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Abstract

Machine reading comprehension (MRC) has001
drawn a lot of attention as an approach for as-002
sessing the ability of systems to understand003
natural language. Usually systems focus on se-004
lecting the correct answer to a question given a005
contextual paragraph. However, for many appli-006
cations of multiple-choice MRC systems there007
are two additional considerations. For multiple-008
choice exams there is often a negative marking009
scheme; there is a penalty for an incorrect an-010
swer. This means that the system is required011
to have an idea of the uncertainty in the pre-012
dicted answer. The second consideration is that013
many multiple-choice questions have the op-014
tion of none of the above (NOA) indicating that015
none of the answers is applicable, rather than016
there always being the correct answer in the017
list of choices. This paper investigates both of018
these issues by making use of predictive uncer-019
tainty. It is shown that uncertainty does allow020
questions that the system is not confident about021
to be detected. Additionally we show that un-022
certainty outperforms a system explicitly built023
with an NOA option for the ReClor corpus.024

1 Introduction025

Machine reading comprehension (MRC), where026

the correct answer must be deduced for a question027

from a context paragraph, plays a crucial role in de-028

veloping systems for natural language processing029

and understanding. In recent years, popular MRC030

datasets (Richardson et al., 2013; Chen et al., 2016;031

Lai et al., 2017; Trischler et al., 2017; Rajpurkar032

et al., 2018; Yang et al., 2018; Yu et al., 2020)033

have consistently observed increasingly competi-034

tive systems topping public leaderboards (Trischler035

et al., 2016; Dhingra et al., 2017; Zhang et al., 2021;036

Yamada et al., 2020; Zaheer et al., 2020) and sur-037

passing human performance. However, systems038

in deployment should not necessarily always aim039

to answer a posed reading comprehension ques-040

tion. There are two modes of interest in which an041

MRC system may choose to abstain from giving an 042

answer: answer uncertainty and unanswerability. 043

If a system is uncertain about its prediction, it is 044

likely that the predicted answer will be incorrect. 045

In particular, negative marking schemes, which are 046

shown to improve the reliability of multiple-choice 047

assessment as guessing is deterred (Holt, 2006), pe- 048

nalise a system for predicting an incorrect answer 049

while abstaining carries no penalty, and of course 050

the correct answer has a positive reward. In such 051

cases, it would be sensible for a system to abstain 052

from answering if there is answer uncertainty in the 053

prediction. Unanswerability is where the answer 054

to a question is not deducible from the associated 055

context. Consequently, a system should abstain 056

from answering a question if it believes the answer 057

is not present in the context. Answer uncertainty 058

is when the system is unsure about its prediction 059

while unanswerability is where the system (confi- 060

dently) believes the question cannot be answered. 061

A fair amount of work has investigated the chal- 062

lenge of tackling unanswerability in span-based 063

reading comprehension (Rajpurkar et al., 2018) 064

with the hope of encouraging systems to truly un- 065

derstand the comprehension task beyond simple 066

word matching with remarkable success (Sun et al., 067

2018; Hu et al., 2019; Zhang et al., 2021). How- 068

ever, limited work has been completed with re- 069

gard to unanswerability for multiple-choice reading 070

comprehension datasets, where most work focuses 071

on developing state-of-the-art systems on the de- 072

fault task such as Wan (2020); Jiang et al. (2020). 073

This work investigates both answer uncertainty and 074

unanswerability in multiple-choice MRC. 075

One challenge for this problem is that unanswer- 076

able examples are often not available at training 077

time, and the possible range of incorrect answers 078

even to valid questions is vast. Uncertainty mea- 079

sures have been demonstrated to be effective at 080

out-of-distribution detection across a wide range 081

of tasks (Amodei et al., 2016; Gal, 2016; Malinin, 082
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2019; Malinin et al., 2021). This work studies the083

potential viability of using uncertainty measures at084

test time to identify examples for which the system085

should abstain for both settings of answer uncer-086

tainty for optimising performance with a negative087

marking scheme and handling unanswerability.088

2 Multiple-Choice MRC089

Figure 1: Model architecture.

In the multiple-choice reading comprehension090

task, the system is given a question, a context pas-091

sage and multiple possible answer options. The092

system must be able to select the correct answer op-093

tion. State-of-the-art for machine comprehension is094

largely dominated by pre-trained language models095

(PrLMs) (Devlin et al., 2018; Yang et al., 2019; Liu096

et al., 2019; Lan et al., 2020; Clark et al., 2020; Rad-097

ford and Narasimhan, 2018; Radford et al., 2019;098

Brown et al., 2020; Lewis et al., 2020; Raffel et al.,099

2020) based upon the transformer encoder archi-100

tecture (Vaswani et al., 2017). Figure 1 depicts101

the typical model structure of systems for multiple-102

choice MRC (Yu et al., 2020). In order to use103

the transformer architecture, the input to the trans-104

former is constructed as follows 1:105

[CLS] Context [SEP] Question Option [SEP] [PAD] ...106

The transformer models are usually trained with107

pairs of sentences separated by the [SEP] token.108

The context is used as the first sentence and the109

question concatenated with an option is used as the110

second sentence. The construct is repeated for each111

of the four options. These four pairs of sentences112

are passed in parallel to the transformer encoder113

architecture where the weights are shared for each114

of the inputs. The hidden state embedding asso-115

ciated with the [CLS] token is passed to a final116

linear head (with a non-linear activation) at the end117

1Other permutations of the context, question and answer
options were trialled but they give worse performance.

