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ABSTRACT

The assumption of Gaussian or Gaussian mixture data has been extensively ex-
ploited in a long series of precise performance analyses of machine learning (ML)
methods, on large datasets having comparably numerous samples and features. To
relax this restrictive assumption, subsequent efforts have been devoted to establish
“Gaussian equivalent principles” by studying scenarios of Gaussian universality
where the asymptotic performance of ML methods on non-Gaussian data remains
unchanged when replaced with Gaussian data having the same mean and covari-

ance. Beyond the realm of Gaussian universality, there are few exact results on
how the data distribution affects the learning performance.
In this article, we provide a precise high-dimensional characterization of empirical
risk minimization, for classification under a general mixture data setting of linear

factor models that extends Gaussian mixtures. The Gaussian universality is shown
to break down under this setting, in the sense that the asymptotic learning perfor-
mance depends on the data distribution beyond the class means and covariances. To
clarify the limitations of Gaussian universality in the classification of mixture data
and to understand the impact of its breakdown, we specify conditions for Gaussian
universality and discuss their implications for the choice of loss function.

1 INTRODUCTION

Modern machine learning (ML) is dealing with increasingly larger datasets having high-dimensional
features, using large-scale models of increasing complexity. Understanding the generalization ability
of these large-scale ML models has become a major focus of research efforts (Bartlett et al., 2020;
Loog et al., 2020; Nakkiran et al., 2021). One analysis approach of growing popularity is the high-
dimensional asymptotic analysis (Liao & Couillet, 2019; Taheri et al., 2021a; Celentano & Montanari,
2022; Hastie et al., 2022; Loureiro et al., 2022; Celentano et al., 2023), by considering the regime
where the number n of samples and the dimension p of feature vectors are commensurately large.
Despite its asymptotic nature, this approach turns out to be surprisingly effective in explaining and
predicting modern ML practice: the asymptotic performance curves are repetitively observed to
closely match the average empirical performance curves on realistic datasets of moderate size and
dimension (Couillet & Liao, 2022), and are particularly different from those offered by, e.g., classical
maximum likelihood theory (Bean et al., 2013; Sur & Candès, 2019; Taheri et al., 2021b).

To analytically characterize the generalization performance of large-scale ML models in the afore-
mentioned high-dimensional regime, advanced statistical tools such as the approximate message pass-
ing (Donoho & Montanari, 2016; Barbier et al., 2019), convex Gaussian min-max theorem (Thram-
poulidis et al., 2018; Salehi et al., 2019; Deng et al., 2022; Javanmard & Soltanolkotabi, 2022),
replica method (Huang, 2017; Gerace et al., 2020; Maillard et al., 2020), and random matrix the-
ory (RMT) (Couillet & Liao, 2022; Mai et al., 2019; Mai & Couillet, 2021) have been carefully
adapted to take into account of the nonlinearity of ML models. As these tools apply directly on
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Gaussian data, a majority of high-dimensional asymptotic analyses are performed under Gaussian
data models in the context of regression (El Karoui et al., 2013; Donoho & Montanari, 2016; Taheri
et al., 2021a; Celentano & Montanari, 2022) or Gaussian mixture models (GMMs) in the context of
classification (Mignacco et al., 2020; Thrampoulidis et al., 2020; Refinetti et al., 2021).

Despite this seemingly restrictive assumption of data Gaussianity, the derived high-dimensional
asymptotic results have been empirically observed to remain valid on non-Gaussian data, including
both synthetic non-Gaussian data and samples drawn from realistic (say image) datasets (Loureiro
et al., 2021; Taheri et al., 2021b), hinting at a phenomenon of Gaussian universality. This motivated
a series of recent works establishing, through, e.g., an one-directional central limit theorem (CLT)
argument, a Gaussian equivalent principal (GEP) for high-dimensional ML models ranging from
generalized linear models to shallow neural networks (Gerace et al., 2020; Goldt et al., 2022; Hu &
Lu, 2022; Montanari & Saeed, 2022; Schröder et al., 2023; Han & Shen, 2023). According to the
GEP, the performance of ML methods on non-Gaussian data is asymptotically the same under an
equivalent Gaussian model with matching first- and second-order moments. Assuming a conditional
one-directional CLT, Dandi et al. (2024) put forward a conditional Gaussian equivalent principle
(CGEP) stating that the asymptotic classification error for non-Gaussian mixtures remains unchanged
when replaced by a Gaussian mixture model with identical class-conditional means and covariances.
This contribution, however, did not specify the conditions required on the mixture data model for this
conditional one-directional CLT to hold.

