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Abstract
Graph-based machine learning is experiencing explosive growth, driven by impres-
sive recent developments and wide applicability. Typical approaches for graph
representation learning predominantly focus on pairwise interactions, while ne-
glecting the patterns of higher-order interactions common to complex systems.
This paper explores many-body interaction models, centering on simplicial com-
plexes. From a theoretical point of view, we offer a pair of insights illustrating
why higher-order models are necessary, why non-graph-based models generally
cannot generalize well, while graph-based models may be able to do so. We con-
duct experiments on synthetic data, co-citation networks, co-authorship networks
and gene-disease associations and show that simplicial complexes with certain
relaxations can more efficiently capture underlying higher-order structures than
non-graph structure, regular graph, hypergraph, and traditional simplicial complex-
based learning frameworks.

1 Introduction
Graphs have emerged as popular and efficient tools to model complex structures and relationships in
biological, chemical, social interactions, cyber-physical systems and many more types of systems.
In a graph, nodes represent elementary units and edges encode the interactions of two entities [1–
3]. While graph learning methods (e.g., graph neural networks) offer excellent performance in
representation learning, predicting structure, and other tasks, these techniques often ignore higher-
order relationships.

Regular graphs and pairwise interactions fail to capture group aspects where relationships and
interactions are irregular and can appear among three or more components. For example, a graph
cannot represent and distinguish the following two cases of co-authorship relations: (1) three authors
collaborate together on one work, and (2) they pairwise co-author with each other. The two instances
are both modelled as three fully-connected nodes in a regular graph regardless of the physical
difference. Regular graph structures compress and collapse higher-order interactions to dyadic
relationships and therefore lose high-dimensional information. To capture such complex relationship
and avoid lossy representations, we must go beyond graphs and pairwise connections.

Simplicial complexes and hypergraphs—higher dimensional analogs of graphs—are two of the most
intuitive and natural ways to represent group or collective interactions [3, 4]. Much of the earlier
literature focuses on hypergraphs and develops representation learning frameworks that generalize
graph neural networks (GNNs) [5–10]. In contrast, simplicial complexes build on the machinery
of algebraic topology and enable us to define higher-order (collective) interaction analogs to the
graph Laplacian [2, 3, 11]. They are also inherently imbued with hierarchical representations and
rich algebraic structure which may be missed by hypergraph descriptions [12, 13]. For this reason,
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simplicial complex-based models have recently been proposed [14–18]. Despite that these approaches
are well defined for simplicial complexes, the majority of the experiments still utilize higher-order
data lifted from pairwise interactions, meshes, images and trajectories, while neglecting naturally-built
many-body interactions which are heterogeneous and irregular in the structure.

In the rest of the paper, we first discuss the recent works on how to generalize graph representation
learning with simplicial complexes in section 2. In section 3, we propose to use a relaxation of the
formal simplicial complexes to capture irregular higher-order data. We describe an efficient and
flexible learning framework which is more suitable for diverse and information-rich structures based
on higher-order Laplacians and adjacency matrices. We also provide theoretical insights in section 4,
based on a simple but general data generation process, demonstrating the necessity of accounting for
higher-order interactions—and how this interacts with generalization. In section 5, we consider a
variety of types of many-body interaction data including synthetic data, clique complexes built from
regular graph, and naturally built higher-order data in the form of simplicial complexes with certain
relaxation. The results show that relaxed simplicial complex based learning models can efficiently
capture the higher dimensional information and surpass existing graph learning methods on simplex
classification tasks, outperforming the best baseline by up to 6.7% in accuracy.

2 Related Works
Unsupervised representation learning methods [14, 16, 17] extend node2vec embeddings [19] to
simplicial complexes with random walks on interactions through Hasse diagrams and simplex connec-
tions inside p-chains. In the recent three years, studies focus more on the semi-supervised learning
on simplicial complexes which generalizes graph neural networks. Simplicial neural networks (SNN)
[12] generalize spectral graph convolution [20] to simplicial complexes with higher-order Laplacian
matrices. Yang et al. [21] further propose the simplicial convolutional neural networks (SCNN)
with simplicial filters to exploit the lower- and upper-neighborhood relationships. In Bunch et al.
[15], the authors propose a simplicial 2-complex convolution layer, but with limits on the maximum
dimension of higher-order data and on its application to images. Hajij et al. [16, 22, 23] propose
encoder-decoder and message passing based representation learning models such as convolutional
cell complex networks (CCXN) on simplicial complexes and cell complexes. Bodnar et al. [18, 24]
propose message-passing simplicial networks (MPSN), simplicial isomorphism networks (SIN) and
cell isomorphism networks (CIN), which can distinguish strongly regular graphs, classify trajectories
and graphs. Roddenberry et al. [25], discuss the permutation, orientation equivariance and simplicial
awareness properties of simplicial neural architectures and propose SCoNe for trajectory prediction.
Within the last year, the attention mechanism is employed to generate representations on simplicial
complexes and combinatorial complex [13, 26–28] and the Hodge Laplacian is exploited to learn
knowledge of graph structures [29–31].

Although the aforementioned models are well-defined on general simplicial complex structures,
most of the models are examined only on analogs of real-world complex higher-order information,
which is built from images [15, 27], meshes [22, 28], trajectories [18, 25–27], pairwise interactions
(graphs) [13, 14, 18, 23, 24, 28] or synthetic random models [14, 17, 23, 25–27]. One naturally-built
higher-order dataset (co-authorship) is examined [12, 21, 26], but the data source of the simplicial
complex is restricted as it is constructed as subsets of only 80 papers. A comprehensive analysis on
complex naturally-built many-body interactions is still lacking.

Our motivation is to understand what makes higher-order/simplicial complex-based frameworks
perform well in practice and in theory. We wish to go beyond traditional graph representation learning
and focus on higher-order data-based tasks such as simplex classification with practical and efficient
data structure. Specifically, we want to tackle a wide variety of simplicial complexes including rich
and organic higher-order data to capture the heterogeneous many-body interactions which commonly
exist in real world.

3 Backgrounds
3.1 Higher-Order Data as Simplicial Complexes

Definitions. A simplicial complex generalizes a graph by accounting for higher-dimensional infor-
mation. The interaction among points (nodes) is characterized by a simplex [11, 32]. An oriented
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p-dimensional simplex σ is composed of (p+1) points and is denoted by σ = [i0 . . . ip]; it represents
an interaction among a group of points. For example, a 0-simplex is a node, a 1-simplex is an edge, a
2-simplex is a triangle, a 3-simplex is a tetrahedron, and so on. Going beyond pairwise interactions, a
simplex can differentiate among interactions with different dimensions.

A simplicial complex refers to a set of simplices. A p-chain is the finite formal sum of p-simplices
and the group of p-chains on simplicial complex X is denoted by Cp(X). If the points in a p-simplex
σ are the subset of the points in a (p+ 1)-simplex τ , where only one element is omitted, then σ is
called a face of τ and τ is called a coface of σ. Boundary map ∂p : Cp+1(X) → Cp(X) indicates
the existence / orientation of each p-simplex as a face of each (p+ 1)-simplex. The boundary map
∂p is described by incidence matrices Bp of dimension Np × Np+1, where Np is the number of
p-simplices in the simplicial complex. The higher-order Laplacian Lp describes the diffusion on
a p-chain and generalizes graph Laplacians [11]. The p-order Laplacian matrix is calculated from
incidence matrices by the formula Lp = BT

p−1Bp−1 +BpB
T
p when p > 0. The 0-order Laplacian is

L0 = B0B
T
0 .