of the transformer encoder that calculates output 118

scores for each answer option which is then con- 119

verted to a discrete probability distribution over the 120

four answer options using the Softmax activation. 121

Typically, at test time, the predicted answer option 122

is the one with the greatest probability mass. 123

The work in this paper focuses on ReClor (A 124

Reading Comprehension Dataset Requiring Logi- 125

cal Reasoning) introduced by Yu et al. (2020) that 126

encourages the development of MRC systems be- 127

yond a superficial understanding of the context as 128

the dataset was designed to focus on more challeng- 129

ing logical reasoning questions compared to previ- 130

ous multiple-choice datasets including DREAM 131

(Sun et al., 2019), MCTest (Richardson et al., 132

2013), ARC (Clark et al., 2018) and RACE (Lai 133

et al., 2017). Results are presented on RACE for 134

comparison against ReClor. Additional numbers 135

are provided on COSMOSQA (Huang et al., 2019) 136

in the Appendix A.3. 137

The architecture of Figure 1 based on the base- 138

line systems introduced by Yu et al. (2020) is used 139

for simplicity as the focus here is on answer un- 140

certainty and unanswerability. The selected model 141

in this paper deviates from the baseline systems 142

as ELECTRA is specifically selected as the PrLM 143

given that it has been proven to achieve state-of- 144

the-art results in other forms of MRC (Zhang et al., 145

2021) whilst also being smaller than equivalently 146

competitive ALBERT (Lan et al., 2020) systems. 147

2.1 Answer uncertainty 148

In the default setting of multiple-choice reading 149

comprehension task, systems are encouraged to al- 150

ways select one of the available answer options for 151

each of the questions. However, there are many 152

multiple-choice tests, such as the UKMT Senior 153

Mathematics Challenge (Pargeter, 2000), that pe- 154

nalise a candidate for selecting the wrong answer, 155

reward the correct answer and give no penalty for 156

not answering the question. Such scoring systems 157

discourage candidates from guessing if they are 158

not confident about the answer. Similarly, multiple- 159

choice MRC systems must also be able to abstain 160

from giving an answer if there is answer uncertainty 161

present in the prediction. Therefore, it is important 162

to develop robust measures of answer uncertainty 163

where the system chooses to only tackle questions 164

that it is able to answer correctly. 165

Let the total number of questions in a multiple- 166

choice test be denoted N = Ncorrect + Nwrong + 167
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Nabstain where Ncorrect, Nwrong and Nabstain respec-168

