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ABSTRACT

While Graph Convolutional Networks (GCNs) have recently grown in popularity
due to their excellent performance on graph data, their performance under domain
shift has not been studied extensively. In this work, we first explore the ability of
GCNs to generalize to out-of-distribution data using contextual stochastic block
models (CSBMs) on the node classification task. Our results in this area provide
the first generalization criteria for GCNs on feature distribution and structure
changes. Next we examine a popular Unsupervised Domain Adaptation (UDA)
covariate shift assumption and demonstrate that it rarely holds for graph data.
Motivated by these results, we propose addressing bias in graph models using
domain adaptation with optimal transport - GDOT, which features a transportation
plan that minimizes the cost of the joint feature and estimated label distribution
P(X, Ŷ ) between source and target domains. Additionally, we demonstrate that
such transportation cost metric serves as a good proxy for estimating transferability
between source and target graphs, and is better as a transferability metric than
other common metrics like maximum mean discrepancy (MMD). In our controlled
CSBM experiments, GDOT demonstrates robustness towards distributional shift,
resulting in 90% ROC AUC (vs. the second-best algorithm achieving < 80% on
feature shift). Comprehensive experiments on both semi-supervised and supervised
real-world node classification problems show that our method is the only one that
performs consistently better than baseline GNNs in the cross-domain adaptation
setting.

1 INTRODUCTION

While Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Velickovic et al., 2017; Hamilton et al.,
2017; Chami et al., 2022) had great success in node classification on i.i.d. data, they are susceptible
to deterioration of performance under data distribution shift, where the data used for training and
inference come from different distributions (Koh et al., 2021). Consequently, the behavior of GNNs
under distribution shift has become a focus of several recent works, which show that a distribution
shift in both graph structure and node features can result in deterioration of GNN performance (Zhu
et al., 2021; Ma et al., 2021a; Wu et al., 2020). Moreover, Baranwal et al. (2021) investigated the
connection between the out-of-distribution generalization and graph structure change. They used a
graph convolution on a simplified data-generation model called a contextual stochastic block model
(CSBM) (Deshpande et al., 2018). In this paper, we extend their findings to both graph structural
and feature changes in test data. Our results show when the generalization of a single-layer graph
convolution network would be worse than that of a linear classifier.

At the same time, the behavior of classical (i.e. not GNNs) machine learning models under domain
shift has been studied extensively. Common approaches for Unsupervised Domain Adaptation (UDA),
where unlabeled target/inference data is available, include learning Domain Invariant Representation
Learning (DIRL) (Ben-David et al., 2010; Ganin et al., 2016) and Invariant Risk Minimization (IRM)
(Arjovsky et al., 2019). DIRL attempts to align features of source and target data, and IRM assumes
that source and target differ in spurious correlations but share the same causal mechanism. However,
the effectiveness of such UDA algorithms on GNNs remains unclear. Additionally, these approaches
require either covariate shift or multiple training environments which are not justified on structured
data. Recently, a new line of work pioneered by Courty et al. (2017) started to emerge. The idea is to
assume that there is a non-linear transformation from joint feature space in the source domain onto a

1



Under review as a conference paper at ICLR 2023

target domain. This transformation is not learned directly and instead an optimal transport algorithm
optimizes for the best function. This algorithm does not rely on covariate shift assumption as long as
a transportation plan exists.

We explore a UDA setting on CSBM and find that the covariate shift condition (Ps(Y |X) =
Pt(Y |X)) rarely holds. Our conclusions confirm those from a recent study by Zhao et al. (2019),
which states that variants of domain invariant representation learning cannot adapt to target graphs
with innate deficiency (see also Section 3.2). Therefore, we come up with an efficient UDA for graph
data using optimal transport, resulting in improvements over the DIRL methods.

We prove that such a transportation plan exists between the source and target CSBM graphs and
implement an efficient subgraph sampling (e.g. GraphSAINT (Zeng et al., 2019)) to enable mini-
batch computation of optimal transport. Further, we demonstrate that the transportation cost C is
a metric that can be used to reason about the transferability between source and target graph data,
and is much more indicative than metrics such as MMD (Long et al., 2015) and CMD (Zellinger
et al., 2017) that are used successfully for transferability estimation (Ibrahim et al., 2021). Under
both the supervised and semi-supervised distribution shift, our method outperforms existing domain
adaptation algorithms designed for Neural Networks and Graph Neural Networks by an average of
1.5% accuracy over the second best approach on 7 datasets. As far as we know, our approach is the
first domain adaptation algorithm in graph learning that does not assume targeted distribution shift,
e.g. covariate shift.

Our contribution could be summarized as:

• Based on CSBM, we provide insights on the limits of OOD generalization of GNNs for both
feature and structural changes. We find that the popular covariate shift assumption rarely holds,
thus explaining the commonly observed poor performance of DIRL methods.

• We come up with an efficient mini-batch algorithm GDOT for optimal transport-based domain
adaptation, and prove that the optimal mapping exists on CSBM. In addition, we demonstrate
that such transportation cost is a superior transferability estimation metric for graph data.

• On synthetic and real datasets, GDOT is able to successfully mitigate the domain shift.

2 RELATED WORK

Unsupervised Domain Adaptation is concerned with situations when training and testing data are
drawn from two different distributions, and the goal of UDA algorithms is to transfer knowledge from
the source onto target data, obtaining good generalization on target distribution. In the theoretical
foundational work of domain adaptation, Ben-David et al. (2010) presented an upper bound of target
risk using domain discrepancy measure called H-divergence that represents the distance between
source and target distributions. Since then, various domain adaptation algorithms that minimize
some definitions of such distance in the latent space were proposed. To achieve domain invariant
representation learning, an additional adversarial head is introduced in Ganin et al. (2016), with
the goal of distinguishing source and target samples in the latent space. Conditional DANN work -
CDAN (Long et al., 2018) - incorporates classifier predictions into the adversarial head, either via
linear or multilinear conditioning, further improving UDA performance. There are also methods
that seek to optimize some predefined discrepancy measure, which usually exhibits more stable
performance and have fewer hyperparameters to tune. For example, Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012; Long et al., 2015) measures the difference of distribution means in
Hilbert kernel space. More recently, central moment discrepancy metric CMD (Zellinger et al., 2017)
attempts to match higher-order means in non-kernel space instead. CMD is shown to be less sensitive
(than MMD) to the weight with which such regularization is added to the loss. However, a lot of DIRL
algorithms assume a covariate shift: the feature distributions of source and target data are different,
but the conditional distribution P (Y |X) is the same between the source and target data. A recent
study shows a provable bad generalization of these methods when conditional probability P(Y |X)
varies across domains (Zhao et al., 2019). Optimal transportation OT problem in the literature has
been used to compute distances between two distributions, e.g. earth mover distance. Courty et al.
(2017) applied OT to the UDA setting, learning an implicit mapping between source and target
samples on joint feature and label distribution. Instead of solving an optimal transportation plan, the
label matching (Le et al., 2021) domain adaptation algorithm aims to mitigate the label shift when
DIRL fails via optimizing the corresponding Wasserstein metric through discriminator training.

