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Abstract
Text-to-image (T2I) generation has made remark-
able progress in producing high-quality images,
but a fundamental challenge remains: creating
backgrounds that naturally accommodate text
placement without compromising image quality.
This capability is non-trivial for real-world ap-
plications like graphic design, where clear vi-
sual hierarchy between content and text is es-
sential. Prior work has primarily focused on
arranging layouts within existing static images,
leaving unexplored the potential of T2I models
for generating text-friendly backgrounds. We
present TextCenGen, a training-free dynamic
background adaptation in the blank region for
text-friendly image generation. Instead of di-
rectly reducing attention in text areas, which
degrades image quality, we relocate conflicting
objects before background optimization. Our
method analyzes cross-attention maps to iden-
tify conflicting objects overlapping with text re-
gions and uses a force-directed graph approach
to guide their relocation, followed by attention
excluding constraints to ensure smooth back-
grounds. Our method is plug-and-play, requir-
ing no additional training while well balancing
both semantic fidelity and visual quality. Eval-
uated on our proposed text-friendly T2I bench-
mark of 27,000 images across four seed datasets,
TextCenGen outperforms existing methods by
achieving 23% lower saliency overlap in text re-
gions while maintaining 98% of the semantic fi-
delity measured by CLIP score and our proposed
Visual-Textual Concordance Metric (VTCM).
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1. Introduction
In graphic design, achieving a harmonious visual effect be-
tween text and imagery is essential for clear expression.
The choice of background can influence text visibility and
comprehension. A common design objective is to place
text within an image in a way that is both visually pleas-
ing and clearly conveys the intended message. A preferred
strategy is to position the text in the golden ratio, which
is believed to be aesthetically optimal. However, design-
ers often grapple with the issue of backgrounds that com-
pete with or obscure the text, as illustrated in Figure 1 ,
where unsuitable backgrounds detract from the text’s read-
ability and aesthetic appeal, regardless of any adjustments
to text color or size. We aim to facilitate the creation of text-
friendly images (see Figure 1 ), ideal for text placement
and meeting the growing demand due to the increasing use
of Text-to-Image (T2I) models for background graphics.

Traditional approaches to graphic design, especially in
poster creation, have largely focused on arranging layouts
in static natural background images, elements, and text
(Guo et al., 2021; Cao et al., 2012; O’Donovan et al., 2014;
Li et al., 2022). However, producing text-friendly images
remains a challenge due to the complexity of background
elements. Our insight, derived from Figure 1, reveals that
a clear separation between the main objects and the text ar-
eas is essential. Recent advancements in diffusion-related
research have shown that it is possible to manipulate the
primary objects within cross-attention maps, making the
adaptation of background images to accommodate text a
feasible endeavor (Hertz et al., 2022; Epstein et al., 2023;
Wang et al., 2024). However, we discovered that directly
reducing attention in the target region leads to a semantic
reduction in the generated image’s match with the prompt.
Could we move the conflicting objects out of the target area
before reducing attention?

In response, we introduce TextCenGen 1, as illustrated
in Figure 1, a new method that employs cross-attention
maps and force-directed graphs for effective object place-
ment and whitespace optimization. We also implement

1Open source code at: https://github.com/
tianyilt/TextCenGen_Background_Adapt

1

https://github.com/tianyilt/TextCenGen_Background_Adapt
https://github.com/tianyilt/TextCenGen_Background_Adapt


TextCenGen: Attention-Guided Background Adaptation for T2I

Figure 1. TextCenGen is a training-free method designed to generate text-friendly images. By using a simple text prompt and a planned
blank region as inputs, TextCenGen creates images that satisfy the prompt and provide sufficient blank space in the target region. For
example, the text-friendly T2I approach helps users customize their favored text-friendly wallpapers for mobile devices with any T2I
model, avoiding visual confusion caused by the main objects overlapping with UI components.

a spatial excluding cross-attention constraint to ensure
smooth attention in areas designated for text. To establish
a new benchmark for this innovative task, we constructed
a diverse dataset gathered from three unique sources, along
with five evaluation metrics, to comprehensively assess the
performance. The contributions of our paper are three-fold:

• We propose a new task of text-friendly T2I generation,
which creates images that satisfy both the prompt and
reserve space for pre-defined text placements. The
task consists of a benchmark including a specialized
dataset and tailored evaluation metrics.

• We introduce TextCenGen, a plug-and-play, training-
free background adaptation framework for dynamic
text placement in generated images.

• We develop force-directed cross-attention guidance,
adaptable to various attention mechanisms across dif-
ferent T2I models, ensuring a harmonious layout of
text and imagery.

2. Related Work
Text Layout of Natural Images has evolved significantly,
transitioning from traditional layout designs to more ad-
vanced methods influenced by deep learning. Initially,
poster design focused on creating layouts with given back-
ground images, elements, and text (Guo et al., 2021; Cao
et al., 2012; O’Donovan et al., 2014; Li et al., 2022; Zhang

et al., 2020). The integration of deep learning in text layout
of natural image generation has led to various models such
as GAN (Goodfellow et al., 2014; Zheng et al., 2019; Li
et al., 2019; Zhou et al., 2022), VAE (Jyothi et al., 2019),
transformers (Vaswani et al., 2017; Inoue et al., 2023a;
Wang et al., 2023) and diffusion models (Ho et al., 2020;
Hui et al., 2023; Inoue et al., 2023b; Chai et al., 2023; Li
et al., 2023a). These models have been instrumental in
learning layout patterns from large datasets. Subsequent re-
search explored methods to retrieve matching background
images based on text and image description (Jin et al.,
2022). Since the development of image editing method
based on diffusion model, scene text generation methods
such as TextDiffuser (Chen et al., 2023a;b) and DiffText
(Zhang et al., 2024) have addressed the challenges of gen-
erating clear text with diffusion models. However, these
methods often rely on the presence of a “sign” or similar
element within the prompt (e.g., a T-shirt) to place text.
They do not explicitly tackle the problem of creating text-
friendly images where the background itself is crafted to
adapt pre-defined text regions. Our approach extends these
capabilities by allowing the primary objects in generated
images to yield space to text regions, resulting in more har-
monious and aesthetically pleasing compositions.