tively denote the questions that the system an-169

swered correctly, answered incorrectly and ab-170

stained from answering. For a penalty, p and re-171

ward, r, the overall test score, S, becomes,172

S = rNcorrect − pNwrong (1)173

where the aim is to maximise the score. Therefore,174

the ratio p/r dictates the degree of aggression in175

the negative marking scheme where a larger ratio176

encourages a system to abstain from answering177

a greater number of questions to avoid the harsh178

penalty of selecting the incorrect answer option.179

2.2 Unanswerability180

Typically, multiple-choice MRC datasets assume181

that the question for a given example can be an-182

swered using one of the answer options. How-183

ever, several real multiple-choice tests (Odegard184

and Koen, 2007) exist where none of the answer185

options address the posed question in relation to186

the contextual paragraph. An artificial answer op-187

tion, none of the above (NOA), is usually present188

in such tests for candidates to be able to indicate189

the unanswerable questions. Unanswerability is190

further possible in an educational setting for au-191

tomatic question generation (Kriangchaivech and192

Wangperawong, 2019) where new questions are193

automatically generated. Such question generation194

systems require a verification stage to automati-195

cally filter out the questions that are unanswerable196

in relation to a passage. Therefore, it is important197

for MRC systems to detect unanswerable questions198

and only answer the answerable questions.199

In this work, two modes of unanswerability are200

explored. First, the simple set-up is considered201

where a multiple-choice MRC system is trained202

with a mixture of answerable and unanswerable ex-203

amples and then evaluated on in-domain data that204

has the same proportion of answerable and unan-205

swerable examples. Second, a more challenging206

mode of operation is considered where only an-207

swerable examples are present at training time but208

a mixture of answerable and unanswerable exam-209

ples at test time. In this setting, the MRC model210

must be able to identify unanswerable examples at211

test time without encountering any such examples212

for the learning of its parameters. Hence, the test213

data is distributionally shifted with respect to the214

training data. In the first mode, the architecture215

from Figure 1 can be directly used to handle unan-216

swerability as an additional artificial answer option,217

NOA, can exist for each example with a positive 218

label for this option for all unanswerable examples. 219

3 Uncertainty 220

Research in uncertainty estimation is popular 221

in recent years with model averaging (Gal and 222

Ghahramani, 2016; Lakshminarayanan et al., 2017; 223

Ashukha et al., 2020; Ovadia et al., 2019) as 224

the standard approach. In particular, ensemble- 225

based and sampling-based uncertainty estimates 226

have demonstrated effectiveness for both identify- 227

ing misclassifications and out-of-distribution in- 228

puts (Malinin et al., 2021). This work focuses 229

on ensemble-based approaches for multiple-choice 230

MRC as ensembles consistently outperform single 231

models (Ganaie et al., 2021) and offer interpretable 232

uncertainty estimates. 233

For multi-class classification, various measures 234

of predictive uncertainty can be calculated using 235

the predicted probability distributions over the 236

classes from each of the ensemble members. Mea- 237

sures of knowledge uncertainty include mutual in- 238

formation, expected pair-wise KL divergence, and 239

reverse mutual information; measure of data un- 240

certainty is the average of the entropy of each pre- 241

dicted distribution (expected entropy); while mea- 242

sures of total uncertainty include (negated) confi- 243

dence and entropy of the average prediction (Gal, 244

2016; Malinin, 2019). We present results using the 245

expected entropy as the uncertainty measure for 246

abstaining to answer for both a measure of answer 247

uncertainty in a negative marking scheme and a 248

measure of unanswerability when a system does 249

not encounter unanswerable examples at training 250

time 2. Formally, expected entropy, E[H], for a 251

given input is defined as: 252

E[H] = − 1

K

K∑
k=1

∑
y

PMk
(y) logPMk

(y) (2) 253

where PMk
denotes the discrete probability dis- 254

tribution using the the kth model member of an 255

ensemble of size K and y ∈ {A,B,C,D}. 256

4 Data and Experimental Set-Up 257

All experiments are based upon the ReClor and 258

RACE datasets (Yu et al., 2020; Lai et al., 2017) or 259

their variants. This section discusses how the de- 260

fault datasets are modified to perform experiments 261

2Knowledge uncertainty is theoretically better at out-of-
distribution detection but empirical results showed the data
uncertainty measure was better for unanswerability.
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for answer uncertainty and unanswerability as well262

as performance criteria.263

4.1 Training and evaluation data264

Examples Ans Unans

TRN-def 4,638 4,638 0
TRN-mixed 18,552 13,914 4,638
TRN-ans 13,914 13,914 0

DEV-def 500 500 0
DEV-mixed 2,000 1,500 500

EVL-def 1,000 1,000 0

Table 1: ReClor: statistics for data splits.

Examples Ans Unans

TRN-def 87,866 87,866 0
TRN-mixed 351,464 263,598 87,866
TRN-ans 263,598 263,598 0

DEV-def 4,887 4,887 0
DEV-mixed 19,548 14,661 4,887

EVL-def 4,934 4,934 0

Table 2: RACE: statistics for data splits.