This work is driven by the need to investigate the applicability of CGEP under mixture models
and to characterize the impact of non-Gaussian data variations when the CGEP does not apply.
By considering a more general mixture model (see Definition 1) where classes are described by
linear factor models—a fundamental probabilistic framework in statistical inference and generative
models (Goodfellow et al., 2016, Chapter 13), our analysis extends a long line of high-dimensional
asymptotic performance analyses in classification of Gaussian mixtures (Dobriban & Wager, 2018;
Huang, 2017; Liao & Couillet, 2019; Mai & Liao, 2019; Huang & Yang, 2021; Kammoun & Alouini,
2021; Wang & Thrampoulidis, 2021; Pesce et al., 2023). We discuss the validity of CGEP under this
linear factor mixture model and specify its conditions. On a technical level, we develop a flexible
“leave-one-out” analysis approach, in a similar spirit to the analysis of robust linear regression by
El Karoui et al. (2013). The elementary nature of this leave-one-out procedure allows us to extend
the approach of high-dimensional asymptotic analysis beyond the realm of Gaussian universality.

Our Contributions. The main findings of this paper are summarized below.

1. We provide in Theorem 1 an asymptotic characterization of ridge-regularized empirical risk
minimization (ERM) for classification of data drawn from a linear factor mixture model
(LFMM, see Definition 1 below, that generalizes the GMM). This precise characterization
gives access to the asymptotic performance on mixture data beyond Gaussian universality.

2. Based on the proposed analysis, we study Gaussian universality in the sense of CGEP
and provide conditions on LFMM under which the data distribution affects the asymptotic
learning behavior only via its first two class-conditional moments.

• We first discuss in Section 5.1 the Gaussian universality on in-distribution performance

and conclude in Corollary 2 that the training and generalization performances of ERM
under a given LFMM remain unchanged under its equivalent GMM (with identical
class means and covariances, see Definition 2), if all informative factors of the LFMM
that significantly correlated with the class label are class-conditional normal variables.

• We then investigate in Section 5.2 the Gaussian universality of classifier (see Defini-
tion 3) and conclude in Corollary 3 that on a given test set (of arbitrary distribution),
the ERM classifier trained on data drawn from an LFMM gives the same asymptotic
classification error as the one trained on its equivalent GMM, whenever the square loss
is used and/or in the case of class-conditional Gaussian informative factors for LFMM.

3. While it has been known that for high-dimensional GMM, the square loss is optimal
in both unregularized (Taheri et al., 2021b) and ridge-regularized (Mai & Liao, 2019)
classifications, it is no longer the case under the general LFMM due to the breakdown of
Gaussian universality. We discuss in Section 5.2 how the suboptimality of square loss under
LFMM relates to its effect on the Gaussian universality of the ERM classifier. Our analysis
thus opens the door to future investigation on the optimal loss design for non-Gaussian data.
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2 BACKGROUND ON GAUSSIAN UNIVERSALITY IN HIGH DIMENSIONS

The Gaussian universality phenomenon was observed in many high-dimensional inference or ML
problems, where some key statistics such as estimation error or classification accuracy exhibit
universal behaviors independent of the data distribution. This phenomenon was extensively exploited
to relax the data Gaussianity assumption that underlined many results in high-dimensional statistics,
through a universality argument often established with two key ingredients - the law of large numbers
(LLN) and the CLT.

Here we briefly review previous findings on Gaussian universality in the high-dimensional regime.

Universality of large sample covariance matrices. It has been long known in RMT that the
eigenspectra of large random matrices enjoy universal properties for Gaussian and non-Gaussian
entries (Tao et al., 2010; Pastur & Shcherbina, 2011). Fundamentally, Marchenko & Pastur (1967)
put forward that for sample covariance matrices of the type 1

n

∑n
i=1 xix

T
i → Rp↑p obtained from n

i.i.d. data vectors xi of dimension p, the universality on the limiting eigenvalue distribution hinges on
the concentration of quadratic forms of xi around their expectations, that is

limn,p↓↔(xT
i Mxi ↑ E[xT

i Mxi])/E[xT
i Mxi] = 0, (1)

for deterministic M → Rp↑p. This LLN-type result holds for a wide family of high-dimensional
random vectors xi. An important example studied by Bai & Silverstein (2008) is xi = !

1
2 zi with zi

of i.i.d. standardized entries with bounded fourth moments and non-negative definite symmetric !.

Universality of empirical risk minimization. In line with the universal behavior of large sample
covariance matrices, it has been recently demonstrated in a series of works (Gerace et al., 2020; Goldt
et al., 2022; Hu & Lu, 2022; Montanari & Saeed, 2022; Schröder et al., 2023) that random (and
deterministic under certain conditions) feature maps can produce feature matrices that, when replaced
by “equivalent” Gaussian features with the same first- and second-order moments, yield the same
training and/or generalization performance for many ML methods. This GEP has also been proven
for data vectors of independent entries in the context of regularized regression (Montanari & Nguyen,
2017; Panahi & Hassibi, 2017; Han & Shen, 2023).

In the context of ERM, the GEP traced back to a CLT on the inner product xTω for feature vector
x → Rp independent of classifier ω living in a subspace B ↓ Rp containing the ERM solution ω̂, i.e.,

limn,p↓↔ supω↗B
(
E[f(xTω)]↑ E[f(gTω)]

)
= 0, (2)

with g ↔ N (E[x],Cov[x]) being the “equivalent” Gaussian vector, for any bounded Lipschitz
function f : R ↗ R. The one-directional CLT in (2) requires the ERM solution ω̂ to not particularly
aligned with any non-Gaussian variation in the feature vector x, in order to ensure the asymptotic
normality of xTω per a CLT-type argument.