Handling Higher-Order Data with Relaxed Simplicial Complexes. The conventional definition
of simplicial complexes requires them to be closed under taking subsets. This presents a challenge
for models that operate on higher-order data via simplicial complexes: (1) Taking subsets will cause
blowup when high-dimension simplices are present in large-scale datasets. This is a common phe-
nomenon especially in real-world systems where interactions and group behaviors are sophisticated
and irregular. For example, the co-authorship complexes built from Semantic Scholar in Ebli et al.
[12] have 25,000 and 100,000 simplices, but they are constructed as subsets of only 80 papers where
some of them are co-authored by 10 researchers. This inclusion restriction will cause the datasets
to exponentially increase and crucial information in naturally-existed simplices will be obscured by
the potential redundancy embedded in the subsets. (2) It is difficult to explain the physical meaning
and properties of simplices which are added as subsets of higher-order instances. For instance, a
co-authorship map can be considered as a simplicial complex where points are authors and simplices
are papers with venue as label and word embedding as feature. If two scientists a and b work together
with different third researchers multiple times (2-simplex [a, b, c] and [a, b, d]) but never exclusively
coauthor with each other, how can we understand the existence of the 1-simplex [a, b] added due to
the inclusion?

We wish to practically and efficiently capture many-body interactions. In [28], the authors introduce
combinatorial complexes which allows arbitrary set relations to generalize simplicial complexes.
Although the combinatorial complex does not require downward closure as in simplicial complexes,
the method is examined on datasets where the inclusion property still preserves. In this work, we
consider a relaxation of the conventional definition and allow simplicial complexes to potentially
not be closed under subsets. We further discuss the relationship of relaxed simplicial complexes and
hypergraphs and explain our choice of relaxed simplicial complexes in Appendix C. In the rest of
this paper, we use p-chain to refer the set of p-simplices, where p-simplices are given as groups of
interactions in the dataset. In addition, we want to use simplex to represent an activity among several
components (e.g., a paper written by several co-authors), so we take simplices to be unoriented and
all elements in the incidence matrices to be non-negative. These simple adjustments will enable
representation learning frameworks to be more flexible on a wide variety of higher-order datasets and
able to accommodate large-scale data while avoiding the size explosion problem.

3.2 Representation Learning Models with Relaxed Simplicial Complexes

Among our goals are to analyze topological structure and to examine message passing and aggregation
methods on relaxed simplicial complexes. We first describe a notion of connection for simplices
and then higher-order adjacency matrices. This allows the heterogeneous structure of simplicial
complexes to be associated with various powerful graph machine learning models. Afterwards,
we describe simplex convolutional networks (SCN) and simplicial complex convolutional networks
(SCCN) models. These models exploit the generalization of the graph convolution operation [33].
Using the same principles, we also consider sc2vec, a latent representation learning framework for
simplicial complexes.

Connection of Simplices and Higher-Order Adjacency Matrices. To define the connection of
two p-simplices, we utilize the higher-order adjacency matrix Ap of p-chains with the help of the
higher-order Laplacian and incidence matrices. Recall that the p-order Laplacian is the sum of two
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Figure 1: Top: Different connections of 1-simplices (edges) ab and ac. In X0, A1(ab, ac) = 0
because ab and ac neither share a face nor a coface. In X1, A1(ab, ac) = 1 since ab and ac share
a face a. In X2, two 1-simplices share a coface abc and, thus, A1(ab, ac) = 1. ab and ac have the
same face a and coface abc in X3, so A1(ab, ac) = 2. Bottom: Different relationships of 2-simplices
(triangles) abc and bcd (or bde). Similarly, in Y0, the connection of abc and bde is 0. In Y1, Y2, Y3,
the element in the 2-order adjacency A2(abc, bcd) is 1, 1, 2, respectively.

parts, the lower Laplacian Llower
p = BT

p−1Bp−1, and the upper Laplacian Lupper
p = BpB

T
p . The

lower and upper p-th Laplacian, respectively, describe the relationship of p-simplices through faces
and cofaces [15, 16, 18]. We use the (i, j)-th element in the p-order adjacency matrix to denote the
connection of two p-simplices σp,i and σp,j (i ̸= j):

Ap(i, j) = Lp(i, j) = I {σp,i , σp,j share a face}+ I {σp,i , σp,j share a coface} . (1)

When i = j, we assign Ap(i, j) = 0. Figure 1 shows various connecting relationships for two
1-simplices (top) and two 2-simplices (bottom). Note that subsets of simplices are not necessarily in
the simplicial complex without the inclusion rule. For example, if abc is in the simplicial complex,
ab, ac and bc are not automatically included, unless otherwise stated.

Neural Network-based Representation Learning for Simplicial Complexes. Following the graph
convolutional network (GCN) formalism [33], SCCONV and CCXN which generalize GCN to
simplicial complex and cell complex [15, 16], we first describe simplex convolutional networks
(SCN). We introduce the following notations: ψ is a non-linear activation function, H(l)

p ∈ RNp×E(l)
p

is the simplex embedding of p-chains as the input of layer l, Np is the number of all p-simplices,
and E(l)

p is the embedding dimension. H(0)
p = Fp represents the features of the p-chain. W (l)

p

is the trainable weight. Self-loops with strength 2 are added to the p-order adjacency matrix Ap:
Ãp = Ap + 2INp for p = 1, 2 . . . pmax − 1. We choose the self-loop strength to be 2 because a
simplex shares faces and cofaces with itself. When p = 0, pmax, it becomes Ãp = Ap + INp

. The

adjacency matrix is normalized by D̃p
− 1

2 ÃpD̃p
− 1

2 , where D̃p,ii =
∑

j Ãp(i, j). The convolutional
layers are defined on each p-chain in the simplicial complex as follows:

H(l+1)
p = ψ

(
D̃p

− 1
2 ÃpD̃p

− 1
2H(l)

p W (l)
p

)
. (2)

Compared with SNN [12], the SCN model is more scalable and can easily accommodate high-
dimensional features, as the convolutional propagation rule is a localized first-order approximation of
the spectral graph convolutional operation [33].

In SCN, an independent convolutional operation is applied to each p-chain. We also consider
simplicial complex convolutional networks (SCCN), where connections of all simplices are examined
regardless of the dimension as in [28]. We define the full adjacency matrix A for the simplicial
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complex as:

A =


αA0 βB0 0 . . .
βBT

0 αA1 βB1 . . .
0 βBT

1 αA2 . . .
...

...
...

. . .