Table 11 summarises the statistics for ReClor.265

Yu et al. (2020) split the ReClor datset into a train,266

validation and test set that are respectively referred267

to here as the default (def) configurations: TRN-268

def, DEV-def and EVL-def. In this default config-269

uration, each example consists of a unique ques-270

tion, contextual paragraph and four answer options271

with no overlap across the total 7,138 examples in272

the dataset. All questions have a correct answer273

amongst the four answer options such that all three274

default splits are 100% answerable.275

Two further training splits are introduced in Ta-276

ble 11 beyond the default configurations: TRN-277

mixed and TRN-ans. TRN-mixed consists of a278

mixture of answerable and unanswerable exam-279

ples, with exactly 25% unanswerability. In con-280

trast, TRN-ans consists of only answerable exam-281

ples that is 3 times TRN-def. Finally, DEV-mixed282

is the development set equivalent of TRN-mixed283

that consists of 25% unanswerable examples too.284

Table 2 presents the equivalent statistics and285

modified datasets for RACE with the main distinc-286

tion that RACE is a significantly larger dataset.287

4.2 Data construction288

This section describes the method by which the289

modified data splits, TRN-mixed, TRN-ans and290

DEV-mixed, are constructed from the default data 291

splits of ReClor/RACE, TRN-def, DEV-def and 292

EVL-def. As the default configuration only con- 293

sists of answerable examples, the mixed datasets 294

aim to achieve an equivalent dataset that also con- 295

tain unanswerable examples. TRN-mixed is con- 296

structed from TRN-def as follows: 297

1. For each example, replicate it 4 times. 298

2. For each of the four versions of an example, 299

replace one of the answer options with NOA. 300

Ensure a different answer option is replaced 301

for each version of the example. 302

3. Re-order each example such that NOA is the 303

fourth (D) answer option. 304

Therefore, TRN-mixed is exactly 4 times the size 305

of TRN-def with 75% answerable and 25% unan- 306

swerable examples. Similarly, DEV-mixed is con- 307

structed from DEV-def by following the above 308

steps. TRN-ans is the answerable subset of TRN- 309

mixed. Hence, TRN-ans can be considered to only 310

have three answer options as the fourth NOA option 311

is never the correct answer for this dataset. 312

Note that TRN-mixed and DEV-mixed consist of 313

real unanswerable examples rather than synthetic 314

equivalents. Moreover, the modified construction 315

is not performed on the evaluation set because the 316

unanswerability experiments have to be performed 317

on the development sets as the default test set labels 318

are not publicly available. See Appendix B for 319

details of hyperparameter tuning of models. 320

4.3 Performance criteria 321

General performance on any development or evalu- 322

ation set is reported in terms of accuracy. This is 323

consistent with the performance metric used on the 324

ReClor dataset and leaderboard (Yu et al., 2020). 325

In order to measure the effectiveness of uncer- 326

tainty measures at measuring answer uncertainty 327

for negative marking schemes, it is desirable for 328

the uncertainty measure to be correlated with the 329

error-rate. Therefore, the standard approach to as- 330

sess robustness and uncertainty of error-retention 331

curves (Gal, 2016; Lakshminarayanan et al., 2017; 332

Malinin et al., 2021) is used here. An error re- 333

tention curve plots a model’s mean error over a 334

dataset as measured by the classification error rate 335

with respect to the fraction of the dataset for which 336

the model’s predictions are used. The classifica- 337

tion error for a given example is 0 if the prediction 338
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matches the label and 1 otherwise. The fraction339

of the model’s predictions to be used is dictated340

by thresholding the uncertainty measure where all341

examples are ordered from lowest to highest un-342

certainty. Ideally, the uncertainty measure should343

be perfectly correlated in terms of rank-ordering344

with the error-rate. Hence, it is expected that with345

an increasing retention fraction, the error rate will346

increase as increasingly uncertain examples will be347

retained. Therefore, the area under the retention348

curve (R-AUC) is used as an appropriate metric to349

assess the effectiveness of the uncertainty measure350

for a negative marking scheme where a lower value351

for R-AUC is indicative of better performance.352

The ability to identify unanswerable examples353

in DEV-mixed is reported using the area under the354

precision-recall curve and the binary F1 where pre-355

cision and recall are equally important. For perfor-356

mance on DEV-mixed, in decoding we use:357

ŵ =

argmax
w ̸=ws

{P (w|x)} if P (ws|x) > β

ws otherwise
(3)358

where ŵ denotes the predicted class; P (w|x) de-359

notes the discrete probability distribution output by360

the model over the classes conditioned on the input;361

ws denotes the class corresponding to unanswer-362

able (i.e. NOA) and β denotes the threshold that363

the probability mass assigned to the unanswerable364

class must exceed in order to be deemed unanswer-365

able. The value of β is swept in order to find the366

overall performance at different operating points.367

5 Results and Discussion368

This section discusses the main findings of how the369

ELECTRA system fares against existing systems370

on the ReClor dataset and the role of uncertainty371

measures in using answer uncertainty for tackling372

negative marking schemes or detecting unanswer-373

able examples for ReClor and RACE. Expected374

entropy is the chosen uncertainty measure. See the375

Appendix for other uncertainty measures’ results.376

5.1 Baseline results377

Table 8 presents how the ELECTRA system com-378

pares against other PrLMs as well as the DAGN379

(Huang et al., 2021) and FocalReasoner (Ouyang380

et al., 2021) too on ReClor. Out of the presented381

systems, the ELECTRA systems achieve the best382

accuracy on DEV-def and EVL-def. Note that the383

best single ELECTRA system achieves an accuracy384

Model DEV-def EVL-def

Paper

Chance 25.0 25.0
Students - 63.0
BERT 53.8 49.8
XLNet 62.0 56.0
RoBERTa 62.6 55.6

Others
ALBERT - 62.6
DAGN 65.2 58.2
Focal 66.8 58.9

Ours
ELECTRA 67.8±1.1 —
-max 69.4 64.2
-ensemble 70.2 67.1

Table 3: Accuracy on default ReClor from the paper Yu
et al. (2020); others from the leaderboard and finally
our implementations. Mean and standard deviation is
quoted for single-seed results.

