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ABSTRACT

Existing methods for evaluating graph generative models primarily rely on Max-
imum Mean Discrepancy (MMD) metrics based on graph descriptors. While
these metrics can rank generative models, they do not provide an absolute mea-
sure of performance. Their values are also highly sensitive to extrinsic param-
eters, namely kernel and descriptor parametrization, making them incomparable
across different graph descriptors. We introduce PolyGraphScore (PGS), a
new evaluation framework that addresses these limitations. It approximates the
Jensen-Shannon (JS) distance of graph distributions by fitting binary classifiers
to distinguish between real and generated graphs, featurized by these descriptors.
The data log-likelihood of these classifiers approximates a variational lower bound
on the JS distance between the two distributions. Resulting scores are constrained
to the unit interval [0, 1] and are comparable across different graph descriptors.
We further derive a theoretically grounded summary score that combines these in-
dividual metrics to provide a maximally tight lower bound on the distance for the
given descriptors. Thorough experiments demonstrate that PGS provides a more
robust and insightful evaluation compared to MMD metrics.

1 INTRODUCTION

Graph generative models (GGMs) are seeing wider adoption across scientific domains, from ret-
rosynthesis (Somnath et al.l 2021 and social network modeling (Bojchevski et al., 2018) to the
discovery of novel drugs and materials (Liu et al., 2024} |[Kelvinius et al., |2025). However, progress
in this field is increasingly bottlenecked by the lack of robust methods for evaluating generated
graphs (Thompson et al.| 2022} |O’Bray et al.l 2022]).

This evaluation challenge is not unique to graphs. In image generation, the community has largely
converged on pretrained embeddings paired with distribution distances, such as Inception-v3 cou-
pled with Fréchet distance yielding the widely used Fréchet Inception distance (FID) (Heusel et al.,
2017), or DinoV2 and density estimation producing the Feature Likelihood Divergence (FLD) (Ji-
ralerspong et al.|[2023)). While these approaches provide standardized metrics adapted to other fields
such as materials (Kelvinius et al., [2025)), video (Unterthiner et al., [2019)), and audio (Kilgour et al.,
2018)), limitations remain (Barratt & Sharma, 2018). As an alternative, classifier two-sample tests
(C2STs) (Lopez-Paz & Oquabl 2017)) recasts evaluation as a supervised classification task, turn-
ing classifier performance into evaluation metrics. To date, the applicability of these approaches to
graph-structured data has not yet been explored.

The de facto standard for evaluating GGMs is to compute the Maximum Mean Discrepancy
(MMD) (Gretton et al.l [2012) between distributions of hand-crafted graph descriptors (e.g., de-
grees, Laplacian spectra, etc.) on a small set of synthetic and real-world graphs (You et al., [2018).
While convenient, this approach has critical inherent limitations: (i) MMD estimates lack an intrin-
sic scale, meaning that a single reported value without context does not provide an absolute notion
of the goodness of fit of the generative model; (ii) rankings are sensitive to descriptor and kernel
choice (O’Bray et al.,|2022)), with no way of obtaining a single ranking across descriptors for con-
sistent and systematic model comparison; and (iii) in the small-sample regimes common to current
GGM benchmarks, MMD estimates suffer from high bias and variance (Krimmel et al.| 2025])

We introduce PolyGraphScore (PGS), a novel evaluation framework that estimates the Jensen-
Shannon distance (JSD) (Endres & Schindelin, [2003)) between true and generated graph distributions
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using probabilistic classification instead of kernel-based distances. A discriminator is trained to dis-
tinguish real from generated graphs using standard graph descriptors, where the classifier’s data
log-likelihood provides a lower bound on the JSD. This yields scores in [0, 1] that are directly com-
parable across descriptors. Taking the maximum over descriptors gives the tightest available bound
while identifying the most informative descriptor.

Our formulation of PGS uses TabPFN (Hollmann et al, Table 1: Comparison of Maximum Mean
2025)), a fast, hyperparameter-free discriminator, mak- Discrepancy and PolyGraphScore.
ing it robust and simple to use. Empirically, we show

that PGS monotonically tracks synthetic data perturba- Property MMD PGS
tions, strongly correlates with model training progress, ~ Range [0,00) [0, 1]
and accurately captures generated graph quality. It also ~ Intrinsic Scale X v
produces robust rankings across representative GGMs. Descriptor Comparison X 4
Single Ranking X v

Table [I] summarizes the advantages of PGS over MMD.

Our work makes four primary contributions:

* A rigorous reassessment of MMD for GGM evaluation. We empirically show that stan-
dard MMD estimators are plagued by high bias and variance at typical benchmark sizes (20-40
graphs), leading to unreliable model rankings, and we provide actionable remedies.

* PolyGraphScore (PGS): an estimate of the JSD distance between distributions. We
propose a method to derive interpretable evaluation scores by approximating variational lower
bounds on the JSD via probabilistic discrimination on graph descriptors.

* A comprehensive empirical validation. We show that PGS tracks data perturbations monoton-
ically and correlates strongly with training dynamics of state-of-the-art models. We also provide
comprehensive PGS-based benchmark results across synthetic and real-world graphs, including
molecules.

¢ An open-source library to advance GGM evaluation. We release the PolyGraph library, in-
cluding implementations of PGS, MMD estimators, and new, larger benchmark datasets (SBM-
L, LOBSTER-L, PLANAR-L), to facilitate more robust and reproducible future research.

2 RELATED WORK

We present here related work on the evaluation of graph generative models and classifier-based
evaluation for general generative models.

Evaluation of Graph Generative Models. The evaluation of GGMs has largely been shaped by
methods based on the MMD (Gretton et al., [2012). [You et al.| (2018)) first proposed computing the
MMD between generated and real graph distributions using a Wasserstein Gaussian kernel on a set of
graph descriptors, including degree histograms, clustering coefficients, and orbit counts. To reduce
the computational cost of this method, [Liao et al.| (2019) introduced a simpler kernel formulation
using a Gaussian kernel with the squared total variation distance, which gained widespread adop-
tion (Martinkus et al., 2022 |Vignac et al.,[2023; |Chen et al.} 2025). However, this simplified kernel
was shown to be indefinite and highly sensitive to hyperparameter choices (O’Bray et al., |2022).
Subsequent work has focused on correcting these flaws, either by modifying the kernel to ensure
it is positive definite (O’Bray et al.,|2022) or by employing standard RBF kernels with automated
hyperparameter tuning (Thompson et al.l 2022} [Sriperumbudur et al., 2009). A parallel research
effort has concentrated on identifying more expressive graph descriptors for use within the MMD
framework. The initial set of statistics was augmented with the graph Laplacian spectrum by [Liao
et al.|(2019), and more recently, graph neural networks (GNNs) have been used as powerful graph
featurizers (Thompson et al., [2022; [Shirzad et al., |2022). Despite these advances, a key limitation
remains: since MMD has no inherent scale, it is difficult to assess whether newly proposed descrip-
tors are suited for discriminating between real and generated graphs. PGS, however, is comparable
across descriptors and thus explicitly quantifies their discriminative power.

Departing from MMD, other evaluation paradigms have been proposed. |Southern et al.|(2023)) used
tools from topological data analysis, featurizing graphs via persistent homology and comparing dis-
tributions based on their average persistence landscapes. In a different direction, Martinkus et al.
(2022) introduced synthetic benchmark datasets (Planar and SBM) that allow for judging the struc-
tural validity of individual graph samples—such as planarity. The small size of the synthetic datasets
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and the resulting variance in MMD estimates were criticized by Krimmel et al.| (2025)). We expand
on these observations and propose concrete techniques for quantifying the uncertainty in GGM
evaluation metrics, addressing a critical need for more reliable and reproducible evaluations.

Classifier-Based Evaluation. One relevant family of metrics used for generative model evaluation
is derived from the classifier two-sample test (C2ST) (Lopez-Paz & Oquab), [2017). This work pro-
poses to discriminate generated from reference samples via binary classification and repurpose the
resulting accuracy as a measure for the separability of the generated and reference distributions. By
extension, it assesses the quality of the generative model.

The MMD can also be viewed through this lens, as it corresponds to the optimal linear risk of a
kernel classifier (Sriperumbudur et al., [2009; (Gretton & Jitkrittum, [2016)). Generative adversarial
networks (GANs) (Goodfellow et al.l 2014 |Li et al., [2015} |Binkowski et al., 2018} |Arjovsky et al.,
2017) also leverage a classifier’s output, not just for training but also for evaluation, where classifier-
based divergences (including MMD) have been shown to correlate well with the perceptual quality
of generated images (Im et al.| 2018)).

Despite the success of these methods in other domains, their application to graph generation has
been limited. While some work has used fixed multi-class classifiers on generated graphs to mea-
sure performance (Liu et al., 2019), classifiers that discriminate between real and generated graphs
have not been explored beyond the MMD framework. Our work addresses this gap, proposing a
novel classifier-based evaluation framework for GGMs that provides scores that are (i) absolute,
(ii) comparable across different graph descriptors, and (iii) capable of estimating lower bounds on
certain probability metrics.

3 PRELIMINARIES

In this section, we review two divergences, MMD and the Jensen-Shannon (JS) divergence, from a
unified variational perspective: the optimal performance of a discriminator tasked with distinguish-
ing between two distributions. We first discuss MMD, interpreting it as the linear risk of a classifier
in a reproducing kernel Hilbert space (RKHS) (Sriperumbudur et al.| [2009). We highlight its lim-
itations in the context of graph generation, primarily its lack of an absolute scale, which motivates
our subsequent review of the JS distance as a foundation for more interpretable, classifier-based
evaluation metrics such as the PolyGraphScore.

3.1 MMD AND ITS INTERPRETATION AS CLASSIFICATION RISK

Given two probability distributions P and () over a space X (in our case, the space of graphs) and a
kernel £ : X x X — R, the squared MMD is defined as:

MMD2(P7 Qv k) = EZL’,CE' NP[k(x? (E/)} - 2]ECE~P,?JNQ[]€(‘T7 y)] + Eyyy’ NQ[k(yv yl)] (l)
The MMD can be expressed as the distance between the mean embeddings of P and @) in the RKHS
‘H induced by k. This framing leads to a variational formulation where the MMD is precisely the

optimal linear classification risk achievable by a discriminator in the unit ball of A (Sriperumbudur,
et al [2009). We refer to Appendix [D|for a detailed derivation.

Limitations. A fundamental limitation of MMD for model evaluation is its lack of an absolute scale
(O’Bray et al., 2022). The MMD value is sensitive to the choice of kernel and the scaling of input
features. For instance, using a linear kernel, simply scaling the input features by a scalar factor will
scale the resulting MMD by the same factor. This makes it impossible to compare MMD scores
across different graph descriptors. While MMD can rank models relative to a baseline for a fixed
descriptor, it provides no absolute measure of performance.

To overcome this, we turn to metrics that possess a fixed intrinsic scale, making them compara-
ble across different graph descriptors. This leads us to the Jensen-Shannon divergence and, more
generally, to the family of f-divergences.

3.2  VARIATIONAL ESTIMATION OF THE JENSEN-SHANNON DISTANCE

The Jensen-Shannon (JS) divergence is a symmetrized version of the Kullback-Leibler (KL) diver-
gence: 1(Dxi(P || M)+ Dki(Q || M)) with M := (P + Q) being the mixture of P and Q. It is
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Figure 1: Computation of the PGS metric. TabPFN is trained to discriminate between generated
and reference graphs based on different vectorial descriptions. The most expressive descriptor (here:
orbit) is used to derive the final PGS, yielding a maximally tight lower bound on the Jensen-Shannon
(JS) distance between the generated and reference graph distributions.

constrained to the unit interval [0, 1] and, in contrast to MMD, is independent of extrinsic parameters
such as kernel choice. As extensively leveraged in GANs (Goodfellow et al.l [2014), the JS diver-
gence admits (under mild conditions) a variational formulation as the maximal data log-likelihood
(up to constants) achievable by a binary classifier D distinguishing between samples from P and Q:

1 1
Dis(PIQ) = swp  5Earlog D@+ gEemallons(l ~ D) 1. @)

Importantly, the log-likelihood of any classifier provides a valid lower bound on the JS divergence
and the bound is tightened by fitting a classifier via maximum likelihood methods. While the JS
divergence is not a metric, its square root (termed the JS distance) is (Endres & Schindelin}, 2003)).

