 1D

(c) NS Transient 2D

Figure 8: Test results of our best neural network for each task. The plots from left to right respec-
tively mean: (left) soft utility signal of true RMSE loss vs. soft utility signal of predicted RMSE
loss, (middle) true cost vs. predicted cost, (right) distribution in the cost-utility space of predicted
vs. true points.

� embedding

� embedding Normalization

Normalization

FFN:
dim - h
layer - 2

FFN:
dim - h
layer -
2

FFN:
dim - h
layer - d

De-
Normalization y , �

Figure 9: Neural-Network Structure

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

In this work, we define the soft utility function f(r) as follows:

f(r) =

{
1.0 if d ≤ ϵ
αe−β(r−1)γ + (1− α)

(
1

1+ω(r−1)δ

)
if d > ϵ,

(10)

where r = d
ϵ . The parameters are set to α = 0.6, β = 0.43, γ = 1.5, ω = 0.3, and δ = 2.2.

This function is designed so that the utility value drops to approximately 0.5 when the distance d
is double the tolerance ϵ (i.e., r = 2), and it decays rapidly towards zero as the distance increases
further, becoming negligible for distances approaching 10ϵ (i.e., r = 10). A plot of f(r) is shown
in Figure 10.

Figure 10: Plot of the soft utility function f(r). The function maintains a maximum utility of 1.0
for normalized distances r ≤ 1, drops to approximately 0.5 at r = 2, and rapidly decays towards
zero for larger values of r.

E PROMPTS USED IN AGENT FRAMEWORK

Prompt Example for Euler 1D Single-Turn w/. Scenario Setting
Instruction

Your task is to find the optimal parameter, solving the 1D Euler equations for compressible
inviscid flow, using a 2nd order MUSCL scheme with Roe flux and generalized superbee limiter.
This serves as a simplified model for compressible fluid dynamics. You should try to minimize
the total cost incurred by function calls, but your primary goal is to successfully meet the
convergence criteria. You should always use the tool call function to finish the problem.

Workflow: n_space (Number of grid cells) determines the spatial discretization resolution:
∆x = L/n_space where L is the domain length. You may **only** change ‘n_space‘. The
value of k is **-1.0**, beta is **1.0**, cfl is **0.25**. **You must not change them!** You
have only one opportunity to choose an optimal value for n_space. No trial-and-error or iter-
ative optimization is permitted. Your goal is to select a value that provides adequate spatial
resolution while keeping computational cost reasonable.

Step 1: Make your best **one-shot** guess for n_space.
Step 2: Call the Convergence Test Function and check if converged.
Step 3: Output final answer with no further tool calls.

Input

QID: 1
Problem: Euler 1D Equations with 2nd Order MUSCL-Roe Method
This simulation solves the 1D Euler equations for compressible inviscid flow, using a 2nd order
MUSCL scheme with Roe flux and generalized superbee limiter:
Conservative form:

∂U

∂t
+
∂F(U)

∂x
= 0

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Where the conservative variables and flux are:

U =

(
ρ
ρu
ρE

)
, F =

 ρu
ρu2 + p
u(ρE + p)


Primitive variables:

• ρ = density
• u = velocity
• p = pressure
• E = specific total energy

Equation of state:

p = (γ − 1)ρ

(
E − u2

2

)
where γ is the ratio of specific heats.
Spatial Discretization: The spatial discretization uses MUSCL reconstruction with blending
parameter k:

UL
j+ 1

2
= Uj +

1 + k

4
ψ(rj)(Uj+1 −Uj)

UR
j+ 1

2
= Uj+1 −

1 + k

4
ψ(rj+1)(Uj+2 −Uj+1)

where k is a blending coefficient between central (k = 1) and upwind (k = −1) scheme, and
ψ(r) is the slope limiter function.
Slope Limiting: The slope limiter uses a generalized superbee limiter:

ψ(r) = max [0,max [min(βr, 1),min(r, β)]]

where β is the limiter parameter controlling dissipation.
The slope ratio r at interface j is defined as:

rj =
Uj+1 −Uj

Uj+2 −Uj+1

This ratio indicates the local non-smoothness, which will be the input into the slope limiter to
achieve the TVD condition.
Flux Computation: The interface flux is computed using the Roe approximate Riemann solver:

