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ABSTRACT

It is well-known in the field of lossless data compression that probabilistic next-
symbol prediction can be used to compress sequences of symbols. Deep neural
networks are able to capture rich dependencies in data, offering a powerful means
of estimating these probabilities and hence an avenue towards more effective com-
pression algorithms. However, both compressor and decompressor must have ex-
actly matching predictions; even small non-deterministic differences (which often
happen with learned models due to hardware, software, or computation order)
can lead to cascading decoding failures. In this paper, we formalize the problem
of prediction mismatch in model-driven compression, and introduce Probability
Matching Interval Coding (PMATIC), a model-agnostic algorithm that tolerates
bounded prediction mismatch with low overhead. PMATIC works with the pre-
dicted probabilities, making it compatible as a drop-in replacement for the arith-
metic encoder in model-driven compression tools. We show theoretical correct-
ness and performance bounds for PMATIC, and validate these results on text data.
These results confirm that, when paired an advanced prediction model, PMATIC is
robust to prediction mismatch while achieving compression rates that out-perform
standard modern compression tools.

1 INTRODUCTION

1.1 MODEL-DRIVEN LOSSLESS COMPRESSION

A key task in modern information systems is data compression, the process of reducing the size of
text, images, video, or other data so it can be stored and transmitted more efficiently. In lossless
compression, the data is encoded into a compact representation from which the original can be
decoded exactly, in contrast to lossy compression, which only permits approximate reconstruction.
Compression is generally formalized as the problem of encoding a string of discrete symbols drawn
from a finite alphabet. In deep learning contexts, these symbols are often referred to as tokens. The
choice of symbols is domain-dependent: for text, tokens are typically subword units or characters;
for images, they may correspond to pixel intensities, color values, or transformed coefficients; and
for other domains, analogous discrete representations are used.

Lossless compression works by exploiting regularities in the data: common patterns are assigned
shorter codes, while rare patterns receive longer ones. These regularities may reflect simple statis-
tics, such as symbol frequencies, or more complex and context-dependent structure and even se-
mantic information. From this perspective, any lossless compression method implicitly defines a
probabilistic model of the data source, with compression effectiveness depending on how well the
model matches the true distribution. Some algorithms make this explicit, using predictive models
that estimate the probability of each symbol given its context [Cleary & Witten (1984)] in order to
generate the code; we refer to such algorithms as model-driven. Others, such as Lempel–Ziv–Welch
(LZW), ZIP, or bzip2, achieve their gains through dictionary-building or transforms, but nonetheless
rely on an implicit statistical model of the domain.1

In model-driven compression, the message is encoded sequentially, and for each symbol the model
makes a probabilistic prediction based on the context of the prior symbols so the encoding can more

1They can even be used to create explicit predictive models [Delétang et al. (2024)].
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efficiently allocate bits to potential outcomes. To convert the predictive model into a compression
algorithm, the standard technique is to pair the model with arithmetic coding [Pasco (1976); Ris-
sanen (1976); Guazzo (1980)]. Arithmetic coding represents an entire message as a subinterval of
[0, 1), successively narrowing the interval according to the predicted probabilities of each symbol.
More probable symbols shrink the interval less and thus yield shorter average descriptions, while
less probable symbols shrink it more and thus require more bits. Unlike Huffman coding [Huffman
(1952)] (another commonly used technique), arithmetic coding adapts particularly well to changing
and context-dependent probabilities for each symbol. If the model closely reflects the true distribu-
tion of the data, arithmetic coding yields compression rates approaching the information-theoretic
limit. However, it is extremely sensitive to numerical precision, and small deviations can propagate
through the algorithm.

Model-driven lossless compression has a long history, arguably going back to Shannon (1948),
where Shannon tallies frequencies of characters in English, building first, second, and third order
Markov model predictions. The arithmetic coding approach for model-driven compression was
discussed by Cleary & Witten (1984) and further developed with a number of statistical or learned
predictive models across many domains. Many of these models focus on deriving the prediction
model from only the previously seen encoded symbols. In Schmidhuber & Heil (1996), it is clarified
that “offline” models are those trained on a separate files and model parameters are shared among
all machines responsible for encoding and decoding. In contrast “online” models use the current file
to update predictions. Schmidhuber & Heil (1996) use offline neural networks and get competitive
compression ratios. Many other works since, Knoll (2025); Cox (2016); Goyal et al. (2018); Bellard
(2019); Liu et al. (2019) have used LSTMs and other recurrent neural networks as predictive models.
Transformers were used as the predictive model in Bellard (2019; 2021); Mao et al. (2022).