Text-to-Image Generation has advanced with diffusion
models (Ho et al., 2020), producing realistic images and
videos that align closely with text prompts (Rombach et al.,
2022; Singer et al., 2023; Chen et al., 2023c; Esser et al.,
2024). Innovations in this field include GLIDE (Nichol
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et al., 2022), which integrates text conditions into the dif-
fusion process, Dall-E 2 (Ramesh et al., 2022) with its dif-
fusion prior module for high-resolution images, and Ima-
gen (Saharia et al., 2022), which uses a large T5 language
model to enhance semantic representation. Stable diffusion
(Rombach et al., 2022) projects images into latent space for
diffusion processing. Beyond text conditions, the manipu-
lation of diffusion models through image-level conditions
has been explored. Methods such as image inpainting (Bal-
aji et al., 2022) aim to generate coherent parts of an image,
while SDG (Liu et al., 2023) introduces semantic inputs
to guide unconditional DDPM sampling. In addition, tech-
niques such as (Meng et al., 2021) use images as editing
conditions in denoising processes. Scene text generation
methods such as TextDiffuser (Chen et al., 2023a;b) and
GlyphDraw (Ma et al., 2023) have also emerged, utilizing
textual layouts or masks to guide text generation in images.
These advancements represent the growing versatility and
potential of T2I models in diverse applications.

Attention Guided Image Editing has emerged as a fun-
damental solution to the challenge of translating human
preferences and intentions into visual content through text
descriptions. These approaches, as seen in works like (Li
et al., 2023b; Avrahami et al., 2023; Zhang et al., 2023;
Zhao et al., 2023), involve learning auxiliary modules on
paired data. However, a limitation of these training-based
methods is the substantial cost and effort required for re-
peated training for different control signals, model archi-
tectures, and checkpoints. In response to these challenges,
training-free techniques have emerged, using the inherent
weights of attention and the pre-trained models to control
the attributes of objects such as size, shape, appearance,
and location (Hertz et al., 2022; Epstein et al., 2023; Patash-
nik et al., 2023; Xie et al., 2023; Zhou et al., 2024a;b).
These methods typically utilize basic conditions, such as
bounding boxes, for precise control over object positioning
and scene composition (Mo et al., 2023). Desigen (Weng
et al., 2024) discovers relationship between attention and
saliency and introduces attention reduction to weaken the
attention within layout boxes. Our approach takes this fur-
ther by applying force-directed graph techniques to cross-
attention map edits, allowing for more automated and pre-
cise object transformations in T2I editing.

3. Method
Given an input text region R and a prompt Tprompt, our
framework aims to generate a text-friendly image Ires.
This research is motivated by extensive interviews with
wallpaper designers, who emphasized the need for precise
control over text areas, object positioning, and background
consistency in T2I-model-generated images. Specifically,
our framework addresses these concerns by producing an

output image that has (1) reduced overlap between the pri-
mary object and R, (2) sufficient smoothness and minimal
color variation in R, and (3) the image still fits the prompt.
Our framework is shown in Figure 2.

As cross-attention map Ak serves as a medium to locate and
edit objects within generated images (Epstein et al., 2023),
we focus on the kth token of Tprompt. In response to our
first concern, we analyze the denoising process of an un-
guided image (Iori) from a given prompt, and establish the
subset of tokens (O) that refer to objects that need modi-
fication. We design a conflict detector that determines ob-
ject conflicts based on the average attention intensity in the
overlapping regions between Ak and R. For every token
k ∈ O, we introduce Force-Directed Cross-Attention Guid-
ance for moving objects. In this scheme, objects are treated
as centroid vertex within a graph, with a sequence of forces
being applied (see Figure 3) to adjust object positions.

For the second consideration, inspired by recent technolo-
gies that limit the range of the attention map (Zhang et al.,
2024), we propose a spatial excluding cross-attention con-
straint to prevent an extensive attention density from en-
croaching on R.

Addressing the third concern, our denoising process in-
corporates a loss function with additional regularization
terms to safeguard the shapes and positions of other objects.
Sometimes excessive repulsive force can occasionally dis-
place essential objects from the image. To prevent objects
from being dislocated outside limits while retaining their
reasonable shapes, we also introduce the notions of Margin
Force Fm() and Warping Force Fw().

3.1. Force-Directed Cross-Attention Guidance

Cross-Attention and Centroid of Object. To seam-
lessly integrate the concept of force-directed graphs into
the loss guidance of the denoising process in latent dif-
fusion models, we delve into the extraction and manipu-
lation of attention maps and activations. For denoising
image i, we use softmax normalized attention matrices
Ai,t ∈ RHi×Wi×K extracted from the standard denoising
forward step ϵθi(zi; t, y). This enables us to manipulate
the control over objects referred to in the text conditioning
y at distinct indices k, by adjusting the related attention
channel(s) Ai,t,...,k ∈ RHi×Wi×|k|. The centroid of the
attention map is a two-dimensional vector, defined by the
equation:

centroid (k) =
1∑

h,w Ah,w,k

[∑
h,w hAh,w,k∑
h,w wAh,w,k

]
. (1)

We assume that all objects are convex sets, adhering to the
mathematical definition that for every pair of points within
the object, the line segment connecting them lies entirely
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Figure 2. In our approach, the model receives a blank region (R) denoted as red-dotted area, and a text prompt as its inputs. The prompt
is then used concurrently in a Text-to-Image (T2I) model to generate both an original image and a result image. During each step of
the diffusion model’s denoising process, the cross-attention map from the U-Net associated with the original image is used to direct the
denoising of the result image in the form of a loss function. Throughout this procedure, a conflict detector identifies objects that could
potentially conflict with R. To mitigate such conflicts, a force-directed graph method is applied to spatially repel these objects, ensuring
that the area reserved for the text prompt remains unoccupied. To further enhance the smoothness of the attention mechanism, a spatial
excluding cross-attention constraint is integrated into the cross-attention map.