of 64.2% on EVL-def that out-performs the human 385

performance of 63% achieved by graduate students 386

(Yu et al., 2020). Ensembling boosts performance 387

by 2.9% to 67.1%. Performance on the EVL-def is 388

reported for the best member of the ensemble (on 389

the development set) to avoid multiple submissions 390

to the official leaderboard. 391

It is found that pre-training models on RACE 392

(Lai et al., 2017) boosted performance of the best 393

single model to an accuracy of 70.8% on DEV-def 394

and 69.7% on EVL-def. We focus on the situation 395

where only the ReClor data is available for training 396

for fair comparison with other models. At the time 397

of writing, the ELECTRA model ranked 4th on 398

the ReClor leaderboard 3, and only limited details 399

are available for the top three performing systems. 400

However, the focus here is investigating negative 401

marking schemes and unanswerability rather than 402

developing the best system for the ReClor task 403

for which the current system’s performance is con- 404

sidered reasonable. See Appendix A.2.1 for the 405

baseline results on RACE. Note, ReClor is consid- 406

ered a significantly more challenging dataset than 407

RACE as human performance on ReClor by gradu- 408

ate students is 63% while human performance on 409

RACE is 94.5%. As the ensembled system achieves 410

superior performance to single systems, the experi- 411

mental results in the following sections will report 412

results for the ensembled ELECTRA system only. 413

5.2 Answer uncertainty 414

This section explores the effectiveness of using 415

uncertainty measures for identifying answer uncer- 416

tainty in the model’s predictions to abstain from 417

3Code will be released after anonymity period ends.
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(a) ReClor (b) RACE

Figure 2: Error retention curves for answer uncertainty.

answering for negative marking schemes.418

Figure 2 presents the error retention curves for419

a random measure, an ideal measure and expected420

entropy as an uncertainty measure for the ELEC-421

TRA system trained on TRN-def and evaluated on422

DEV-def. For ReClor, all curves, as expected, end423

at a classification error rate of 29.8% when all the424

data is retained which is consistent with an accu-425

racy of 70.2% from Table 8. The ideal system is426

where the classification error of each point itself427

is used as the measure of uncertainty such that all428

misclassifed points are retained at the end. From429

Figure 2a, the random system has the largest R-430

AUC of 0.147 while the ideal system bounds the431

lowest area at 0.045. The uncertainty measure is432

able to achieve an R-AUC as low as 0.096 demon-433

strating that predictive uncertainty measures such434

as expected entropy are effective at identifying ex-435

amples that are likely to be misclassified. Similar436

patterns are observed on RACE from Figure 2b437

with the main difference that the R-AUC values are438

lower for all systems as the baseline ELECTRA439

system on RACE achieves an accuracy of 86.3%.440

See Appendices A.1.1 and A.2.2 for the R-AUC441

values for other popular uncertainty measures.442

In order to see the impact of using an uncertainty443

measure for abstaining to answer some questions,444

Figure 3 illustrates the normalised score using var-445

ious negative marking schemes while sweeping446

through the number of examples retained ordered447

from lowest to highest uncertainty. Each negative448

marking scheme is expressed as r : p (Equation 1),449

indicating the reward for a correct answer vs the450

penalty for an incorrect answer. The normalised451

score is the total number of points, S, divided by452

the maximum score achieved by correctly answer-453

ing all questions. When a harsh negative marking454

scheme, such as 3:5, is applied it is beneficial to 455

use an uncertainty measure like expected entropy 456

in deployment to filter out the top 40% uncertain 457

examples on ReClor and the top 10% on RACE to 458

achieve the greatest score. Therefore, predictive 459

uncertainty measures help identify examples for 460

which the system should abstain from answering 461

to achieve a higher overall score with aggressive 462

negative marking schemes. However, further work 463

is required to investigate how uncertainty measures 464

may be useful in boosting vanilla performance of 465

answering all questions when using a mild negative 466

marking scheme like 3:1. 467

5.3 Unanswerability 468

Here, we assess the ability of uncertainty measures 469

to identify unanswerable examples in DEV-mixed 470

when using the ensembled ELECTRA-based sys- 471

tem. The Explicit system trains a four-option sys- 472

tem on TRN-mixed (with the fourth option indica- 473

tive of the question being unanswerable as it corre- 474

sponds to NOA) while the Implicit system trains a 475

three-option system on TRN-ans that contains only 476

answerable examples. This Implicit system uses 477

the uncertainty over the three answer options to 478

indicate whether the question is unanswerable. The 479

Explicit system takes the maximal probability over 480

the first 3 options and then uses the fourth option 481

probability mass for unanswerability detection by 482

sweeping its value β (Equation 3). 483

Table 12 presents the best F1 score for each ap- 484

proach at the corresponding precision and recall 485

operating point from the precision-recall curves 486

in Figure 4 for both ReClor and RACE. The area 487

under the precision-recall curve (AUPR) is also re- 488

ported. As expected, the Explicit system is the best 489

performing - with an F1 score and AUPR of 56.0% 490
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(a) ReClor (b) RACE

Figure 3: Aggressive negative marking schemes.