This general arithmetic coding-based lossless compression technique, particularly when paired with
modern neural network-driven predictive models, has been shown to have significant promise in
numerous domains beyond text compression. These domains include lossless image compression
Toderici et al. (2016); Schiopu et al. (2018); Mentzer et al. (2019); Rhee et al. (2022); Chen et al.
(2024), compression of large numerical datasets such as time-series power data Ma et al. (2022),
and neural network checkpoints Kim & Belyaev (2025).

The incredible success of modern neural networks, particularly transformers, for natural language
processing has led to increased interest in using the model-driven approach to create more powerful
and context-adaptive codes for natural language compression. Recent work by Delétang et al. (2024)
shows that offline model-driven compression using modern models such as Llama 2 or Chinchilla
with arithmetic coding can deliver significant improvement over state-of-the-art lossless compres-
sion algorithms across domains including text and vision. Concurrently, LLM-driven text com-
pression tools such as LLMZip [Valmeekam et al. (2023)] and llama-zip [Buzanis (2024)] were
introduced to take advantage of the capabilities of these advanced models.

1.2 LLM NON-DETERMINISM AND PREDICTION MISMATCH

Despite its promise, LLM-driven compression faces serious practical obstacles. For instance, the
LLM inference pipeline must run for each token during the encoding and decoding steps, which can
make the process prohibitively slow, since large language models are often computationally expen-
sive to execute. This also requires the model, which may contain many gigabytes of parameters,
to be stored, thus adding a large overhead cost in memory as well. Recent work, such as has been
done to address concerns about the computational performance of LLM-driven compression, such
as Mittu et al. (2024) on improving speeds for LLMZip.

Another significant challenge, which we call prediction mismatch, arises when compressed data is
transmitted between an encoder and decoder running on different machines. As noted in Witten
et al. (1987), arithmetic coding with adaptive probability models, “It must be possible for the de-
coder to produce exactly the same probability distribution in the same context”. Achieving this is
unexpectedly difficult with modern machine learning models due to LLM non-determinism.

Non-determinism in the setting of machine learning and scientific computing means that multiple
runs of the same program with identical inputs (and identical random seeds) can produce different
outputs [Cooper et al. (2022); Semmelrock et al. (2025)]. One source of non-determinism occurs
in GPU hardware: floating point operations which are performed in a different order may result in
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different outcomes due to rounding. These small numerical deviations, in a full inference pipeline
run, can cascade into large differences in what a model predicts [Shanmugavelu et al. (2025); Chen
et al. (2022)]. GPU libraries, like CUDA and cuDNN, state specifically in their documentation
that they do not guarantee determinism or reproducibility in many circumstances, such as when
different versions or architectures are used [NVIDIA Corporation (2025a;b)]. The effects of non-
determinism in CUDA is studied in Eryilmaz et al. (2024) where they note that non-determinism is
likely to remain in CUDA because of the runtime benefits CUDA gains through using parallelism.
Non-determinism in GPUs have also been examined and explored by Morin & Willetts (2020).
Works such as Coakley et al. (2022) and Atil et al. (2025) examined the issue of non-determinism
experimentally, finding significant variability, and Schlögl et al. (2023) study its causes.

Applying arithmetic coding directly under these conditions is usually immediately fatal: even subtle
differences in the encoder and decoder probability distributions can result in an incorrectly decoded
token, which then cascades to the rest of the message as it changes the context of subsequent tokens.

If the mismatch between the encoder and decoder distributions is arbitrarily large, recovery is im-
possible. However, if the mismatch is known to be small, they can exploit this closeness to reach
exact agreement on a third probability distribution. This robustness incurs a cost in compression
efficiency: the encoder will generally have to send extra information to ensure agreement, and the
agreed probability distribution may be less accurate than the original predictions. We refer to the
problem of constructing a shared distribution while minimizing the cost as probability matching.

1.3 CONTRIBUTIONS

This work introduces the probability matching problem as a framework for addressing prediction
mismatch in model-driven lossless compression and proposes PMATIC (Probability-Matched Inter-
val Coding) to address it. PMATIC is designed to convert any predictive model into a compression
algorithm which is robust to bounded prediction mismatch, and to be a drop-in replacement for
arithmetic coding in model-driven compression. This work also shows the following results:

• Theory: We prove that PMATIC guarantees correct decoding under a simple and general
model of bounded prediction mismatch (Section 2.1), and give theoretical bounds on the
cost incurred to ensure this robustness.