2



Under review as a conference paper at ICLR 2023

Out-of-Distribution Graph Data. Recently, Gui et al. (2022) studied the out-of-distribution data
challenges in graph learning, which arise from various domain shifts such as graph size, molecular
scaffolds etc.. To address the OOD generalization on graph data, early graph domain adapta-
tion (Zhang et al., 2019) algorithms adopt DIRL approaches. UDAGCN (Wu et al., 2020), on
top of using DIRL, further enforces global and local consistency and extracts cross-domain node
embeddings. Zhu et al. (2021) proposed to improve the OOD generalization on semi-supervised
node classification by instance weighting and minimizing CMD metric between source and target
node representations. Zhang et al. (2021) tried to capture environment-invariant node properties and
explicitly balance the multiple environments to generalize well under distribution shift. Built upon
the DIRL work, Wu et al. (2022) tried to address the OOD generalization problem by minimizing the
mean and variance of risks from multiple training environments that are generated by the environment
generators. In our work, we forego DIRL and explore OT based solutions to graph distribution data
shift.

3 GRAPH CONVOLUTION RISK ON DOMAIN ADAPTATION

Below we consider a node classification setup and describe CSBM (Deshpande et al., 2018) used in
our analysis.
Definition 3.1 (Contexual Stochastic Block Model (CSBM)). CSBM graph is defined as a tuple (A,
X, Y), where A is node adjacency matrix, X describes nodes features and Y defines the nodes labels.
Node labels yi are random variables drawn from Bernoulli distribution (Ber(0.5)), and entries of
adjacency matrix aij ∼ Ber(p) if i,j nodes belong to the same class and aij ∼ Ber(q) otherwise.
Features are drawn according to Xi = yiµ + Zi√

d
, yi ∈ {−1, 1}, µ ∈ Rd is the feature mean and

Zi ∈ Rd is a gaussian random variable.

The task of node classification takes nodes features X and structure of the graph A to predict labels Y .
We denote the output of graph 1-layer convolution network as Y = f(H), where H = D−1(A+I)X1

and linear classification with only node features as Y = f(X). The classifier f is defined as follows,

f(x) =

{
1, if wTx+ b > 0

−1, otherwise
(1)

Below we introduce the challenges of the generalization, study the problem of domain adaptation and
analyze the effectiveness of existing methods. Then Sec. 4 describes our graph domain adaptation
algorithm using optimal transport.
Definition 3.2 (Unsupervised Domain Adaptation (UDA)). Given source labeled data {(xs

i , y
s
i )}ni=1

containing n samples drawn i.i.d. from the source domain DS , and a set of unlabeled target data
{xt

j}mj=1 sampled i.i.d. from the target domain DT , UDA aims to find a predictive function f that
generalizes well on target domain, using the available labeled source and unlabeled target data.

3.1 OOD GENERALIZATION OF GRAPH CONVOLUTION NETWORKS

We define the expected binary classification error ϵ on target data DT as,

ϵ = Ex,y∼DT I
[
y · (w∗Tx+ b∗) < 0

]
, y ∈ {−1, 1} (2)

Then ϵh and ϵx denote the errors on graph convolution network and linear network, respectively.
Theorem 3.1. Suppose we have training graph G1 ∼ CSBM(u,−u, p, q) and testing graph G2 ∼
CSBM(u′,−u, p′, q′), Dii is the degree of node i and Φ(| · |) is the CDF function of multivariate
gaussian distribution defined by distance. Then generalization error of an optimal classifier is given
as the following form for a linear layer,

ϵx = 1− Φ(|µ′ · µ|),
and for a graph convolutional layer,

ϵh = 1− Φ(|
√

D′
ii

p′µ′ − q′µ

p′ + q′
· µ|).

1The original graph convolutional network uses H = D− 1
2 (A + I)D− 1

2X . We use a slightly different
version here for analysis.

3



Under review as a conference paper at ICLR 2023

Proof. See Appendix A.1.

Corollary 3.1.1 (Generalization performance under structure shift). When homophily ratio p/q
changes, the generalization of graph convolution is worse than that of a linear layer when number of
nodes is fewer than 2 p+q

(p−q)2
.

Corollary 3.1.2 (Generalization performance under feature shift). Let µ′
∥ be the horizontal component

of µ′ and δ as the relative distance to the origin mean, µ′
∥ = (1− δ)µ. Then the generalization of

graph convolution layer is worse than that of linear layer when,

δ > 1− q

p−
√

2(p+q)
n

.

While we present here the results for one-layer GNNs and linear perceptron, our results can be
extended to multi-layer graph convolutions with activations, which gain popularity recently (Baranwal
et al., 2022). We leave this for future work.

3.2 CHALLENGES OF LEARNING DOMAIN INVARIANT REPRESENTATIONS ON GRAPH DATA

We begin with introducing theoretical foundations that led to the creation of various Domain Invariant
Representation Learning (DIRL) methods (Long et al., 2015; Ganin et al., 2016; Long et al., 2018).
DIRL’s key idea is to learn an encoder g : X → Z ∈ Rn that minimizes the distribution discrepancy
of two domains in the latent space.

Theorem 3.2 (DIRL generalization bounds). (Ben-David et al., 2010) g : X → {0, 1} is a
hypothesis function from space H, ε̂S(g) is the empirical risk of g under source domain DS and
εT (g) is the true risk of g on target domain. If VC-dimension of H is d and D̂ is the empirical
distribution each containing n samples, then with the probability at least 1− δ, ∀g ∈ H:

εT (g) ≤ ε̂S(g) +
1

2
dH∆H(D̂S , D̂T ) + λ∗ +O

(√
d log n+ log(1/δ)

n

)
, (3)

λ∗ = εT (h
∗) + εS(h

∗) is the joint optimal risk that can be achieved on both
domains by optimal h∗. A small H∆H-divergence (second term in the bound,
which essentially represents some distance between source and target domains)2

Ps(Y |X) ≈ Pt(Y |X)

Ps(Y |X) ̸= Pt(Y |X)

leads to invariant or indistinguishable representation between source
and target. DANN (Ganin et al., 2016) is one of the popular DIRL
methods that seek to minimize this term by introducing an additional
(adversarial) head f : Z → {0, 1} that attempts to predict whether
a sample came from the source or target domain.

This encourages the model to learn an embedding g that does not
contain domain-specific features and that has similar distributions on
the source and target data. As mentioned before, DIRL methods can
mitigate the distributional shift (and assuming the combined error
of an ideal joint hypothesis λ∗ is small) while achieving small ε̂S(h)
when covariate shift assumption Ps(Y |X) = Pt(Y |X) holds.

In graph structure data however, even subtle structural or feature
changes can cause large condition shift so Ps(Y |X) ̸= Pt(Y |X).
In the plot on the right, we project the node TSNE embeddings of
source and target CSBM graphs. Two different colors indicate class
label, O dots are source data and X are target samples. When the
distribution shift is small and covariate shift assumption holds, DANN can separate different classes
well for both source and target domains (top). However, when there is the conditional shift, the
classification accuracy on target is low because it only minimizes discrepancy between representations,
and classes end up intermixed.