TEXT

(a1) Intersection

Object

(a2) Object in Text

TEXT

TEXT

(a3) Separation

TEXT

(a4) Text in Object (c) Margin Force

(b) Warping Force

TEXT TEXT TEXT

Figure 3. Illustration of four set relationships and their associated
forces. The Repulsive Force separates object and text centroids
during intersections (a1) and object in text (a2). The Margin Force
(b) and Warping Force (c) prevent boundary overstepping. Text
within object regions (a4) requires cooperation between force and
attention constraint. Separation (a3) isn’t required to process.

within the object. This assumption allows us to treat the
extracted centroid (k) as vertices vk in a graph, which are
then subjected to force-directed attention guidance. Indeed,
it is important to clarify that while each token k associated
with Ak appears as a single entity in Figure 2, it actually

represents an average of Al
k across all layers l in the U-Net

architecture. Practically, our method is applied individu-
ally to each layer, ensuring a nuanced and layer-specific
approach to force-directed attention guidance.

Layer-wise Conflict Multi-Target Detector. To effec-
tively manage conflicts between text and objects in our im-
ages, we have developed a layer-wise conflict multi-target
detector, denoted as D(). This detector is crucial for iden-
tifying tokens k within each layer l of the U-Net that cor-
respond to objects that require modifications in relation to
text regions. The detector function D(k,R,Al

k) operates
as follows:

D(k,R,Al
k) =

{
1, if mean(Al

h,w,k ∩R) > θ

0, otherwise
(2)

where Al
h,w,k is the attention map for token k at layer l,

and R is the region designated for text. The function re-
turns a value of 1 when the mean attention within the over-
lap between Al

h,w,k and R exceeds a predefined threshold
θ, indicating a conflict that requires our guidance function.
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Identifying and adjusting the bounding boxes is visualized
in Figure 2.

Repulsive Force. The fundamental repulsive force
Frep(vi, vj) = −ξ2

||pos(vi)−pos(vj)|| , ensures that each ele-
ment is placed separately. ξ denotes the general strength of
the force, while p(vi) and p(t/o) indicate the positions of
the vertex and the target object, respectively. For scenarios
that encompass multiple targets, our framework adopts a
cumulative force approach to balance attention across these
elements. This is quantified by the formula:

Fmt(vi) =

n∑
j=1

ωj ·
−ξ2

||p(vi)− p(tarj)||
, (3)

where ωj are coefficients for balancing attention across tar-
gets. To regulate the impact of these forces and avoid ex-
cessive dominance by any single target, we introduce a
force balance constant α in the form of Frep

α+Frep
. α ensures

that the forces exerted do not exceed a practical threshold,
thereby maintaining visual equilibrium in complex scenes.

Margin Force. The Margin Force is a critical component
of our force-directed graph algorithm, designed to prevent
significant vertices from being expelled from visual bound-
aries. This force, Fm(v) = −m

d(v,border)2 , is activated as a
vertex v approaches the edge of the display area, typically
a delineated rectangular space. The force is directed inward
to ensure that crucial vertices remain within the designated
visual region. The constant m modulates the force’s inten-
sity, and d(v, border) represents the distance of the vertex
v from the nearest boundary (see Figure 3).

Displacement and Position Update. To compute the to-
tal displacement ∆pos(v), sum the repulsive and margin
forces together: ∆pos(v) = Frep(v) + Fm(v) Subse-
quently, update the vertex’s position as follows: pos(v) =
pos(v)+∆pos(v). For the attention map Al

k, this update is
applied as a whole, with excess regions outside the bound-
aries being discarded and the remaining areas filled with
zeros. But this method introduces the risk of the object be-
ing moved out of the boundaries and then being discarded,
so it is necessary to introduce the following ’warping force’
to prevent this from happening.

Warping Force. In addressing the dynamics of our force-
directed graph algorithm, particularly for the movement of
cross-attention maps Al

k in each layer, we employ affine
transformations as a pivotal mechanism. This approach fa-
cilitates the comprehensive translation and scaling of the
entire map, preserving the relative positions within the im-
age domain. Initially, we delineate our visual area or im-
age space as a H × W two-dimensional array A. Within

this canvas A, we identify a key region, the object O, de-
fined by the coordinates (x, y, a, b), where (x, y) marks
the upper-left corner and (a, b) the lower-right corner. The
movement is calculated based on the sum of repulsive force
Frep(v) and margin force Fm(v), yielding the total displace-
ment ∆pos(v) = Frep(v) + Fm(v). Applying ∆pos(v) to
both A and O, we obtain the transformed canvas A′ and
the object O′. Subsequently, we shift our coordinate sys-
tem’s origin to a vertex within A′ that remains within the
canvas boundaries, establishing a new origin Onew. This
repositioning is crucial when O′ exceeds the visual bound-
aries of A. In such cases, we scale the moved Al

k to en-
sure that the bounding box of O′ fits precisely within the
confines of Al

k. Scaling factors Sx and Sy , are calculated
as Sx = min

(
1, H−1

a′

)
and Sy = min

(
1, W−1

b′

)
, where

(a′, b′) are the new coordinates of O′. Finally, the scaled
Al

k and O′ are reverted back to their original coordinate
origin (see the warping force in Figure 3). A critical as-
pect of our approach is the transformation of the reference
frame. After displacing O due to ∆pos(v), a new reference
frame is established, centered at Onew. The coordinates
of O in this new frame are calculated as (xnew, ynew) =
(x+∆x−Onewx

, y+∆y−Onewy
). The affine transforma-

tion, considering this frame shift, is represented as:

T =

Sx 0 ∆x−Onewx

0 Sy ∆y −Onewy

0 0 1

 . (4)

This matrix transforms the coordinates of O, ensuring that
it remains visible within A after transformation. This care-
fully planned process secures the region O within A, even
after dynamic changes. It upholds the structure of the cross-
attention map, balancing key vertices visibility and graph
fluidity.