The JS divergence belongs to the larger family of f-divergences. As shown by Nguyen et al.[(2010),
any f-divergence admits a variational formulation similar to Eqn. (). In Appendix[E| we investigate
the total variation (TV) distance as a possible alternative to the JS distance. Instead of log-likelihood,
we show that the variational objective of the TV distance is given by the classifier’s informedness.

4 POLYGRAPHSCORE: VARIATIONAL ESTIMATES OF THE JS DISTANCE

Building on the variational view of divergences, we introduce PolyGraphScore (PGS), a frame-
work for evaluating GGMs. PGS estimates the JS distance between a distribution of reference graphs
and a distribution of generated graphs. The core idea is to reframe the divergence estimation as a
classification task: we featurize graphs using a variety of established graph descriptors and measure
how well a powerful, non-parametric classifier can distinguish between the two sets. The resulting
classifier performance, measured in terms of log-likelihood, serves as a tight, empirical lower bound
on the true JS divergence between the underlying graph distributions. Fig.[I|shows this procedure.

Our method proceeds in two main stages. First, we detail how to estimate a lower bound on the
divergence using a single graph descriptor in Sectiond.I] Second, we describe in Section[.2]how to
systematically combine multiple descriptors from a larger set to compute the final PGS, which rep-
resents the tightest lower bound from the given descriptors. We provide pseudocode in Appendix [B]

4.1 ESTIMATING THE JS DISTANCE WITH A SINGLE DESCRIPTOR

Given a multiset of reference graphs P.s and generated graphs (Qc,, along with a single graph
descriptor d : X — R", we estimate the divergence of Pt and Qeq via featurization by d.

To prevent overfitting, where a classifier might perfectly memorize the training data and thus over-
estimate the true divergence, we randomly partition both P and Qe into disjoint £it and test
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sets of equal size. Our goal is to approximate the supremum in Eqn. (2) by training a discriminator
exclusively on the £it set, and computing the final divergence estimate on the held-out test set.

Discriminator Choice. An appropriate discriminator for this task must satisfy three criteria:

1. Probabilistic: It must output class probabilities to estimate the JS divergence via its log-
likelihood objective.

2. Efficient: It must be fast to train, enabling rapid evaluation across many descriptors.

3. Hyperparameter-Free: It should be robust and require no manual tuning to ensure fair and
reproducible comparisons.

These requirements rule out the training of deep neural networks with gradient descent, because it
is computationally expensive and requires hyperparameter tuning. It also rules out non-probabilistic
models such as decision trees and SVMs. As a result, we choose TabPFN (Hollmann et al.| 2025) in
this work. TabPFN is a transformer-based model that approximates Bayesian inference over a large
space of simple models consisting of Bayesian neural networks and structural causal models. It is
fast (see Table [I3]), requires no hyperparameter tuning, and has proven to be a powerful classifier
for tabular data, making it an ideal choice for our framework since our classifier operates on graph
descriptors. In Appendix [J] we investigate logistic regression as an alternative choice and show that
TabPFN yields tighter bounds in practice. In Appendix |[R| we show that kernel logistic regression
also fits naturally into the PGS framework, allowing for the use of, e.g., graph kernels (Borgwardt
& Kriegell 2005 [Shervashidze et al., 201 1; |Grauman & Darrell, 2007). However, similar to logistic
regression, we found that those kernel logistic regression-based PGS scores yielded looser bounds
in practice, and elected to proceed with TabPFN.

Estimation Procedure. With a discriminator selected, we first apply the descriptor d : X — R"
to the graphs in the fit set to create vectorial features. We then train the binary classifier on
these features using TabPFN. We apply the descriptor to the test set and use the trained classifier
to evaluate the data log-likelihood, providing an approximate lower bound of the JS divergence.
Finally, we take the square root to estimate the JS distance.

4.2 DESCRIPTOR SELECTION FOR THE TIGHTEST BOUND

A single graph descriptor captures only one specific aspect of graph structure. To obtain a more
comprehensive evaluation, we consider a collection of K distinct descriptors {d1,...,dx}. The
goal is to identify the single descriptor that most effectively distinguishes between the reference and
generated graphs, as this descriptor will yield the tightest lower bound on the true JS distance. This
descriptor selection process must be performed carefully to avoid data leakage from the test set,
which would invalidate our final estimate. We therefore perform selection using only the £it data
via cross-validation.

Cross-Validation on the Fit Set. For each descriptor d, : X — R", we estimate its ability to
separate the distributions by performing 4-fold stratified cross-validation on the (P, g;n) data.
In each fold, three-quarters of the data are used for training a discriminator, and the remaining
quarter is used for validation. The average validation score across the four folds provides a robust

estimate of the lower bound achievable by that descriptor.

The PolyGraphScore. After performing cross-validation for all K descriptors, we select the
descriptor d* that yielded the highest average score. This is the descriptor that is empirically the
most informative. Finally, we train a new discriminator for d* on the entire £it set and evaluate
it on the held-out test set. The resulting score is the PolyGraphScore (PGS). This procedure
ensures that the descriptor selection and final evaluation are performed on separate data, yielding a
principled and tight estimate of the divergence between the graph distributions.

5 EXPERIMENTS

We empirically validate PGS through a series of experiments designed to test its robustness, sen-
sitivity, and practical utility against standard MMD-based metrics for evaluating graph generative
models. Our investigation consists of four stages:
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e First, Section [5.1] shows that MMD evaluations suffer from substantial bias and variance on
current datasets, motivating the use of larger datasets, unbiased estimators, and subsampling to
assess estimate stability.

¢ In Section [5.2] we show that PGS correlates well with controlled perturbations applied to syn-
thetic datasets, showing the power of JSD to distinguish samples from different distributions.

* In a realistic use case for a state-of-the-art diffusion model (Section [3.3), we show that PGS
reliably tracks training progress and performance gains when increasing the number of denoising
steps. Our results indicate that PGS captures model quality more reliably than MMD metrics.

* Finally, in Section[5.4] we leverage PGS to conduct a comprehensive benchmark of several repre-
sentative GGMs.

Unless otherwise stated, all PGS scores are based on the Jensen-Shannon (JS) distance estimated
using TabPFN as the discriminator. Following previous works (You et al., 2018} [Liao et al, [2019;
Thompson et al. 2022), we use degree histograms (abbreviated as Degree/Deg. in our tables
and figures), clustering coefficient histograms (Clustering/Clust.), the Laplacian spectrum (Spec-
tral/Spec.), orbit counts (Orbit), and GIN embeddings (GIN) as descriptors. For molecular graphs,
we use domain-specific descriptors based on topological properties, physico-chemical parameters,
and learned representations. We refer to Appendix [C|for further details.

5.1 HIGH BIAS AND VARIANCE PLAGUE MMD-BASED GGM BENCHMARKS

The evaluation of GGMs is predominantly RBF MMD Orbit 5 on Planar 0.3RBF MMD Orbit 5 on Planar

conducted on synthetic, procedurally gen- Graph Sources
erated datasets, including lobster graphs, <2 021 e
stochastic block models (SBMs), and pla- £ o

nar graphs, which permit the generation 21072 Graph Source SR

of arbitrarily large numbers of samples. = e Test Set

Krimmel et al| (2025) first raised the is- 10724 —— DiGress AC::
sue that MMD values computed on such 5 o o o o o0 0 v o o e
datasets can exhibit considerable variance, RNy R AN
thereby casting doubt on the robustness of Number of Graphs (log.) Number of Graphs (log)
model rankings derived from these met- (a) Biased MMD. (b) Unbiased MMD.

rics. In order to more rigorously charac-
terize this phenomenon, we exploited the
procedural nature of these datasets to sys-
tematically vary the subsample sizes used in MMD. The MMD shown here is obtained with the
radial basis function (RBF) kernel; more details are given in Appendix [G]

Figure 2: Examples of MMD estimates that suffer from
high bias (left) and variance (right).

In the regime of commonly used synthetic graph benchmarks (between 20 and 40 test graphs, c.f.
Appendix [P), bias dominates the MMD values (Figure [2a] in log scale for clarity). Even when
using the unbiased MMD estimatoﬂ the variance across subsamples remains large enough to make
model comparisons at these sample sizes unreliable (Figure [2b). Figure [2illustrates these issues for
DiGress-generated samples for planar graphs described with orbit counts, but extensive experiments
in Appendix |G| show that they persist across all combinations of models, descriptors, and datasets.

This finding yields three actionable insights. First, prefer unbiased MMD estimates, as bias depends
heavily on sample size. Second, akin to |[Krimmel et al.| (2025), use larger sample sizes to reduce
estimator variance; we propose SBM-L, PLANAR-L, and LOBSTER-L for this purpose (with more
details in Appendix Third, report the variance of MMD across subsamples to quantify the
stability of the estimates. To assess the effect of dataset size on PGS, we conducted analogous
experiments in Appendix [[] which show that its mean and variance stabilize beyond subsample sizes
of about 256. This is particularly relevant because TabPFN’s discriminative power may depend on
sample size.

'Our MMD estimates are not unbiased, as we take the maximum MMD value over a set of kernel band-
widths, but we do use the unbiased MMD estimate without diagonals, see Eq. 3 in|Gretton et al.| (2012).

2 AutoGraph reaches similar VUN scores with markedly lower loss in SBM-L than on the original SBM
dataset (see Appendix H), showing reduced overfitting, which is underexplored in GGMs (Vignac et al.,[2023).
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Figure 3: Spearman correlation of MMDs and PGS with magnitude of perturbation.

5.2 POLYGRAPHSCORE TRACKS SYNTHETIC DATA PERTURBATIONS

To validate PGS as a reliable metric, we verify its ability to correlate with the magnitude of per-
turbations applied to graph datasets, a standard procedure for evaluating graph metrics (O’Bray
et al.| [2022; Thompson et al.,[2022)). Our experiments demonstrate that PGS effectively tracks these
changes, performing on par with MMDs.

Experimental Setup. We conduct our experiments on five datasets: Protein contact graphs (Dobson
& Doigl [2003), ego nets extracted from Citeseer (Sen et al., 2008), and three procedural datasets
(Planar, SBM, Lobster). Each procedural dataset contains 4096 samples, while the proteins dataset
contains 918 samples, and the ego dataset contains 757 samples. Dataset details are in Appendix [P}

To simulate data corruption, we apply five distinct perturbation types, four of which are adapted
from previous studies (O’Bray et al., [2022; Thompson et al., [2022). Each perturbation modifies
the graph structure (or dataset) in a controlled manner. Edge deletion/addition removes or adds a
specified number of edges selected at random. Edge rewiring replaces one of the incident vertices
of some edges with a randomly selected vertex. Mixing operates on the dataset level by replacing a
fraction of the graphs within a dataset with new samples from an Erd6s—Rényi model. Finally, we
propose a novel perturbation type which we term “edge swapping”. Edge swapping selects pairs of
edges and swaps two of their incident vertices. This transformation preserves the vertex degrees,
making it a more challenging perturbation for some metrics to detect.

Perturbation Experiments. Our core experiment involves splitting each dataset into two equal
subsets: one serves as a fixed reference distribution, and the other is subjected to the perturbations.
We then measure the distance between the reference and the perturbed subset using PGS and MMD
metrics. Unlike MMD, PGS is a bounded metric in [0, 1]. This means it can saturate, or reach its
maximum value, when perturbations are too large and the distributions become non-overlapping. To
account for this, we first determine the perturbation magnitude at which PGS saturates (specifically,
exceeds 0.95). We then apply perturbations only within this non-saturating range and compute the
Spearman correlation between the metric scores and perturbation magnitudes. We visualize these
correlation coefficients in Fig. [3] where each data point represents a combination of dataset, pertur-
bation type, and metric. Our results show that PGS consistently exhibits a strong rank correlation
with perturbation magnitude, comparable to that of MMD metrics. We note that while the degree-
based and GIN-based MMD metrics struggle to detect the edge-swapping perturbation, PGS remains
robust by leveraging multiple descriptors that compensate for compromised ones.