2It is symmetric difference of H-divergence by xor operation, i.e. H∆H = {h(x)⊕ h′(x)|h, h′ ∈ H}
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4 GRAPH UDA WITH OPTIMAL TRANSPORT

In the previous section, we demonstrated the limitations of DIRL on graph data when covariate shift
does not hold. In Transfer Learning literature (Courty et al., 2017) proposed recently an alternative
to DIRL: they aim to find a nonlinear transformation between joint (features, labels) space between
the source and target domains. To find this transformation, the optimal transport (OT) problem is
formulated.
Definition 4.1 (Optimal Transport (Monge, 1781)). Given source and target joint probability distri-
butions Ps(X,Y ), Pt(X,Y ) respectively, and marginal source and target distributions over feature
space X: µs = Ps(X) and µt = Pt(X), the Monge problem aims to find a mapping T ∗ : Ω → Ω
that transports µs to µt as,

T ∗ = argmin
T

∫
Ω

d(x, T (x))dµs(x),

s.t. T (µs)(B) = µt(T −1(B)), ∀Borel setB ∈ Ω

In the relaxed transportation problem proposed by Kantorovich (1942), one looks for a discrete
transport plan (a joint probability distribution) γ ∈ P(Ω× Ω) such that,

γ∗ = argmin
γ∈Π(µs,µt)

∑
i,j

d(ui, vj)γ(i, j)

where ui and vi are pairs (xi, yi) from source Ps and target Pt distributions.

Lemma 4.1. Let C =
√∑

ij d(ui, vj)γ∗(i, j) and d be the 2-Wasserstein distance W2
2, then C is

a metric on GCN aggregated representation h between source and target CSBM graphs.

We leave the proof in Appendix A.2. In the proof, we transform joint distribution on (hi, yi) into
a Gaussian Mixture Model and find the closed-form solution of 2-Wasserstein distance d(ui, vj)
between pair (i, j). Furthermore, there exists an optimal transportation plan γ between two graphs
created by CSBM due to the fact that an OT problem has a unique solution when d is a metric (Villani,
2021).

Remark. When used as a metric, the transportation cost C quantifies the discrepancy between source
and target CSBM graphs. C = 0 if and only if joint distributions on source and target are the same.
Alternative non-optimal transport metrics that are often used for such purpose in DIRL settings are
discrepancy measures like MMD (Long et al., 2015) and CMD (Zellinger et al., 2017).

To demonstrate the value of transportation cost as a discrepancy metric we train a 2-layer graph
convolution networks using only source samples and compute their OT discrepancy measure on target
data representations. The results are presented in Figure 3, which demonstrates a clear correlations of
transportation cost and testing performance on CSBM graphs.

(a) CMD (b) MMD (c) OT Cost C

Figure 3: Comparison of two discrepancy measures (CMD, MMD) and transportation cost C (ours) in same
GCN model, x-axis the metric value and y-axis is the test ROC AUC. In syn-csbm-δ, we have 500 source and
target pairs of CSBM graphs where target data has a feature distribution shift. Each point in the plot corresponds
to the measure computed between a pair of source and target.

Now we formally define the learning problem of unsupervised graph domain adaptation with optimal
transport and present our algorithm GDOT. Given source labeled data {(xs

i , y
s
i )}Mi=1 in Gs and

unlabeled target data {xt
j} in Gt, we optimize the following loss function,

LGDOT =
1

M

∑
i

LS(y
s
i , ŷ

s
i ) +

∑
ij

γij(α∥xs
i − xt

j∥2 + βLT (y
s
i , ŷ

t
j))). (4)
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where ŷi and ŷj are predictions on the source and target data produced by a graph neural network
g respectively. Both LS and LT are cross-entropy loss3. The loss consists of classification loss
on Gs and optimal transport cost between source and target graphs; γij is the transportation plan
between node i in source graph Gs and j in target Gt,

∑
ij γij = 1. The term in the parenthesis is

the realization of distance function d((xs
i , y

s
i ), (x

t
j , ŷ

t
j)) between source distribution Ps(X,Y ) and

estimated target distribution Pg
t (X,g(X,A)).

Our optimization procedure is similar to mini-batch training of DeepJDOT (Damodaran et al., 2018),
apart from the fact that we need to perform neighborhood sampling on graph to obtain source and
target subgraph samples for the input of graph neural network g. We adopt a sub-graph based
sampling method - GraphSAINT (Zeng et al., 2019) to obtain batch of nodes from source and
target Gs

b ∼ Gs,Gt
b ∼ Gt, respectively. We describe the training process of GDOT in Algorithm 1.

Finally, we present the domain adaptation bound using optimal transportation with 1-Wasserstein
distance in Appendix A.4. Compared with DIRL UDA algorithms that optimize the bound from
Theorem 3.2, GDOT optimizes the Wasserstein distance bound without covariate shift assumption.
The transportation cost C ≈ W1(P̂s, P̂

g
t ) corresponds to the domain discrepancy measures in DIRL.

Model Analysis. The theoretical analysis of our work is based on graph convolutional networks
on CSBM. In practice, the choice of GNN architectures depends on specific problems. There
are two hyperparameters α, β for which we chose the values so that α

∑
ij γij∥xi − xj∥2 and

β
∑

ij γijLT are on the same or smaller scale than the source loss LS . In each step, let M be
the size of mini-batch and N be the size of features xi ∈ RN and K classes, the additional com-
putation cost of our method in each epoch is due to computing the transportation cost matrix
C ∈ RM×M and solving the optimal transportation γ∗. The cost matrix takes O(M2(N + K))
time and a traditional network of simple algorithms takes O(M3 log(M)). Therefore, the total
time complexity of GDOT is O(M3 log(M) +M2(N +K)). To improve the efficiency, one can
speed up the computation of optimal via Sinkhorn (Cuturi, 2013), obtaining complexity of O(M2).

Algorithm 1: Pseudo code for GDOT optimization
1 Input: Training graph {Gs, Xs, Y }; testing graph {Gt, Xt}; Graph Sampler SAMPLE;
2 Output: Graph Neural Network g with trained weights;
3 for each batch of (Gs

b , x
s
b, y

s
b) and (Gt

b, x
t
b) from SAMPLE do

4 fix g solve the optimal transportation plan γ as of second term Equation 4
5 fix γ and update the weights of g via backward propagation
6 end

5 SYNTHETIC EXPERIMENTS
In this section, we seek to confirm our theoretical insights about the generalization ability and
transferability of graph models. We do this using two different families of synthetic graphs: (1)
CSBM graphs syn-csbm-pq and syn-csbm-δ with structure or feature shift, respectively (2)
synthetic graphs constructed from real datasets syn-cora and syn-products proposed by Zhu
et al. (2020). Each sample in CSBM graph is composed of a training and testing graph, where the
testing graph exhibits either kind of distribution shift in various degrees. More information about the
data can be found in Table 3 in the Appendix, numerical results for all of the figures are also available
in the Appendix. In this section, we compare our method GDOT with standard DIRL algorithms
including CMD (Zellinger et al., 2017) and CDAN (Long et al., 2018) using graph convolution
network (Kipf & Welling, 2017). We chose these two algorithms as a point of comparison since
CMD has been shown to outperform a number of other metric-based DIRL algorithms like MMD
(Zellinger et al., 2017). Additionally, CDAN, which uses an adversarial head to impose domain
irrelevance and additionally conditions on discriminative information (logits) has been shown to
outperform a number of transfer learning techniques (Long et al., 2018).