3.2. Spatial Excluding Cross-Attention Constraint

Our goal is to maintain a smooth background in the text re-
gion denoted as R. As illustrated in Figure 2, during each
time-step of the forward pass in the diffusion model, we
modify the cross-attention maps at every layer. The cross-
attention map is represented as Al

k ∈ RH×W×K , where
H × W are the dimensions of Al at different scales, and
K signifies the maximum token length at layer l. The set I
consists of indices of tokens corresponding to areas outside
the text in the prompt. We resize R to align with the H×W
dimensions. Subsequently, a new cross-attention map for
each layer l is computed as Al

k,new = {Al
k⊙ (1−R) | ∀k ∈

O}, where O represents the tokens needing editing. This
procedure effectively redirects the model’s attention away
from R, ensuring that the background in this region re-
mains undisturbed and visually smooth. This spatially ex-
clusive approach enhances the clarity and coherence of the
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Dataset Metrics Dall-E 3 AnyText Desigen SD 1.5 Ours (SD 1.5) Improve (%)

P2P Template Saliency IOU ↓ 52.64 54.34 30.62 29.89 22.86 23.52% ↑
TV Loss ↓ 18.02 22.55 13.7 14.11 8.81 37.56% ↑
VTCM ↑ 1.92 1.75 2.92 2.95 4.4 49.15% ↑

DiffuisonDB Saliency IOU ↓ 56.82 55.88 30.3 30.11 23.59 21.65% ↑
TV Loss ↓ 21.16 20.39 11.99 12.3 8.41 31.63% ↑
VTCM ↑ 1.67 1.79 3.20 3.19 4.39 37.62% ↑

Syn Prompt Saliency IOU ↓ 51.52 53.24 31.57 31.42 27.7 11.84% ↑
TV Loss ↓ 17.85 21.46 15.63 15.61 11.37 27.16% ↑
VTCM ↑ 1.98 1.79 2.67 2.73 3.49 27.84% ↑

Table 1. Quantitative comparison of metrics across different methods and datasets. Bold indicate the best scores.

Dataset Metrics SD 1.5 Ours 1.5 Imp (%) SD 2.0 Ours 2.0 Imp (%) SDXL Ours XL Imp (%)

P2P Saliency IOU ↓ 29.89 22.86 23.52 37.97 33.33 12.22 29.83 26.64 10.69
Template TV Loss ↓ 14.11 8.81 37.56 17.73 12.06 31.98 12.09 9.10 24.73

VTCM ↑ 2.95 4.40 49.15 2.52 3.38 34.13 3.41 4.24 24.34

DiffusionDB Saliency IOU ↓ 30.11 23.59 21.65 33.40 29.52 11.62 34.22 32.31 3.16
TV Loss ↓ 12.30 8.41 31.63 16.17 12.78 20.96 13.22 10.66 15.86
VTCM ↑ 3.19 4.39 37.62 2.63 4.06 54.37 3.27 3.43 4.89

Syn Saliency IOU ↓ 31.42 27.70 11.84 38.59 36.22 6.14 28.84 24.77 14.11
Prompt TV Loss ↓ 15.61 11.37 27.16 18.92 15.25 19.40 12.31 8.48 31.11

VTCM ↑ 2.73 3.49 27.84 2.42 2.83 16.94 3.59 4.78 33.15

Table 2. Performance comparison across different Stable Diffusion versions. Bold indicates the best scores for SD 1.5, which serves as
our primary baseline. "Imp" represents the percentage improvement over the corresponding base model.

Dataset Dall-E 3 AnyText Desigen Ours

P2P Template 2.53 0.32 0.55 0.30
DiffuisonDB 2.04 1.04 0.34 0.31
Syn Prompt 2.25 1.02 0.51 0.29

Table 3. Quantitative comparison of CLIP Scores Loss for differ-
ent methods. Bold indicates the best scores.

generated images, particularly in areas designated for text
insertion.

4. Experiments
The evaluation is structured into quantitative and qualita-
tive analyses, alongside an ablation study to understand the
contribution of individual components of our model.

4.1. Implementation Details.

Experimental Settings. Our model is built with Dif-
fusers. The pre-trained models are stable-diffusion-v1-5
and stable-diffusion-v2-0. While generating, the size of the
output images is 512 × 512. We use one A6000 and ten
A40 GPUs for evaluation. Detailed parameter settings are
provided in the appendix.

Dataset for Evaluation. Our evaluation contains 27,000
images generated from 2,700 unique prompts, each tested

in ten different random region R. The dataset com-
bined synthesized prompts generated by ChatGPT, and 700
prompts from the Prompt2Prompt template (Hertz et al.,
2022) designed for attention guidance, focusing on spe-
cific objects and their spatial relationships. Additionally,
we included 1,000 DiffusionDB prompts (Wang et al.,
2022), chosen for their real-world complexity. This di-
verse and comprehensive dataset, spanning synthetic to
user-generated prompts, provided a broad test ground to
evaluate the efficacy of our TextCenGen method in vari-
ous T2I scenarios. Additionally, we constructed a targeted
Desigen benchmark using 771 images from the Desigen
dataset validation set (Weng et al., 2024), along with their
corresponding static text masks, to evaluate performance
on layout design-specific content. These 771 images were
drawn from the original Desigen dataset of 53,577 usable
images, where 52,806 were used for training the special-
ized Desigen model in Table 4.

4.2. Comparison with Existing Methods

We compared TextCenGen with several potential models
to evaluate its efficiency. The baseline models included:
Native Stable Diffusion (Rombach et al., 2022), Dall-E
3 (Ramesh et al., 2022), AnyText (Tuo et al., 2023) and
Desigen (Weng et al., 2024). Dall-E used the prompt “text-
friendly in the {position}" to specify the region R. Similar
to AnyText, we chose to randomly generate several masks
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Dataset Metrics Desigen-TF +AR Desigen-T +AR Ours (SD 1.5)
P2P Template Saliency IOU ↓ 30.62 34.99 22.86

TV Loss ↓ 13.70 14.77 8.81
VTCM ↑ 2.92 2.97 4.40

DiffusionDB Saliency IOU ↓ 30.30 31.11 23.59
TV Loss ↓ 11.99 14.58 8.41
VTCM ↑ 3.20 2.82 4.39

Syn Prompt Saliency IOU ↓ 31.57 32.60 27.70
TV Loss ↓ 15.63 14.51 11.37
VTCM ↑ 2.67 2.93 3.49

Table 4. Comparison with trained versions of Desigen on general datasets. Desigen-TF: Training-free, Desigen-T: Trained, AR: Atten-
tion Reduction. Even with specialized training on graphic design data, Desigen-T does not match our training-free method’s perfor-
mance.