We provide more details in Appendix [Hl where we illustrate the behavior of PGS as a function
of perturbation magnitude for all combinations of datasets and perturbations. From that analysis,
we conclude that no single descriptor dominates the others across all combinations of datasets and
perturbation types, underlining the necessity of considering a diverse set of graph descriptors. We
present additional experiments for a PGS estimating the Total Variation distance in Appendix
Appendix [J] provides similar results for a PGS variant using logistic regression instead of TabPFN.

5.3 POLYGRAPHSCORE CORRELATES WITH MODEL QUALITY

To demonstrate practical utility, we evaluate PGS on DiGress (Vignac et al.}|2023), a state-of-the-art
GGM, using denoising iterations and training epochs as proxies for model quality. PGS strongly
correlates with both, capturing model improvement more faithfully than MMD metrics while main-
taining a strong linear correlation with the percentage of valid graphs generated. All metrics were
computed comparing 2048 reference graphs against 2048 generated graphs.
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Figure 4: Trajectory of validity, PGS, and MMDs when increasing the number of denoising steps in
DiGress on PLANAR-L.

Table 2: Negative Pearson correlation (1) of validity with other distance-based metrics. Denoising
refers to the experiments in which we vary the number of denoising iterations. Training refers to the
experiments in which we monitor performance metrics during the training of DiGress models.

‘ PGS ‘OrbitRBF Deg. RBF  Spec. RBF  Clust. RBF  GIN RBF

Denoising PLANAR-L | 99.52 | 73.49 70.79 73.34 71.48 82.78
PLANAR-L | 99.05 84.33 76.52 79.05 81.61 81.07
Training SBM-L 88.07 51.05 15.77 36.76 83.97 14.12
LOBSTER-L | 89.32 -34.81 -33.40 -22.79 87.05 -30.31

Denoising Iterations. We first analyze the impact of the number of denoising steps on sample
quality. Six DiGress models are trained on the large procedural planar dataset using a range of
15 to 90 denoising steps. As shown in Fig. ] increasing the number of steps generally improves
model performance across all metrics. We find that PGS has a much stronger linear relationship
with validity than MMD metrics, as shown by the Pearson correlation coefficients in Table[2] This
tight relationship is especially encouraging as validity, alongside uniqueness and novelty, is often
considered a gold standard metric for assessing model quality. Yet, validity is not always defined.
Uniqueness and novelty can be provided jointly with PGS to offer complementary insights.

Training Iterations. Similarly, we assess the ability of MMD and PGS to track model quality
throughout the training process on LOBSTER-L, PLANAR-L, and SBM-L. The central hypothesis
is that reliable metrics should improve monotonically with training duration. We note that this
relationship is non-linear, hence the use of Spearman’s correlation coefficient. As illustrated for the
SBM-L dataset in Fig.[5] PGS and validity align with this hypothesis, whereas MMD metrics exhibit
erratic behavior. Analogous results for PLANAR-L and LOBSTER-L are provided in Appendix [I}
Spearman’s rank correlation in Table [3] confirms this quantitatively across all datasets: both PGS
and validity are strongly correlated with training duration, while MMD metrics show weak or even
negative correlations. The Pearson correlations in Table[2)further show that PGS maintains its strong
linear correlation with validity during training, a property not consistently shared by MMD metrics.

5.4 BENCHMARKING REPRESENTATIVE MODELS

We next present concrete PGS values and their associated subscores on a set of well-established
models spanning distinct generative paradigms, including autoregressive architectures such as
GRAN (Liao et all [2019) and AutoGraph (Chen et al., |2025) and diffusion models such as
ESGG (Bergmeister et al. [2023)) and DIGRESS (Vignac et al., 2023). We benchmark them on
our proposed datasets, SBM-L, LOBSTER-L, and PLANAR-L (with 2048 samples each, see Ap-
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Figure 5: Trajectory of validity, PGS, and MMD metrics throughout training of DiGress on SBM-L.
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Table 3: Sign-adjusted Spearman correlation (1) of validity, PGS, and MMDs with the number of
training iterations for DiGress.

| Validity PGS | Orbit RBF Deg. RBF Spec. RBF  Clust. RBF  GIN RBF

PLANAR-L 9231 93.71 86.71 41.96 83.22 67.83 81.82
SBM-L 83.64 62.73 20.00 -19.09 18.18 58.18 -38.18
LOBSTER-L | 8547  78.19 -8.09 -4.66 13.73 68.14 -2.70

Table 4: Mean PGS =+ standard deviation across synthetic and real-world graphs. AutoGraph*
denotes a model pretrained on the PubChem dataset. More details can be found in the original
paper (Chen et al.| |2025). Values are multiplied by 100 for readability. Subscores are computed on
the training set to select the best descriptor, and the final PGS refers to the score computed on the
test set with the best descriptor.

Dataset Model PGS subscores
VUN (1) PGS() Clust.(]) Deg. (| GIN (}) Orbs. () Orb4. ()) Eig. (})
PLANAR-L  AutoGraph 85.1 34.0 1.8 7.0 £29 7.8 £3.2 8.8 3.0 340+18 285+15 269 +23

DIGRESS 80.1 452 +18 248 +20 233+12 290+11 452418 403+18 394420
GRAN 1.6 99.7+02 993402 983403 983403 997401 992+02 985=+04
ESGG 93.9 450+14 109+32 217430 329+22 450414 428+19 29.6+16

LOBSTER-L  AutoGraph 83.1 180+16 42+19 12.1 1.6 148 +1.5 18.0 +1.6 16.1 1.6 13.0 1.1
DIGRESS 914 32+26 20413 1.2+15 23+20 3.0 £3.1 45+23 13411

GRAN 41.3 854 +o0s5 208+11 77.1+£12 798+o06 854+o0s5 850+o06 69.8+12
ESGG 70.9 699 o6 0.0 £o0.0 634+11 668+10 699406 660+06 51.7+1s8
SBM-L AutoGraph 85.6 56+15 03+os 6.2+14 63+1.3 32422 4.4 +2.0 25 +22
DIGRESS 73.0 174 23 5.7 +238 82 +33 138417 174423 148+25 87430
GRAN 214 69.1+14 502419 586414 69.1+14 657413 628+13 559+15
ESGG 10.4 994 +o02 979405 975406 983+o04 96.8+04 892407 994+o02
Proteins AutoGraph - 677 £74 477 +£57 315485 453451 67.7+74 474+70 532+609
DIGRESS - 88.1 +31 361 +43 292+s50 232453 881+31 60.8+36 234+118
GRAN - 89.7+27 86.0+20 70.6£31 T1.5+30 90424 844+£33 T6.7+ar
ESGG - 792 +43 582436 540+36 574441 802+31 T25+£30 243+110
Dataset Model PGS subscores
Valid (1) PGS () Topo ({) Morgan () ChemNet (]) MoICLR (}) Lipinski (])
GUACAMOL  AutoGraph 91.6 229 +05 82407 15.7 + 0.8 229 405 16.6 +0.4 194 +o0.7
AutoGraph* 95.9 104 +12 43 +o7 4.7 +14 4.6 o6 1.7 +1.0 104 +1.2
DIGRESS 85.2 327405 19.6+06 204 o5 325+o07 229 +o0.6 32.8+05
MOSES AutoGraph 87.4 29.6 04 224 +04 163 £1.3 258 +o0.7 20.5+05 29.6 +0.4
DIGRESS 85.7 334405 268404 248 £os8 29.1 +0.6 243 o7 334+05

pendix[M) as well as the Proteins dataset with 92 samples (Dobson & Doig| [2003). Additionally, we
present PGS benchmarks of AutoGraph and DiGress on the molecular datasets GuacaMol (Brown
et al.}2019) and MOSES (Polykovskiy et al.,|2020) using 10,000 generated samples for benchmark-
ing. For these datasets, we propose domain-specific descriptors which we describe in Appendix|[C.2}
Appendix [K]contains further benchmarking methodological details.

As shown in Table @] AutoGraph and DiGress achieve the best overall PGS scores across most
datasets. PGS generally aligns with VUN or validity rankings, though some exceptions ex-
ist—ESGG ranks highest in VUN on PLANAR-L but performs worse in PGS. The Proteins dataset
yields the highest scores, suggesting greater modeling difficulty. Max-reduction proves helpful in
edge cases like LOBSTER-L, where clustering coefficients are uniformly zero, preventing a single
uninformative subscore from masking other structural flaws. When interpreting the final PGS score,
note it can differ from individual subscores since they use different datasets. Subscores are averaged
over cross-validation splits on the training set to select the most informative descriptor, while the
final PGS is computed on the test set, potentially yielding different results. Appendix [K] compares
MMD and PGS values using Gaussian TV pseudo-kernels (Table [TT) and optimized RBF kernels
(Tables[T2)and [I3). Overall, PGS yields more interpretable model rankings than MMDs.

We also consider a feature concatenation variant of PGS as an alternative to max-reduction, where
we concatenate all descriptors and apply PCA to fit TabPFN’s feature limits (500 for v2.0) in Ap-
pendix |Q} While this yields tighter bounds (higher JSD estimates), it prevents identifying the most
informative descriptor; therefore, we recommend max-reduction in practice.
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6 CONCLUSION

We introduce PGS, a classifier-based evaluation that yields unit-scale metrics by training a dis-
criminator on standard graph descriptors and selecting the most informative one. Instantiated with
TabPFN to estimate the JS distance, PGS is fast and tuning-free. Across perturbation and model-
quality studies, PGS increases monotonically with synthetic noise and correlates strongly—and often
linearly—with validity and training progress. It also produces robust rankings with descriptor-specific
subscores. To standardize GGM evaluation and model selection, we release the PolyGraph library,
PGS, and the larger datasets, which we show are necessary to avoid high bias and variance observed
in evaluation metrics. We discuss potential limitations in Appendix [Al We hope that our work cat-
alyzes progress in graph generation and, more broadly, enables effective evaluations of generative
models where multiple combinations of possibly complementary descriptors are required.

ETHICS STATEMENT

This work focuses on the development of evaluation methods for graph generative models. Our study
does not involve human subjects, animals, or personal data. We do not foresee harm to individuals,
groups, or the environment.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we will publicly release the PolyGraph library that implements the
PolyGraphScore, MMD metrics, and datasets discussed in this paper. This library is also pro-
vided to the reviewers as anonymized supplementary material. Unit tests ensure consistency of
the MMD metrics implemented in PolyGraph with the implementations of [Liao et al.| (2019);
Thompson et al.| (2022). We refer to Appendices |B| and |C] for a more detailed explanation of the
PGS estimation procedure and the graph descriptors considered in this work. Appendix [M] details
how to generate our improved procedural datasets. We are committed to storing all data generated in
this work (including model checkpoints and computed metrics) in a long-term private archive with
a minimum guaranteed access period of ten years.
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A LIMITATIONS
Here, we touch upon some of the limitations of this work.

Descriptor dependence and information loss. PGS operates on hand-crafted descriptors rather
than raw graphs. It therefore yields a lower bound of the divergence between descriptor distri-
butions, which itself is a lower bound of the divergence between the graph distributions. If the
divergence between descriptor distributions does not tightly approximate the divergence between
graph distributions, the PGS is also inherently a loose bound on the divergence between graph dis-
tributions. This highlights the importance of considering expressive descriptors.

The final max-reduction can also under-utilize complementary signals across descriptors. This could
be addressed by combining features prior to TabPFN fitting, and using TabPFN extensions for auto-
matic feature selectioﬂ If future TabPFN-like foundation models also support more input features,
this limitation will vanish.