Universality of empirical risk minimization on mixture data. Inspired by the one-directional
CLT condition (2) for GEP in ERM, Dandi et al. (2024) demonstrated the Gaussian universality for
mixture models under a key assumption that is a conditional version of (2):

limn,p↓↔ supω↗B

(
E
[
f(xTω)|yx = C

]
↑ E

[
f
(
g
T
[C]ω

)])
= 0, (3)

where yx is the class label of x , C a class modality, and g[C] ↔ N (E[x|yx = C],Cov[x|yx = C]).
Under this conditional one-directional CLT in (3), Dandi et al. (2024) showed that the asymptotic
training and generalization errors only depend on the class-conditional means and covariances of the
mixture model, obeying thus a conditional Gaussian equivalent principle (CGEP).

However, the condition in (3) is not verifiable from the data distribution, making it essentially different
from the ones given in Section 5.

Other related works established equivalences between Gaussian data and Gaussian mixtures. For
classification with random labels yx ↔ Unif({↑1, 1}) generated independently of x, Gerace et al.
(2024) proved that the training loss on GMM is asymptotically equal to that on a single Gaussian.
Pesce et al. (2023) considered a teacher-student model and showed that when the target label y is
generated by a teacher model uncorrelated with cluster means, the same asymptotic performance can
be obtained by replacing a homoscedastic (i.e., having identical covariance) Gaussian mixture with a
single Gaussian.
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Universality under elliptical distributions. For “elliptic-like” data vectors of form x = aMu

with a → R a random scaling variable, M → Rp↑d a deterministic matrix and u → Rd a vector of
standardized variables satisfying the concentration of quadratic forms in (1) (e.g., u ↔ N (0d, Id)),
El Karoui (2009) revealed a universal limiting spectrum for the sample covariance matrix that is
insensitive to the distribution of u but depends on the scaling variable a.

Due to the existence of the scaling variable a, the one-directional CLT in (2) can not hold unless
when conditioned on a. This remark was confirmed by the findings of El Karoui (2018); Adomaityte
et al. (2024). For M = Ip and u of i.i.d. entries, El Karoui (2018) characterized the asymptotic error
of ridge-regularized regression, which is universal with respect to the distribution of u but not a. In
other words, the GEP collapses while the CGEP with respect to the scaling factor a can still apply
in this setting. Adomaityte et al. (2024) considered a mixture model x ↔ N (yµ, aIp) with label
y = ±1 and random scaling factor a, under which the asymptotic classification error is non-universal

with respect to the distribution of a. Here with our analysis under LFMM, we show that Gaussian
universality may breakdown even for data vectors of concentrated quadratic forms as described in (1),
a condition not satisfied by elliptical data vectors due to the presence of a random scaling factor a.

3 PROBLEM SETUP

For a set of n training samples {(xi, yi)}ni=1 with feature vectors xi → Rp and binary labels
yi → {±1}, a classifier is trained by minimizing the following ridge-regularized empirical risk:

ω̂ω,ε = argminω↗Rp
1
n

∑n
i=1 ω(x

T
i ω, yi) +

ε
2 ↘ω↘

2
, (4)

for some non-negative loss function ω : R≃ {±1} ↗ R+ that evaluates the difference between the
classification score ŷi = ωT

xi and the corresponding ground-truth label yi. Data instances x with
negative scores ωT

x will be assigned to the class of label y = ↑1, and those with positive scores to
the class annotated by y = 1. The addition of the l2 regularization term with ε > 0 can improve the
generalization through a better bias-variance trade-off, and also ensures the uniqueness of the solution
ω̂ω,ε in the over-parametrized regime where the feature dimension p is greater than the sample size n.

In this paper, we consider convex and continuously differentiable loss functions.
Assumption 1 (Loss function). The function ω(·, y) : R ↗ R+ in (4) is convex and continuously

differentiable with its (first) derivative different from 0 at the origin. Its second and third derivatives

exist and are bounded, except on a finite set of points.

Assumption 1 holds for the logistic loss ω(ŷ, y) = ↑ ln(1/(1 + e
↘yŷ)) used in logistic regression,

the square loss ω(ŷ, y) = (y ↑ ŷ)2/2 for least-squares classifier, and the square hinge loss ω(ŷ, y) =
max{0, 1 ↑ yŷ}2. Non-smooth losses such as the hinge loss ω(ŷ, y) = max{0, 1 ↑ yŷ} used in
SVMs (Schölkopf & Smola, 2018), and the absolute loss ω(ŷ, y) = |ŷ↑y|, fail to meet Assumption 1.1