 . (3)

The full adjacency matrix A has each p-adjacency matrix Ap on its main diagonal and incidence
matrix Bp on the first diagonal below and above. Here, α and β are weights for different types
of connections. The p-adjacency matrix Ap captures the relationship of simplex within the same
dimension (i.e, upper or lower connected), while the incidence matrix Bp contains the connections
of a p-simplex and a (p− 1)-simplex when the (p− 1)-simplex is a face of the p-simplex. SCCN
exploits the convolutional operation in the same way as in equation (2) to the full adjacency matrix A.
In SCCN, simplices whose dimension has limited samples can be better learned, which is especially
beneficial for high-dimensional cases where samples are usually less than low dimension.

Note that in this work, we do not include the possible connection of two simplices when the difference
of their dimensions is larger than one. However, the definition of the full adjacency matrix in equation
(3) can be easily modified to have the connection of two simplices of arbitrary dimension difference
d by assigning BpBp+1 . . . Bp+d on the corresponding (d + 1) diagonals. We further discuss the
choice of equation (3) in Appendix D.

Latent Representation Learning for Simplicial Complexes. From a practical perspective, there are
many cases where we only have access to pure interaction information. In other words, our data con-
sists of structure without any features. We seek a model that handles such data as well. Simplex2vec
[14], cell2vec [16], k-simplex2vec [17] and SCA [22] are proposed to learn latent representation
from simplicial complexes and cell complexes. Following a similar idea of applying a node2vec-style
approach to the full adjacency matrix in equation (3), we consider a latent representation learning
model sc2vec. Details of sc2vec are presented in Appendix E.

4 Theoretical Insights
We provide a pair of theoretical insights related to simplicial complex-based models and higher-order
graph models in general. Each relies on a proxy data generation model for graph-structured data.
While simple, this model motivates the need for using graph-based models in multiple contexts.
Our first insight is that higher-order distributions (representing the dependencies found in simplicial
complexes) cannot be approximated by lower-order ones, motivating the use of higher-order models
such as simplicial networks. Our second insight studies node / simplex classification with graph-
structured data. We show that while it is possible to train a conventional (not graph-based) model
that generalizes despite the numerous dependencies induced by graph-structured data, to ensure
generalization it is necessary to certify that the dependencies are very weak. However, graph-based
models directly rely on these dependencies, implying that generalization is possible, as we observe in
practice.

4.1 Graph-Structured Data Model

We use the following as a proxy model for graph-based learning tasks. SetX = (X1, . . . , Xn), where
Xi ∈ Rd are features and Y = (Y1, . . . , Yn) with Yi ∈ {±1} are labels. Let G be a hypergraph with
vertex set V (G) = {1, . . . , n} and edge set E(G). Then,

fX(Y ) =
1

Z
exp

 n∑
i=1

XT
i θYi + β

∑
e∈E(G)

∏
v∈e

AeYv

 . (4)

where θi ∈ Rd, β, and the Ae are model parameters, and Z is a normalizing partition function .

In (4), the left-hand side term by itself is a linear model; it can be easily replaced with any other data
model. The right-hand side term, however, introduces higher-order graph structure over the data;
it promotes symmetries among labels. The β parameter controls the importance of features versus
dependencies. If we take G to be a graph, so that the edges e involve only two vertices, we obtain a
model in Y identical to the Ising model of Daskalakis et al. [34], which studied linear and logistic
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regression with dependent data. The more general version (4) allows for more complex dependencies,
including simplicial complexes and hypergraphs.

We are especially interested in the setting where we take the hyperedges e to simulate a re-
laxed simplicial complex, as described in Section 3.1. For example, we can take E in (4) to
be {{a}, {b}, {c}, {d}, {e}, {a, b}, {b, c}, {a, c}, {c, e}, {a, b, c}, {b, c, d}}, yielding the complex in
Fig. 2 in Appendix B. Note that this model captures node classification tasks, as the labels are attached
to nodes. However, we could also construct a model, along the same lines for classifying simplices
(as we do in our experiments).

4.2 Why does higher-order structure matter?

An initial question when studying higher-order models, like simplicial networks, is why one should
bother with such models. After all, if a lower-order distribution can well-approximate a higher-order
one, regardless of the structure or modeling choices, then certainly a lower-order model itself should
suffice. We show this is not the case.

Concretely, higher-order structure can be arbitrarily important. Our result uses a small simplicial
complex to show that no graph-based distibution can approximate it:

Proposition: Consider the class of models F of (4) with one or more higher-order interactions,
including the class of simplicial complexes, and models Fℓ without such interactions (graph-based
models). There exists f ∈ F so that for any f ′ ∈ Fℓ, the divergence between f and f ′ is bounded
away from zero. Specifically, for any δ > 0, dTV(f, f

′) ≥ 1
4 − δ. □

This result shows that there are distributions that cannot be approximated by lower-order ones; there
can be a large constant gap in total variation distance between them. This suggests that we should use
higher-order models, motivating our study of simplicial complex networks.

4.3 Why are non-GNNs insufficient?

Next, we explore the generalization ability of conventional models that do not incorporate graph
structure when operating on points that are sampled from (4). We do so for the conventional node
classification task. The main difference between a conventional setting for generalization and the
graph-based data one is that the dataset is no longer i.i.d.; indeed, the labels may be highly dependent
via the right-hand side of (4). Despite this challenge, it is still possible to show generalization by
using techniques based on concentration in dependent settings, an exciting area with significant
progress in the last decade [35–37]. Our goal is to study generalization result for node classification
with graph-structured data. Our dataset is S = {(x1, y1), . . . , (xn, yn)}, where xi ∈ Rd and
yi ∈ {−1,+1}. These points are not i.i.d.; they are drawn from the distribution (4). We learn a
function f : Rd → {−1,+1}. For a loss function ℓ, e.g., the 0/1 loss, the risk isR(f) = E[ℓ(f(x), y)]
and its empirical counterpart is R̂ = 1

n

∑n
i=1 ℓ(f(xi), yi). A standard result in the i.i.d. setting is the

following Rademacher complexity bound [38]. With probability at least 1− δ,

R(f) ≤ R̂(f) + R̂S(F ) + 3

√
log 2/δ

2n
, (5)

where R̂S(F ) is the empirical Rademacher complexity for our model function class F and dataset S.
The i.i.d. requirement is needed for the use of McDiarmid’s concentration inequality. Below, we
relax this requirement.

Dealing with dependencies. The main technical challenge is that our dataset here is not i.i.d.,
since the labels y are also connected via the graph / hypergraph / simplicial complex structure. If the
dataset at minimum contains some degree of independence, it is possible to apply [39], which derives
a variant of McDiarmid’s inequality for a particular graph dependency structure. This dependency
structure specifies which nodes are dependent (i.e., those connected by an edge) and which nodes are
independent (those which are not neighbors). However, this assumption is potentially too strong for
us: because of the longer-range dependencies in (4), we may not have any pairs of nodes which are
independent.
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On the other hand, many of the dependencies might be weak. This is likely to be the case for
many applications of practical interest, where the features provide the majority of the signal and
the graph-based dependencies provide the remaining portion. A powerful formalization of the
concept of weak dependence is Dobrushin’s condition [37], stated in terms of influences Ij→i(y).
For y = (y1, . . . , yn), set the influence of yj on yi to be

Ij→i(y) = max
y−i−j ,yj ,y′

j

dTV(Pyi|y−i
(·|y−i−j , yj),

Pyi|y−i
(·|y−i−j , y

′
j)).