Sample-size dependence On the one hand, PGS requires several hundred samples to get an accu-
rate metric value, as indicated in Appendix[[] which requires some computational burden, especially
for difficult-to-compute descriptors. On the other hand, the sample size used in our formulation of
PGS is constrained by TabPFN’s recommended 10k training limit, though this restriction is only an
implementation detail. This might be problematic in practice if a large number of samples is re-
quired to obtain a tight bound. We recommend that users assess the variance of PGS carefully when
considering new descriptors, graph types, and discriminators. The TabPFN extensions package also
implements some approaches to extend the training size via subsampling and ensemblin

Limited feature dimensionality. While MMD can operate on high-dimensional graph descrip-
tors, the classifier used in PGS may impose limits on the dimensionality of these features. The
TabPFN model that we use in our work has been shown to be effective on up to 500-dimensional
features. The graph descriptors proposed in previous works (c.f. Appendix[C.1)) are well within these
limits. In the context of evaluating molecule generative models, we employ random projections to
map 512-dimensional graph representations to a more compact feature space (c.f. Appendix[C.2). A
more sophisticated feature selection process may yield tighter bounds on the JS distance. We leave
the exploration of optimal feature selection to future work.

Scopes of graph types, datasets, and models. Our experiments focus on common procedural
datasets (with specific parameters), proteins, and molecules. We do not evaluate directed, temporal,
or heterogeneous graphs, and leave this to future work. While we benchmark four different GGMs,
covering autoregressive and denoising diffusion paradigms, we hope that future works adopt the
PGS framework to extend benchmarks to a wider variety of methods.

Application to other domains. We focus on applying PGS to generative graph evaluation, where
the need for rigorous assessment is particularly acute. Nonetheless, the same approach could ex-
tend to other domains, though we leave this unexplored. One promising direction is improving
InceptionV3-style scoring: our multi-descriptor strategy could mitigate the sensitivity of FID to net-
work initialization by max-reducing across multiple InceptionV3 initializations, which was shown
to be problematic by |Barratt & Sharma| (2018]).

B PGS PSEUDOCODE

We provide pseudocode for the computation of PGS in Algorithm We note that the proce-
dure estimate_divergence corresponds to the algorithm we describe in Section [.1] while
polygraphscore implements the combination of descriptors we outline in Section[d.2]

*https://github.com/PriorLabs/tabpfn-extensions
*see Footnote
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Algorithm 1 PGS computation

1: procedure estimate_divergence(train, val, mode)

2:

11

24

PRI AW

clf « fit_tabpfn(train)

preds < clf .predict(val.x)

if mode = ”jsd” then
metric < y/max(log_likelihood(preds, val.y),0)

else
v+ max_info_threshold(clf.predict (train.x), train.y)
metric < informedness(preds, val.y,~)

return metric

: procedure train_test_divergence(reference, generated, descriptor, mode, k)
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
: procedure polygraphscore(ref, gen, mode)
25:
26:
27:
28:

29:
30:

ref_train, ref_test < reference|0 :: 2], referencel[1 :: 2] > Split reference graphs
gen_train, gen_test < generated|0 :: 2], generated|1 :: 2] > Split generated graphs
(X, Y) < (descriptor(ref_train || gen_train), [0...0,1...1])
folds - stratified_-folds(X,Y,k)
cv_metric < 0
for train, val € folds do

cv_metric <~ cv_metric + estimate_divergence(train, val, mode)

cv_metric «— cv_metric/k

(Xtest; Yiest) < (descriptor(ref_test || gen_test), [0...0,1...1])
test_metric < estimate_divergence((X, Y), (Xtest, Yiest), mode)
return cv_metric, test_metric

all_descriptors < [orbit4, orbit5, deg, clust, spec, gin]
all_metrics < hash_map()
for d € all_descriptors do
all_metrics[d] < train_-test_divergence(ref, gen,d, mode, k = 4)

best_desc + arg max, all_ metrics[d].cv_metric
return all_metrics[best_desc].test_metric
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C GRAPH DESCRIPTORS

In this section, we discuss the vectorial graph descriptions used in our work. In Appendix
we provide details on the descriptors we apply to the synthetic datasets (PLANAR-L, SBM-L,
LOBSTER-L) and the Proteins dataset. These descriptors are, for the most part, identical to estab-
lished descriptors introduced for MMD evaluations (You et al., 2018 [Liao et al., [2019; Thompson
et al.| 2022). In Appendix [C.2] we introduce novel descriptors for evaluating generative models for
molecules.

We recommend that practitioners use domain-specific and expressive descriptors whenever possible,
similar to our procedure for molecules in Appendix[C.2} As discussed previously, one should aim to
maximize the PGS metric when engineering graph descriptors.

C.1 GENERIC DESCRIPTORS

We use graph descriptors that have previously been proposed for evaluations via Maximum Mean
Discrepancy. Histograms of clustering coefficients and node degrees, as well as 4-node orbit counts,
have been proposed by [You et al.|(2018). These descriptors were extended by [Liao et al.|(2019) via
the spectrum of the graph Laplacian. Finally, Thompson et al|(2022) proposed to featurize graphs
via randomly initialized GIN models. We extend these descriptors with 5-node orbit counts, com-
puted with the ORCA algorithm (Hocevar, [2025)). In our model benchmarks, we find that 5-node
orbit counts oftentimes yield the highest PGS, hence representing a strong descriptor (c.f. Table ).
However, we find in the perturbation experiments (c.f. Appendix |H) that no single descriptor con-
sistently dominates the others. This demonstrates the importance of considering a wide variety of
graph featurizers. We summarize our descriptors in Table [3

Table 5: Generic graph descriptors.

Descriptor | Meaning | Reference
Clust. Histogram of clustering coeffi- | [You et al. (2018)
cients, discretized to 100 bins in
[0,1]

Deg. Histogram of node degrees You et al.[(2018)

GIN Activations of a randomly initial- | [Thompson et al.|(2022)
ized GIN graph neural network

Eig. Histogram of Laplacian spec- | |[Liao et al.[(2019)
trum, discretized to 200 bins in
[_10757 2]
Orb. 4 | 4-node orbit counts | [You et al.| (2018); HoCevar| (2025)

Orb. 5 5-node orbit counts Hocevar (2025}

C.2 MOLECULE-SPECIFIC DESCRIPTORS

We propose several novel descriptors for evaluating generative models for molecules

via the PolyGraphScore framework. Some of these descriptors are established in
chemoinformatics and are computed via RDKit (RDKit, [2024). Namely, topo-
logical quantities (rdkit.Chem.GraphDescriptors), physico-chemical pa-

rameters (rdkit.Chem.Lipinski) and classical Morgan molecule fingerprints
(rdkit.Chem.AllChem.GetMorganGenerator). Additionally, we use learned repre-
sentations extracted either from a SMILES-based LSTM model (Mayr et al) 2018) (termed
ChemNet), or from the contrastively trained MolCLR graph neural network (Wang et al., [2022).
The SMILES-based model has previously been used to formulate the Fréchet ChemNet dis-
tance (Preuer et al. 2018)). To obtain more compact features, we map the learned representations
into a 128-dimensional space via sparse random projections with a fixed random seed.
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These descriptors can only be computed for molecular graphs which can be converted into
rdkit.Chem.rdchem.Mol objects, i.e., for graphs which are chemically valid. Hence, we must
filter generated graphs before computing a PGS score. A similar approach has been taken in the
Fréchet ChemNet distance.

We summarize these descriptors in more detail in Table 6]

Table 6: Descriptors used for molecular graphs.

Descriptor || Meaning | Features | Reference
Morgan 128-D Morgan count fin- | Substructure hash counts RDK:it|(2024)
gerprint
ChemNet 128-D  projection of | Latent Mayr et al.|(2018)
ChemNet  embedding
of canonical SMILES
string
MolCLR 128-D  projection of | Latent Wang et al.|(2022)
MoICLR embedding of
molecule graph
Topo Topological/topochemical| 1. AvgIpc RDK:it|(2024)
descriptors based on the | 2. BertzCT
bond structure 3. BalabanJ
4. HallKierAlpha
5. Kappal
6. Kappa?2
7. Kappa3
8. Chi0
9. ChiOn
10. ChiOv
11. Cchil

. Chiln
. Chilv
. Chi2n
. Chi2v
. Chi3n
. Chi3v
. Chidn
. Chidv

12

13

14

15

16

17

18

19

1. HeavyAtomCount RDK:it|(2024)
2. NHOHCount

3. NOCount

4. NumHAcceptors

5. NumHDonors

6. NumHeteroatoms

7. NumRotatableBonds
8. RingCount
9
10
11
12
13
14
15
16
17
18
19
20

Lipinski Structural and physico-
chemical parameters

. NumAliphaticCarbocycles
. NumAliphaticHeterocycles
. NumAliphaticRings
. NumAromaticCarbocycles
. NumAromaticHeterocycles
. NumAromaticRings
. NumHeterocycles
. NumSaturatedCarbocycles
. NumSaturatedHeterocycles
. NumSaturatedRings
. NumAmideBonds
. NumAtomStereoCenters
21. NumUnspecifiedAtomStereoCenters
22. NumBridgeheadAtoms
23. NumSpiroAtoms
24. FractionCSP3
25. Phi
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D MMD AS LINEAR CLASSIFICATION RISK

In this section, we expand on the discussion in Section [3.1] and derive how MMD may be seen as
the optimal risk for distinguishing between P and ) of a binary classifier in the reproducing kernel
Hilbert space H.

Using the notation E, [k(x, - )] for the Riesz representative of the (under mild conditions) bounded
linear form f — E,[(f, k(x, - ))], one may show:

MMD(P7Q7k) = ”Ewa[k(xﬂ : )} - EyNQ[k(yv )]”H
= sup (D, Eanplk(z, )] = Eynolk(y, -)])

1D+ <1
= e (D, Eooplk(@, )]) — (D, Eyeqlk(y, -)]) @)
= sup E,op[D(2)] - Eyql[D(y)]

[[D||#<1

We use the Cauchy-Schwarz inequality in the second equality, the linearity of the inner product in
the third equality, and the definition of the Riesz representative in the last equality.

This framing reveals that MMD is precisely the optimal linear classification risk achievable by a
discriminator D in the unit ball of the function space induced by the kernel.

E BACKGROUND ON f-DIVERGENCES AND TOTAL VARIATION DISTANCE

Let P and @ be probability measures on X that are assumed to be absolutely continuous with respect
to a base measure y, having densities p and ¢. For now, also assume P to be absolutely continuous

w.rt. Q. For a convex, lower-semicontinuous function f : Ry — R satisfying f(0) = 1, the
f-divergence of P from () is defined as:
p(x)
DP1Q)= [ atas (%) a @
! X a()

As shown by |Nguyen et al.|(2010), f-divergence can be estimated via a variational objective similar
to that of MMD. Using the Fenchel conjugate f*(v) := sup,cg, uv — f(u), the f-divergence is
lower-bounded by:

Dy(P Q) = sup Eonp[D(2)] — Eyng[f(D(2))], o)
DeF

for any family F of measurable functions D : X — R. The bound is tight if and only if the func-
tional class F is sufficiently expressive to contain a subderivative of f at the density ratio p(z)/q(x).
Such a function then achieves the supremum. The variational formulation of the Jensen-Shannon
divergence in Eqn. [2) is a special case of Eqn. (3]

Total Variation Distance. The total variation (TV) distance corresponds to f(x) = 3|1 — x|. One
may easily verify that the integral in Eqn. (4) evaluates to half of the L' distance between p and q.
As we show in Appendix its variational objective in Eqn. (5) can be reduced to:

sup  Eqzup [D(2) > 1] = Eengl[D(2) > 7], (6)
D:X—[0,1]
v€[0,1]
where we use the Iverson bracket [D(z) > =] to denote the binarization of D at the threshold ~.
This objective is also known as the Informedness (or Youden’s J statistic) of the discriminator D. It
has a clear geometric interpretation as the maximum vertical distance between the ROC curve of D
and the chance diagonal, with a fixed scale of [0, 1].