Figure 4. The results of comparison. Each column showcases six prompts across three datasets, the final column depicting the saliency
map of the result image generated from the mushroom prompt. The red-dotted area denotes the planned blank region. Note that some
methods fail to follow the orange-highlighted words in the prompt, leading to semantic loss.

Method Saliency IOU ↓ TV Loss ↓ VTCM ↑
D-TF 40.79 19.44 2.36
D-T 41.66 18.06 2.30

D-T+Ours 38.48 12.19 2.85
Ours (SD 1.5) 31.99 9.74 3.69

Table 5. Performance on the specialized Desigen benchmark
dataset. D-TF: Desigen-Training-free, D-T: Desigen-Trained.
Underline indicates second-best performance.

in a fixed pattern across the map to simulate regions need
to be edited. More detail can be found in appendix.

Metrics and Quantitative Analysis. To evaluate model
performance, we used metrics assessing various aspects of

the generated images. We proposed the CLIP Score Loss
to evaluate the reduction in prompt semantic alignment for
the training-free method compared to the vanilla diffusion
model. The CLIP Score (Hessel et al., 2021; Huang et al.,
2021; Radford et al., 2021) measured semantic fidelity, en-
suring images align with textual descriptions. The total
variation (TV) loss (Rudin & Osher, 1994; Jiang et al.,
2021) assessed the visual coherence and smoothness of the
background in relation to text region R, crucial for harmo-
nious compositions. Saliency Map Intersection Over Union
(IOU) (Qin et al., 2019) quantified the focus and clarity
around text areas. We proposed the Visual-Textual Con-
cordance Metric (VTCM), which combined a global met-
ric increasing with value (CLIP Score) and local metrics
that benefit from lower values (Saliency IOU and TV Loss)
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Dataset Metrics Text2Poster Best@5 Text2Poster Avg@5 Ours (SD 1.5)
P2P Template Saliency IOU ↓ 31.25 36.22 22.86

TV Loss ↓ 11.49 12.45 8.81
VTCM ↑ 2.48 2.28 4.40

Clip Score ↑ 20.80 20.80 27.96

DiffusionDB Saliency IOU ↓ 24.07 34.38 23.59
TV Loss ↓ 7.99 10.65 8.41
VTCM ↑ 2.93 2.22 4.39

Clip Score ↑ 17.57 17.57 27.20

Syn Prompt Saliency IOU ↓ 31.25 36.91 27.70
TV Loss ↓ 11.49 13.28 11.37
VTCM ↑ 2.48 2.16 3.49

Clip Score ↑ 20.80 20.90 28.10

Table 6. Comparison with retrieval-based methods. Text2Poster Best@5 shows the best results selected from five preset positions, while
Avg@5 shows the average. Our method outperforms Text2Poster in most metrics, particularly CLIP Score, demonstrating better semantic
fidelity while maintaining text-friendliness.

within R. The VTCM formula is:

VTCM =
CLIP Score

Saliency IOU
+

CLIP Score
TV Loss

(5)

Our quantitative analysis in Table 1 and Table 3 shows that
TextCenGen minimizes semantic loss while maintaining
smoothness and saliency harmony within region R, even
surpassing the latest Dalle-3. Scene text rendering and at-
tention reduction in Desigen often focus on local attention,
neglecting global semantics. Especially in Text in Object
situation (see Figure 3), this weakens the ability to create
whitespace. Our approach moves main objects away, then
reduces attention to create space, resulting in more natural
and harmonious text layouts with the highest VTCM. The
trade-off between background smoothness and semantic fi-
delity is shown in Figure 5.

We compared our method with the trained version of Desi-
gen and retrieval-based methods like Text2Poster (Jin et al.,
2022). Table 4 shows that the trained version of Desi-
gen performs less effectively than our method despite us-
ing specialized graphic design data. As shown in Table 5,
our plug-and-play method can be directly applied to pre-
trained model weights, yielding superior results compared
to the same model using only attention reduction. When
integrated with Desigen-Trained, our approach improves
performance significantly, demonstrating that our training-
free method can enhance specialized models without requir-
ing additional training. As shown in Table 6, Text2Poster
achieves competitive TV Loss on DiffusionDB, but our
method provides better semantic fidelity (CLIP Score) and
visual-textual coherence (VTCM). These results demon-
strate the effectiveness of our training-free approach com-
pared to both trained models and retrieval-based methods.

MLLM-as-Judge ELO Ranking. Following the rising
trend of multimodal large language model (MLLM) as
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Figure 5. Performance trade-offs between different metrics. The
dashed lines represent iso-utility curves, where points on the same
curve indicate equivalent trade-off levels. Our method achieves a
better balance between background smoothness and semantic fi-
delity. Higher utility curves (green) represent better overall per-
formance.

judge methods (Chen et al., 2024; Wu et al., 2024), we
present the MLLM-as-Judge ELO ranking for design ap-
peal across different datasets in Table 7. The results demon-
strate that the structured output from the GPT-4o provides
consistent ratings, indicating that our method, along with
Anytext and Dall-E, shows advantages in terms of design
appeal. Interestingly, Dall-E excels in the Synthesized
Prompts dataset, which contains a higher proportion of nat-
ural landscapes. For detailed information on the prompts
and evaluation, please refer to the appendix.