Approach P R F1 ↑ AUPR ↑

Random 25.0 100.0 40.0 25.0

ReClor Implicit 40.5 63.4 49.5 48.2
Explicit 50.4 63.0 56.0 55.5

RACE Implicit 46.1 73.6 56.7 47.9
Explicit 70.1 70.6 70.3 78.3

Table 4: Detecting unanswerable examples.

Figure 4: Unanswerabilty detection on DEV-mixed.

and 55.5% respectively on ReClor, and 70.3% and491

78.3% respectively on RACE - as the system en-492

countered unanswerable examples at training time493

and hence unanswerable examples at test time are494

in-domain. In contrast, the Implicit system did not495

train with any unanswerable examples. Despite496

this, the predictive uncertainty, expected entropy497

in this case, is able to substantially surpass the498

random system in its ability to detect unanswer-499

able examples at test time to achieve a binary F1500

score and AUPR of 49.5% and 48.2% respectively501

on ReClor, and 56.7% and 47.9% respectively on502

RACE. Moreover, from the precision-recall curves,503

the Implicit system’s ability to identify unanswer-504

able examples surpasses the random curve across505

all recall rates with the trace lagging behind the506

Explicit system’s curve. See Appendix A.1.2 and 507

A.2.3 for the F1 and AUPR scores for other uncer- 508

tainty measures at detecting unanswerability. 509

Table 5 compares the Implicit and MAP sys- 510

tem for overall accuracy on DEV-mixed. The 511

maximum-a-posteriori, MAP, system is where the 512

ELECTRA system trained on TRN-mixed is di- 513

rectly evaluated on DEV-mixed such that the pre- 514

dicted answer option (out of the four including 515

NOA) is the one with the greatest probability as- 516

signed to it. It is interesting to observe that the 517

overall performance of the Implicit system at an 518

unanswerability rate of 18.6% is able to outperform 519

the MAP system on ReClor. Hence, predictive un- 520

certainty measures are very powerful in this case 521

at identifying unanswerable examples in order to 522

boost overall performance as a system trained on 523

only answerable examples from TRN-ans is ca- 524

pable of out-competing a MAP system trained on 525

answerable and unanswerable examples from TRN- 526

mixed. However, the uncertainty measure appears 527

to be weaker on RACE. 528

Approach ACC ↑ %UNAS

ReClor Implicit 62.5 18.6
MAP 61.1 38.0

RACE Implicit 72.6 23.0
MAP 77.7 24.5

Table 5: Accuracy (ACC) and Percentage Unanswerable
(%UNAS) on Dev-Mixed

Figure 5 shows the performance of the Implicit 529

system over a range of thresholds, β, rather than 530

just the maximum performance shown in Table 5. 531

On ReClor, from Figure 5a, it can be seen that it out- 532

performs the MAP decoding over a range of thresh- 533

olds. However, it is unfair to compare the Implicit 534
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(a) ReClor (b) RACE

Figure 5: Overall performance on DEV-mixed.