Here, y−i−j consists of the vector with all the entries of y except indices i and j. The basic
intuition is to measure the maximum change in the distribution over yi when changing yj over all
possible configurations of conditional distributions. If α(y) := max1≤i≤n

∑
j ̸=i Ij→i(y) < 1, then

Dobrushin’s condition is satisfied. Moreover, this permits the construction of a dependent version
of McDiarmid’s inequality [37]. Specifically, consider a distribution P over {−1,+1}n satisfying
Dobrushin’s condition with coefficient α and a function f : {−1,+1}n → R with the bounded
differences property |f(y)− f(y′)| ≤

∑n
i=1 1{yi ̸= y′i}λi for a set of parameters λ1, . . . , λn ≥ 0.

Then, for all t > 0,

P (|f(y)− E[f(y)]| ≥ t) ≤ 2 exp

(
− (1− α)t2

2
∑n

i=1 λ
2
i

)
. (6)

Using (6) to replace the standard i.i.d. version of McDiarmid’s inequality will permit us to derive the
Rademacher complexity bounds as in Mohri et al. [38]. Specifically, instead of (5), we now get

R(f) ≤ R̂(f) + R̂S(F ) + 3

√
log 2/δ

(1− α)2n
, (7)

This is implicitly based on the influence matrix {Ij→i(y)}i,j . Worse, if α ≥ 1, then the correlations
can be arbitrarily strong, and no concentration may result. To ensure such a non-GNN model
generalizes, we must certify that α < 1. However, as we observe, this is an extremely strict limitation.
As a result, conventional models will often not suffice.

Evaluating Dobrushin’s condition in hypergraphs. The influence matrix can be bounded by the
dependency parameters in the model (4) in the following way. Suppose we are examining node yi
and let all of the hyperedges that include it as a term be e1, e2, . . . , em. Then, we have the following:

Pyi|y−i
(·|y−i−j , yj) =

exp(gβ(A, Y ))

exp(gβ(A, Y )) + exp(−gβ(A, Y ))
,

where gβ(A, Y ) = β
∑

k

∏
v∈ek

AekYv. To compute the Ij→i(y) = maxy−i−j ,yj ,y′
j
, we can now

use the formula above, yielding an expression for the influence in terms of β and the Ae adjacency
matrix terms. While in general this does not yield clean bounds that can be used to easily state
Dobrushin’s condition, in special cases, it is possible to do so. For example, suppose that G is a
graph and Ae = 1 for all edges. Then, it was shown in Hayes [40] that Ij→i(y) ≤ tanh(β)Aij ,
where Aij = 1 for edges and 0 otherwise. We can show a generalization of this result for simplicial
complexes, in the special case where the face weights have some regularity. Let G be a simplicial
complex on p nodes with a single facet, with Ae = 1 for all e excluding the facet, where we set
Afacet = 0. Then, the influence term {Ij→i(y)}i,j satisfies Ij→i(y) ≤ tanh(β).

This implies that we can achieve Dobrushin’s condition, and thus achieve generalization, if we ensure
that β < tanh−1(α/(n− 1)), for any α < 1—which is a very strong requirement.

However, models that do not rely on the i.i.d. assumption, such as graph-based models, including
GNNs and higher-order variants, do not fall prey to such strict requirements for generalization.

Altogether, the two theoretical insights suggest that to handle non-i.i.d. data, we must use graph
models of some order. In addition, among such models, to deal with higher-order dependencies, we
must use higher-order models, such as the models of relaxed simplicial complex. This provides the
theoretical motivation for our work; it is also consistent with empirical evidence we have observed.

In this section, we aim at providing an initial step towards understanding which models will generalize
on data structured according to higher-order graphs. There are two steps here: (1) understanding
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why simply modeling data according to standard graphs is insufficient and (2) understanding why
particular networks generalize. Statistical learning theory has only taken very preliminary steps in
this direction. Note that even a simple notion of generalization has not yet been agreed upon—unlike
conventional cases, our data is not i.i.d., so that we cannot sample “new” points to test our trained
model. This issue affects both regular graph-structured and higher-order graph-structured data. We
bypass this issue by providing two types of results: first, a simple result showing the distinction
between distributions on binary graph-structured data vs higher-order graph-structured data—which
is applicable to any kind of model, and, second, a result applying the famous Dobrushin’s condition,
which enables generalization for at least some non i.i.d. cases. Indeed, the first result suggests that
there are genuinely cases where no GNN will be able to ultimately perform well—but a higher order
model, such as our proposed model, will. The second result suggests that there is at least a possibility
of achieving some notion of generalization.

5 Experiments
We evaluate the representation learning framework with relaxed simplicial complexes on a wide
variety of synthetic and real-word datasets for the simplex classification task. The prediction results
show that the representation learning models with relaxed simplicial complexes formalism efficiently
capture higher-order information in multiple datasets and outperform the best baselines by up to 6.7%
in accuracy.

5.1 Datasets

We apply the models on several synthetic complexes (Syn and SBM), clique complexes (Cora and
Pubmed), and naturally-built simplicial complexes (DBLP, DisGe, PPI-BP and HPO-METAB). The
statistics of the datasets can be found in Table 3 of Appendix F.

Cora and Pubmed: We take the benchmark citation datasets and build clique complexes. Syn:
We take the structure of the Cora clique complex, randomly assign weights between 0.1 and 1.0
for each simplex, and then generate features and binary labels of points according to equation (4).
We take simplices where inside points have the same label and use the point average as simplex
features. SBM: We first generate a graph using the stochastic block model [41] with three categories
of nodes (200 each), 0.08 intra-linking probability, 0.03 inter-linking probability, and then build clique
complexes. DBLP: The DBLP co-authorship simplicial complex is constructed from the DBLP
co-authorship hypergraph in Yadati et al. [5]. Points are authors and simplices are papers with labels
representing the category of the venue and features are the word dictionary. DisGene1: We construct
a simplicial complex where a simplex is a disease and points in a simplex are genes associated with
the corresponding disease. The label of the simplex is the MeSH disease class. Features are built
from the gene-disease relationship (disease type, pleiotropy index etc.). PPI-BP: In the molecular
biology simplicial complex, each simplex is a collection of proteins in the same biological process
and its label is the type of the biological process. HPO-METAB: The simplicial complex is built
from a rare disease diagnosis dataset, where a simplex is a rare disease and the points are associated
phenotypes. The label is the type of the disease. The structures of PPI-BP and HPO-METAB are
built based on the subgraph in Alsentzer et al. [42].