In the following, we focus on the ERM in (4), and use the shorthand notation ω̂ for ω̂ω,ε in (4) unless
there is a risk of confusion. We consider the following linear factor mixture model.
Definition 1 (Linear factor mixture model, LFMM). We say that a data instance (x, y) ↔ D(x,y) with

class label y → {±1} and class priors Pr(y = ↑1) = ϑ, Pr(y = 1) = 1↑ ϑ, follows a linear factor

mixture model if the corresponding feature vector x → Rp
can be expressed as a linear mapping of p

independent factors z1, . . . , zp as

x =
∑p

k=1 zkvk =
∑p

k=1(ysk + ek)vk, (5)

for linearly independent deterministic vectors v1, . . . ,vp → Rp
and standardized independent

2
noises

e1, . . . , ep → R of symmetric distribution. Among the p factors z1, . . . , zp, we have

• q informative factors z1, . . . , zq with deterministic signals sk > 0, ⇐k → {1, . . . , q}; and

• p↑ q noise factors zq+1, . . . , zp with sk = 0, ⇐k → {q + 1, . . . , p}.

1To study these non-smooth losses, a workaround would be to evaluate instead a series of smooth functions
that gradually approach the non-smooth functions, so as to retrieve their performance in some carefully taken
limit. Such consideration is however beyond the focus of this paper.

2In other words, E[ek] = 0, Var[ek] = 1, →k ↑ {1, . . . , p}.
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Note that (5) can be compactly written as x = Vz, with V = [v1, . . . ,vp] → Rp↑p
and z =

[z1, . . . , zp]T = [ys1 + e1, . . . , ysq + eq, eq+1, . . . , ep]T → Rp
. The class-conditional means and

covariances of x are therefore given by

µ ⇒ E[x|y = 1] =
∑q

k=1 skvk → Rp
, E[x|y = ↑1] = ↑µ, (6)

! ⇒ Cov[x|y = ±1] = VV
T =

∑p
k=1 vkv

T
k → Rp↑p

. (7)

Notice that GMM of form x ↔ N (yµ,!) is a special case of LFMM in Definition 1 with exclusively
Gaussian noises e1, . . . , ep. See also Definition 2 below for the associated equivalent GMM.

Linear factor models are among the most fundamental probabilistic models with latent variables,
which underlie many ML methods such as PCA and ICA, and serve as building blocks of deep
generative models (Goodfellow et al., 2016, Chapter 13). They are often expressed as:

x = Wh+ b+ noise,

where h is a vector of latent variables, b a constant bias, and noise stands for an uninformative term
of independent Gaussian noises. The LFMM in Definition 1 can be related to this form minus the
bias b. Our framework requires the clusters to have opposite means (therefore b = 0p), which can
be satisfied through a centering operation on the original data space.

Our analysis applies under the following assumption on the distribution of LFMM.
Assumption 2 (Distribution of LFMM). We consider, for the LFMM in Definition 1, that (i) the

factors z1, . . . , zp have bounded fourth moments and (ii) the signal subspace Span{v1, . . . ,vq} is

orthogonal to the noise subspace Span{vq+1, . . . ,vp}.

The condition of bounded fourth moment for z1, . . . , zp in Item (i) of Assumption 2 is required
for some concentration results in our high-dimensional asymptotic analysis and Item (ii) separates
the informative signal subspace from the noise subspace (in which no classifier can achieve better
performance than random guesses).

We position ourselves under the following high-dimensional asymptotic setting, where the feature
dimension p and sample size n are both large and comparable.
Assumption 3 (High-dimensional regime). As n ↗ ⇑ with fixed n/p → (0,⇑), we have, for the

LFMM in Definition 1 that (i) ↘µ↘, ↘!↘, ↘!↘1↘ = !(1) and (ii) s1, . . . , sq = !(1) with fixed q.

In plain words, Assumption 3 says that the ratio n/p, or the number of samples per dimension, remains
finite in high dimensions. Item (i) of Assumption 3 ensures, by bounding ↘µ↘ and ↘µ↘↘1, that the
distance between the LFMM class centers is comparable to 1. It also guarantees, by controlling
↘!↘ and ↘!↘1↘, that the variation of feature vector x on any direction in Rp is also comparable
to 1. This implies that the feature vector x does not live in a subspace of dimension smaller than
p. The fixed number q of informative factors in Item (ii) of Assumption 3 is a consequence of
↘µ↘ = ↘

∑q
k=1 skvk↘ = !(1).

4 HIGH-DIMENSIONAL ASYMPTOTIC PERFORMANCE UNDER LFMM

In this section, we present a self-consistent system of equations that gives access to the high-
dimensional training and generalization performances of the ERM classifier in (4), under the LFMM
in Definition 1. The characterization of high-dimensional asymptotic performance via a system
of equations is reminiscent of previous analyses under GMM (Mai & Liao, 2019; Mignacco et al.,
2020; Pesce et al., 2023), but our equations are different due to the collapse of the conditional
one-dimensional CLT in (3) required for applying the CGEP.