F PGS-TV: ESTIMATING TOTAL VARIATION DISTANCES

In this section, we propose an alternative variant of the PGS, using variational estimates of the total
variation (TV) distance in place of the Jensen-Shannon distance. We term this variant PGS-TV.
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We recall from Appendix [E] that the variational objective for the TV distance is given by the in-
formedness of a dichotomized classifier. We provide a proof of this fact in Appendix When
computing PGS-TV, the choice of binarization threshold is considered part of the fitting process of
the classifier. Hence, we choose v to maximize the vertical distance of the ROC on the fir set. We
refer to Appendix [B|for pseudocode. In Appendices and we present an empirical investiga-
tion of PGS-TV, analogous to the experiments presented in Sections[5.2]and[5.3] Finally, we discuss
the advantages of PGS over PGS-TV in Appendix [F4]

F.1 VARIATIONAL FORMULATION OF TV DISTANCE

One may easily verify that for f(u) = |1 — u|, we have the following Fenchel conjugate:
1

* 1 2 : 1 1
f w) = suRp uv—i\l—u|= v if ve[-3,3] (7)
ueE co if v>1

We recall the variational lower bound:

Dry (Pl Q) = sup Exnp[D(z)] — Eynglf*(D(2))] ®
DeF

Without weakening the lower bound, we may restrict ourselves to families of functions which are
upper-bounded by % almost everywhere w.r.t. (). Indeed, discriminators D that do not satisfy this
have a variational bound of —oco. Since we are assuming P < @), the discriminators are then also
upper-bounded almost everywhere w.r.t. P. Hence, w.l.o.g., we may assume that they are upper-
bounded by % everywhere. Under these assumptions, we obtain the simpler formulation:

Drv(PI1Q) 2 sup Eenr[D(@)] ~ Eyng [max <Djx)’ _m ©)

= sup [ Dlw)p(e) max (D).~ ) o

DeF 2

Under the constraint that D(z) < %, we may maximize the expression above in a pointwise fashion
by:

1 .

2 f
—5 if p(z) <q(z)

We note that this is consistent with the finding of [Nguyen et al.|(2010) that D(x) should attain a

subderivative of f at the point %. Therefore, without weakening the lower bound, we may write:

Dry(P || Q) > D:XE?E%V%}EINP[D(M —E;v0 {max (D(a:)a ;)}

= s E,op[D(2)] - EanglD(x)]
D:Xe{—%,%}

1D
= sup  Epop[D(2)] - Eong[D()]
D:x—{0,1}
= sup  E.op[[D(z) > )] = Eanq[[D(z) > 7]]
D:X—[0,1]
v€[0,1]

The first equality is derived from the observation that D(z) > f% always holds and the maximum
is therefore redundant. The second equality is obtained by noting that the expression is invariant
under the addition of constants to D (in this case, we add %).

Without relying on the results of [Nguyen et al.|(2010), we now show that this bound is tight, even
when P &« (. To work in this more general setting, we redefine the total variation distance as half
the L' distance of p and g¢:

1 1
Drv(P11Q) = 5llp = alexces = 5 [ Io(o) - a(@)ld (12
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One may verify that this matches our original definition when P < (). For any measurable set
A C X, we note that:

1:/Ap(q:)du—i-/Acp(x)d,u:/Aq(x)d,u—i—/Ac o(z)dp (13)

Hence, rearranging, we obtain:

/p(w) —q(z)dp =/ q(x) — p(x)dp (14)
A AC
Defining A := {x € X : p(x) > g(z)} and applying this identity, we get:
1 1 1
5 [ we) = a@idn =5 [ p@) -~ atrdut 5 [ atw) - pla)du
X A AC

(15)
- / p(x) — q(x)du
A

Since A is exactly the set on which p(z) — ¢(z) is non-negative, it is also clear that for any other
B C X, we have:

3 [ @) = a@ldn > [ plo) — a(wydn (16)

Thus, we may write:

Drv(P Q) = sup /B p() — q(@)dp

= sup / D(z)(p(z) — q(x))du (17)
D:x—{0,1} Jx

= sup  Eoop[D(@)] - Eong[D(2)]
D:xX—{0,1}

This is exactly the variational lower bound which we have derived above. Hence, we have shown it
to be tight, even in the setting where P < Q.

F.2 PGS-TV TRACKS SYNTHETIC DATA PERTURBATIONS

We now present perturbation experiments for the PGS-TV variant that are analogous to those shown
in Section[3.2

We plot a summary of the Spearman correlation of the metrics with perturbation magnitude in Fig.[6]
Compared to Fig.[3] we find that PGS-TV exhibits slightly lower correlations. Figs. [7] and [8] show
the response of PGS-TV to perturbation over the entire and cropped magnitude range, respectively.
For a more detailed explanation of this type of plot, we refer to Appendix [H] From the plots we
conclude that PGS-TV qualitatively exhibits the expected behavior of increasing with perturbation
magnitude and eventually saturating. However, in some cases (e.g., edge addition on proteins), the
PGS-TV flattens out, leading to lower correlations.

Edge Deletion Edge Rewiring Edge Swapping Mixing Edge Addition

£ 1.00 | e - e s | 1.00 = - o o | 1.00 | == = com s, | 1.00 | = — e e | 1.00 | w= oo coms LX%
So1s *l 075 0.75 0.75 0.75
§ 0.50 0.50 0.50 0.50 0.50
$0.25 0.25 0.25 0.25 0.25
%0.00 . 0.00 0.00 0.00 0.00

SIS SSE S ESE S SISE SIS SE 8888

AR AR P &P P S

Figure 6: Spearman correlation of MMD metrics and PGS-TV with the magnitude of perturbation
of datasets.
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Figure 7: Behavior of descriptor-specific and aggregated PGS-TV as data distributions are perturbed.
The perturbation type varies across rows while dataset varies across columns. The Spearman corre-
lation of the aggregate PGS and the perturbation level is denoted by p.
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Figure 8: Behavior of descriptor-specific and aggregated PGS-TV as data distributions are perturbed.
The perturbation type varies across rows, while the dataset varies across columns. The Spearman
correlation of the aggregate PGS and the perturbation level is denoted by p.
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F.3 PGS-TV CORRELATES WITH MODEL QUALITY

Analogous to Section[5.3] we now investigate how the PGS-TV variant correlates with proxy vari-
ables of model quality. In Fig.[0] we illustrate how PGS-TV behaves as the number of denoising
steps in DiGress is varied. As in Fig.[d] we find that PGS-TV correlates with validity in a highly
linear fashion.

As in Section[5.3] we compute Pearson correlation coefficients between PGS-TV and validity. When
varying the number of denoising steps, we find that PGS-TV exhibits a more linear relationship with
validity than any of the MMD metrics.

Validity PolyGraphScore MMD Metrics ~ x10! X107 x10
1.0 1.0
L 3.0

S 0.8 0.8 6.0 >4 e
2 o La.5 :
5 0.6 1 3 0.6 1 o 18 3
= 0.4 £ 0.4 z F3.0 1o |2
= 0.2+ 0.2 1 15 06 1

u T T T 0.0 — T T T T T T —

20 40 60 80 20 40 60 80 20 40 60 80

# Denoising Steps # Denoising Steps # Denoising Steps

Validity =~ === PolyGraphScore = === Orbit RBF Degree RBF == Spectral RBF == Clustering RBF Gin RBF

Figure 9: Behavior of validity, PGS-TV, and MMDs as the number of denoising steps in DiGress is
varied on PLANAR-L.

We examine the behavior of PGS-TV throughout training in Fig.[9] Qualitatively, a clear positive
relationship emerges between training duration and PGS-TV. This trend is confirmed quantitatively
in Table[8] where Spearman correlation coefficients show that most MMD metrics often exhibit weak
or negative correlations, while PGS-TV consistently correlates positively with training duration.
However, this correlation is weaker than that of PGS-JS (see Table[3) and the clustering-based MMD
metric. A similar pattern appears in Table [7] (bottom three rows): PGS-TV correlates reliably with
validity, whereas most MMD metrics show inconsistent behavior. Nevertheless, in two out of three
cases, the clustering-based MMD metric achieves a stronger correlation with validity than PGS-TV.
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s £ 06 {061 al/n /71'8 | F108r08 F
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Figure 10: Behavior of validity, PGS-TV, and MMD metrics throughout training of DiGress on
procedural graph datasets.
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Table 7: Negative Pearson correlation (1) of validity with other performance metrics. Denoising
refers to the experiments in which we vary the number of denoising iterations. Training refers to the
experiments in which we monitor performance metrics during the training of DiGress models.

| TV-PGS  Orbit RBF  Deg. RBF  Spec. RBF  Clust. RBF  GIN RBF

Denoising PLANAR-L | 99.24 73.49 70.79 73.34 71.48 82.78
PLANAR-L 99.42 84.33 76.52 79.05 81.61 81.07
Training SBM-L 84.07 52.07 16.60 35.32 83.82 14.64
LOBSTER-L 69.18 -34.81 -33.40 -22.79 87.05 -30.31

Table 8: Sign-adjusted Spearman correlation (1) of validity, PGS-TV, and MMDs with number of
training iterations of DiGress.

‘Validity PGS ‘Orbit RBF Deg. RBF Spec. RBF Clust. RBF GIN RBF

PLANAR-L 92.31 93.71 86.71 41.96 83.22 67.83 81.82
SBM-L 82.73  63.64 20.00 -19.09 18.18 58.18 -38.18
LOBSTER-L | 8547 6291 -8.09 -4.66 13.73 68.14 -2.70

F.4 COMPARISON OF PGS AND PGS-TV

Overall, the experiments in Appendices and have demonstrated that PGS-TV is a viable
alternative to the PGS metric we presented in the main paper, correlating to a high degree with
synthetic data perturbations and proxy variables of model quality. Nevertheless, we found that PGS
exhibits stronger correlations and appears like a more robust choice.

While we have no definite explanation for these observations, we hypothesize that the choice of bina-
rization threshold in PGS-TV may introduce some noise into the estimate. Additionally, maximum
likelihood classifiers (like logistic regression) inherently maximize the log-likelihood objective of
the JS divergence. Bayesian inference (approximated by TabPFN) may be expected to behave sim-
ilarly in the large sample size limit (van der Vaart, |1998)). However, neither maximum likelihood
estimation nor Bayesian inference directly optimizes the variational objective of the TV distance,
i.e., informedness. This can lead to a misalignment when estimating the PGS-TV, potentially result-
ing in looser variational bounds.

For these reasons, we recommend using the PGS variant presented in the main paper, estimating
lower bounds on the Jensen-Shannon distance.

G SUPPLEMENTAL FOR: HIGH BIAS AND VARIANCE PLAGUE MMD-BASED
GGM BENCHMARKS

Here, we show that the conclusions of Section @] expand to all combinations of models,
descriptors, and datasets, and provide additional experimental details. All MMD estimates
provided here and in Figs. and are RBF MMDs, as proposed by [Thompson et al.
(2022). The kernel is selected by taking the maximum over the bandwidths {o;},_,0 =
{0.01,0.1,0.25,0.5,0.75,1.0, 2.5, 5.0, 7.5,10.0}.

Specifically, we subsampled 8 to 4096 graphs 100 times with replacement from a total of 8192 sam-
ples for the reference and generated graphs. We subsequently computed the median, 5" and 95"
quantiles to estimate the variation of MMD. We computed such experiments for all model-generated
samples we considered (ESGG, AutoGraph, DiGress and GRAN) and considered all descriptors (de-
gree histogram, clustering histogram, orbit count for graphlet sizes 4 and 5, and the graph Laplacian
eigenvalues) and all procedural datasets (SBM, Lobster and Planar).

Based on those findings, we introduce PLANAR-L, SBM-L, and LOBSTER-L, larger versions of the
previously used datasets. Details for these new datasets are presented in Appendix

12
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Figure 11: Behavior of biased MMD estimates as the number of samples is varied for DiGress.
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Figure 14: Behavior of unbiased MMD estimates as the number of samples is varied for AutoGraph.
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Figure 15: Behavior of biased MMD estimates as the number of samples is varied for GRAN.
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Figure 16: Behavior of unbiased MMD estimates as the number of samples is varied for GRAN.
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Figure 18: Behavior of unbiased MMD estimates as the number of samples is varied for ESGG.
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H SUPPLEMENTAL FOR: PGS TRACKS SYNTHETIC DATA PERTURBATIONS

In this section, we provide further details for the experiments presented in Section[5.2} In particular,
we illustrate in more detail how PGS responds to perturbations and present results for the TV variant.