5.1 OOD GENERALIZATION OF GCN AND MLP

In our first experiment, we illustrate how distribution shift on structure and features affects neural
networks (2-layer MLP), single and double layers of graph convolution networks on a test graph. We

3Note that cross-entropy loss is not a valid distance metric, in practice, when solving for γ we use the
euclidean distance between one-hot source label vector and output of softmax(·).
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aim to validate the results from theorem 3.1 and show that the generalization of graph convolution
networks become worse when the testing graph has more inter-class edges or different feature means.
Similar to Baranwal et al. (2021), we set the distance of means of two classes as 2/

√
d and p/q = 5 in

training graphs, where MLP cannot classify two classes as accurately as graph convolution. In testing
graphs, we keep the density of the graph unchanged (i.e. average degree) and vary the homophily
ratio p/q or feature mean deviation δ as of corollary3.1.1 and corollary3.1.2. As shown in Figure 4,
GCNs are affected by both structure and feature shift more than MLP (that cannot separate the
training data accurately when shift is large). Calculating the thresholds from corollary 3.1.1, we
get 5376 > n = 128 (p/q=1) and 91.5 < n (p/q=2) which aligns well with result in Figure 4a. In
Figure 4b, we estimate that when δ > 0.67 GCN would have worse generalization than linear model
(corollary 3.1.2), which is confirmed empirically by ROC_AUC plot. In addition, we can see deeper
GCNs are more susceptible to feature shift. Therefore improving OOD generalization is crucial to
real-world applications since deeper GNNs are often needed to obtain good performance. Overall,
our experiments are consistent with our findings in theorem 3.1.

(a) structure shift on syn-csbm-pq (b) feature shift on syn-csbm-δ

Figure 4: Out-of-distribution generalization of GCNs and a perceptron. We train on a CSBM graph and testing
on the other. Each test graph deviates from train graph by sampling p/q from {1..10} in syn-csbm-pq or
δ ∈ {0.1..1.0} in syn-csbm-δ.

5.2 DOMAIN ADAPTATION ON CSBM

In this experiment, we compare two DIRL algorithms - CDAN and CMD with GDOT on two
synthetic CSBM datasets. We tune the hyperparameters of all three algorithms on validation data
obtained from the training graph. As depicted in Figure 5a and 5b, GDOT yields better results
over both baselines under feature and structure distribution shift. In Appendix A.3, we discuss the
theoretical limitations of DIRL algorithms w.r.t. conditional shift. We observe that CDAN, which
specifically minimizes the second term in the bound, enjoys a minor improvement over vanilla GCNs.
The method CMD does not optimize the H∆H-divergence directly and is seemingly less susceptible
to conditional shift.

(a) domain adaptation on structure shift (b) domain adaptation on feature shift

Figure 5: Domain adaptation on syn-csbm-pq and syn-csbm-δ. We use the same setting of OOD
generalization experiment except specific domain adaptation loss is applied during training.

5.3 DOMAIN ADAPTATION ON EXISTING SYNTHETIC GRAPHS

In our last suite of synthetic experiments, we examine the effectiveness of optimal transport domain
adaptation on non-CSBM graphs. In the literature of low homophily GNN study (Zhu et al., 2020),
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syn-cora and syn-products are constructed from existing benchmarks via preferential attach-
ment (Barabási & Albert, 1999) in order to control the homophily ratio. In our theorem A.4, our
method should work without the assumption of node features. We aim to validate this on synthetic
graphs generated from real graphs like Cora and ogbn-products. We train GCN on the same "easy"
graph with 1.0 homophily ratio on both datasets and test on target graphs with various homophily
ratios ranging from 0.0 to 0.9. On the multi-class classification task, we compare our method with the
same domain adaptation baselines. The results in Figure 6 demonstrate that similar to the previous
experiments, GDOT is able to mitigate the distribution shift regardless of noise levels while other
algorithms fail to improve over a standard GCN.

(a) Domain adaptation ROC on syn-cora (b) Domain adaptation ROC on syn-products

Figure 6: Domain adaptation on datasets constructed from real graphs. We use homophily ratio 1.0 for training
and plot the base GCN performance as well as domain adaption algorithms on three test graphs per interval.

6 REAL DATA EXPERIMENTS

In this section, we will compare our UDA method with domain adaptation algorithms designed for
neural networks and graph neural networks in both supervised and semi-supervised learning settings.
In each setting, we will introduce the specific domain adaptation task and how we apply our approach.

Baselines. In addition to the domain adaptation algorithms used in previous sections, we consider
the following methods for comprehensive study under distribution shift: (1) MMD (Long et al.,
2015) and (2) DANN (Ganin et al., 2016). For graph-specific methods, we focus on the task of
node classification and choose three most representative methods: (1) UDAGCN (Wu et al., 2020)
couples domain adversarial learning with graph attention mechanism (2) SRGNN-IW (Zhu et al.,
2021) proposes to use instance weighting technique on GNN output embeddings under covariate shift
(3) Graph-EERM (Wu et al., 2022) proposes to augment training graph for invariance principles in
risk minimization. As for our own ablations, we study two variants of our method where either α
or β in Equation 4 is zero indicating optimal transport based on only feature and label distribution
distance.

6.1 SEMI-SUPERVISED NODE CLASSIFICATION

Zhu et al. (2021) found biased training data in semi-supervised learning can cause dramatic accuracy
loss; they provide the algorithm to generate biased training nodes (refered to as OOD training in Table
1) on three semi-supervised learning benchmarks: Cora, Citeseer and PubMed (Sen et al., 2008). In
semi-supervised classification, source data is a small number of training nodes and target data are all
of the remaining nodes in the same graph. We choose the best-performed GNN architecture from
their paper - APPNP (Klicpera et al., 2018) and report the Micro-F1, and Macro-F1 for each method
and the accuracy loss compared with IID training data. We are able to reproduce the performance gap
between IID and OOD training data in Table 1. We begin by noting that most of the general domain
adaptation algorithms such as CMD, MMD, and DANN can help improve the performance because
covariate shift holds in this problem. Among these algorithms, we find that directly optimizing
discrepancy metrics seems to be more effective and robust (smaller average loss and deviation over
100 runs) than adversarial methods (CDAN and DANN) which often require more tuning. On three
datasets, GDOT always achieves top-2 performances, and our ablation without feature distance
(α = 0) in pairwise distance d is usually the second to the best, which illustrates the importance of
considering label distribution in OT.
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Table 1: Semi-supervised classification on three different citation networks with OOD training samples. Results
from the original paper (Zhu et al., 2021) are marked †. We annotate the top-2 and other on-par results.