Rank Method DDB P2P SP

1 TextCenGen 702.21 752.85 122.96
2 Anytext 279.56 329.32 -89.68
3 Dall-E -17.32 -39.05 78.87
4 Desigen -322.63 -291.80 -7.24
5 SD1.5 -629.33 -738.83 -92.40

Table 7. Method ELO design appealing rankings across three
datasets.
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Qualitative Analysis. Our qualitative analysis, shown in
Figure 4, involved a comparison across different models us-
ing prompts and positions within the same quadrant. Dall-E
3, which relied solely on text inputs, exhibited significant
variability and could not consistently clear the necessary ar-
eas for text placement. Desigen reduced attention in region
R, but this method was not always effective without pre-
trained graphic design-specific model weights, especially
when region R was within a main object, such as in the bi-
cycle example. Introducing text to images was tricky, as TV
Loss showed, but TextCenGen maintained object detail and
background quality well. It showed that our force-directed
method effectively balances text and visuals in images.

User Study. To understand the importance of the text-
friendliness issue and explore users’ subjective perceptions
of the T2I Model’s results, we conducted a user study with
114 participants. We used the qualitative results (see Fig-
ure 4) to develop a questionnaire. Figure 6 illustrates that
the prompt-image alignment and aesthetics of our results
were well-received in human perception.

4.3. Ablation Study

Table 8 presents the results of our ablation study. As part
of our comprehensive analysis, we evaluated the two main
contributors: (1) the impact of the force-directed compo-
nent and (2) the effectiveness of the Spatial Excluding
Cross-Attention Constraint.

Impact of Force-Directed Cross-Attention Guidance.
The force-directed module is key to gently shifting where
objects are placed. Without this, we might just bluntly edit
the cross-attention map, which could mess up important
parts of the picture. This part of our model helps us make
sure we don’t ruin the image structure by harshly removing
attention map from areas.

Effects of Spatial Excluding Cross-Attention Con-
straint. Despite successful relocation of conflict object-
related tokens, spaces left behind may not inherently lead
to a well-blended transition. Our experimental results un-
derscore that the integration of the Spatial Excluding Cross-
Attention Constraint improve the smoothness of the remain-
ing image sections.

5. Conclusion
We present TextCenGen, a plug-and-play method for text-
friendly image generation and requires no additional train-
ing while well balancing both semantic fidelity and visual
quality. This method abandons the traditional method of
adapting text to pre-defined images. TextCenGen modi-
fies images to adapt text, employing force-directed cross-

SD-1.5 Dall-E AnyText Desigen Ours0
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Figure 6. User study of task importance and result evaluation. The
left shows user perceptions of task encounter frequency (a1) and
importance (a2), rating 5 as the highest. The right side details user
rankings (b2) and the average chosen times in a multiple-selection
scenario (b1). The y-axis in b2 represents rankings from 1 to 5,
demonstrating significant mean differences (α=0.05) across three
standards for all methods.

w/o All w/o FDG w/o SEC Ours

CLIPS Loss ↓ - 2.2 1.71 0.32
TV Loss ↓ 14.39 12.44 12.76 8.81
Saliency IOU ↓ 30.32 28.56 28.61 22.86
VTCM ↑ 2.93 3.03 3.05 4.4

Table 8. Ablation study results. We examine TextCenGen with
or without the implementation of Force-Directed Cross-Attention
Guidance (FDG) and Spatial Excluding Cross-Attention Con-
straint (SEC). The CLIP Score Loss of w/o both indicates the use
of the vanilla SD-1.5 without our training-free method, resulting
in no loss (-).

attention guidance to arrange whitespace. Furthermore, we
have integrated a system to identify and relocate conflicting
objects and a spatial exclusion cross-attention constraint for
low saliency in whitespace areas.

Our approach has certain limitations. The force-directed
cross-attention guidance, which assumes convexity and
centering on object centroids, may not be suitable for non-
convex shapes. This may lead to reduced size or fragmenta-
tion of objects. Future work will address these challenges
to improve the quality of the output images.
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We provide more details of the proposed method and additional experimental results to help better understand our paper.
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Figure 7. Can you spot the TCG logo at first glance? TextCenGen is a training-free method designed to generate text-friendly images.
It simultaneously generates the original and result images. During the denoising process of the original image, the generation of the
result image is guided based on the encroachment into the planned blank regions in the original. This approach ensures sufficient blank
space at specific positions, typically where text or icons are centered, in the result image.

A. Task Introduction
Text-friendly images refer to images designed or selected with an emphasis on enhancing the readability and clarity of
overlaid text. These images typically have simple, non-distracting backgrounds, a balanced color palette, and areas of

13



TextCenGen: Attention-Guided Background Adaptation for T2I

negative space that can accommodate text without compromising visibility or design aesthetics. Common applications
include marketing materials, presentations, and social media graphics where the text plays a crucial role in conveying the
message. Key considerations for creating or selecting text-friendly images include contrast, alignment, and ensuring the
image content does not compete with the overlaid text.

Task Name
Don’t Requires

Training
Don’t Requires

Annotation
Type of Layout
Specification

Required Number
of Anchors

Layout-to-Image (Rombach et al., 2022) X X Object > 5
Text-Friendly Image Generation ✓ ✓ Space Region 1-2
Visual Text Generation ✓ ✓ Text 1-2

Table 9. Comparison of our task with existing tasks. Unlike layout-to-image tasks requiring training and intensive annotation, our method
only needs space region annotation as input for downstream modifications. This makes it particularly suitable for applications such as
dynamic wallpapers for mobile devices and e-commerce posters.

B. Experiment Setting
Our proposed model is designed using the Diffusers library, specifically leveraging the stable-diffusion-v1-5 pre-trained
models with DDPM Scheduler. The model generates images of dimensions 512 × 512. In our method, we have set the
force balance constant α to 0.5. The coefficients for regularization term γ is fixed at 0.01. Within the detector, we upscale
all cross-attention maps to a 64× 64 resolution. Additionally, we expand the height and width of the region R by a margin
of 0.06. During the first 20 steps, we identify conflicting objects when the Intersection over Union (IOU) exceeds 0.14.
For the subsequent 30 steps, we initiate a push operation only if the average density inside region R surpasses 0.8. Neg-
ative prompts are “monocolor, monotony, cartoon style, many texts, pure cloud, pure sea, extra texts, texts, monochrome,
flattened, lowres, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low
quality”.