In Fig. [T9] we illustrate how PGS (descriptor-specific scores and the summary PGS) responds to
various perturbations on different datasets. In this figure, we illustrate the response over the whole
range of magnitudes [0, 1]. As anticipated, the PGS saturates quickly as the support of the perturbed
distribution becomes disjoint from the support of the true data distribution. We note that the PGS
consistently responds in a monotonic fashion to the magnitude of perturbation.
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Figure 19: Behavior of descriptor-specific and aggregated PGS (JS) as data distributions are per-
turbed.

Based on the data from Fig.[T9] we select a threshold for each combination of perturbation type and
dataset at which the summary PGS saturates above 0.95. We illustrate the behavior of PGS-JS on
these cropped ranges in Fig. 20]

We find that there is no single descriptor that consistently provides the tightest PGS estimate. This
highlights the importance of evaluating many different descriptors when computing a PGS.
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Figure 20: Behavior of descriptor-specific and aggregated PGS (JS) as data distributions are per-
turbed. The perturbation type varies across rows, while the dataset varies across columns. The
Spearman correlation of the aggregate PGS and the perturbation level is denoted by p.
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I SUPPLEMENTAL FOR: PGS CORRELATES WITH MODEL QUALITY

In this section, we provide further details for the experiments presented in Section[5.3]

In Table [9 we provide the exact MMD metrics attained by DiGress as the number of denoising
iterations is varied. Analogously, we provide the values of the PGS and descriptor-specific subscores
in Table We find that orbit counts appear to be the most discriminative descriptors, as they lead
to the highest PGS values.

Table 9: Behavior of RBF-based MMD metrics as the number of denoising steps in DiGress is

varied. A separate model is trained for each row for Sk epochs on PLANAR-L.

Table 10: Behavior of PGS as the number of denoising steps in DiGress is varied. A separate model
is trained for each row for 5k epochs on PLANAR-L.

# Steps | Validity | Orbit RBF Deg. RBF  Spec. RBF  Clust. RBF  GIN RBF

15
30
45
60
75
90

0.00
4.05
18.70
30.76
44.09
51.27

0.6460
0.1879
0.0921
0.0680
0.0506
0.0432

0.0751
0.0280
0.0208
0.0159
0.0182
0.0158

0.0305
0.0090
0.0049
0.0034
0.0028
0.0025

0.4751 0.2041
0.1206 0.0956
0.0584 0.0660
0.0377 0.0468
0.0349 0.0350
0.0258 0.0321

# Steps | Validity

PGS | OrbitPGS  Orbit5 PGS Deg. PGS  Spec. PGS  Clust. PGS GIN PGS

15

0.00 99.96
4.05 96.76
18.70  90.48
30.76  84.03
44.09 7490
51.27  69.16

99.99
96.84
89.84
82.49
73.35
67.13

99.96
96.76
90.48
84.03
74.90
69.16

68.74 99.25 99.94
43.14 80.15 89.89
33.34 66.30 75.75
29.09 52.39 67.34
32.69 45.69 57.50
28.11 41.43 48.94

78.65
57.04
44.99
39.07
38.75
35.08

In Fig. 21] we supplement the experiments presented previously in Fig. [5| with the corresponding

results on PLANAR-L and LOBSTER-L.
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Figure 21: Behavior of validity, PGS, and MMD metrics throughout training of DiGress on proce-
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J ABLATION: TABPFN VS LOGISTIC REGRESSION

In this section, we study logistic regression as an alternative to TabPFN as a discriminator. To
this end, we repeat the perturbation experiments from Section [5.2] and Appendix [H] with logistic
regression as a discriminator. We refer to the PGS variant using logistic regression LR PGS.

In Fig.[22] we plot the response of PGS and LR PGS to synthetic perturbations. We find that TabPFN
consistently produces PGS estimates that are at least as high as those obtained by logistic regression.
In some cases, TabPEN clearly outperforms logistic regression. This may be attributed to the fact
that TabPFN can model non-linear decision boundaries and is thus more powerful than logistic
regression. We also qualitatively observe that logistic regression leads to a noisier response to the
variation of perturbation magnitude.

Hence, since TabPFN simultaneously produces tighter bounds and less noisy estimates, we prefer it
to logistic regression.
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Figure 22: Comparing the behavior of the aggregated PGS (JS) computed via logistic regression
(LR PGS) to the aggregated PGS computed via a TabPEN classifier (PGS).

20



Under review as a conference paper at ICLR 2026

K SUPPLEMENTAL FOR: BENCHMARKING REPRESENTATIVE MODELS

In this Appendix, we do a thorough benchmark of PGS and MMD on LOBSTER-L, PLANAR-L,
SBM-L and Proteins. To obtain the standard deviations for PGS scores and MMD values in Tables £
and [TT]to[T3] we subsample half of the dataset without replacement (2048 samples for procedural
datasets, and 92 samples for proteins) 10 times. In all those tables, means and standard deviations
are scaled by a factor of 100 for legibility purposes. The time taken to compute each of those metrics
is reported in Table[T3] Timing experiments were run on a compute node equipped with two AMD
EPYC 9534 CPUs (using 10 vCPUs in total), an NVIDIA H100 GPU with 80 GB memory (CUDA
12.2, driver 535.230.02), and 128 GB system RAM. Reference values (i.e. the score obtained by
computing the metric between the train and test set) for all metrics discussed are in Tables[T6and[T7]
We note that the PGS discrepancy between the train and test set of MOSES is relatively high, as the
test set consists of a separate scaffold split. Importantly, the PGS between the train and test set is
very close to 0 (save for MOSES due to changes in the underlying distribution), further showing the
absolute nature of PGS, making it much easier to interpret compared to MMD.

Table 11: Comparison of VUN and PGS with biased Gaussian TV-based MMD formulations from
Liao et al.|(2019). We computed the standard deviation from 10 subsamples of size 2048 except for
Proteins, where the subsample size is 92 (50% of the size of the test set). All MMD hyperparameter
choices are specified in table@

Dataset Model VUN (1) PGS (1) GTV MMD? Deg. (}) GTV MMD? Clust. () GTV MMD? Orb. (}) GTV MMD? Eig. (})
PLANAR-L  AutoGraph  0.851 33.965 £ 1.786  7.814e-05 £ 2.508¢—05  1.630e-03 £ 2.971e—04 1.088e-04 + 3.000c-05  8.229e-04 + 4.737¢—05
DIGRESS 0.801 45189 1770 6.317e-04 £ 4.638¢—05 1.438e-02 4 1.203e—03 3.675e-03 £5.031e—04  1.284e-03 £ 5.673e—05
GRAN 0.016 99.663 +0.171  6.272e-05 = 1.422¢—-05 4.658e-03 =+ 6.998¢—04 6.620e-04 + 1.940e—04  1.198e-03 % 8.786¢—05
ESGG 0.939 45.010 £1.395  2.288e-05 £ 9.304c—06  4.196e-03 + 5.231e—04 1.466e-03 £ 3.001e-04  6.797e-04 + 4.239¢—05
LOBSTER-L  AutoGraph 0.831 18.022 +1.608  4.453e-04 + 5.697¢—05 3.336e-06 + 1.710e—06 6.333e-03 +-8.331e—04  9.893e-04 £ 1.120e—04
DIGRESS 0.914 3.167 £2.607  2.816e-05 £ 1.870e—05 1.067e-06 + 6.954e—07 4.166e-04 £2512¢—04  1.571e-04 £ 1.937¢—05
GRAN 0.413 85.370 £0.501  1.158e-02 + 4.212¢—04 3.344¢-03 =+ 2.449¢-04 1.955¢-01 +6.405¢-03  2.303e-02 = 5.802¢—-04
ESGG 0.709 69.886 0557 6.252e-03 -3.830e—04  0.000e+00 £ 0.000e+00  6.359e-02 +2.028e—03  1.030e-02 £ 4.646e—04
SBM-L AutoGraph 0.856 5.638 £1.455  4.897e-05 + 1.537¢—05 1.017e-03 =+ 2.634c—05 1.080e-03 £ 2.241c—04  1.400e-04 + 1.850¢—05
DIGRESS 0.730 17.384 +-2.285  7.500e-04 £ 1.785¢—04 1.048e-03 + 2.796e—05 2.307e-03 £ 3.480e—04  2.449e-04 £ 4.943¢—05
GRAN 0.214 69.114 +1.445  9.540e-03 £ 3.920¢-04  3.040e-03 + 7.289¢—05 1.306e-02 4 7.980e~04  1.104e-03 + 7.706e—05
ESGG 0.104 99.374 0212 3.482e-03 £ 2.877¢—04 5.687e-03 £ 1.007e—04 4.546e-02 £ 1.449¢—03  2.736e-02 + 3.318¢—04
Proteins AutoGraph - 67.661 +7.400  2.454e-03 =+ 6.456¢—04 3.750e-02 -+ 4.022¢—03 1.759e-02 =+ 3.502¢—03  2.708e-03 =+ 1.730e—04
DIGRESS - 88.118 £3.075  2.039e-04 £ 5.748¢—05 2.471e-02 £ 3.015¢—03 2.263e-02 £7.034e—03  1.073e-03 £ 5.723¢—05
GRAN - 89.674 £2.687  3.286e-02 + 1.852¢—03 1.068e-01 £ 4.791¢-03 2.841e-01 £1.214e-02  9.344e-03 £ 5.235e—04
ESGG - 79.238 44254 1.518e-03 4 2.904e—04 4.031e-02 £1.987¢—03 6.474e-03 £1.315¢—03  1.269e-03 4 1.318¢—04

Table 12: Unbiased RBF kernel-based MMD estimates. We computed the standard deviation from
10 subsamples of size 2048 except for Proteins, where the subsample size is 92 (50% of the size of
the test set). All MMD hyperparameter choices are specified in table@

Dataset Model VUN (1) PGS () RBF MMD? Deg. () RBF MMD? Clust. (/) RBF MMD? Orb. () RBF MMD? Eig. (])
PLANAR-L  AutoGraph 0.851 33.965 £1.786  1.961e-03 +6.688¢c—04  5.616e-04 +1.687c—014  2.488e-03 £3.395¢—04  1.035e-03 + 7.394¢—05
DIGRESS 0.801 45.189 1770 1.623e-02 +1.130e-03  1.487e-02 + 1.508¢-03  3.059¢-02 + 3.484¢—03  1.713e-03 % 9.201¢-05
GRAN 0.016 99.663 £ 0.171  3.250e-03 +6.760e—04  3.761e-03 £ 8.004e—04  9.068e-03 = 7.194c—04  4.742e-03 £ 1.555¢—04
ESGG 0.939 45.010 £1.395  1.322e-03 £2.961c—04  3.778e-03 £ 6.875¢—04  2.708e-02 £ 1.779¢~03  8.337e-04 + 7.146¢—05
LOBSTER-L  AutoGraph 0.831 18.022 +-1.608 8.446e-03 £1.241e—03  5.017e-06 £2.677e—06  7.725¢-03 4 1.340e—03  6.748e-03 + 1.198¢—03
DIGRESS 0.914 3.167 £2.607  2.969e-04 + 5.087c—04  1.208e-06 +9.237e—07  7.208e-04 = 5.402c—04  2.389e-04 + 2.738¢—04
GRAN 0.413 85.370 0501 2.965e-01 £ 8.501e—03  4.605e-03 £ 3.158¢—04 1.526e-01 £ 4.294¢—03  1.774e-01 % 7.080e—03
ESGG 0.709 69.886 - 0.557  8.650e-02 £3.577¢—03  0.000e+00 + 0.000e+00  2.163e-01 & 7.297¢—03  4.552e-02 £ 1.243¢—03
SBM-L AutoGraph 0.856 5.638 £1.455  2.085e-04 + 1. 014 3.275e-04 £ 1.506e—04  9.928e-05 £ 6.512¢—05  7.888e-05 £ 2.978¢—05
DIGRESS 0.730 17.384 +2.285  3.385e-03 £ 5.299¢—04 1.738e-03 +3.772e—04  4.252e-04 £8.053¢—05  2.832e-04 & 7.796e—05
GRAN 0.214 69.114 1445  4.543e-02 = 1.560e—03  4.111e-02 £ 1.828¢—03  3.194e-03 2.032e—04  2.671e-03 £ 2.659¢—04
ESGG 0.104 99.374 +0.212  3.255e-02 + 2.096¢-0: 5.523¢-02 + 1.585¢-03  1.334e-02 £ 2.608¢—04  2.262e-02 =+ 5.563¢—04
Proteins AutoGraph - 67.661 - 7.409  4.025e-02 £ 5.459¢—03  5.165e-02 4-5.930e—03  1.715€-02 & 2.728¢-03  3.967e-03 = 3.339¢—04
DIGRESS - 88.118 £-3.075  2.889€-02 +4.234c—03  2.230e-02 +3.158c—03  5.588e-02 £ 1.390c—02  1.239€-03 =+ 1.592¢—04
GRAN - 89.674 & 2.687  2.853e-01 = 1.816e—02  2.495e-01 £1.232e—02  3.731e-01 £ 1.399e—02  2.967e-02 £ 2.078¢—03
ESGG - 79.238 +4.254  5.391e-02 £ 7.314¢-03  5.968e-02 £ 3.388¢-03  3.669e-02 +8.273c—03  1.431e-03 £ 3.791c—04
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Table 13: Biased RBF kernel-based MMD estimates. We computed the standard deviation from 10
subsamples of size 2048 except for Proteins, where the subsample size is 92 (50% of the size of the
test set). All MMD hyperparameter choices are specified in table @