Building simplicial complexes from regular graphs (Cora, Pubmed) can be viewed as a decompression
process. A (p+1)-clique is considered to be a p-simplex if it is a maximal clique and all points in the
clique have the same label. The simplex is labeled with the corresponding category and the feature
is the average of node features inside the clique. By definition, subsets of a maximal clique will
not be taken into consideration, and thus, may cause information loss in the decompression process.
To capture the hierarchical structure of higher-order data and avoid the size explosion problem due
to the inclusion rule and point combination in high dimension simplex, we only add the first-order
sub-simplices (with p− 1 points) of each p-simplex. Every node that has appeared in the maximal
cliques or its first-order subsets are considered as 0-simplices. Nodes in the original graphs are
discarded if they don’t belong to any simplex. For DBLP coauthorship and DisGene, we take the set
of many-body interactions existed in the original data as the simplicial complex without inclusion and
orientation. For the datasets with pure topological informations (SBM, PPI-BP and HPO-METAB)
which are used for latent representation learning models, we take all subsets while computing the

1http://www.disgenet.org/
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higher-order adjacency matrix in order to compare with the baseline models (k-simplex2vec and
simplex2vec), which both preserve the inclusion properties.

5.2 Baselines

In this work, we are interested in predicting the label of activities which have contributions from
multiple components (simplices). We use the following representation learning models of hypergraphs,
simplicial complexes, regular graphs, and non-graph structures as baseline models.

DHE: Payne [9] proposes to use the vertex and hyperedge embeddings as well as hyperedge features
to perform hyperedge classification. SIN: Bodnar et al. [18] propose SIN for graph classification
problem. Here, we replace the readout layer with an output layer to predict the label of each simplex.
Simplex2vec: [14] This unsupervised representation learning approach adopts symbolic embeddings
to compute the community structure on simplicial complexes via the Hasse diagram. K-simplex2vec:
[17] This unsupervised representation learning framework extends the node embedding methods
with biased random walks to simplices and considers the interaction of simplices in every p-chain.
GCN and MLP: To show the importance of information embedded in higher-order structures, we
implement graph convolutional networks (GCN) [33] and multilayer perceptron (MLP) models on
the corresponding collapsed graph and non-graph data.

Table 1: Simplex classification accuracy (%) of the SCN, SCCN and baselines. Best accuracy is
marked as bold.

Dataset Syn Cora Pubmed DBLP DisGene

SCN 68.90 94.68 95.23 66.81 39.17
SCCN 74.95 95.65 96.84 75.69 34.90
DHE 68.22 86.46 94.50 67.38 36.79
SIN 60.26 80.89 93.04 69.60 36.66
GCN 62.83 92.61 95.02 n/a n/a
MLP 58.58 89.47 90.30 73.95 36.63

5.3 Experimental Settings and Results

We apply the SCN and SCCN models with one hidden convolutional layer on the datasets described
above. We chose the hidden dimension to be 16, ReLu as the activation function, and used the Adam
optimizer [43] with learning rate 0.001 to train the SCN and SCCN models. A detailed description of
the experimental settings is provided in Appendix section G.

We repeat each experiment of the SCN and SCCN model 100 times with shuffled train/validation/test
splits and show the mean accuracy in Table 1. The SCCN model outperforms other baselines on the
synthetic network, Cora and Pubmed co-citation simplicial complexes and DBLP co-authorship data.
The SCN model also beats other baselines on the DisGene dataset.

Table 2: Simplex classification accuracy (%) of the latent representation embedding models. Best
accuracy is marked as bold.

Dataset SBM Cora PPI-BP HPO-METAB

simplex2vec 94.48 73.37 36.30 51.22
k-simplex2vec 97.43 90.55 30.33 25.10

sc2vec 100.00 93.86 36.90 56.18

In addition, we test the latent representation learning method sc2vec as well as the baselines on SBM,
Cora, PPI-BP and HPO-METAB datasets. Here, features are not used. To examine the embedding
performance, we use the simplex embedding results as the input to one-vs-rest logistic regression
classifiers to predict the label of the simplex, following [19] and [44]. We repeat each experiment 50
times and present the mean accuracy of the multi-label classification in Table 2. The result shows that
the embedding method sc2vec defined on the higher-order adjacent matrix also achieves excellent
performance compared to the baselines.
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We conclude that SCN, SCCN and sc2vec offer strong performance when performing representa-
tion learning of higher-order data via relaxed simplicial complexes. Complexity analysis, more
experimental details and additional results of citation prediction are provided in the Appendix.

6 Conclusion
In this paper, we examined the representation learning framework with relaxed simplicial com-
plexes meant to characterize the higher-order interactions embedded in real-world complex systems
such as social and biological networks and cyber-physical systems. Theoretically, we showed that
higher-dimensional dependencies cannot be modelled by regular graph-based networks and that con-
ventional models cannot handle such dependencies either, in terms of generalization. The outstanding
performance of the SCN, SCCN and sc2vec models on synthetic, clique complexes from graph,
and naturally built simplicial complexes shows the efficiency in capturing high dimensional data
using hierarchical models. Future work includes studying the relationship of simplices of arbitrary
dimensions and embedding algebraic topology properties such as Betti number into the representation
learning framework.
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A Additional Theoretical Details
We provide the proofs of the propositions described in Section 4.

First, the proof of Proposition 4.2:

Proof: For our higher-order model, we use a triangle graph G with G(V ) = {y1, y2, y3}. Let the
corresponding edge parameters then be A12 = A23 = A13 := θ1 and A123 := θ2, where θ1, θ2 are
non-negative. Suppose that Ai = 0 for i ∈ {1, 2, 3}. Then,

f(y1, y2, y3) =
1

Z
exp (θ1(y1y2 + y1y3 + y2y3) + θ2y1y2y3) .

Then, f(1, 1, 1) ≥ f(1,−1,−1) and similarly for other combinations with two −1’s, and
f(−1,−1,−1) ≥ f(1, 1,−1) and similarly for other combinations with one −1. From this,

Z ≤ 4 exp(3θ1 + θ2) + 4 exp(3θ1 − θ2).

Using identical reasoning, we obtain a lower bound on Z:

Z ≥ 4 exp(−θ1 + θ2) + 4 exp(−θ1 − θ2).

Then, we have that

f(1, 1, 1) =
1

Z
exp (3θ1 + θ2)

≥ exp (3θ1 + θ2)

4 exp(3θ1 + θ2) + 4 exp(3θ1 − θ2)

=
1

4 + 4 exp(1− 2θ2)
.

We also have

f(−1,−1,−1) =
1

Z
exp (3θ1 − θ2)

≤ exp (3θ1 − θ2)

4 exp(−θ1 + θ2) + 4 exp(−θ1 − θ2)

=
1

4 exp(−4θ1 + 2θ2) + 4 exp(−4θ1)
.

Now, consider any lower-order model f ′. Then,

f ′(y1, y2, y3) =
1

Z
exp (θay1y2 + θby2y3 + θcy2y3) .

Regardless of how we set the parameters, the symmetry between (1, 1, 1) and (−1,−1,−1) ensures
that f ′(1, 1, 1) = f ′(−1,−1,−1). Then, we have that

dTV(f, f
′) ≥ |f(1, 1, 1)− f ′(1, 1, 1)|+ |f ′(−1,−1,−1)− f(−1,−1,−1)|
≥ |f(1, 1, 1)− f(−1,−1,−1)|

≥ 1

4 + 4 exp(1− 2θ2)
− 1

4 exp(−4θ1 + 2θ2) + 4 exp(−4θ1)
.