Method Cora Citeseer PubMed
Micro-F1 Macro-F1 ∆Acc Micro-F1 Macro-F1 ∆Acc Micro-F1 Macro-F1 ∆Acc

IID training 80.8 ± 1.5 80.1 ± 1.3 0 70.2 ± 1.9 66.8 ± 1.7 0 79.7 ± 1.4 78.8 ± 1.4 0

OOD training 71.3 ± 4.1 69.2 ± 3.4 9.5 63.4 ± 1.8 61.2 ± 1.6 6.9 63.4 ± 4.2 58.7 ± 7.0 16.4
MMD 71.5 ± 4.9 69.5 ± 4.6 9.3 64.4 ± 1.2 62.0 ± 1.1 5.9 66.3 ± 4.2 63.5 ± 5.9 13.4
CMD† 72.1 ± 4.4 69.8 ± 3.7 8.7 63.9 ± 0.7 61.8 ± 0.6 6.4 69.4± 3.4 67.6 ± 4.0 10.4
DANN 71.5 ± 5.0 69.5 ± 4.6 9.3 64.7 ± 1.2 62.3 ± 1.1 5.6 64.5 ± 4.9 60.6 ± 7.8 15.2
CDAN 71.5 ± 5.1 69.5 ± 4.7 9.3 64.6 ± 1.3 62.2 ± 1.2 5.6 64.1 ± 5.0 59.9 ± 7.9 15.6

UDAGCN 36.2 ± 4.5 35.4 ± 4.3 44.6 33.8 ± 5.1 31.5 ± 7.7 36.4 40.6 ± 6.8 34.9 ± 6.8 39.1
EERM 68.3 ± 4.3 66.2 ± 3.9 12.5 62.3 ± 1.0 59.5 ± 1.0 7.9 61.6 ± 4.8 56.8 ± 7.7 18.1
SRGNN-IW† 72.0 ± 3.2 69.5 ± 3.7 8.8 66.1 ± 0.9 63.4 ± 0.9 4.2 66.4 ± 4.0 64.0 ± 5.5 13.4

GDOT (α = 0) 71.7 ± 4.7 70.2 ± 2.7 9.1 65.3 ± 0.8 63.3 ± 0.8 4.9 71.5 ± 2.9 70.4 ± 3.1 8.2
GDOT (β = 0) 71.7 ± 4.7 69.7 ± 4.3 9.1 64.6 ± 1.1 62.2 ± 1.0 5.6 68.3 ± 3.9 66.5 ± 4.7 11.4
GDOT 72.6 ± 3.1 70.7± 3.0 8.2 65.6 ± 0.9 63.5 ± 0.9 4.6 73.0 ± 2.5 71.9 ± 2.5 6.7

6.2 SUPERVISED NODE CLASSIFICATION

In a fully-supervised setting, transfer learning is often performed across different domains or
time periods on graph structure data. We conduct the domain adaptation experiments on ci-
tation graphs provided by ArnetMiner (Tang et al., 2008) with both types of shifts: (1) do-
main shift, where we adopt two pairs of ACM and DBLP graphs w.r.t. graph sizes, (2)
time shift, where we use ACM graph prior to 2010 as the source and after 2010 as target
data. The details about statistics and the graph creation process can be found in Appendix C.

Table 2: Supervised classification on domain and time
transfer. We report the accuracy of each method in this ta-
ble, both micro and macro F1 can be found in Appendix C.

Method ACM-DBLPsmall ACMtime ACM-DBLPlarge

Base model 68.1 ± 2.1 78.8 ± 1.0 81.1 ± 0.2

MMD 65.9 ± 2.2 79.0 ± 1.0 81.7 ± 0.3

CMD† 75.5 ± 4.4 79.4 ± 0.7 75.2 ± 0.8

DANN 70.1 ± 1.8 79.6 ± 0.4 81.6 ± 0.4

CDAN 75.3 ± 4.3 79.3 ± 1.3 82.1 ± 0.3

UDAGCN 66.4 ± 5.1 79.3 ± 0.5 78.3 ± 2.6

EERM 64.9 ± 3.5 77.3 ± 0.4 81.0 ± 0.4

SRGNN-IW 69.2 ± 1.6 79.5 ± 1.1 81.4 ± 0.4

GDOT (α = 0) 74.0 ± 4.7 80.1 ± 0.5 82.1 ± 0.3

GDOT (β = 0) 71.6 ± 2.3 80.2 ± 0.4 82.3 ± 0.4

GDOT 78.5 ± 4.0 80.3 ± 0.8 82.5 ± 0.3

We use a 2-layer graph convolution network
as the base model and adopt mini-batch train-
ing introduced in Section 4. Specifically, we
have two graph samplers on both graphs, train-
ing nodes in the source batch and all nodes in
the target batch are used for solving the opti-
mal transport. In Table 2, the first observation
is that algorithms perform differently under
different settings. For example, CMD outper-
forms baseline GCN on two tasks while its
performance on large-scale domain transfer
problems is worse. GDOT not only performs
best among all domain adaptation algorithms
but also is consistently better than the baseline
model without domain adaptation. The only
other algorithm with this property is SRGNN-
IW which does not assume the type of distri-
bution shifts as well. Existing graph domain adaptation algorithms - UDAGCN and EERM exhibit
limited or negative transfer improvements.

7 CONCLUSION

In this work we establish a theoretical analysis on the effect of graph convolution on out-of-distribution
data which illustrates the necessity of domain adaptation when domain shift is large. However,
popular domain invariant representation learning algorithms assume covariate shift which is a strong
assumption for graph data. We present a novel graph domain adaptation framework based on optimal
transport to remedy this. Using a number of synthetic and real data node classification experiments,
we demonstrate that our method GDOT results in a robust improvement on different kinds of domain
shifts without assuming a covariate shift.

As for future work, we have two notable directions to explore: (1) extend our analysis to multi-layer
and other types of graph neural networks (2) demonstrate the effectiveness of GDOT on more tasks
such as full graph classification and regression.
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A THEORY DETAILS

A.1 PROOF OF THEOREM 3.1

In theorem 3.1, we made several simplifications on original CSBM model to investigate its OOD
generalization w.r.t. structure and feature distribution shifts. The original CSBM(µ, ν, p, q) is
defined to have two different class means µ and ν. Given training and testing distribution as
G ∼ CSBM(µ, ν, p, q) and G′ ∼ CSBM(µ′, ν′, p′, q′), we let ν = ν′ = −µ in CSBM by making 0⃗
the middle point of original feature mean of two classes. Without loss of generality, we let two graphs
have same amount of nodes n and focus on one class (i.e. yi = 1) of graph G′.

Theorem A.1. Suppose we have training graph G1 ∼ CSBM(u,−u, p1, q1) and testing graph
G2 ∼ CSBM(u′,−u, p2, q2), Φ(| · |) is the CDF function of multivariate gaussian distribution defined
by distance.

The generalization error of an optimal classifier is for linear layer,

ϵx = 1− Φ(|µ′ · µ|)

for graph convolution layer,

ϵh = 1− Φ(|
√
D′

ii

p′µ′ − q′µ

p′ + q′
· µ|)

Proposition 1. Through training with hinge loss, the linear model and the linearized graph neural
network have the same optimal hyperplane P = {x|wTx+ b = 0} characterized by w∗ = µ and
b∗ = 0.

Proof. In the following, we discuss the classification performances of original and convoluted feature
from train graph G. The training data distribution of two models are,

xi ∼ N (µ, I) , hi ∼ N
(
p− q

p+ q
µ,

1√
Dii

I

)
, for i ∈ C0. (5)

We restate the generalization error as expected error indicated by linear classifier f(w∗, b∗),

ϵ = Ex,yI
[
y · (w∗Tx+ b∗) < 0

]
, y ∈ {−1, 1} (6)

The CDF of the standard normal distribution is denoted by the Φ function. When d = 1 (i.e.
1-dimension case), if we translate the distribution into a standard gaussian N (0, I) by moving µ,
the classification error regarding the optimal hyperplane {w∗, 0} is the cumulative probability is
ϵx = 1− Φ(u′).

Φ(x) =
1√
2π

∫ x

−∞
exp({− t2

2
}) dt (7)

In standard multivariate (d > 1) distribution, we define the CDF as a monotonic function regarding
the distance to w∗ and expected classification error is ϵx = 1− Φ(|x · µ|).
We rescale the gaussian distribution output by graph convolution and the expected error ϵx and ϵh
become comparable between their means.

h̃i ∼ N
(√

Dii ·
p− q

p+ q
µ, I

)
, for i ∈ C0.