Before presenting our system of equations, let us introduce first some mathematical objects involved
in these equations. With the proximal operator proxϑ,f (t) = argmina↗R

[
f(a) + 1

2ϑ (a↑ t)2
]

for
ϖ > 0 and convex f : R ↗ R, we define the mapping

hϖ(t, y) = (proxϖ,ω(·,y)(t)↑ t)/ϱ, (8)

for some constant ϱ > 0. Let r → R be a random variable of form

r = ym+ ςẽ+
∑q

k=1 φkek, (9)
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for constants m,ς,φ1, . . . ,φq, with label y and e1, . . . , eq the corresponding noise variables in the
informative factors z1, . . . , zq of the LFMM in Definition 1, as well as ẽ ↔ N (0, 1) independent of
y, z1, . . . , zq . Remark that the distribution of r is parameterized by m,ς

2
,φ1, . . . ,φq .

Self-consistent system of equations. Our system of equations is on the q+3 deterministic constants
↼, ↽, ⇀,⇁1, . . . ,⇁q that fully characterize the asymptotic performance of ERM classifier trained on
high-dimensional LFMM3:

↼ = ↑E
[
∂hϖ(r, y)

∂r

]
, ↽ = E[yhϖ(r, y)], ⇀ =

√
E[h2

ϖ(r, y)],

⇁k = E[hϖ(r, y)ek] + ↼ · vT
kQε, ⇐k → {1, . . . , q}, (10)

where
ε = ↽µ+

∑q
k=1 ⇁kvk, Q = (εIp + ↼!)↘1

, (11)
the mapping hϖ(r, y) is as defined in (8) for

ϱ = 1
n tr!Q, (12)

and the random variable r as defined in (9) with

m = µT
Qε, ς

2 = ϱ2

n tr (Q!)2 , φk = v
T
kQε, ⇐k → {1, . . . , q}. (13)

We are now ready to present our Theorem 1 on the asymptotic distributions of in-sample and
out-of-sample predicted scores. The proof of Theorem 1 is provided in Appendix A.1.

Theorem 1 (Asymptotic distribution of predicted scores). Let Assumptions 1, 2, and 3 hold, for ω̂
solution to the ERM problem in (4) on a training set {(xi, yi)}ni=1 of size n drawn i.i.d. (xi, yi) ↔
D(x,y) from the LFMM in Definition 1, we have that, for any bounded Lipschitz function f : R ↗ R,

E
[
f(ω̂Tϑ)

]
↑ E

[
f(ω̃Tϑ)

]
↗ 0, (14)

for any deterministic feature vector ϑ → Rp
, and

E[f(ω̂T
xi)]↑ E[f(proxϖ,ω(·,yi)(ω̃

T
xi))] ↗ 0, ⇐i → {1, . . . , n}, (15)

where

ω̃ = (εIp + ↼!)↘1
(
↽µ+

∑q
k=1 ⇁kvk + ⇀!

1
2u

)
, (16)

for Gaussian vector u ↔ N (0p, Ip/n) independent of {(xi, yi)}ni=1 and constants ↼, ↽, ⇀,⇁1, . . . ,⇁q

determined by the self-consistent system of equations in (10), with ϱ given in (12).

According to (14) in Theorem 1, for a fresh test sample (x≃
, y

≃) (which might be drawn from a distri-
bution different from D(x,y) of training samples, as in the case of transfer learning), the out-of-sample
predicted scores ω̂T

x
≃
, ω̃T

x
≃ produced by the ERM classifier ω̂ and its high-dimensional “equivalent”

ω̃ given in (16) have asymptotically the same distribution in the sense of (14). Furthermore, (15) tells
us that the in-sample predicted score ω̂T

xi of ω̂ on a training sample (xi, yi) follows asymptotically
the same distribution as proxϖ,ω(·,yi)(ω̃

T
xi). Since the distribution of ω̃ is given in (16), we obtain

directly from Theorem 1 the asymptotic training and generalization errors of the ERM classifier ω̂.

Furthermore, it follows from LLN and CLT that (ω̃T
x, y) with (x, y) ↔ D(x,y) independent of ω̃

converges in distribution to (r, y) with r as defined in (9) with m,ς
2
,φ1, . . . ,φq given in (13). We

thus obtain the following corollary on the asymptotic classification accuracy of ω̂ on any training
sample (xi, yi) and test sample (x≃

, y
≃) drawn from the same distribution D(x,y). The proof of

Corollary 1 is deferred to Appendix A.2.1.
Corollary 1 (Asymptotic generalization and training performances). Under the conditions and

notations of Theorem 1, we have that, for any bounded Lipschitz function f : R ↗ R,

E
[
f(ω̃T

x)|y
]
↑ E

[
f(r)|y

]
↗ 0, (17)

3According to Assumption 1, ωh(r,y)
ωr exists except on a finite set of points. On those points, we use the left

derivative of h(r, y) with respect r, i.e., limt↑r→ (h(t, y)↓ h(r, y)) /(t↓ r).
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for (x, y) ↔ D(x,y) independent of ω̃, where r is as defined in (9) with m,ς
2
,φ1, . . . ,φq given in