system against the MAP system alone. Therefore,535

Figure 5 plots the overall accuracy on DEV-mixed536

for various systems with a sweep across the number537

of examples in the dataset predicted as unanswer-538

able. Particularly, the plot for the Explicit system is539

given where the number of examples hypothesised540

as unanswerable is deduced by sweeping the thresh-541

old on the fourth answer option’s probability mass542

(i.e. the probability assigned to NOA) as β. The543

inference process is as in Equation 3. On ReClor,544

the Explicit system is able to achieve a maximum545

accuracy of 64.2% at an unanswerability rate of546

28.9%. This system outperforms the MAP system547

across a wide range of thresholds of about 10-40%.548

As a contrast, the Explicit: option A’s perfor-549

mance is also shown. This is generated by sweep-550

ing over the threshold on option A rather than the551

fourth NOA option. If the probability mass as-552

signed to option A is higher than the threshold, the553

predicted answer will be option A and otherwise554

the predicted answer is the option with the highest555

probability mass amongst the other three options.556

Note, Explicit: option B and Explicit: option C557

have similar profiles to Explicit: option A. Based558

on the difference in performance between Explicit559

and Explicit: option A, the NOA option operates560

in a different fashion to the other classes for the561

ReClor dataset. Intuitively, a possible reason is562

that the mathematical space for unanswerable ques-563

tions is a lot larger than the space associated with564

answerable questions in relation to a specific con-565

textual paragraph which is further evidenced given566

that the MAP system believes 38% of examples567

are unanswerable despite the unanswerability rate568

being only 25% at both training and test time.569

However, for RACE, from Figure 5b, MAP is on570

par with Explicit which in turn peaks with Explicit:571

option A. The inability to out-perform the MAP 572

system can be attributed to MAP operating at the 573

expected unanswerability rate of about 25%. There- 574

fore, the ability to out-compete a MAP system for 575

ReClor is based on the MAP system over-predicting 576

unanswerable examples at decoding time. This ten- 577

dency to over-predict unanswerable examples may 578

arise due to the complex nature of the questions in 579

ReClor (Appendix C) while other multiple-choice 580

datasets are simpler, leading to a more constrained 581

space learned for NOA. 582

6 Conclusion 583

This paper addresses answer uncertainty and unan- 584

swerability in multiple-choice MRC. Measures of 585

answer uncertainty are required to identify exam- 586

ples that the system may struggle to get correct and 587

hence should abstain from answering such ques- 588

tions. Unanswerability detection is required for 589

when the answer cannot be deduced using the in- 590

formation provided. An ELECTRA PrLM achieve 591

competitive results on the default ReClor dataset, 592

achieving up to 67.1% accuracy on the evaluation 593

split. Ensemble-based predictive uncertainty mea- 594

sures are explored for both modes of operation: 595

answer uncertainty for negative marking schemes 596

and the presence of unanswerability. It is shown 597

that uncertainty in the prediction such as expected 598

entropy is correlated with the error rate of the MRC 599

system allowing better than vanilla performance 600

with an aggressive negative marking scheme for 601

ReClor and RACE. Interestingly, it is found that ex- 602

pected entropy from the predictions of an implicitly 603

trained system is competitive at unanswerability de- 604

tection and is able to out-compete MAP decoding 605

from an explicitly trained system that has been 606

trained with unanswerable examples for ReClor. 607
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Appendices802

A Additional results803

The Appendices detail additional results for answer804

uncertainty and unanswerability detection when us-805

ing ensembled-based predictive uncertainty. The806

main paper uses expected entropy as the uncertainty807

measure of choice. The below sections explore808

other popular choices of uncertainty measures, in-809

cluding measures of knowledge uncertainty such as810

mutual information, expected pair-wise KL diver-811

gence (EPKL) and reverse mutual information, and812

also measures of total uncertainty including nega-813

tive confidence and entropy of expected. The math-814

ematical justifications for each uncertainty measure815

is motivated by Gal (2016); Malinin (2019).816

A.1 ReClor817

A.1.1 Answer uncertainty818

Uncertainty measure R-AUC ↓

negative confidence 0.0939
entropy of expected 0.0942
expected entropy 0.0960
mutual information 0.1003
EPKL 0.1018
rev mutual information 0.1028
Ideal 0.0450
Random 0.1470

Table 6: Effectiveness of uncertainty measures for neg-
ative marking schemes measured by area under error-
retention curves (R-AUC) on ReClor.

A.1.2 Unanswerability819

TRN Measure F1 ↑ AUPR ↑

Random 40.0 25.0

mixed confidence 56.0 55.5

ans

negative confidence 48.3 45.6
entropy of expected 48.8 47.5
expected entropy 49.5 48.2
mutual information 47.4 36.2
EPKL 47.4 35.0
rev mutual information 47.4 34.5

Table 7: Effectiveness of uncertainty measures for unan-
swerability detection for ReClor.

A.2 RACE820

This section details additional results on RACE821

including the baseline results and comparisons with822

the other popular choices of uncertainty measures.823

A.2.1 Baseline 824

Model DEV-def EVL-def

Others

Roberta — 83.2
ALBERT — 86.5
-ensemble 89.4
ALBERT+ DUMA — 88.0
-ensemble 89.8
Megatron-BERT — 89.5
-ensemble 90.9

Ours
ELECTRA 86.5±0.3 —
-max 87.0 85.9
-ensemble 86.9 86.3

Table 8: Accuracy on default RACE. Mean and standard
deviation is quoted for single-seed results. Other sys-
tems include Roberta (Liu et al., 2019), ALBERT (Lan
et al., 2020), ALBERT + DUMA (Zhu et al., 2020) and
Megatron-BERT (Shoeybi et al., 2020).

A.2.2 Answer uncertainty 825

Uncertainty measure R-AUC ↓

negative confidence 0.0238
entropy of expected 0.0244
expected entropy 0.0246
mutual information 0.0287
EPKL 0.0288
rev mutual information 0.0290
Ideal 0.0085
Random 0.0652

Table 9: Effectiveness of uncertainty measures for neg-
ative marking schemes measured by area under error-
retention curves (R-AUC) on RACE.

A.2.3 Unanswerability 826

TRN Measure F1 ↑ AUPR ↑

Random 40.0 25.0

mixed confidence 70.3 78.3

ans

negative confidence 56.1 46.2
entropy of expected 56.4 46.4
expected entropy 56.7 47.9
mutual information 52.3 41.0
EPKL 52.2 40.6
rev mutual information 52.0 40.4

Table 10: Effectiveness of uncertainty measures for
unanswerability detection for RACE.

A.3 COSMOSQA 827

COSMOSQA (Huang et al., 2019) is a multiple- 828

choice reading comprehension dataset that has nat- 829

urally occurring unanswerable examples. Further 830

results are investigated on this dataset for reference. 831
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A.3.1 Data832

Examples Ans Unans

TRN-def 25,262 22,199 3,063
TRN-ans 22,199 22,199 0

DEV-def 2,985 2,541 444
DEV-ans 2,541 2,541 0

Table 11: Statistics for data splits for COSMOSQA.