Fj+ 1
2
=

1

2

[
F(UL) + F(UR)

]
− 1

2
|A|(UR −UL)

where |A| is the Roe matrix with Roe-averaged quantities.
Initial condition cases:

• sod: Left: ρ = 1.0, u = 0.0, p = 1.0; Right: ρ = 0.125, u = 0.0, p = 0.1

• lax: Left: ρ = 0.445, u = 0.6977, p = 3.528; Right: ρ = 0.5, u = 0.0, p = 0.571

• mach_3: Left: ρ = 3.857, u = 0.92, p = 10.333; Right: ρ = 1.0, u = 3.55, p = 1.0

Parameter Information:
• cfl: Courant-Friedrichs-Lewy number, CFL = (|u|+c)∆t

∆x where c =
√
γp/ρ is the

speed of sound
• beta: Limiter parameter for generalized superbee
• k: Blending parameter between central and upwind fluxes
• n_space: Number of grid cells for spatial discretization, determines spatial resolution:
∆x = L/n_space

Physical Parameters:
• Domain length: 1.0

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• Gamma (ratio of specific heats): 1.4
• Case: sod

Convergence Check:
• Errors between the simulation based on your solution and the simulation based on the

self-refined solution are computed to assess convergence.
• Convergence is confirmed if the following validation criteria are satisfied.

Validation Criteria:
• Current Problem Precision Level: HIGH
• Required RMSE Tolerance: ≤ 0.01

• Relative RMSE must meet this tolerance compared to self-refined solution
• Positivity preservation: pressure and density must remain positive at all times
• Shock speed consistency: pressure gradients should not exceed physical bounds

Available functions:

Function Name: euler_1d_check_converge_n_space
Description: Conduct a 1D Euler PDE simulation and evaluate its spatial convergence by dou-
bling n_space. It returns the following results:

• RMSE: float
• is_converged: boolean
• accumulated_cost: integer
• The cost of the solver simulating the environment: integer
• The cost of the solver verifying convergence (This will
not be included in your accumulated_cost): integer

• metrics1: object
• metrics2: object

Parameters:
• cfl (float): CFL number
• beta (float): Limiter parameter for generalized superbee
• k (float): Blending parameter for MUSCL reconstruction
• n_space (integer): Current number of grid cells for spatial discretization

Required parameters: cfl, beta, k, n_space Design-Value History

Below are some previous n_space values and their simulation accuracy
and efficiency indicators. The values are arranged in ascending
order based on accuracy, where higher values indicate a closer
simulation result to ground truth. The efficiency indicator is
also important, where higher values mean a more cost-efficient
n_space choice.

↪→
↪→
↪→
↪→
↪→

<n_space> 240 </n_space>
Accuracy Indicator:

0.9834
Efficiency Indicator:

1.1479

<n_space> 512 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.2717

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

<n_space> 400 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.4255

<n_space> 300 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.7290

<n_space> 288 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.7897

<n_space> 260 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.9707

<n_space> 258 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.9865

<n_space> 257 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.9946

<n_space> 256 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

1.0027

<n_space> 252 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

1.0364

Output final answer in the requested format with a new n_space value
that is different from all values above. You should first ensure
an accurate simulation by achieving 1.0 in accuracy indicator,
then gradually increase efficiency by choosing a coarser n_space
value.

↪→
↪→
↪→
↪→

Prompt Example for Euler 1D Single-Turn w/o Scenario Setting
Instruction

Your task is to optimize a one-dimensional black-box function with a given parameter. You will
be prompted with a list of history of parameter and values, where values include an accuracy
indicator and success indicator. You are required to first optimize accuracy until it reaches

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

1.0, then optimize efficiency for as high as possible. The parameter in history will start with
<n_space>and end with </n_space>. Please return a parameter value different from all values
given in the history that you think will optimize the function value as requested. Please return
your answer by starting with <n_space>and ending with </task>as well. You may NOT use
any form of prior knowledge, and treat all parameter names, function names, etc. as
purely arbitrary.