Dataset Model VUN (1) PGS () RBF MMD? Deg. (/) RBF MMD? Clust. (/) RBF MMD? Orb. (}) RBF MMD? Eig. (})
PLANAR-L  AutoGraph 0.851 33.965 £1.786  2.514e-03 +6.689e—04  1.147e-03 +-1.681c—04  3.154€-03 £ 3.387c—04  1.624e-03 + 7.366e—05
DIGRESS 0.801 45.189 £1.770  1.679e-02 £ 1.129¢—03 1.546e-02 £1.507e—03  3.098e-02 +3.389¢—03  2.303e-03 % 9.193¢—05
GRAN 0.016 99.663 £0.171  3.800e-03 £6.768c—04  4.347e-03 £8.007e—04  9.981e-03 +6.747e—04  5.330e-03 & 1. 04
ESGG 0.939 45.010 £1.395 1.884e-03 +2.951c—04  4.367e-03 +6.874c—04  2.769e-02 + 1.831e-03  1.423e-03 + 7.155¢ 05
LOBSTER-L  AutoGraph 0.831 18.022 +1.608 9.012e-03 +1.239¢—03  6.324e-06 £3.509e—06  8.229e-03 +-1.340e—03  7.486e-03 £ 1.197¢e—03
DIGRESS 0.914 3.167 £2.607  8.316e-04 £5.338c—04  1.760e-06 £ 1.137e—06  1.509€-03 £ 4.723c—04  9.372e-04 + 3.026c—04
GRAN 0.413 85.370 £ 0501 2.972e-01 £8.498¢—03  4.795e-03 £ 3.334¢—04  1.533e-01 +4.293c—03  1.782e-01 =+ 7.078¢—03
ESGG 0.709 69.886 £0.557  8.710e-02 £3.578¢~03  0.000e+00 £ 0.000e+00  2.167e-01 £ 7.310e—03  4.627e-02 + 1.244¢—03
SBM-L AutoGraph 0.856 5.638 £1.455  9.239e-04 + 1.680e—04  7.998e-04 +7.636e—05  1.068e-03 £ 6.223c-05  5.036e-04 + 3.006c—-05
DIGRESS 0.730 17.384 £2.285 4.100e-03 £8.285¢—04  2.140e-03 £ 2.579¢—04  1.392e-03 +8.057¢—05  7.082e-04 + 7.822¢-05
GRAN 0.214 69.114 £1.445  4.617e-02 £1.560e—03  3.392e-02 £1.390e-03  4.163e-03 = 2.031e—04  3.115e-03 =+ 2.666¢—04
ESGG 0.104 99.374 £0.212  3.329e-02 £2.095¢—03  3.564e-02 £ 9.014e—04 1.430e-02 = 2.607e—04  2.313e-02 £ 5.551e—04
Proteins AutoGraph - 67.661 £7.409 4.648e-02 £5.412¢-03  5.857e-02 £5.924¢-03  2.674€-02 +2.481¢—03  6.070e-03 =+ 3.329¢—04
DIGRESS - 88.118 £3.075  3.500e-02 £ 4.196e—03  2.876e-02 £3.076e—03  6.312e-02 = 1.386e—02  3.605e-03 + 1.646e—04
GRAN - 89.674 £2.687 2.917e-01 £1.812e—02  2.543e-01 £1.237e—02  3.784e-01 £ 1.398e—02  3.228e-02 £ 2.108e—03
ESGG - 79.238 £ 4254 6.034e-02 £ 7.284¢-03  6.691e-02 £ 3.333c—03  4.505e-02 4 8.287¢—03  3.923e-03 =+ 4.190e—04

Table 14: Mapping of display columns in results tables to MMD configurations. For all RBF MMDs,
the final MMD was computed as the maximum value over the following bandwidths {o;}%_, =
{0.1,0.5,1.0,2.0,5.0,10.0} as per Thompson et al.|(2022). For the descriptor parameters, we used
100,000 for the width of the sparse degree histogram, 100 bins for the clustering histogram, and
4 for the orbit count. RBF: radial basis function; GTV: Gaussian total variation distance; UMVE:
unbiased minimum variance estimator, see |Gretton et al.|(2012).

Name Variant Kernel Descriptor
Name Parameter
GTV MMD? Deg. 1.0 Degree
GTV MMD? Clust. . 0.1 Clustering
; Biased GTV
GTV MMD? Orb, ¢ 30 Orbit
GTV MMD? Eig. 1.0 Eigenvalues
RBF MMD? Deg. Degree
RBF MMD? Clust. 6 Clustering
UMVE RBF 40
RBF MMD? Orb. ol i
RBF MMD? Eig. Eigenvalues
RBF MMD? Deg. Degree
RBF MMD? Clust. . 6 Clustering
Bias RBF
RBF MMD? Orb,  Died o Omit
RBF MMD? Eig. Eigenvalues

Table 15: Compute time (s) per metric across datasets. Standard deviations are obtained from the
metrics computed on different model samples. Caching of intermediate or reused MMD values in
PolyGraph help make MMD computations substantially faster. Int. indicates whether the metric
yields an interval through subsampling. VUN scores were parallelized across 10 CPUs.

Metric Int. PLANAR-L LOBSTER-L SBM-L Proteins Overall

VUN X 425.60 + 17.72  253.32 + 8.95 1181.26 £ 101.98 - 620.06 £ 37.98
PGS X 73.64 +3.01 338.82 + 190.27 125.02 + 17.77 140.35 + 73.67 169.46 + 52.81
PGS v 192.13 + 14.27  696.11 + 367.93  280.98 + 47.45 223.67 £ 111.39 34822 + 118.35
RBF MMD? Deg. v 12.61 +0.33 12.38 +0.14 12.72 +0.27 3.68 + 0.59 10.35+0.23
Biased RBF MMD? Deg. v/ 10.50 + 0.21 10.32 +0.24 10.46 + 0.21 1.49 £+ 0.65 8.19 £0.23
GTV MMD? Deg. v 7.74 +£1.22 8.04 +£0.21 8.46 +£2.54 3.26 +£ 0.40 6.88 +0.78
GTV MMD? Deg. X 3.53+0.25 3.54 +£0.32 3.83 £ 0.39 3.51 +£0.70 3.60 + 0.21
RBF MMD? Clust. v 16.23 +0.46 13.69 + 0.38 22.63 + 1.61 16.48 + 8.16 17.26 + 1.86
Biased RBF MMD? Clust. v/ 16.60 + 0.50 14.00 + 1.22 25.60 + 1.86 16.73 + 8.25 18.23 +2.26
GTV MMD? Clust. v 11.80 + 1.17 10.24 +0.13 16.75 +2.00 14.16 £+ 8.20 13.24 +1.93
GTV MMD? Clust. X 7.63 £+ 0.06 5.54 £0.13 12.90 +2.09 14.27 +8.35 10.08 £ 2.03
RBF MMD? Orb. v 11.87 +0.20 11.84 +0.32 14.58 + 0.62 4.84 +2.64 10.78 + 0.66
Biased RBF MMD? Orb. v 11.82 +0.07 11.95 +0.36 14.64 + 0.52 4.75 +2.69 10.79 £ 0.70
GTV MMD? Orb. v 5.75 + 1.08 5.85 +0.08 6.71 + 1.31 373 +£2.13 5.51+0.56
GTV MMD? Orb. X 1.64 +0.02 1.22 +0.02 2.73 £ 0.41 371 £2.12 2.32 +0.50
RBF MMD? Eig. v 21.56 +0.83 19.13 +0.71 25.83 + 147 31.99 4+ 16.42 24.63 +4.14
Biased RBF MMD? Eig. v 25.16 + 6.52 18.75 + 0.47 25.86 + 1.84 33.11 £ 16.31 25.72 +2.80
GTV MMD? Eig. v 17.85 +1.18 17.55 +0.24 20.77 +1.83 29.67 + 17.44 21.46 +4.21
GTV MMD? Eig. X 13.80 + 0.09 12.92 +0.16 16.88 + 1.56 32.26 £ 19.52 18.97 +4.82

22



Under review as a conference paper at ICLR 2026

Table 16: Reference values between the test and training set for various metrics.

Metric PLANAR-L LOBSTER-L SBM-L Proteins
PGS () 0.6 +t12 08 +16 0.2+06 2.1 +34

Clust. () 0.1 £o4 0.0 0.0 0.1 £o0.2 32436

Deg. () 14+t14 0.7+11 0.6+1.1 52 %309

GIN (}) 0.1 £o0.4 0.4 +o0s 0.1 £o0.4 3.0 k3.2

OrbS5. () 02+o05 0.5+0s8 0.0 0.1 1.1 2.0

Orb4. () 0.5+o0.7 0.6 +1.1 0.3 +o0s6 20+25

Eig. ({) 0.0 £o0.0 13+15 0.2+06 09 +27

GTV MMD? Clust. (}) 2.91e-04 0.00e+00 4.87e-04 0.0068

GTV MMD? Clust. (}]) 5.87e-04 +1.3c—04  0.00e+00 £0.0e+00 9.69¢-04 £9.4¢—06 0.0104 £ 9.4e—04
RBF MMD? Clust. (}) 3.44e-05 £5.1¢—05 0.00e+00 £ 0.0e+00 1.62¢-06 +3.7¢c—06 0.0014 =+ 0.0016
RBF MMD? Clust. (}]) 5.34e-04 £1.5e—04 0.00e+00 £ 0.0e+00 6.10e-04 +2.6e—05 0.0077 = 0.0020
GTV MMD? Deg. () 1.51e-05 1.79e-05 1.69e-05 3.16e-04

GTV MMD? Deg. () 2.14e-05 £ 1.1e—05  3.06e-05 +=1.3e—05  3.86e-05 2.4c—05 5.67e-04 * 4.6e—04
RBF MMD? Deg. (]) 1.69e-04 £1.7¢—04 1.19¢-04 +1.2¢—04 1.48e-04 £1.2¢—04 0.0052 =+ 0.0038
RBF MMD? Deg. (]) 6.38¢-04 £2.7¢—04 6.03e-04 +2.0e—04  8.54e-04 £ 1.3e—04 0.0117 £ 0.0039
GTV MMD? Orb. () 3.43e-06 1.36e-05 3.26e-04 0.0032

GTV MMD? Orb. ()
RBF MMD? Orb. (/)
RBF MMD? Orb. (})
GTV MMD? Eig. (1)
GTV MMD? Eig. (|)
RBF MMD? Eig. (])

RBF MMD? Eig. (])

2.18e-05 +2.1e—05
1.05e-04 £+ 9.8¢—05
0.0010 + 3.3¢—05
7.39e-05

1.27e-04 £ 2.5e—05
1.69¢e-05 £ 2.9¢—05
5.80e-04 £ 5.0e—05

5.79e-05 + 2.8¢—05
3.41e-04 £ 2.8e—04
0.0012 +2.3¢—04
5.12e-05

1.10e-04 £ 2.6e—05
2.78e-05 + 4.0e—05
6.43e-04 £ 1.0e—04

8.79e-04 £ 2.1e—04
2.98e-05 £ 3.7e—05
9.99¢-04 + 3.4¢—05
4.93e-05

9.75e-05 4 1.9e—05
5.21e-06 £ 9.7¢—06
4.02e-04 +3.1e—05

0.0065 =+ 0.0042
0.0044 =+ 0.0055
0.0132 +0.0038
4.85e-04

6.97e-04 +1.1e—04
1.41e-04 +2.1e—-04
0.0024 + 2.9¢—04

Table 17: Reference PGS metrics between the molecule test and training sets. Note that MOSES

uses a scaffold split, resulting in a high discrepancy between the train and test set.