Our cross-attention replacement method requires less than 15GB of VRAM, making it feasible to run inference on con-
sumer GPUs like the RTX 3090. For evaluation purposes, we utilized one NVIDIA A6000 and 8 H800 GPUs. The entire
experimental assessment took approximately 96 hours to complete. Particularly on the A40 GPU, the image generation
process, which includes both the original and the resultant images, took around 50 seconds for 50 steps of inference. In
contrast, utilizing attention guidance with difftext results in a faster average inference time of approximately 30 seconds,
as it only requires the inference of a single image.

B.1. Region Random Sampling Method

Our region random sampling method is a variation inspired by DiffText. It involves two predefined regions, measuring
160 × 64 and 64 × 160. During the evaluation, excluding Dall-E, we randomly select areas of these dimensions from the
entire image. The output image of Dall-E is not 512 × 512, so we proportionally scale down the corresponding regions
to 116 × 46 and 46 × 116 while calculating metrics. Given that Dall-E operates exclusively on textual inputs as provided
by the prompt, we intend to specify regions within Dall-E’s output at five distinct locations: left, right, bottom, top, and
center.

B.2. Analysis of Text Box Shape Orientations

The shape orientation of text boxes was randomly generated following our region random sampling method, ensuring
an unbiased experimental setup. To investigate potential biases related to text box orientations, we conducted additional
analysis by separating results based on horizontal (160 × 64) and vertical (64 × 160) orientations. Table 10 shows the
differences between horizontal and vertical orientations across different metrics and datasets, calculated as horizontal
minus vertical values.

TextCenGen shows relatively consistent performance across orientations, with slightly better metrics for horizontal boxes
in the P2P Template dataset. Different methods exhibit varying preferences for orientation, suggesting the underlying
complexity of text-friendly image generation across different box shapes. The variance in performance across orientations
is generally smaller for TextCenGen compared to baseline methods, indicating more robust handling of different text box
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Dataset Metrics SD Dall-E 3 AnyText Desigen Ours

P2P Template
Saliency IOU -1.54 0.17 -1.17 -0.57 0.31

TV Loss -4.83 5.89 -9.77 -1.26 3.77
VTCM -0.42 0.00 0.00 0.09 0.55

DiffusionDB
Saliency IOU 0.83 -0.94 0.00 0.32 0.00

TV Loss 2.57 2.00 -3.48 2.49 -0.66
VTCM -0.32 1.76 -0.12 0.09 -1.14

Table 10. Differences between horizontal and vertical text box orientations across metrics and datasets. Positive values indicate better
performance with horizontal boxes.

shapes.

B.3. Evaluation Metrics

To evaluate model performance, we used 4 metrics assessing various aspects of the generated images. The CLIP Score,
total variation (TV) loss, Saliency Map Intersection Over Union (IOU) and Visual-Textual Concordance Metric (VTCM).

• CLIP Score is described as a metric used to measure the similarity between generated images and input prompts,
employing off-the-shelf code referenced as (cli, 2022). Typically, the original image achieves the highest CLIP score
when it’s associated with stable diffusion techniques. However, when blank areas are defined within an image, there
might be a slight reduction in the CLIP Score. This score is crucial in determining how closely an AI-generated image
aligns with the given textual prompt, playing a significant role in the overall evaluation of the image’s fidelity to the
intended text description.

• Total Variation Loss is a regularisation term commonly used in image processing tasks, particularly those involving
image reconstruction or denoising. It is designed to encourage spatial smoothness in the output image while preserving
important structural details. The total variation loss for a region R can be computed as follows:

TV(R) =
∑
i,j∈R

√
(∆xRi,j)2 + (∆yRi,j)2

Here, ∆xRi,j and ∆yRi,j represent the discrete differences in the horizontal (x-axis) and vertical (y-axis) directions,
respectively, at pixel location (i, j) within the region R. The term (∆xRi,j)

2 + (∆yRi,j)
2 calculates the squared

gradient magnitude at each pixel, and the summation is taken over all pixels within the region R.

This formulation of the total variation loss ensures that the reconstructed or processed region R does not have abrupt
changes in pixel values, leading to a smoother and more visually appealing result.

• Saliency Map Intersection Over Union is specifically tailored for assessing the overlap between a saliency map and
a designated region within an image. The formula for this metric is given as:

IoU(S,R) =
|S ∩R|
|S ∪R|

In this context, S represents the saliency map, and R denotes a specific region in the image. The term |S ∩ R| is the
count of pixels that are common to both the saliency map S and the region R, signifying their intersection. On the
other hand, |S ∪ R| refers to the count of pixels present in either the saliency map S or the region R, indicating their
union.In our case, a lower IoU value is desirable as it indicates less overlap, aligning with our goal to ensure that the
ROI is non-salient and distinct from the saliency map.

• Visual-Textual Concordance Metric is formulated to assess the coherence between text prompts and generated
images in AI-driven text-to-image synthesis. Defined as VTCM = CLIP Score×

(
1

Saliency IOU + 1
TV Loss

)
, it combines

three elements. The CLIP Score reflects the degree of match between the generated image and the text prompt, where
higher scores indicate better alignment. The Saliency IOU (Intersection Over Union) in Region R measures how well
the most salient parts of the image align with the specified region, with lower scores being better. The TV Loss in
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Region R assesses the smoothness or consistency in the image’s region, where lower TV Loss scores indicate a more
uniform and less noisy region. The VTCM thus encourages the generation of images that are not only coherent with
the text prompt but also exhibit focused quality in specified areas, aligning with the goal of creating text-friendly
images.

Figure 8. The Limitation of Our Model.

leftmiddletopbuttom right

A playful dolphin jumping out of the ocean, text-friendly in the {position}

position:

image:

Figure 9. The data generation method in Dall-E.