Input

Design-Value History

Below are some previous n_space values and their simulation accuracy
and efficiency indicators. The values are arranged in ascending
order based on accuracy, where higher values indicate a closer
simulation result to ground truth. The efficiency indicator is
also important, where higher values mean a more cost-efficient
n_space choice.

↪→
↪→
↪→
↪→
↪→

<n_space> 240 </n_space>
Accuracy Indicator:

0.9834
Efficiency Indicator:

1.1479

<n_space> 512 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.2717

<n_space> 400 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.4255

<n_space> 300 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.7290

<n_space> 288 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.7897

<n_space> 260 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.9707

<n_space> 258 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.9865

<n_space> 257 </n_space>
Accuracy Indicator:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

1.0000
Efficiency Indicator:

0.9946

<n_space> 256 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

1.0027

<n_space> 252 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

1.0364

Output final answer in the requested format with a new n_space value
that is different from all values above. You should first ensure
an accurate simulation by achieving 1.0 in accuracy indicator,
then gradually increase efficiency by choosing a coarser n_space
value.

↪→
↪→
↪→
↪→

Statistics Appended to Prompts

Below is the statistical information extracted from historical samples concerning task values and scores
concerning accuracy and efficiency:
1. **Overall scale of {task}**
- Typical x range: {x_range}
- Mean x value: {x_mean:.4f}
2. **Best and worst observed samples**
- Best sample: x = {x_best}, y = {y_best:.4f}
- Worst sample: x = {x_worst}, y = {y_worst:.4f}
3. **Global trend between x and y**
- Pearson correlation between x and y: {pearson_corr:.4f}
- Fitted model for global trend: {fitted_model_description}
Please respond strictly according to the json format specified before.
Return your answer in JSON format.

F DETAILED RESULTS

0 2 4 6 8
Optimization Step

0.0

0.5

1.0

1.5

2.0

R
ew

ar
d

Va
lu

e

Ours
o4-mini w/ Noisy Signal
Direct Prompting
w/ Fixed Illustrations
Dummy Solution

(a) An exemplar optimization tra-
jectory in Single-Turn setting for
CASCO-Agentwith vs. without sce-
nario setting.

0 2 4 6 8
Optimization Step

0.0

0.5

1.0

1.5

2.0

R
ew

ar
d

Va
lu

e

w/ Scenario Setting (Ours)
w/o Scenario Setting
Direct Prompting w/ Scenario Setting
Dummy Solution

(b) An exemplar optimization tra-
jectory in Single-Turn setting for
CASCO-Agentwith various signals.

0 1 2 3
Accumulated Cost 1e7

0.010

0.015

0.020

0.025

0.030

0.035

0.040

RM
SE

1
START

1
START

3

4

5

6

1

2

START

Ours
w/ Noisy Signal
Direct Prompting
w/ Fixed Illustrations
RMSE Threshold (0.02)

(c) An exemplar optimization tra-
jectory in Mingle-Turn setting for
CASCO-Agentwith various signals.

Figure 11: Case studies for ablations, with base model OpenAI o4-mini.

Full results of the comprehensive benchmark are presented in table 3. The case studies as introduced
in 4.5 are shown in Figure 11.

The full ablation results are presented in table 4. Our ablations on surrogate neural network and prior
knowledge are conducted on Euler 1D ’s medium precision level tasks; we report reward R0, Rm

and success rates P 0, Pm for both Single-Turn and Multi-Turn settings. Our base model is fixed as

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 3: Main evaluation results in both Single-Turn and Multi-Turn settings. Values in each box
is the mean of tasks evaluated in three precision levels. Note that we report both reward R0, Rm

and for-reference quantities P 0 and Pm. Values in bold font are the best-achieving ones, and values
with ↑ indicate a significant rise compared to direct prompting.