On training graph, graph convolution has better linear separability when ϵh < ϵx (i.e.
√
Dii · p−q

p+q > 1

due to monotonicity of Φ). Note that previous work Baranwal et al. (2021); Ma et al. (2021b) also
result in similar conclusion.

On testing graph, we assume only one class centroid moves or graph structure (p,q) changes,

x′
i ∼ N (µ′, I) , h′

i ∼ N
(√

D′
ii ·

p′µ′ − q′µ

p′ + q′
, I

)
, for i ∈ C0.
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Similarly, the error of graph convolutional and linear layer are ϵh′ = 1− Φ(
√
D′

ii
p′µ′−q′µ
p′+q′ · µ) and

ϵx′ = 1− Φ(µ′ · µ), which completes the proof.

Now let’s discuss the relative error of a linear layer and graph convolution layer when structure or
feature deviates from training, respectively.

When graph structure (p/q) changes on testing graph, the ood generalization is same as on training
graph with different p′ and q′. The degree of node Dii can be estimated as D′

ii ≈ n(p′+q′)
2 . By

solving
√
D′

ii ·
p′−q′

p′+q′ < 1, we have GCN yields larger classification error when n < 2 p′+q′

(p′−q′)2 as of
corollary 3.1.1.

When feature mean of the class has shift (µ′ in ϵh′ and ϵx′), only horizontal component µ′
∥ of

µ′ = µ′
∥ + µ′

⊥ affects the error (i.e. cos(µ′
∥, µ) = 1). Let µ′

∥ = (1− δ)µ, we consider the following
condition of GCN underpeforms linear,√

n(p+ q)

2
·
pµ′

∥ − qµ

p+ q
< µ′

∥

p− q

1− δ
<

√
2(p+ q)

n

δ > 1− q

p−
√

2(p+q)
n

.

By solving the above equation, we complete the discussion of corollary 3.1.2.

A.2 PROOF OF LEMMA 4.1

In theorem 3.1, we prove the output of graph convolution for one class is a Gaussian distribution.
We first describes the probability density function of K-class CSBM with k Gaussian distribution
ν1, ν2, ..., νk and probability vector p1, p2, ..., pk is drawn from a multinoulli distribution.

P(ν, p) =

k∑
i=1

pkνk (8)

Suppose we have us ∼ P(νs, ps) and vt ∼ P(νt, pt) for source and target graph, a discrete optimal
transport problem solves,

γ∗ = argmin
γ∈Π(Ps,Pt)

∑
i,j

d(ui, vj)γ(i, j) (9)

Lemma A.2. Let C =
√∑

ij d(ui, vj)γ∗(i, j) and d be the 2-wasserstein distance W2
2, then C is

a metric on GCN aggregated representation h between source and target CSBM graphs.

Proof. One important property of CSBM is p1, p2, ..., pk is from a multinoulli (categorical) distri-
bution, such that the 2-wasserstein distance d(ui, vj) is computed on two gaussian distributions.
Assume νsa ∼ N (m0,Σ0) and νtb ∼ N (m1,Σ1) are the two gaussian distribution with psa = 1 and
pta = 1, we have their 2-wasserstein distance Dowson & Landau (1982) as,

d(ui, vj) = W2(ν
s
a, ν

t
b)

2 = ∥m0 −m1∥2 +Tr
(
Σ0 +Σ1 − 2(Σ

1
2
0 Σ1Σ

1
2
0 )

1
2

)
. (10)

Apparently positivity and symmetry holds on C: C ≥ 0 and C(us, vt) = C(vt, us). It is also
obvious that C = 0 if and only if d(ui, vj) = 0 ∀i, j, in other words, source and target distribution
is identical. We denote u, u′, u′′ from three different CSBM graphs and p, p′, p′′ as associnated
probability vector and prove the triangle inequality of C,

C(u, u′′) ≤ C(u, u′) + C(u′, u′′) (11)

Let γ01 and γ12 be the solution of Equation 9 between u, u′ and u′, u′′, respectively. We construct a
custom transportation plan γ02 ∈ Π(u, u′′) as,

γ02(i, k) =
∑
j

γ01(i, j)γ12(j, k)

p′j
(12)
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We have marginal distribution of γ02 along i as p′′k ,∑
i

γ02(i, k) =
∑
i,j

γ01(i, j)γ12(j, k)

p′j
=
∑
j

p′jγ12(j, k)

p′j
= p′′k (13)

and similarly
∑

k γ02(i, k) = pi. Now we start consider the C(u, u′′),

C(u, u′′) ≤
√∑

i,k

γ02(i, k)d(ui, u′′
k)

=

√√√√∑
i,j,k

γ01(i, j)γ12(j, k)

p′j
W2(ui, u′′

k)
2

≤

√√√√∑
i,j,k

γ01(i, j)γ12(j, k)

p′j

(
W2(ui, u′

j) +W2(u′
j , u

′′
k)
)2

≤

√√√√∑
i,j,k

γ01(i, j)γ12(j, k)

p′j
W2(ui, u′

j)
2 +

√√√√∑
i,j,k

γ01(i, j)γ12(j, k)

p′j
W2(u′

j , u
′′
k)

2

=

√∑
i,j

γ01(i, j)W2(ui, u′
j)

2 +

√∑
j,k

γ12(j, k)W2(u′
j , u

′′
k)

2

= C(u, u′) + C(u′, u′′)

The first inequality is the definition of optimal transport. The second inequality is because wasserstein
distance is a metric and the last inequality is Minkowski inequality. Now, we have shown the
tranportation cost between pair of gaussian mixture distributions from K-class CSBM graphs satisfies
all the condition of being a metric.

In our paper, we mainly use 2-class CSBM as a specific case of the lemma.

A.3 ADDITIONAL DISCUSSION ON DIRL

Theorem A.3 (Limits of learning invariant representations under conditional shift). Zhao et al.
(2019) Suppose markov chain X

g−→ Z
h−→ Ŷ and dJS is the Jensen-Shannon distance,

εS(h ◦ g) + εT (h ◦ g) ≥ 1

2

(
dJS(DY

S ,DY
T )− dJS(DZ

S ,DZ
T )

2
)

.

When P(Y |X) is different on source and target, minimizing source risk and H∆H-divergence
leads to a small JS distance dJS(DZ

S ,DZ
T ). As a consequence, the marginal label shift dJS(DY

S ,DY
T )

dominating the the lower bound of joint source and target risk. If convariate shift does not hold, DIRL
cannot achieve accurate predictions on target.