B.4. Details of Compared Methods

We compare the proposed model with Stable Diffusion, Dall-E, AnyText and DiffText. The details of compared methods
are as follows:

• Stable Diffusion, as detailed in Rombach et al. (2022) (Rombach et al., 2022), is an innovative open-source model.
We utilize the widely accessible pre-trained model labeled as “runwayml/stable-diffusion-v1-5". For our experiments,
we set the sampling steps to 50 and the classifier-free guidance scale at 7.5. The model serves both as the source for
generating attention guidance from the origin image in our methodology and as one of the compared methods.

• Dall-E (Ramesh et al., 2022) is a groundbreaking AI model developed by OpenAI, known for its capability to generate
complex images from textual descriptions. Utilizing a variant of the GPT-3 architecture, Dall-E transforms text inputs
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into detailed and creative visual outputs, showcasing a deep understanding of both language and visual concepts. In
our experiments, the output image of Dall-E is not 512 × 512, so we proportionally scale down the corresponding
regions to 116 × 46 and 46 × 116 while calculating metrics. To enhance the focus on text compatibility at these
positions, we add the phrase ’text-friendly in the corresponding position’ directly into the original prompts, as depicted
in Figure 9. Restricted to the purely textual input of Dall-E, the performance falters when the position falls between
left and right and when the text lacks precision.

• AnyText (Tuo et al., 2023) is a diffusion-based multilingual visual text generation and editing model that focuses on
rendering accurate and coherent text in the image that outperformed all other approaches. We generate a fully black
mask for that region and fully white for the rest of the image. Then we use this mask to replace the "draw_pos" in the
input parameters, while keeping the other parameters unchanged.

• Desigen (Weng et al., 2024) is an automatic template creation pipeline which generates background images as well
as harmonious layout elements over the background as well as an iterative inference strategy to adjust the synthesized
background and layout in multiple rounds is presented. For fair comparison, we adopted the following approaches: (1)
We used random regions as layout elements, similar to other baselines. (2) Our comparison targets are training-free
methods, so we used vanilla SD1.5 without any LoRA as the base weights. (3) Using Desigen’s attention reduction
method on this base weight, we set the attention ratio within the region to 0.

B.5. MLLM-as-Judge ELO Ranking

To comprehensively assess the performance of TextCenGen against other baseline methods, we employed the Elo rating
system, a method originally developed for ranking chess players but now widely used in various competitive contexts (Duan
et al., 2024; Chen et al., 2024; Wu et al., 2024). In our evaluation framework, we apply a multi-modal large language model
(MLLM) as a judge to compare TextCenGen with other baseline methods. The evaluation is based on the Elo rating system,
commonly used in competitive ranking, which allows for continuous adjustments of scores as pairwise comparisons are
made. Specifically, for each comparison between two methods, the MLLM assesses the "Design Appeal" of the generated
outputs and determines a winner. The Elo method then updates the ratings of the two competing methods accordingly.

The Elo rating process involves calculating the expected scores EA and EB for methods A and B, given their current
ratings RA and RB . The expected scores are computed using the formula:

EA =
1

1 + 10

RB −RA

400

, EB =
1

1 + 10

RA −RB

400

(6)

Based on the comparison outcome SA (where SA = 1 if method A wins, or SA = 0 if it loses), the ratings are updated
using:

R′
A = RA +K × (SA − EA)

R′
B = RB +K × ((1− SA)− EB)

Here, K represents the adjustment factor, set to 32 in our experiments, which determines the sensitivity of rating changes.

In practice, our evaluation system iterates through each dataset, initializing the Elo scores for all methods and adjusting
them dynamically as new comparison results are processed. After all comparisons, the methods are ranked based on their
aggregated Elo scores, providing insights into the relative strengths of TextCenGen and other baselines in terms of "Design
Appeal." This approach ensures a consistent and scalable evaluation across diverse datasets while reflecting the preferences
derived from the MLLM’s judgments.

C. Influence of the force balance constant
α ensures that the forces exerted do not exceed a practical threshold, thereby maintaining visual equilibrium in complex
scenes (shown in Figure 12).
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Figure 10. More results of elo mllm judge.

D. More Results of Proposed Method
We present additional outcomes of the proposed methodology. Referring to Figure 11, our model produces 12 instances
drawn from three distinct datasets. The figure also illustrates the strong performance of our approach across diverse
scenarios. These encompass urban landscapes, natural scenes, still life, Valentine’s Day greeting cards, and environments
from both 3D and 2D video games.

D.1. More Result of Ablation Study

Figure 13 presents the results of our ablation study. This study was designed to elucidate the individual contributions of
the various components embedded within our proposed model. As part of our comprehensive analysis, we evaluated the
three main contributors: (1) the impact of the force-directed component, (2) the effectiveness of the Spatial Excluding
Cross-Attention Constraint.

D.2. Compatible with Lora Checkpoint

Figure 1 demonstrates the effect of using LoRA by utilizing the LoRA rev-animated model from Civitai for an animated
style, while the qualitative evaluation uses original SD weights for comparison.

E. Limitations of Our Model
Our approach could result in unexpected changes, exemplified by the left of Figure 8, where one might initially think the
figure shifts downward, rather than the forehead area. We noted the emergence of unintended objects within the empty
spaces on the right of Figure 8, spaces which the original prompts did not specify.
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Figure 11. More results of the proposed method. The first and third lines display the original images, while the second and fourth lines
exhibit the result images.
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Figure 12. Influence of the force balance constant. The graph illustrates the effects of four different values for α on Frep versus the final
force. The curves reveal that as α increases, the rate of convergence to the limit progresses more rapidly.

Figure 13. The results of ablation. We examine TextCenGen with or without the implementation of Force-Directed Cross-Attention
Guidance (FDG) and Spatial Excluding Cross-Attention Constraint (SEC). The red-dotted area denotes the target area preserved for
either text or icon images. Images produced with both FDG and SEC yield outcomes identical to those created using TextCenGen alone.
Conversely, images created without FDG and SEC are comparable to those derived from the original stable diffusion model.
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