(a) Single-Turn CASCO-Agent

Heat 1D Euler 1D NS Transient 2D

Method Base Model R0 P 0 R0 P 0 R0 P 0

BO (Nogueira, 2014) – 0.253 1.000 0.464 0.125 0.814 0718

Base LLM
Llama3.2-3B-Instruct 0.288 0.347 0.698 0.174 0.052 0.151
Qwen-8B 0.412 0.633 0.642 0.268 0.342 1.000
o4-mini 0.362 0.253 0.501 0.301 0.565 0.516

CASCO-Agent (Ours)
Llama3.2-3B-Instruct 0.950↑ 0.773 ↑ 0.939 ↑ 0.516 ↑ 1.591↑ 0.785↑
Qwen-8B 0.853↑ 0.759 ↑ 0.897 ↑ 0.789 ↑ 1.813↑ 0.702
o4-mini 1.239 ↑ 0.679 ↑ 1.764 ↑ 0.733 ↑ 0.842 ↑ 0.536

(b) Multi-Turn CASCO-Agent

Heat 1D Euler 1D NS Transient 2D

Method Base Model Rm Pm Rm Pm Rm Pm

BO (Nogueira, 2014) – 0.290 1.000 0.496 0.625 0.517 0.766

Base LLM
Llama3.2-3B-Instruct 1.060 0.837 0.328 0.531 1.232 0.448
Qwen-8B 1.613 0.756 1.511 0.421 0.662 0.861
o4-mini 1.960 0.960 1.135 0.392 0.991 0.674

OPRO (Yang et al., 2023)
Llama3.2-3B-Instruct 0.170 0.917 0.290 0.600 0.275 0.877
Qwen-8B 0.217 0.917 0.323 0.680 0.326 1.000
o4-mini 0.241 0.917 0.974 0.520 0.957 1.000

CASCO-Agent (Ours)
Llama3.2-3B-Instruct 1.204 ↑ 0.946 ↑ 1.339 ↑ 0.572 1.435 0.925 ↑
Qwen-8B 1.760 0.900 ↑ 1.359 0.624 ↑ 1.535 ↑ 0.944
o4-mini 1.981 0.986 1.571 ↑ 0.443 1.538 ↑ 0.972 ↑

o4-mini. Note that although CASCO-Agent without Physics prior is achieving a higher mean reward
in Single-Turn setting, its success rate is much lower than our method, indicating its frequent choice
of coarse designs that leads to high reward in only a few tasks. We argue that this is a form of reward
hacking as it contradicts with our expectation to carry out experiments correctly and efficiently.

Table 4: Ablation results averaged over all tasks.

Single-Turn Setting Multi-Turn Setting

Setting R0 P 0 Rm Pm

CASCO-Agent (Ours) 0.571 0.708 0.834 1
CASCO-Agent w/ Sparse Surrogate Signal 0.42 0.5 0.635 0.875
CASCO-Agent w/ Random Signal 0.142 0.583 0.426 0.583
CASCO-Agent w/ In-Context Signal 0.42 0.5 0.572 0.958
CASCO-Agent w/o Physics Prior 0.595 0.152 0.475 0.375
Direct Prompting 0.096 0.125 0.116 0.167

G IMPLEMENTATION DETAILS

We include a detailed and explicit description of all baseline implementation in this section.

Bayesian Optimization

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Surrogate Model. We use Gaussian Process regressor with Matern Kernel. We initialize the kernel
with smoothness parameter = 2, length scale = 1.

Optimizer for Surrogate Model Training. We use L-BFGS (Liu and Nocedal, 1989) implemented
in sk-learn (Pedregosa et al., 2018). We use

1. α = 0.6, i.e. the amount of observation noise added to the diagonal of the covariance
matrix during training

2. n_restarts_optimizer = 10, i.e. number of times to restart L-BFGS.
3. length_scale_bounds = (1e−2, 1e1), i.e. the admissible range for the ARD length-

scale parameters during hyperparameter optimization.
Acquisition Function. We use UCB with confidence width (kappa) = 2.576

Direct Prompting

temperature = 0.8, maximum new tokens = 64, top-K = 50, top-P = 0.9

OPRO

temperature = 0.8, maximum new tokens = 64, top-K = 50, top-P = 0.9, number of iterations
= 5, number of generation branches each step = 4

CASCO-Agent

temperature = 0.8, maximum new tokens = 64, top-K = 50, top-P = 0.9, number of iterations
= 5, number of generation branches each step = 4

H EXPERIMENTAL BUDGETS

We list computational budgets in Table 5 and Table 6
Table 5: Computational budgets of methods in single-turn setting. a: Using the best proposal selected
from 20 sampled responses (temperature = 0.7). b: Sampling 4 responses (temperature = 0.7) for 5
optimization steps. c: Computation time excluding simulator runtime, averaged across all problems.