A.4 DOMAIN ADAPTATION BOUND ON OPTIMAL TRANSPORT

We restate the existing bound on target error for optimal transport based domain adaptation with
1-wasserstein distance.
Theorem A.4. Courty et al. (2017) Suppose g ∈ H is the graph neural network in hypothesis
space, the optimal g∗ is a Lipschitz function with ϕ-probabilistic transfer lipschitzness (PTL)4. Let
{γ∗|γ ∈ Π(µs, µt)} be the optimal mapping in Equation 4 and W1(P̂s, P̂

g
t ) corresponds the 1-

wasserstein distance between two induced empirical distributions from n samples. If we assume
|g∗(x1)− g∗(x2)| < M,∀(x1, x2) and c′ is the concentration factor of wasserstein distance Bolley
et al. (2007), with the probability at least 1− δ, ∀g ∈ H,

εT (g) ≤ W1(P̂s, P̂
g
t ) + λ∗ +O

(√
log(1/δ)

c′ · n

)
+ kMϕ(c), (14)

4PTL bounds the probability of source target pairs in (1/c)-ball w.r.t. Π

15



Under review as a conference paper at ICLR 2023

By optimizing GDOT, the optimal transportation cost C approximate the 1-wasserstein distance
W1(P̂s, P̂

g
t ) in the bound. Compared with DIRL bound in theorem 3.2, both bound contain the

joint optimal risk λ∗ and the differences are on the assumptions. DIRL assume covariate shift while
optimal transport assume the existence of transportation plan γ∗

B MODEL DETAILS

B.1 IMPLEMENTATIONS

We implement our method and all other baselines using torch-geometric library. We list the graph
neural network specifications used in our experiments,

1. Synthetic node classification - model architecture: Graph Convolutional Networks Kipf &
Welling (2017), hidden dimension: 16, activation: SiLU, number of layers: 2, dropout: 0.0

2. Semi-supervised node classification - model architecture: APPNP Klicpera et al. (2018),
hidden dimension: 32, number of layers:2, dropout: 0.0,

3. Supervised node classification - model architecture: Graph Convolutional Networks Kipf &
Welling (2017), hidden dimension: 128, activation: ReLU, number of layers: 2, dropout: 0.2

In GDOT, we use the RandomWalk GraphSAINT Zeng et al. (2019) sampler and set batch size as
256, step size as 50 and walk length as 2. We indepdentently run experiments 10 times and report the
mean and standard deviation in all table and figures. The code for each experiment can be found in
separate folder in supplementary materials.

B.2 BASELINE HYPERPARAMETERS

In our experiments, we use the following baselines with hyperparameters tuning on validation.
Specifically, each baseline has hyperparameters as follow,

1. For MMD, α ∈ {0.01, 0.1, 0.5, 1} controls the weight of regularization.

2. For CMD, k ∈ {1, 3, 5, 7, 10} determines the number of central moment. α ∈
{0.01, 0.1, 0.5, 1} controls the weight of regularization.

3. For DANN, α is set in {0.1, 0.5, 1} for reverse gradients in backward pass. β ∈
{0.01, 0.1, 0.5, 1} controls the weight of regularization.

4. For CDAN, λ is a hyper-parameter between source classifier and conditional domain
discriminator. lo ∈ {0.01, 0.1, 1} and hi ∈ {0.1, 1, 2} are the initial value and final
value of λ. β ∈ {0.01, 0.1, 0.5, 1} controls the weight of regularization.

5. For UDAGCN, the balance parameters γ1 and γ2 are adjusted carefully in the searching
space {0.1, 0.3, 0.5, 0.7, 1.0}, respectively. The adaptation rate λ is the following schedule:
λ = min( 2

1+exp(−10p)−1, 0.1), and the p is changing from 0 to 1 within the training process
as Wu et al. (2020).

6. For EERM, we search the best learning rate αf ∈ {0.0001, 0.0002, 0.001, 0.005, 0.01} for
GNN backbone, the learning rate αg ∈ {0.0001, 0.001, 0.005, 0.01} for graph editers, the
weight β ∈ {0.2, 0.5, 1.0, 2.0, 3.0} for combination, the number of edge editing for each
node s ∈ {1, 5, 10}, the number of iterations T ∈ {1, 5} for inner update before one-step
outer update.

7. For SRGNN-IW†, the main hyper parameters in the sampler PPR-S are α ∈
{0.01, 0.1, 0.5, 1}, γ ∈ {10, 50, 100, 200, 500}. When the graph is large, ϵ = 0.001 is
set in the local algorithm for sparse PPR approximation. λ ∈ {0.1, 0.5, 1, 2} is the penalty
parameter for the discrepancy regularizer. The lower bound for the instance weight Bl is in
{0.1, 0.2, 0.5, 1.0}.

8. Hyperparameters of GDOT α and β are selected between {0.01, 0.1, 1}.
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Table 3: Dataset Statistics. Number of experiments show how many different train and test pairs are tested.

syn-csbm syn-cora syn-products cora citeseer pubmed DBLP ACM

# Experiments 500 30 30 100 100 100 2 2
# Nodes 128 1,490 10,000 2,708 3,327 19,717 78,509 23,343
# Edges 1,280 2,965 59,640 5,278 4,614 44,325 1,001,300 162,106
# Classes 2 5 10 7 6 3 5 5

Table 4: Mean ROC and standard deviation per method (with structure shift on syn-csbm-pq (Fig. 4a). )

Method syn-csbm-pq
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2-GCN 62.5 ± 5.8 79.5 ± 8.3 88.6 ± 6.8 92.0 ± 9.3 94.8 ± 5.4 97.4 ± 3.0 97.0 ± 6.1 98.2 ± 3.8 98.9 ± 2.0 98.0 ± 3.7

1-GCN 57.2 ± 4.3 78.4 ± 5.4 86.1 ± 6.3 89.3 ± 6.1 89.9 ± 6.0 92.8 ± 5.1 94.3 ± 4.4 94.2 ± 4.5 95.0 ± 3.9 94.6 ± 3.9

MLP 74.8 ± 7.6 75.8 ± 7.1 78.1 ± 5.6 74.8 ± 6.8 74.3 ± 8.0 74.8 ± 7.4 76.3 ± 6.1 75.7 ± 6.7 77.0 ± 6.4 74.8 ± 6.6

C EXPERIMENT DETAILS

C.1 DBLP-ACM DATASET

We conduct the transfer learning experiments in domain shift and time shift. These experiments use
three sets of citation networks, which are constructed on the datasets provided by ArnetMiner Tang
et al. (2008). Specifically, for domain shift, we adopt two sets of ACM-DBLP citation networks of
different sizes. The small set namely ACM-DBLPsmall is proposed by Wu et al. (2020). It includes
the papers extracted from ACMv9 (between years 2000 and 2010) and DBLPv8 (after year 2010).
The large set, ACM-DBLPlarge is constructed on DBLPv12 (before 2017) and ACMv8 (before
2017). As to time shift, we utilize ACMv9 across different time periods, specifically, before or after
2010, to build two citation networks, ACMtime. In our experiments, we consider these datasets as
undirected graphs and each edge representing a citation relation between two papers. The papers
are classified to some of the predefined categories according to its research topics. ACM-DBLPsmall
has six categories including“Database”, “Data mining”, “Artificial intelligent”, “Computer vision”,
“Information Security” and "High Performance Computing". For ACM-DBLPlarge and ACMtime, there
are five categories including “Database”, “Data mining”, “Artificial intelligent”, “Computer vision”,
and “Natural Language Processing". We evaluate our proposed methods by conducting multi-label
classification on these three sets of citation networks. The dataset statistics are shown in Table 3.

C.2 CSBM DATASET GENERATION

In this section, we describe the generation process of syn-csbm-pq and syn-csbm-δ. According
to the definition of CSBM 3.1, we fix the size and average degree of graph (i.e. 128 and 10).