• Practice: We demonstrate experimentally that LLM-driven compression using PMATIC
achieves compression ratios significantly better than current standard methods, while re-
maining robust to prediction mismatch.

To our knowledge, this is the first work to explicitly address LLM non-determinism and prediction
mismatch as fundamental obstacles to model-driven compression. In Section 5, we validate our
approach by applying PMATIC with Llama 3.1 as the predictive model on Wikipedia data in the
presence of synthetically generated prediction mismatch. PMATIC is a proof of concept that small
amounts of variability in LLM computations can be combated in the application of data compression.

2 PROBLEM STATEMENT

Consider the case where an encoder and decoder are using the same model (such as a spe-
cific LLM with the same weights) to compute next-token probabilities over an input string x =
x(1)x(2) . . . x(n) whose entries x(i) are taken from a finite alphabet A of possible symbols. We
use the following notation: the i-symbol prefix of x is denoted as xi := x(1) . . . x(i); the set of all
finite strings drawn from the alphabet A is denoted as A∗ :=

⋃
i≥0 A

i.

Typically, an LLM computes its next-token probabilities by computing a real-valued (or, rather,
floating-point valued) weight, called a logit, for each outcome and then applying the softmax func-
tion to the vector of logits2Let functions MEnc,MDec : A∗ → RA take a string of symbols (the
context) and return a logit value for each symbol in the alphabet, representing what happens when
the model is run for inference at the encoder and decoder ends, respectively. We denote the predic-

2For simplicity we use the standard softmax with a ‘temperature’ parameter of 1.
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tions of MEnc,MDec for token i (expressed as logit vectors) as

u(i) := MEnc(xi−1) and v(i) := MDec(xi−1) (1)

which respectively induce probability vectors p(i) = softmax(u(i)) and q(i) = softmax(v(i)),
i.e. for any i ∈ [n] and k ∈ A,

p(i)k = softmax(u(i))k :=
eu(i)k∑
j∈A eu(i)j

and q(i)k = softmax(v(i))k :=
ev(i)k∑
j∈A ev(i)j

. (2)

When the token number i is fixed, we may drop it from the notation for clarity, so that the encoder
and decoder return logit vectors u,v which induce probability distributions p, q respectively.

We denote the encoding and decoding algorithms (also called compressing and decompressing, re-
spectively) as functions whose operation depends on an LLM model (MEnc and MDec respectively)
as well as on more traditional inputs. Specifically, the encoder takes LLM MEnc and input token
string x and returns a bitstring b which is the encoded input. Then, the decoder takes b and its own
LLM MDec and returns a decoded string x̂:

Enc(MEnc;x) = b and Dec(MDec; b) = x̂ . (3)

Given a constraint on the difference between MEnc and MDec’s outputs on any given context, we
say that the algorithm is mismatch-tolerant with respect to that constraint if, for all MEnc,MDec that
satisfy the constraint,

Dec(MDec; Enc(MEnc;x)) = x for all x . (4)

The goal is to design algorithms which can tolerate a given amount of mismatch between the encoder
and decoder probability distributions while minimizing the cost in compression efficiency.

2.1 THE BOUNDED PREDICTION MISMATCH SETTING

Since the encoder and decoder are using the same LLM on the same inputs, it is reasonable to
assume that they obtain logits whose difference is bounded by some reasonably small ε > 0. A
natural choice for this is to assume that their difference has bounded L∞ norm (i.e. elementwise):
∥u−v∥∞ := maxk∈A |uk−vk| ≤ ε. We first define the following a measure of difference between
two probability distributions:
Definition 1. The conditional total variation distance (dCTV) between two probability distributions
p, q on an alphabet A is defined as the maximum total variation distance (dTV) of p and q after
conditioning on some (nonempty) S ⊆ A, i.e.

dCTV(p, q) := max
∅̸=S⊆A

dTV(p(·|S), q(·|S)) (5)

where p(·|S) and q(·|S) are, respectively, p and q conditioned on the outcome being in S.

Note that there is no divide-by-zero issue with conditioning on any (nonempty) S since all probabil-
ities are induced via the softmax function and hence strictly positive. Bounded prediction mismatch
then bounds conditional TV distance:
Proposition 1. If u,v induce probability distributions p = softmax(u) and q = softmax(v) over
A, and ∥u− v∥∞ ≤ ε, then dCTV(p, q) ≤ ε

2 .