In the second step, we applied the triangle inequality and used the fact that f ′(1, 1, 1) =
f ′(−1,−1,−1).

Now by setting θ1 sufficiently small and θ2 sufficiently large, we obtain that

dTV(f, f
′) ≥ 1

4
− δ,

for any δ > 0. □

To obtain the result on the Dobrushin condition coefficient for a simplicial complex, we can follow
the proof of [40], replacing the expressions based on edges with combinatorial sums that involve
even or odd numbers of vertices.
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B Example of Simplicial Complexes
Figure 2 shows an example of a simplicial complex with special properties of no inclusion and no
orientation. The incidence matrices are also shown in the figure.

abc bcd

ab 1 0

bc 1 1

ac 1 0

ce 0 0

X = { a, b, c, d, e, ab, bc, ac, ce, abc, bcd }b

a
c

d

e

= B0 

ab bc ac ce
a 1 0 1 0

b 1 1 0 0

c 0 1 1 1

d 0 0 0 0

e 0 0 0 1

= B1 

Figure 2: An example of unoriented simplicial complex and the incidence matrices. The simplicial
complex X consists of 0-simplices a, b, c, d, e, 1-simplices ab, bc, ac, ce and 2-simplices abc, bcd.

C Relationship of Relaxed Simplicial Complexes and Hypergraphs
In this work, we aim at considering a practical and efficient framework to learn irregular higher-order
data. We choose to use a relaxed data structure starting from simplicial complexes and we maintain
its predefined incidence matrices from p+ 1 to p dimension as well as the laplacians to determine
how relaxed simplices are connected.

The structure of simplicial complexes without orientation and inclusion properties is the same as
hypergraphs with additional operations. Traditional simplicial complexes can also be represented as
hypergraphs. Sets of hyperedges can be defined by computing the cardinality of each hyperedge to
match p-simplices. The original incidence matrix of hypergraphs is defined by the set membership of
vertices and hyperedges. One can also define and compute the p-incidence matrix Bp of hypergraphs
for each dimension / cardinality to build the bottom-up and top-down relationship as represented
by the incidence matrix of simplicial complexes. But all above requires additional definition and
computation from the traditional relationship of hypergraphs.

In contrast, this hierarchical representation is well defined with the formalism of simplicial complexes
across different dimensions (between p-simplices and (p+ 1)-simplices). Therefore we choose to
define the higher-order adjacency for relaxed simplicial complexes in equation (1) with the help of
incidence matrix and laplacian matrix preserved from formal simplicial complexes in this work. The
relaxation of properties will not bring in additional computations for the incidence matrix Bp. The
full adjacency matrix of the connections with arbitrary dimensions described in equation (3) can also
be easily written with the help of the incidence matrices Bp and higher-order adjacency matrices Ap.

D Choices to Build the Full Adjacency Matrix for SCCN
Using the current definition of the higher-order adjacency matrix as in equation (3), one convolutional
layer in SCCN will look at the connections of simplices which have the same dimension or the
difference is equal to one. For example, the embedding of a p-simplex σ will be updated with its
p-simplex, (p− 1)-simplex and (p+ 1)-simplex neighbors (1-hop neighbor) in one convolutional
layer. In the next layer, (p− 2)-simplex and (p+ 2)-simplex can also affect its embedding update
(2-hops neighbor). If we consider adding the connection of p-simplices and (p+−2)-simplices in the
higher-order adjacency matrix, each simplex can know more in one layer as it has more neighbors.

Considering connections and interactions of simplices with higher dimension difference can help to a
more efficient learning if the connections inside p-chains are rare and sparse. On the other hand, if
the allowed difference is too high, it might lead to a bias learning toward p-chains whose cardinality
(total number of p-simplices) is larger in the dataset.
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E Latent Representation Learning for Simplicial Complexes
We apply a biased random walk strategy [19] on the binarized version Ā of the higher-order adjacency
matrix in Equation (3). Consider a random walk which arrives at simplice σt and just traverse
from σt−1, its next step σt+1 is generated by the transition probability P (σt+1 = x|σt, σt−1). The
unnormalized probability P ′ is given as

P ′(σt+1 = x|σt, σt−1) =


1
p if x = σt−1

1 if Ā[x, σt−1] = 1 and Ā[x, σt] = 1
1
q if Ā[x, σt−1] = 0 and Ā[x, σt] = 1

0 if Ā[x, σt] = 0

(8)

Let X denotes the simplicial complex (with relaxation of orientation and closure), walk(σ0) denotes
the random walk initiated at simplice σ0. We apply SkipGram [45] on the random walk of the network
data following [19, 44]. The representation mapping f from simplice space to feature space therefore
can be learnt by

max
f

∑
σ0∈X

logP (walk(σ0)|f(σ0)) (9)

Compared with existing approaches such as simplex2vec [14] and k-simplex2vec [17], the sc2vec
model takes more connections into consideration regardless of the dimension and therefore allows
more effective embedding learning.

For simplicity, we set p = 1 and q = 1 in the experiment section of this work, but the transition
probability can also be chosen differently to interpolate between BFS and DFS [19].

F Dataset Statistics

Table 3: Statistics of simplicial complex datasets. C is the number of classes, D is the dimension of
the simplex feature.

Dataset C D number of p-simplices
p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

Syn 2 128 2,841 1,731 294 25 0 0
Cora 7 1,433 2,481 3,590 1,294 183 6 0

Pubmed 3 500 17,038 32,592 7,905 1,847 439 173
DBLP 6 1,425 899 1,672 924 394 0 0

DisGene 26 37 3,623 889 422 293 214 156

SBM 3 n/a 600 4,771 1,969 50 0 0
PPI-BP 6 n/a 1,496 3,388 3,260 1,565 302 0

HPO-METAB 6 n/a 488 3,270 5,541 5,081 2,793 861
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G Training settings
We train the models on machine with Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz. We repeat
each experiment of the SCN and SCCN model 100 times with shuffled train/validation/test split. The
running time of DHE and K-simplex2vec are up to 20 times as much as the SCN model. Therefore, to
make a fair comparison, we allow them 6 more time in duration to finish the experiment. As a result,
we run baseline models SIN, MLP, GCN 100 times, DHE 40 times and K-simplex2vec 30 times.

Note that the numbers of simplex are different with different dimension p and the collapsed graph size
is also varying from the simplicial complexes. To build a fair comparison, we choose a flexible train
ratio min

{
300
Np
, 0.6

}
, and validation ratio min

{
300
Np
, 0.2

}
for the SCN framework, where Np is the

number of p-simplices. The rest is served as test set. The train/validation/test masks are concatenated
for the SCCN model. We also use early stopping to avoid overfitting. Training is skipped if the total
number of samples is smaller than 100.

The train ratio for the logistic regression in the comparision of the three latent represenation learning
models (sc2vec, simplex2vec, k-simplex2vec) is min

{
600
Np
, 0.6

}
, and the rest are used for the test.