(13). Consequently, we have

Pr(y≃ω̂T
x
≃
> 0)↑ Pr(yr > 0) ↗ 0, (18)

for some test sample (x≃
, y

≃) ↔ D(x,y) independent of {(xi, yi)}ni=1, and

Pr(yiω̂
T
xi > 0)↑ Pr(y proxϖ,ω(·,y)(r) > 0) ↗ 0, ⇐i → {1, . . . , n}. (19)

Remark 1 (On classifier bias under GMM and LFMM). Taking expectation on both sides of (16), we
get E[ω̃] = (εIp + ↼!)↘1 (↽µ+

∑q
k=1 ⇁kvk). It follows from (10) and Stein’s lemma (Ingersoll,

1987) that ⇁1, . . . ,⇁q = 0 in the case of Gaussian informative factors z1, . . . , zq. As GMM is a
special case of LFMM with exclusively Gaussian (informative and noise) factors, we have that ω̃
aligns, in expectation, with (εIp + ↼!)↘1 µ under GMM. For non-Gaussian informative factors, we
generally have non-zero ⇁1, . . . ,⇁q that account for the non-Gaussian variation in data, making ω̂
more or less aligned with the directions v1, . . . ,vq of the informative factors.

5 CONDITIONS AND IMPLICATIONS OF GAUSSIAN UNIVERSALITY

In this section, we exploit our high-dimensional asymptotic analysis in Section 4 to derive the condi-
tions of Gaussian universality under LFMM. To discuss the Gaussian universality in classification of
mixture data, we introduce the notion of equivalent Gaussian mixture model (to a given LFMM), in a
similar spirit to Dandi et al. (2024).
Definition 2 (Equivalent Gaussian mixture model). For an LFMM D(x,y) as in Definition 1, we define

its equivalent Gaussian mixture model (GMM) D(g,y) as the GMM with the same class-conditional

means and covariances as the LFMM D(x,y). Namely,

g ↔ N (yµ,!), (20)

for µ,! given in (6) and (7) of Definition 1, respectively. We denote by ω̂g
the ERM solution to

(4) obtained on n i.i.d. equivalent GMM samples (g1, y1), . . . , (gn, yn) ↔ D(g,y), and similarly its

high-dimensional “equivalent” ω̃g
as in (16) of Theorem 1.

Notice importantly from Definition 1 that the equivalent GMM D(g,y) to an LFMM D(x,y) can be
obtained by taking e1, . . . , ep of the LFMM D(x,y) to be standard Gaussian variables.

We define two types of Gaussian universality considered in this paper as follows.
Definition 3 (Gaussian universality under LFMM). For an ERM solution ω̂ obtained on a gen-

eral LFMM D(x,y) in Definition 1 and an ERM solution ω̂g
obtained on the equivalent GMM in

Definition 2, we say that the Gaussian universality holds

• on classifier if ω̂ has asymptotically the same predictive ability as ω̂g
on a given test set,

as a consequence of their high-dimensional equivalents ω̃ω,ε, ω̃
g
ω,ε provided in Theorem 1

following the same distribution;

• on in-distribution performance if the respective training and generalization performances

under D(x,y) are asymptotically the same as under D(g,y), that is

Pr(yix
T
i ω̂ > 0)↑ Pr(yig

T
i ω̂

g
> 0) ↗ 0, (21)

and

Pr(y≃x≃Tω̂ > 0)↑ Pr(y≃g≃Tω̂g
> 0) ↗ 0, (22)

for (x≃
, y

≃) ↔ D(x,y) a test sample independent of {(xi, yi)}ni=1, and (g≃
, y

≃) ↔ D(g,y)

independent of {(gi, yi)}ni=1.

In the following, we study first in Section 5.1 the Gaussian universality in the sense of in-distribution
performance, and discuss our results with respect to the conditional one-directional CLT and the
CGEP in Dandi et al. (2024). We then reveal in Section 5.2 the key role of square loss in inducing the
Gaussian universality of classifier, and discuss its implication for the choice of loss function.

Throughout this section, our discussions are illustrated through numerical experiments on datasets of
moderately large size, with n, p only in hundreds. A close match is consistently observed between
the proposed asymptotic analysis and the empirical results.
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Figure 1: Theoretical and empirical distribution of predicted scores ω̂T
x
≃ for some fresh (x≃

, y
≃) ↔

D(x,y) independent of ω̂. The theoretical probability densities (red) are obtained from Theorem 1,
and the empirical histograms (blue) are the values of ω̂T

x
≃ over 106 independent copies of x≃, for

three different LFMMs as in Definition 1 with n = 600, p = 200, ϑ = 0.5, s = [
⇓
2;0p↘1] (so

that q = 1), and Haar distributed V. Left: normal e1 and uniformly distributed e2, . . . , ep; Middle:
normal e1, . . . , ep; Right: uniformly distributed e1, and normal e2, . . . , ep.