Dataset PGS subscores

PGS () Topo (]) Morgan (/) ChemNet(]) MoICLR (]) Lipinski(])
GuacamMoL 0.2 +o04 0.2+04 03 +o05 0.3 %06 0.1 0.2 0.0 +0.0
MOSES 21.0 o6 21.0+to0s6 17.8 £o.7 16.0 £ 1.2 18.0 £ o.3 20.7 £o.7
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L. STABILITY OF PGS UNDER VARYING SAMPLE SIZES.

Figs. 23| to [26] show the relationship between the PGS score and the number of samples. The PGS
score of the reference graphs with respect to another set of reference graphs issued from the same
distribution is given as a comparison. For all experiments, we show the mean as well as the 5 and
95" quantile to give an estimate of the variance of PGS at different sample sizes.

For most models, some separation from the test set occurs above 256 samples, with PGS scores, and
especially the upper bound is mostly stable beyond this range. This both showcases the stability of
the metric, the number of samples required to get a reliable PGS estimate, as well as the overall PGS
ranges for the various models we considered for this study.
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Figure 23: PGS obtained from varying sample sizes generated by AutoGraph.
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Figure 24: PGS obtained from varying sample sizes generated by DIGRESS.
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Figure 25: PGS obtained from varying sample sizes generated by GRAN.
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Figure 26: PGS obtained from varying sample sizes generated by ESGG.
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M LARGER PROCEDURAL REFERENCE DATASETS FOR BETTER GGM
BENCHMARKING

Following our findings of Section[5.1]and Appendix[G] we introduce larger procedurally-generated
datasets for planar, lobster and SBM graphs, which we term PLANAR-L, LOBSTER-L and SBM-L.
LOBSTER-L is a set of tree-shaped lobster graphs generated using nx . random_1lobster, con-
trolled by expected node count (80) and attachment probabilities to the backbone and its neigh-
bors (set to 0.7 for both). PLANAR-L is a set of connected planar graphs generated by uni-
formly sampling 64 node positions in the unit square and forming the Delaunay triangulation via
scipy.spatial.Delaunay, yielding planar edge sets from triangle simplices. SBM-L is a set
of stochastic block model graphs with the number of communities sampled uniformly from 2 to 5
and nodes per community from 20 to 40, where edges are drawn with intra-community probability
0.3 and inter-community probability 0.005. SBM-L, PLANAR-L, and LOBSTER-L datasets follow
networkx’s BSD-3 license.

Table 18: Dataset sizes (number of graphs) per split.

Dataset Train Val  Test

SBM-L 8192 4096 4096
PLANAR-L 8192 4096 4096
LOBSTER-L 8192 4096 4096

N INFLUENCE OF TRAINING SET SIZE ON AUTOGRAPH

As shown in Fig. AutoGraph converges to similar VUN values across datasets, yet the loss is
substantially lower for SBM-L after training than for SBM-S. This finding indicates that models
may overfit on the existing small procedural datasets, further drawing into question the validity of
previously reported evaluation results (Vignac et al., 2023)).
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Figure 27: VUN vs. Loss for AutoGraph over the course of a training run.

O COMMON SHORTFALLS OF EXISTING SOLUTIONS

To address the lack of inherent scale in MMD, some have proposed normalizing the MMD between
generated and test graphs by the MMD between train and test graphs (Martinkus et all [2022).
However, this approach has several shortcomings:

Limited theoretical justification MMD was originally introduced as a kernel two-sample test. Its
manipulation beyond direct use as a performance metric or for p-value computation remains
poorly understood.

Lack of composability The MMD ratio does not enable combining information across multiple
descriptors.
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Sample-size sensitivity As shown in Appendix [G] MMD strongly depends on sample size. Divid-
ing MMDs computed on different sample sizes produces ratios with unclear or unreliable
interpretation.

P DATASET DETAILS

Here, we provide details about the datasets used in this study. Licenses for those datasets are sum-
marized in Table[T9] Table [20] shows the dataset statistics of the Citeseer dataset (Sen et al.| 2008).
The statistics for the small procedural datasets are presented in Table @ (Planar), Table @ (SBM),
and Table 23] (Lobster).

Table 19: License and author information of the datasets used in our experiments.

Dataset Author License

Citeseer (Sen et al.|[2008) CC BY-NC-SA 3.0
Procedural (Planar, SBM, Lobster) (Martinkus et al.|[2022| Hagberg et al.|[2008) BSD-3

Proteins (Dobson & Doig|[2003) CCO 1.0 Universal

Table 20: Ego dataset statistics (extracted from Citeseer).

Metric Train Val Test
Number of Graphs 454 151 152
Minimum number of Nodes 50 50 50

Maximum number of Nodes 399 333 364
Average number of Nodes 141.72 13929 158.08

Minimum number of Edges 64 56 63
Maximum number of Edges 1066 898 1004
Average number of Edges 325.16  321.87 369.30

Edge/Node Ratio 2.29 231 2.34

Table 21: Dataset statistics for the Planar dataset (train, validation, and test splits).

Metric Train  Validation Test
Number of Graphs 128 32 40
Minimum Number of Nodes 64 64 64
Maximum Number of Nodes 64 64 64
Average Number of Nodes 64.00 64.00 64.00
Minimum Number of Edges 173 174 174
Maximum Number of Edges 181 181 181
Average Number of Edges 177.83  177.75 177.93
Edge-to-Node Ratio 2.78 2.78 2.78

Q FEATURE CONCATENATION AS AN ALTERNATIVE TO MAX-REDUCTION

An alternative to taking the maximum JSD across descriptors consists of obtaining an overall PGS
score by concatenating all vectors arising from the different descriptors, and training a discrimina-
tor atop these concatenated features. However, because we are working with TabPFN and want to
keep the discriminator computation time reasonable, we need to apply a dimensionality reduction
technique (here, we choose PCA) for this concatenated vector to fit within the feature limits recom-
mended by TabPFN (for v2.0, this is 500). This makes attributing potentially high values to specific
descriptors impossible, but in practice still results in a tighter bound (i.e., higher scores) as can be
seen in Table 241
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Table 22: Dataset statistics for the SBM dataset (train, validation, and test splits).

Metric Train  Validation Test
Number of Graphs 128 32 40
Minimum Number of Nodes 44 49 54
Maximum Number of Nodes 187 162 174
Average Number of Nodes 10599 91.28 107.85
Minimum Number of Edges 129 183 210
Maximum Number of Edges 1129 857 972
Average Number of Edges 512.51 425.19 521.88
Edge-to-Node Ratio 4.84 4.66 4.84

Table 23: Dataset statistics for the Lobster dataset (train, validation, and test splits).

Metric Train Validation Test
Number of Graphs 60 20 20
Minimum Number of Nodes 10 11 14
Maximum Number of Nodes 98 98 84
Average Number of Nodes 53.67 56.30 50.80
Minimum Number of Edges 9 10 13
Maximum Number of Edges 97 97 83
Average Number of Edges 52.67 55.30 49.80
Edge-to-Node Ratio 0.98 0.98 0.98

R KERNEL LOGISTIC REGRESSION WITH GRAPH KERNELS

One can adopt the kernel logistic regression classifier and use graph kernels directly to evaluate
GGMs, effectively showing that any (graph) kernel also suitable for MMD can also be used in PGS.
We showcase this with the Weisfeiler-Lehman (Shervashidze et al., [201 1)), shortest path (Borgwardt;
& Kriegel, [2005), and PyramidMatch (Grauman & Darrell, 2007) graph kernels in Table @ How-
ever, they almost always show looser bounds compared to the standard PGS formulation, so we do
not favor such kernels.

S USE OF LARGE LANGUAGE MODELS

The authors used large language models in the following ways:

Intelligent tab completion During software development, tools for intelligent line-wise tab com-
pletion were used.

Preparation of visualizations LLMs were partly used to generate code for figure layouts. The
correctness of all code and data was checked manually. The data shown in the figures was
generated by manually written code.

Information retrieval LLMs were queried for related work, but produced no relevant results. All
related work presented in the manuscript was manually retrieved, save for[Endres & Schin-
delin| (2003)), which was manually checked to contain the required proof.

Polishing of manuscript LLMs were occasionally used to refine or rephrase individual sentences.
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Table 24: Comparison of VUN, max-reduced PGS (the default we also use in Table EI) and PGS
with concatenated descriptors. PGS-Concat. is obtained by concatenating all descriptor features,
and subsequently applying a dimensionality reduction technique (PCA) for the feature vectors to fit
within TabPFN’s recommended feature size limit (for v2.0, this is 500). The final score is obtained
similarly to PGS.

Dataset Model VUN (1) PGS({) PGS-Concat. ()
PLANAR-L  AutoGraph 85.1 34.0 18 448 1.3
DIGRESS 80.1 452 + 18 553+15
GRAN 1.6 99.7 0.2 99.4 0.2
ESGG 93.9 450+ 1.4 524 +1.1
LOBSTER-L.  AutoGraph 83.1 18.0 1.6 29.0 £2.1
DIGRESS 914 32+26 432 +1.4
GRAN 41.3 854 o5 86.4 +0.9
ESGG 70.9 69.9 + 0.6 69.9 +1.0
SBM-L AutoGraph 85.6 5.6 t15 272 +3.0
DIGRESS 72.8 174 + 23 32.0 £2.0
GRAN 214 69.1 1.4 78.0 £ 0.8
ESGG 10.6 99.4 0.2 98.1 0.4
Proteins AutoGraph - 67.7 7.4 94.8 +26
DIGRESS - 88.1 £3.1 99.6 +0.3
GRAN - 89.7 £2.7 99.8 0.1
ESGG - 79.2 43 99.4 +0.3

Table 25: Comparison of PGS (as shown in Table@) with a PGS variant with a graph kernel logistic
regression (GKLR) model as the classifier. The kernels used here are the PyramidMatch (PM)
kernel, the shortest-path (SP) kernel, and the Weisfeiler-Lehman (WL) kernel.

Dataset Model Subscores
PGS () PGS-GKLR () PM () SP (}) WL (})
PLANAR-L  AutoGraph 34.0 £18 6.2+21 53+14 52409 6.7 %19
DIGRESS 452 1.8 227 %09 193 +05 228 +06 20.5+0s6
GRAN 99.7 £o02 43.1+o3 8.8 +os 52424 43.1 +o0.3
ESGG 450 +14 144410 2.7 23 12.8 0.7 14.6 0.8
LOBSTER-L.  AutoGraph 18.0 16 10.6£1.2 103 09 84 +1.4 10.5 & 1.7
DIGRESS 3.2+26 24 +25 2.6 1.7 2.5 +22 2.2 +24
GRAN 85405 727 +o0s 523408 579+12 7274038
ESGG 699 06 56.1 fos 420406 41.8+1.0 56.1 tos6
SBM-L AutoGraph 5.6 15 5.7 +1.1 14+15 57+1a 1.3+20
DIGRESS 174 +£23 88424 7.8 2.4 4.0 £22 9.0+25
GRAN 69.1 £14 474 +10 46.8 1.0 327413 474+10
ESGG 994 +02 93.5+03 238 +18 935+03 42.6%1.1
Proteins AutoGraph  67.7 £74 39.2 423 14.0+25 392428 165 £2.1
DIGRESS 88.1 £31 448 +1.3 3.6 =30 448 £13 89 £33
GRAN 89.7 27 594 +20 550+18 457 +19 594 +20
ESGG 79.2 £43 319 +t50 17.7 £23 31.9+50 220421
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