DHE. The train/validation/test ratio for DHE is the same as the SCCN model in each dimension. The
DHE model is complicated and consist of 7 MLP layers. To make a fair comparison, we choose the
hidden dimension to be 8 for each fully connected layer in the DHE framework.

SIN. The train/validation/test ratio for SIN is the same as the SCCN model in each dimension. SIN
is originally designed for graph classification with the inclusion property of simplicial complexes
and a maximum dimension of 2. In order to compare with our framework on simplex classification,
we consider a variation of the SIN model with two hidden layers. Each layer of each dimension
is composed of three MLPs for boundary simplices, upper connected simplices and combination
operation. The readout operation is replaced with an output layer to predict the class of each simplex.

GCN. We apply a graph convolutional networks [33] with one hidden layer and hidden dimension
of 16 on the collapsed graphs from the simplicial complexes and use the node label predictions to
predict simplex labels. The collapsed graph is constructed by nodes and edges whose ends are in
the same simplex (note that for Cora and Pubmed, it is the same as A0). We train the GCN model
with the same train ratio min

{
300
N , 0.6

}
and validation ratio, where N is the number of nodes in the

collapsed graph. A p-simplex σ = [i0 . . . ip] is considered as a sample in the baseline test set for
p-chains if the (p+ 1) points are all in the graph test set. The simplex prediction is considered as
correct if predicted labels of all points in the simplex are true. Note that GCN can only be applied
for clique complexes and they cannot be applied to naturally built simplicial complexes (DBLP
coauthorship and DisGeNET). Labels of nodes in the collapse graph of a naturally-built higher-order
dataset including DBLP co-authorship and DisGene cannot be directly assigned by simplex labels, as
the same nodes can exist within several simplices where their labels are different.

MLP. we implement a multilayer perceptron model with one hidden layer and hidden dimension of
16. The information of simplex connections are neglected in the MLP model. The train/validation/test
masks is the same as the SCCN framework.

K-simplex2vec and Simplex2vec. Both of the models automatically include sub-simplices with
all the possible combinations of points in simplex. K-simplex2vec can be only applied for p-chains
when p > 0.
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H Full Accuracy
Accuracy of each simplex dimension is shown in Table 4. We mark the best performances for each
dimension p and over all dimensions (last column) separately. While there are several cases when the
accuracies for dimension p can be close to each other among multiple models, we mark the highest
accuracy as well as the numbers that are close to the best one with at most a difference of 0.005 in
bold.

Table 4: Simplex classification accuracy of the methods SCN, SCCN and baselines.

Dataset Method p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 All

Syn

SCN 0.6328 0.7756 0.8175 n/a n/a n/a 0.6890
SCCN 0.6875 0.8453 0.8677 0.9620 n/a n/a 0.7495
DHE 0.6257 0.7699 0.7936 0.7950 n/a n/a 0.6822
SIN 0.5801 0.6241 0.7954 n/a n/a n/a 0.6026
GCN 0.6334 0.6415 0.4788 0.2105 n/a n/a 0.6283
MLP 0.5448 0.6428 0.7680 0.9500 n/a n/a 0.5858

Cora

SCN 0.9209 0.9603 0.9598 0.9105 n/a n/a 0.9468
SCCN 0.9139 0.9743 0.9908 0.9963 1.0000 n/a 0.9565
DHE 0.7508 0.9172 0.9391 0.9122 0.8625 n/a 0.8646
SIN 0.7181 0.8313 0.9085 n/a n/a n/a 0.8089
GCN 0.9199 0.9516 0.8776 0.7033 0.7143 n/a 0.9261
MLP 0.7792 0.9436 0.9861 0.9966 1.0000 n/a 0.8947

Pubmed

SCN 0.9364 0.9541 0.9737 0.9892 0.9926 0.9856 0.9523
SCCN 0.9487 0.9727 0.9890 0.9966 1.0000 1.0000 0.9684
DHE 0.8787 0.9665 0.9909 0.9950 0.9989 1.0000 0.9450
SIN 0.8898 0.9377 0.9761 n/a n/a n/a 0.9304
GCN 0.9362 0.9522 0.9711 0.9564 0.9579 0.9918 0.9502
MLP 0.8233 0.9226 0.9792 0.9951 0.9999 1.0000 0.9030

DBLP

SCN 0.6630 0.6653 0.6858 0.6370 n/a n/a 0.6681
SCCN 0.7327 0.7499 0.7882 0.8041 n/a n/a 0.7569
DHE 0.6643 0.6642 0.6993 0.7111 n/a n/a 0.6738
SIN 0.6577 0.7095 0.7063 n/a n/a n/a 0.6960
MLP 0.7103 0.7310 0.7787 0.7925 n/a n/a 0.7395

DisGene

SCN 0.4233 0.2281 0.2353 0.2693 0.2943 0.2903 0.3917
SCCN 0.3750 0.2239 0.2004 0.2232 0.2607 0.2619 0.3490
DHE 0.4234 0.1125 0.0847 0.0903 0.0610 0.0898 0.3679
SIN 0.4189 0.2315 0.2018 n/a n/a n/a 0.3666
MLP 0.3882 0.2536 0.2460 0.2585 0.3159 0.3387 0.3663
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I Accuracy Deviation
We further show the standard deviation of simplex classification accuracy in Table 5. SCN outperforms
other methods on DisGene with maximal average accuracy and minimal deviation across the full
simplicial complex (column marked with “all”). For synthetic dataset, Cora, Pubmed and DBLP, we
observe that SCCN achieves the best performance in accuracy (as shown in the main manuscript),
with acceptable low standard deviation of 0.0185, 0.0051, 0.0037, 0.0092, respectively (column
marked with “all”).

Table 5: Standard deviation of simplex classification accuracy of the methods SCN, SCCN and
baselines.

Dataset Method p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 All

Syn

SCN 0.0164 0.0165 0.0485 n/a n/a n/a 0.0117
SCCN 0.0187 0.0217 0.0467 0.0834 n/a n/a 0.0185
DHE 0.0224 0.0416 0.0770 0.1870 n/a n/a 0.0288
SIN 0.0178 0.0260 0.0641 n/a n/a n/a 0.0160
GCN 0.0165 0.0327 0.0659 0.1584 n/a n/a 0.0219
MLP 0.0128 0.0217 0.0543 0.0954 n/a n/a 0.0142

Cora

SCN 0.0084 0.0070 0.0108 0.0495 n/a n/a 0.0048
SCCN 0.0099 0.0040 0.0040 0.0091 0.0000 n/a 0.0051
DHE 0.0197 0.0177 0.0262 0.0591 0.2736 n/a 0.0161
SIN 0.0499 0.0347 0.0322 n/a n/a n/a 0.0289
GCN 0.0087 0.0084 0.0232 0.0797 0.3695 n/a 0.0087
MLP 0.0087 0.0054 0.0049 0.0089 0.0000 n/a 0.0054