5.1 GAUSSIAN UNIVERSALITY OF IN-DISTRIBUTION PERFORMANCE

Notice from (18) in Corollary 1 that the in-distribution generalization performance of ω̂ under an
LFMM D(x,y) is determined by the random variable r in (9), the distribution of which depends solely
on (i) the distributions of y, e1, . . . , eq in the LFMM and (ii) the values of m,ς

2
,φ1, . . . ,φq given

in (13). Remark also that the values of m,ς
2
,φ1, . . . ,φq in (13) are determined by the system of

equations in (10), which concerns only the distributions of r, y, e1, . . . , eq , as well as the deterministic
parameters µ,!,v1, . . . ,vq of the LFMM.

We thus conclude that the distribution of r is insensitive to the distributions of noise factors
zq+1, . . . , zp. In other words, an LFMM with Gaussian noises e1, . . . , eq in its informative factors
z1, . . . , zq has the same asymptotic generalization performance as its equivalent GMM in Definition 2,
regardless of the distributions of the noise factors zq+1, . . . , zp.

A similar conclusion can be drawn from (19) of Corollary 1 on the asymptotic in-distribution training
performance, by studying also the distribution of r but through a proximal mapping proxϖ,ω(·,y). We
formalize these conclusions on the universality of in-distribution performance in Corollary 2, the
proof of which is given in Appendix A.2.2.

Corollary 2 (Condition of Gaussian universality on in-distribution performance). Under the settings

and notations of Theorem 1 and Definition 2, the Gaussian universality of in-distribution performance

in Definition 3 holds if and only if noises e1, . . . , eq of LFMM informative factors in (5) are Gaussian.

Figure 1 provides numerical illustrations of Corollary 2, where we compare the empirical histograms
and the asymptotic distributions of the out-of-sample predicted scores ω̂T

x
≃ for data drawn from

three different LFMMs: an LFMM satisfying the in-distribution performance universality condition
in Corollary 2 (left), an LFMM sharing the same parameters (µ,!, ϑ) with the first but violating the
condition in Corollary 2 (right), and their equivalent GMM in the sense of Definition 2 (middle).

Remark 2 (Connection to conditional one-directional CLT in (3)). Our universality results on the
in-distribution performance in Corollary 2 are related to the CGEP proven by Dandi et al. (2024)
under the presumed validity of a conditional one-directional CLT in (3). Under our notations, the
conditional one-directional CLT in (3) translates to the convergence of y≃ω̂T

x
≃ and y

≃ω̂T
gx

≃ to the
same normal distribution, i.e.,

y
≃
x
≃Tω̂ ↑m√

ς2 +
∑q

k=1 φ
2
k

d↗ N (0, 1) ,
y
≃
g
≃Tω̂g ↑m√

ς2 +
∑q

k=1 φ
2
k

d↗ N (0, 1) , (23)

as it can be shown from (14),(17) that y≃ω̂T
x
≃ has asymptotically the same distribution as yr, which is

of mean m and variance ς2+
∑q

k=1 φ
2
k. It is easy to see from (9) that yr is normally distributed if and

only if e1, . . . , eq are Gaussian, which is exactly the condition of universality stated in Corollary 2.
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Figure 2: Empirical and theoretical results under an LFMM with p = 200, ϑ = 0.5, s = [
⇓
2;0p↘1],

Rademacher e1, normal e2, . . . , ep, and Haar distributed V. Top: scatter plot of 200 independent[
r, hϖ(r,±1)

]
. Bottom: histograms of predicted scores on 106 fresh samples (x≃

, y
≃) ↔ D(x,y) given

by ω̂ and ω̂g, versus theoretical densities obtained from Theorem 1. Left: n = 100, square loss
ω(ŷ, y) = (ŷ ↑ y)2/2. Right: n = 600, square hinge loss ω(ŷ, y) = max{0, (1↑ ŷy)}2.

5.2 GAUSSIAN UNIVERSALITY OF CLASSIFIER AND IMPLICATION FOR CHOICE OF LOSS

As discussed in Section 5.1, the system of equations in (10) does not depend on the distributions
of noise factors zq+1, . . . , zp. As the distribution of the high-dimensional equivalent ω̃ to ω̂ given
in (16) is controlled by the constants ↼, ↽, ⇀,⇁1, . . . ,⇁q that are determined by (10), it is therefore
also universal over the distributions of zq+1, . . . , zp. Then, by a similar reasoning to Corollary 2,
we conclude that the Gaussian universality of classifier in Definition 3 holds in the case of normally
distributed e1, . . . , eq .

This is however not the only case of Gaussian universality on classifier. Note from (9) and (10) that,
even though the system of equations in (10) does depend on the distributions of e1, . . . , eq, it only
involves their means and variances if hϖ(r, y) is linear in r. Remark also from (8) that hϖ(r, y) varies
linearly with r if and only if the square loss ω(ŷ, y) = (ŷ ↑ y)2/2 (or its rescaled version) is used.

These two conditions for the Gaussian universality of classifier as understood in Definition 3 are
made precise in the following result, proven in Appendix A.2.3.
Corollary 3 (Condition of Gaussian universality on classifier). Under the settings and notations

of Theorem 1 and Definition 2, the Gaussian universality of classifier in Definition 3 holds if and

only if one of the following two conditions is met: (i) e1, . . . , eq in (5) are normally distributed; (ii)

∂ω(ŷ, y)/∂ŷ is a linear function of ŷ, e.g., ω(ŷ, y) = (ŷ ↑ y)2/2.