Proof. Using the definition of TV distance, the conditional TV distance can be rewritten as

dCTV(p, q) = max
∅̸=S⊆A
S∗⊆S

|p(S∗|S)− q(S∗|S)| (6)

=⇒ max
∥u−v∥∞≤ε

dCTV(p, q) = max
∥u−v∥∞≤ε

max
∅̸=S⊆A
S∗⊆S

|p(S∗|S)− q(S∗|S)| (7)

= max
∅̸=S⊆A
S∗⊆S

max
∥u−v∥∞≤ε

|p(S∗|S)− q(S∗|S)| (8)

4
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So, if max
∥u−v∥∞≤ε

|p(S∗|S)− q(S∗|S)| ≤ ε
2 for all S∗ ⊆ S ⊆ A, then max

∥u−v∥∞≤ε
dCTV(p, q) ≤ ε

2 .

In other words, the conditional TV distance between p, q induced by ∥u−v∥∞ ≤ ε can be bounded
by first fixing S∗ ⊆ S ⊆ A and then bounding |p(S∗|S) − q(S∗|S)| over all p, q whose logits are
within ε of each other in L∞ distance. We assume WLOG that the u,v maximizing |p(S∗|S) −
q(S∗|S)| has q(S∗|S) > p(S∗|S) (otherwise S∗ can be changed into S\S∗), so the goal is to
maximize q(S∗|S)− p(S∗|S) given the logit L∞ bound. This is achieved by letting

vk = uk + ε for k ∈ S∗ and uk − ε for k ̸∈ S∗ (9)
Let p∗ := p(S∗|S) and q∗ := q(S∗|S), which are both scalars in [0, 1]. Then, given (9),

q∗ =

∑
k∈S∗ euk+ε∑

k∈S∗ euk+ε +
∑

k∈S\S∗ euk−ε
=

eεp∗

eεp∗ + e−ε(1− p∗)
(10)

=⇒ q∗ − p∗ ≤ max
p∗∈[0,1]

( eεp∗

eεp∗ + e−ε(1− p∗)
− p∗

)
= tanh

(ε
2

)
≤ ε

2
. (11)

Tracing this bound back to the conditional TV distance concludes the proof.

3 THE PMATIC ALGORITHM

The Probability Matching Interval Coding (PMATIC) algorithm addresses prediction mismatch by
ensuring that the encoder and decoder use a common probability distribution for each token. The first
step of PMATIC is to convert the input token string into a bitstring using a dictionary that associates
each token with a length-ℓ := ⌈log2(| A |)⌉ bitstring. We will call each bit in this bitstring a token bit.
PMATIC encodes these tokens bits with arithmetic coding using next-bit conditional probabilities
derived from the token’s encoder prediction vector. At each step, the next-bit prediction is a scalar
in [0, 1] giving the probability that the token bit equals 1. The key idea is to divide the interval
[0, 1] into a set of bins (disjoint equal-length intervals which cover [0, 1]). Then, instead of using
their exact predictions, the encoder and decoder use either the center of the bin their predictions
fall into or the nearest boundary between two bins; which one to use is decided by the encoder and
communicated to the decoder by use of auxiliary ‘helper’ bits, which are also sent via arithmetic
coding. This procedure can be viewed as quantizing the probability of each token bit.

For any token xi in the message, we denote its corresponding bitstring by bi := bi(1) . . . bi(ℓ) and
define the following parameters and notation:

• δ > 0, which represents the amount of prediction mismatch (per bit) which the algorithm
can tolerate, as measured by conditional TV distance.

• r > 0 is the radius of the quantization bins (so the width of a bin is 2r); r will be chosen
to maximize performance given δ. We will assume that r = 1/(2m) for some integer m;
in practice this entails rounding r up or down slightly to the nearest such value, which will
still be at the correct scale relative to δ. We also always set r > 2δ.

• Let h(p) := p log
(
1
p

)
+ (1 − p) log

(
1

1−p

)
be the binary entropy function (the entropy of

a Bernoulli random variable with probability p), and H(p) be the more general entropy
function for a probability vector p over a finite set.

• Let DKL(p∥q) := p log
(
p
q

)
+(1− p) log

(
1−p
1−q

)
be the binary Kullback Liebler divergence

(the divergence between two Bernoulli random variables with proabilities p, q respectively).

• Let Sbj−1
i

:= {a ∈ {0, 1}ℓ : aj−1 = bj−1
i } denote the set of length-ℓ bitstrings whose first

j − 1 bits agree with bi.