Pubmed

SCN 0.0049 0.0057 0.0048 0.0049 0.0092 0.0202 0.0034
SCCN 0.0059 0.0035 0.0024 0.0019 0.0000 0.0000 0.0037
DHE 0.0187 0.0048 0.0026 0.0045 0.0034 0.0000 0.0077
SIN 0.0101 0.0073 0.0055 n/a n/a n/a 0.0058
GCN 0.0049 0.0047 0.0061 0.0134 0.0230 0.0111 0.0047
MLP 0.0039 0.0034 0.0027 0.0017 0.0011 0.0000 0.0030

DBLP

SCN 0.0227 0.0176 0.0243 0.0615 n/a n/a 0.0131
SCCN 0.0191 0.0140 0.0174 0.0447 n/a n/a 0.0092
DHE 0.0320 0.0283 0.0263 0.0544 n/a n/a 0.0255
SIN 0.0372 0.0277 0.0272 n/a n/a n/a 0.0229
MLP 0.0201 0.0139 0.0170 0.0458 n/a n/a 0.0106

DisGene

SCN 0.0058 0.0201 0.0402 0.0578 0.0608 0.0826 0.0058
SCCN 0.0475 0.0190 0.0431 0.0555 0.0646 0.0828 0.0382
DHE 0.0065 0.0199 0.0316 0.0472 0.0452 0.0464 0.0081
SIN 0.0074 0.0188 0.0414 n/a n/a n/a 0.0076
MLP 0.0214 0.0191 0.0402 0.0509 0.0675 0.0744 0.0174
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J Complexity Analysis

Table 6: Complexity analysis: model complexity and duration (wall-clock time, in seconds). C is
number of classes and P is the maximum simplex dimension.

Method #Hidden dimension #Hidden Layer Duration (sec)
Syn Cora Pubmed DBLP DisGene

SCN 16 ∗ (P + 1) 1 13 137 447 27 14
SCCN 16 1 10 42 212 13 5
DHE 8 7 582 1,038 7,853 535 784
SIN 16 ∗ 3 ∗ (P + 1) 2 26 41 325 36 29

GCN 16 1 6 29 45 n/a n/a
MLP 16 1 2 34 93 11 5

A crucial property for higher-order network models is efficiency. We show the model complexity and
average duration (wall-clock time) in Tables 6. The SCCN outperforms other baselines in all datasets
except DisGene, with low complexity and reasonable wall-clock time even compared to non-higher
order models like GCNs and MLPs.

K Model Complexity and Performance
We vary the hidden dimension size in the SCN, SCCN, MLP and GCN, apply the models on Cora
dataset and show the trending of prediction performance in Figure 3. Generally, increasing model
complexity will deliver better prediction results and achieve a lower deviation. The interquartile
range of SCCN with hidden dimension 4 has the similar small size as the hidden dimension increase.
The SCN and SCCN have a smaller interquartile range comparing with GCN and MLP, suggesting
that they are more robust and stable.

Figure 3: We shuffle the dataset and repeat each experiment 50 times with different hidden dimension
4, 8, 16, 32 on cora dataset and show the boxplot of accuracy.
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L Sampling DBLP Co-authorship
We observe a explosion of validation loss when applying the SCCN model to the full DBLP dataset
[5]. Nevertheless, the distribution of label prediction in the validation set is close to the distribution in
the train set and full dataset. This phenomenon suggests that there exists bad samples in the dataset,
whose distribution diverges from the major data. To avoid the influence of such data-points, we
randomly sample 10% of the DBLP dataset from [5] on each dimension and apply our methods and
baselines in the main manuscript. The explosion of validation loss no longer exists with the sampling
ratio.

We also vary the sampling ratio from 10% to 100%. For each sampling ratio, we randomly sample
simplices (papers) existed in the dataset on each dimension p individually, and then we use the
subsampled simplices with all dimensions to build the sampled higher-order data. We repeat the
experiments 50 times on the DBLP co-authorship dataset. Here we use validation accuracy as the
early stopping criteria for the SCN, SCCN and MLP models. The boxplot of accuracy over all
dimensions is shown in Figure 4. The performance of the SCN model is enhanced as we sampled
more in the co-authorship, while the performance of MLP keeps the similar. We also observe that
when the sampling ratio is increasing, the accuracy deviation of the SCCN model is growing, as the
number of bad samples is also increasing. The inconsistent trending of performance suggests that
more knowledge is encoded in the simplex feature than in the topological structure in this dataset.
We also speculate that noisy information is embedded in the connections of simplices with different
dimensions, which the SCCN takes into considerations but the SCN does not.
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Figure 4: We shuffle the dataset and repeat each experiment 50 times with different sampling ratio
0.1, 0.2 . . . 1.0 on the DBLP co-authorship dataset and show the boxplot of accuracy.
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M Citation Prediction
To show the ability of the framework on tasks beyond simplex classification and compare with
baselines not applicable to simplex classification, we further apply the sc2vec model to predict the
total citation number of co-authorship trained with 30% missing data following the experiment setting
in [12, 21, 26]. The latent simplex embedding learnt by sc2vec is served as the input to a neural
network with 3 hidden layers with hidden dimension 64. The citation prediction is considered as
accurate if the estimation is within 5% of the true value. Beside SNN [12] and SCNN [21], we also
consider SAT [27] and SAN [26] as baselines. SAN and SAT both introduce the attention mechanism
to simplicial complexes. SAT generalizes the graph attention networks [46] on simplicial complexes
with shared attention weights to compute the attention coefficients on upper and down adjacent
simplices. In contrast, SAN utilizes two independent masked self-attention mechanisms on lower and
upper neighborhoods. The results of the baselines are shown in [26].

The accuracy for each dimension and the number of simplices is shown in Table 7. Our method
achieves better performance when p = 2, 4, 5. Note that the proposed sc2vec does not directly learn
to predict simplex features (citation numbers) as other baselines. The latent embedding of each
simplex is first learnt by sc2vec using only the topological structure. The simplex embedding results
of sc2vec are later served as the input feature to a neural network which is trained to predict the
citation numbers of each simplex. As shown in Table 8, the co-citation dataset has more samples
with higher dimensions (p ≥ 2) compared to the smaller dimensions (p = 0, 1). Therefore, sc2vec
might be biased towards simplices with higher dimensions as they are more dominant in the dataset,
causing better latent embedding learning on simplices when their dimension p ≥ 2 and relatively
worse embedding learning with p = 0, 1. In addition, the baseline models directly learn to predict the
citation numbers and have different trainable weights for different dimension p. As a result, sc2vec
performs better when p ≥ 2 and the result is worse when p = 0, 1 compared with the baseline models.
In the future, we will consider developing new models which not only provide efficient message flow
over the whole simplicial complex without the restriction to the dimension, but can also avoid the
potential bias problem.

Table 7: Accuracy of citation prediction task. Best ones are marked in bold.

Dimension 0 1 2 3 4 5
# Simplices 352 1,474 3,285 5,019 5,559 4,547

SNN [12] 0.72 0.73 0.81 0.82 0.81 0.73
SCNN [21] 0.72 0.73 0.81 0.82 0.81 0.74
SAT [27] 0.19 0.33 0.25 0.33 0.47 0.53
SAN [26] 0.75 0.89 0.82 0.94 0.95 0.96

sc2vec 0.47 0.61 0.86 0.93 0.96 0.96
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