These numbers disagree with those quoted in the833

paper in terms of number of samples and in terms834

of the unanswerability rate suggesting that some835

data has been modified or removed since the release836

of the original data. The following results are pre-837

sented using an ensemble of 5 ELECTRA models,838

which is consistent with RACE. Expected entropy839

is used here as the main uncertainty measure.840

A.3.2 Unanswerability841

Approach P R F1 ↑ AUPR ↑

Random 14.9 100 25.9 14.9
Implicit 50.2 47.1 48.6 52.4
Explicit 71.9 58.3 64.4 72.7

Table 12: Detecting unanswerable examples on default
COSMOSQA (DEV-def).

Figure 6: Unanswerabilty detection on DEV-def for
COSMOSQA.

Figure 7: Overall performance on DEV-def for COS-
MOSQA.

B Hyperparameter tuning 842

An ensemble of 10/5/5 members for ReClor, RACE 843

and COSMOSQA respectively are trained using the 844

large 4 ELECTRA PrLM as a part of the multiple- 845

choice MRC architecture depicted in Figure 1. 846

Each model has 340M parameters. Grid search 847

was performed for hyperparameter tuning with the 848

initial setting of the hyperparameter values dic- 849

tated by the baseline systems from Yu et al. (2020). 850

Apart from the default values used for various hy- 851

perparamters, the grid search was performed for the 852

maximum number of epochs ∈ {2, 5, 10}; learn- 853

ing rate ∈ {2e − 7, 2e − 6, 2e − 5}; batch size 854

∈ {2, 4}; truncated length of number of input to- 855

kens of the concatenated context, question and a 856

given answer option ∈ {256, 512}. For systems 857

trained on ReClor the final hyperparameter settings 858

included training for 10 epochs at a learning rate 859

of 2e-6 with a batch size of 4 and inputs truncated 860

to 256 tokens. For RACE, training was performed 861

for 2 epochs at a learning rate of 2e-6 with a batch 862

size of 4 and inputs truncated to 512 tokens. For 863

COSMOSQA, training was performed for 5 epochs 864

at a learning rate of 2e-6 with a batch size of 4 865

and inputs truncated to 256 tokens. Cross-entropy 866

loss was used at training time with models built us- 867

ing NVIDIA V100 graphical processing units with 868

training time under 10 hours per model for ReClor, 869

12 hours for COSMOSQA and 20 hours for RACE. 870

All hyperparameter tuning was performed by train- 871

ing on TRN-def and selecting values that achieved 872

optimal performance on DEV-def. As there is no 873

4Configuration at: https://huggingface.co/
google/electra-large-discriminator/blob/
main/config.json.
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equivalent evaluation set available for the modified874

versions of ReClor, the final setting of hyperparam-875

eters of the system trained on TRN-def is also used876

for training on TRN-mixed and TRN-ans.877

C Examples878

This section takes a look at example questions from879

RACE, COSMOSQA and ReClor to compare the880

nature of the questions from each dataset.881
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ReClor

Context:
In a business whose owners and employees all belong to one family, the employees can be paid
exceptionally low wages. Hence, general operating expenses are much lower than they would be
for other business ventures, making profits higher. So a family business is a family’s surest road to
financial prosperity.

Question:
The reasoning in the argument is flawed because the argument

Options:

A ignores the fact that in a family business, paying family members low wages may itself reduce
the family’s prosperity

B presumes, without providing justification, that family members are willing to work for low
wages in a family business because they believe that doing so promotes the family’s prosperity

C ignores the fact that businesses that achieve high levels of customer satisfaction are often
profitable even if they pay high wages

D presumes, without providing justification, that only businesses with low general operating
expenses can succeed

Figure 8: Example question from ReClor.

RACE

Context:
This is Jim’s room. It’s not big, but it’s very clean. There is a bed in the room. It’s near the door.
Under the bed, there are two balls. There is a desk and a chair near the window. There are two
pictures in the room, too. They are on the wall.

Question:
Jim’s bed is

Options:

A near the door

B near the window

C on the bookcase

D on the wall

Figure 9: Example question from RACE.
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COSMOSQA

Context:
Do I need to go for a legal divorce? I wanted to marry a woman but she is not in the same religion,
so I am not concern of the marriage inside church. I will do the marriage registered with the girl
who I am going to get married. But legally will there be any complication, like if the other woman
comes back one day, will the girl who I am going to get married now will be in trouble or is there
any complication?

Question:
Why is this person asking about divorce?

Options:

A If he gets married in the church he won’t have to get a divorce

B He wants to get married to a different person

C He wants to know if he doesn’t like this girl can he divorce her

D None of the above choices

Figure 10: Example question from COSMOSQA.
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