Method Runtime per problem c # of Calls to simulators per problem # of calls to LLMs per problem

BO 16.7s 1 N/A
Direct Prompting 122.6s 1 20 a

Ours 140.52s 1 5× 4 = 20 b

Table 6: Computational budgets of methods in multi–turn setting. a: Termination of the multi-turn
query process is determined by the agent; the maximum number of allowed steps is 10. b: t denotes
the number of steps taken before the agent decides to terminate for each trajectory; 4 trajectories
are sampled for all methods (temperature = 0.7). c: Computation time excluding simulator runtime,
averaged across all problems. d: Lower values arise because agents within the CAED-Agent frame-
work tend to converge earlier and thus terminate the multi-turn process in fewer steps.

Method Runtime per problem c # of Calls to simulators per problem # of calls to LLMs per problem

BO 34.71s 10 N/A
Direct Prompting 96.80s 1 ∼ 10a 4tb

OPro 115.58s 1 ∼ 10a 4t b

Ours 60.57s d 1 ∼ 10a 4tb

I ADDITIONAL ABLATION EXPERIMENTS

Using a separate surrogate model for evaluation is more effective than providing samples di-
rectly to the LLM. To illustrate necessity of introducing a separately trained neural surrogate to

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

evaluate candidate designs, instead of simply exposing the LLM to the training examples (or sum-
mary statistics) through prompting or fine-tuning, we designed an additional set of experiments.
Specifically, we compare the original CAED-Agent against:

1. Few-shot prompting with 5/10/20 in-context illustrations (Fewshot-5/10/20). As in our
original ablation, the illustrations are randomly sampled from samples with the same con-
ditions in the training dataset, arranged in ascending order, and appended to the prompt we
previously used. (See Appendix E.)

2. Direct Prompting with statistics derived from all training samples for the neural surrogate.
(DP+stats) The following statistics are provided: variable range, best/worst samples, Pear-
son correlation, fitted model (using quadratic regression) descriptions. See the appended
statistics under "Statistics Appended to Prompts" in Appendix E.

3. CAED-Agent appended with 5/10/20 in-context illustrations (CAED-Fewshot-5/10/20).
The samples are chosen in the same manner as (1), and appended to the prompt. The
querying of neural surrogate and iterative update of the illustrations are the same as our
original method.

Table 7: Ablation studies on few-shot prompting and direct prompting with statistics. Done on
euler_1d n_space, single-turn.

CAED-Agent Fewshot DP+Stats CAED-Fewshot

5 Illustrations
0.571

0.476
0.289

0.622
10 Illustrations 0.42 0.635
20 Illustrations 0.365 1.058

See Table 7 for results: (1) Providing only summary statistics consistently underperforms.
Simulation-design tuning is a fine-grained task requiring relational information beyond what sta-
tistical descriptors can convey. (2) Few-shot prompting variants also fail to surpass our method, and
the variant using an extended context (20 illustrations) performs even worse. Our failure-mode anal-
ysis suggests that LLMs tend to copy solutions from illustrations, leading to suboptimal proposals.
(3) Augmenting CAED-Agents prompts with few-shot illustrations improves the agents exploratory
behavior, yielding the strongest performance among all tested configurations.

29

	Introduction
	Related Work
	Methodology
	Problem Definition
	Cost-Aware Simulation Configuration Optimization Agent

	Experiments
	Experimental Environment
	Baselines and Setting
	Metrics
	Analysis
	Ablations

	Conclusion
	Experimental Environment
	Algorithmic Diagram
	Neural Network Training
	Soft Utility Function
	Prompts Used in Agent Framework
	Detailed Results
	Implementation Details
	Experimental Budgets
	Additional Ablation Experiments