For structure shift, each time we sample a feature meanµ, generate source graph with fixed p/q = 5
and sample a p/q between {1, ..., 10} to generate the target graph. Such that we ensure the feature of
both graph are generated with same gaussian distribution and their homophily ratios are different.

For feature shift, we generate µ′ by scale µ by 1 − δ and rotate µ′ from 0 to 60 degrees. In
corollary 3.1.2, we use the same δ to describe the classification error. When δ is small, feature shift is
small and test feature mean µ′ is close to original feature mean. The rotation is added to avoid trival
adaptation like translation.

The dataset generation code can be found in uploaded code named cSBM_gendata.py.

C.3 MORE RESULTS ON OOD GENERALIZATION

In section 5.1, we show the testing ROC AUC between MLP and graph convolution networks in
Figure 4. Here, we provide its numerical results in Table 4 and Table 5. Besides, we provide the
testing loss of these methods w.r.t. structure and feature shifts between pair of CSBM graphs.
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(a) structure shift on CSBM (b) feature shift on CSBM

Figure 7: Out-of-distribution generalization of GCNs and a perceptron. We report the test logloss as of Fig. 4 in
the main paper.

Table 5: Mean ROC and standard deviation per method (with feature shift on syn-csbm-δ (Fig. 4b).)

Method syn-csbm-δ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2-GCN 95.3 ± 6.5 92.4 ± 8.8 89.7 ± 10.0 84.4 ± 11.8 80.8 ± 14.4 70.2 ± 12.7 68.5 ± 14.1 59.7 ± 9.6 56.1 ± 10.4 54.5 ± 6.0

1-GCN 90.6 ± 6.1 90.2 ± 6.3 89.3 ± 6.0 85.3 ± 7.5 84.7 ± 8.2 78.3 ± 7.9 76.2 ± 8.6 71.6 ± 6.8 65.2 ± 8.8 63.6 ± 7.2

MLP 76.6 ± 7.3 76.0 ± 7.1 74.1 ± 5.8 73.5 ± 7.0 74.0 ± 5.7 73.7 ± 6.4 74.0 ± 6.9 71.9 ± 5.6 70.0 ± 5.4 69.8 ± 5.3

C.4 DOMAIN ADAPTATION ON SYNTHETIC DATASET

In Figure 8, we provide the test logloss plot and numerical results of Figure 5b and 5b.

(a) Testing loss of different DA algorithms (b) Testing Loss of different DA algorithms

Figure 8: Domain adaptation on datasets constructed from real graphs. We use homophily ratio 1.0 for training
and plot the base GCN performance as well as domain adaption algorithms on three test graphs per interval.
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Table 6: syn-csbm-p/q (Fig. 5a). Mean ROC and standard deviation per method (with structure shift p/q)

Method syn-csbm-p/q
1 2 3 4 5 6 7 8 9 10

GCN 62.6 ± 6.3 78.7 ± 8.2 87.9 ± 8.8 93.1 ± 8.1 94.9 ± 5.7 97.1 ± 3.6 97.6 ± 4.4 98.8 ± 1.7 98.4 ± 3.0 97.8 ± 4.6

CMD 66.0 ± 5.0 83.7 ± 4.0 93.1 ± 3.3 96.2 ± 2.6 97.9 ± 1.5 98.5 ± 1.4 98.8 ± 1.4 99.1 ± 1.2 99.3 ± 0.9 99.3 ± 1.0

CDAN 62.7 ± 5.9 79.2 ± 8.1 90.0 ± 6.5 94.6 ± 5.4 96.0 ± 4.7 97.9 ± 2.0 98.4 ± 3.6 99.1 ± 1.1 99.1 ± 1.4 98.6 ± 2.7

Ours 68.1 ± 5.4 85.9 ± 4.0 94.7 ± 3.0 96.9 ± 2.1 98.4 ± 1.3 98.9 ± 1.0 99.4 ± 0.7 99.5 ± 0.5 99.7 ± 0.5 99.6 ± 0.5

Table 7: syn-csbm-δ (Fig.5b). Mean ROC and standard deviation per method (with feature shift δ)

Method syn-csbm-δ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

GCN 91.5 ± 10.7 89.6 ± 9.9 87.9 ± 11.2 82.9 ± 14.3 80.2 ± 13.8 78.1 ± 13.6 69.1 ± 12.8 61.8 ± 13.1 61.1 ± 13.4 56.8 ± 10.2

CMD 97.5 ± 1.9 97.0 ± 1.8 96.9 ± 2.6 97.1 ± 2.5 96.2 ± 5.1 94.2 ± 5.5 89.5 ± 18.5 87.3 ± 15.5 87.2 ± 19.2 80.1 ± 20.2

CDAN 93.5 ± 7.5 90.2 ± 9.3 87.1 ± 11.4 84.4 ± 12.6 79.0 ± 13.5 72.6 ± 12.4 66.6 ± 12.1 60.8 ± 13.0 59.4 ± 12.2 55.5 ± 8.0

Ours 98.1 ± 1.5 97.8 ± 1.5 98.0 ± 1.8 98.1 ± 1.5 97.4 ± 4.1 96.9 ± 1.8 96.3 ± 2.4 95.3 ± 3.3 95.2 ± 3.9 94.0 ± 5.4

Table 8: Full result of supervised node classification. We report mean and standard deviation on Micro and
Macro F1.

Method ACM-DBLPsmall ACMtime ACM-DBLPlarge

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Base model 68.1 ± 2.1 68.2 ± 2.4 78.8 ± 1.0 76.1 ± 0.7 81.1 ± 0.2 79.1 ± 0.2

MMD 65.9 ± 2.2 65.3 ± 3.1 79.0 ± 1.0 76.1 ± 1.0 81.7 ± 0.3 79.6 ± 0.3

CMD† 75.5 ± 4.4 71.9 ± 6.8 79.4 ± 0.7 75.9 ± 0.7 75.2 ± 0.8 74.7 ± 0.7

DANN 70.1 ± 1.8 70.5 ± 1.7 79.6 ± 0.4 76.9 ± 0.4 81.6 ± 0.4 80.0 ± 0.4

CDAN 75.3 ± 4.3 75.2 ± 4.6 79.3 ± 1.3 76.4 ± 0.9 82.1 ± 0.3 80.0 ± 0.2

UDAGCN 66.4 ± 5.1 64.1 ± 6.2 79.3 ± 0.5 74.6 ± 0.4 78.3 ± 2.6 74.5 ± 2.7

EERM 64.9 ± 3.5 60.0 ± 3.2 77.3 ± 0.4 74.5 ± 0.3 81.0 ± 0.4 78.1 ± 0.4

SRGNN-IW† 69.2 ± 1.6 69.9 ± 1.7 79.5 ± 1.1 76.7 ± 0.8 81.4 ± 0.4 79.5 ± 0.3

GDOT (α = 0) 74.0 ± 4.7 73.3 ± 4.9 80.1 ± 0.5 77.2 ± 0.4 82.1 ± 0.3 80.0 ± 0.3

GDOT (β = 0) 71.6 ± 2.3 71.2 ± 2.6 80.2 ± 0.4 77.3 ± 0.3 82.3 ± 0.4 80.2 ± 0.4

GDOT 78.5 ± 4.0 78.1 ± 4.3 80.3 ± 0.8 77.3 ± 0.6 82.5 ± 0.3 80.4 ± 0.3
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