Remark 3 (Limitation of square loss). As an important consequence of Corollary 3, any classifier
ω̂ trained using the square loss on generic LFMM samples {(xi, yi)}ni=1 ↔ D(x,y) and ω̂g trained
on equivalent GMM samples {(gi, yi)}ni=1 ↔ D(g,y) have asymptotically the same probability of
correctly classifying a fresh LFMM test sample (x≃

, y
≃) ↔ D(x,y). That is, ERM classifiers trained

with square loss are unable to adapt to non-Gaussian informative factors of LFMM, contrarily to
other (non-square) losses.

The particular effect of square loss discussed in Remark 3 is numerically demonstrated in Figure 2.
On the left hand side, the square loss ωsqr(ŷ, y) = (ŷ ↑ y)2/2 is used, and hϖ(r, y) varies linearly
with r as in the top left plot (the two elongated scatter plots are associated respectively with y = ±1),
so that the distribution of x≃Tω̂ωsqr,ε and x

≃Tω̂g
ωsqr,ε

are indistinguishable in the bottom left plot of
Figure 2; On the right hand, the square hinge loss ωshg(ŷ, y) = max{0, 1 ↑ ŷy}2 is used, and we
observe drastically different behaviors for x≃Tω̂ωshg,ε and x

≃Tω̂g
ωshg,ε

in the right column of Figure 2,
when the points

[
r, hϖ(r,±1)

]
are highly nonlinear.

Remark 3, supported by the numerically results in Figure 2, points to the insensitivity of least-square
classifiers to the distributions of non-Gaussian informative factors, despite their non-universal impact
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Figure 3: Empirical classification accuracy of ω̂ω,ε computed over 105 independent copies of
(x≃

, y
≃) ↔ D(x,y) and averaged over 100 trials with a width of ±1 standard deviation, versus

theoretical performance given in Theorem 1, given by the square loss ω(ŷ, y) = (y ↑ ŷ)2/2 and the
logistic loss ω(ŷ, y) = ↑ ln(1/(1 + e

↘yŷ)) and on n = 800 training samples. Left: GMM under
Definition 1 with p = 200, ϑ = 0.5, s = [1, 5; 0.5;0p↘2] (so that q = 2), and V = diag(2,1p↘1)H
with Haar distributed H. Right: LFMM identical to the GMM in the left, but with Rademacher e1.

on the in-distribution performance as discussed in Section 5.1. The incapacity of square loss to account
for non-Gaussian variations in the informative factors sheds light on the suboptimality of square
loss observed in the right display of Figure 3, where the logistic loss yields better performance than
the square loss with optimally chosen regularization ε on LFMM having non-Gaussian informative
factors, while the logistic loss fails to do better than the square loss under the equivalent GMM in the
left-hand figure. Further experiments on real-world datasets are given in Appendix B.

This finding on the suboptimality of square loss under LFMM provide new insights on the impact of
loss function beyond previous optimality results of square loss under GMM. For high-dimensional
GMM data, the square loss has been proven optimal, see (Taheri et al., 2021b) for the case of
unregularized ERM, and (Mai & Liao, 2019) for ridge-regularized ERM, in the n, p ↗ ⇑ limit. That
is, the square loss not only gives the best unbiased classifier, but also allows for an optimal bias-
variance trade-off with well calibrated ridge-regularization. As a result of the Gaussian universality
breakdown discussed above, the optimality of square loss is no longer valid under the more general
LFMM. This motivates a few open questions on the optimal loss:

• Is the square loss optimal only under GMM, or when the Gaussian universality of in-
distribution performance in Definition 3 holds?

• In the case of Gaussian universality breakdown, does the optimal loss depend on the sample
ratio n/p as in the setting of linear regression in (Bean et al., 2013)?

• Is it possible, in the large n, p regime, to propose an optimal design of classification loss
adapted to the data distribution and sample size?

6 CONCLUDING REMARKS

Our analysis considered a basic framework of linear factor mixture models (LFMM) and showed that
the Gaussian universality can already break down under this natural extension of GMM. Based on the
precise performance characterization, we derived conditions of Gaussian universality to shed light on
the limit of the widely observed and extensively studied Gaussian universality phenomenon.

Breaking the Gaussian universality in classification of mixture models allows also deeper insight
into the choice of classification loss beyond the optimality of square loss under GMM (Taheri et al.,
2021b; Mai & Liao, 2019). The suboptimality of square loss under LFMM can be further investigated
in future works, to propose, for instance, an optimal design of loss function that takes into account
the data distribution and the sample size, as done by Bean et al. (2013) for linear regression.

Several simplifications made in our analysis can be removed more or less easily. For instance, while
the extension to multi-classification is fairly straightforward, the generalization to non-smooth losses
is less direct: even though our system of equations in (10) does not require access to the derivatives
of the loss function, they are involved in the establishment of these equations.
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