3.1 THE PMATIC ENCODER

Consider encoding the jth bit, bi(j), of token xi. Let the encoder and decoder prediction vectors for
token i be, respectively, p(i) := softmax(MEnc(xi−1)) and q(i) := softmax(MDec(xi−1)). The
predictions for the jth bit bi(j) for the encoder and decoder, conditional on the prior bits in bi, are

pi(j) := Pp(i)

[
bi(j) = 1 |Sbj−1

i

]
and qi(j) := Pq(i)

[
bi(j) = 1 |Sbj−1

i

]
(12)
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These can be computed directly using p(i) (or q(i)) by setting all values outside of Sbj−1
i

to 0 and
renormalizing to get the conditional probability distribution.

The interval [0, 1] is then split into radius-r intervals, which we call bins, I1, I2, . . . Im, where
m = 1/(2r) (which, as assumed above, is an integer) and Ik = [2r(k − 1), 2rk]. The center of bin
Ik is therefore ck := 2r(k − 1) + r, and we denote the δ-interior of Ik (the set of points in Ik at
least δ away from any point outside Ik) by

Iδk =


[0, 2r − δ] if k = 1

[2r(m− 1) + δ, 1] if k = m

[2r(k − 1) + δ, 2rk − δ] if k ̸= 1,m

(13)

Iδ1 , I
δ
m need special definition as they have an edge next to the edge of [0, 1] instead of another bin.

Note that if pi(j) ∈ Iδk and |pi(j)− qi(j)| ≤ δ, then qi(j) ∈ Ik, and that if pi(j) ̸∈ Iδk for all k, then
there is instead a unique integer k ̸= 1,m for which |2rk − pi(j)| < δ.

In addition to the token bit bi(j), PMATIC encodes (prior to the token bit) a helper bit

b′i(j) =

{
0 if bi(j) ∈ Iδk for some k

1 otherwise
(14)

This encoding is done with arithmetic coding using probabilities p′ := δ/r for the helper bit and

p̂i(j) =

{
ck = 2r(k − 1) + r if pi(j) ∈ Iδk
2rk for the integer k s.t. |2rk − pi(j)| < δ otherwise

(15)

for the token bit. The probability p̂i(j) is the common probability of token bit j that both the encoder
and decoder agree to use.

The intuition for the helper bits is that when pi(j) ∈ Iδk , the encoder knows that the decoder’s
probability qi(j) ∈ Ik (the same bin), so the encoder quantizes to the bin center and tells the decoder
to do the same by sending the helper bit b′i(j) = 0. If pi(j) is not in the δ-interior of its bin, the
encoder no longer knows that the decoder probability lies in the same bin. However, in this case both
probabilities must be near the same boundary point between two bins, so the encoder quantizes to
the nearest boundary point and tells the decoder to do the same by sending the helper bit b′i(j) = 1.
In either case, they agree on the probability to use for encoding and decoding. The probability of
being in the δ-interior of a bin is ≈ δ/r, which is very small if r ≫ δ. This gives the helper bits low
entropy and hence makes them highly compressible via arithmetic coding.

To summarize, given a token xi and context xi−1, the PMATIC encoder does the following:

1. Computes p(i) = softmax(MEnc(xi−1)), gets the bitstring bi corresponding to xi, and
computes the conditional next-bit probabilities pi(1), . . . , pi(ℓ) ∈ [0, 1].

2. Computes for each bit bi(j) the helper bit b′i(j) and quantized probability p̂i(j) ((14), (15)).
3. Encodes the bitstring b′i(1)bi(1) . . . b

′
i(ℓ)bi(ℓ) using arithmetic coding, where the encoding

probability for each helper bit b′i(j) is p′ = δ/r and the encoding probability for each token
bit bi(j) is p̂i(j).

3.2 THE PMATIC DECODER

The PMATIC decoder takes the encoded message y and decodes it sequentially in pairs of bits.
Each pair consists of a helper bit and a token bit; the helper bit is decoded first using p′ = δ/r
as the probability (since helper bits are always encoded using this probability), and determines the
quantized probability to use. Analogous to the encoder next-bit prediction, let the decoder next-bit
prediction for bit j of token i be denoted qi(j). Then the decoder decodes the token bit using the
quantized probability:

q̂i(j) =

{
ck for k s.t. qi(j) ∈ Ik if b′i(j) = 0

2rk for k ∈ {1, . . . ,m− 1} s.t. |2rk − qi(j)| is minimized if b′i(j) = 1
(16)

After decoding all the bits, the helper bits are discarded and the token bits are converted back into
a token string using the token-bitstring dictionary. PMATIC is successful when q̂i(j) is the same as
p̂i(j) produced in the encoder step. This is discussed in greater detail in the next section.
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4 ANALYSIS

We wish to: (i) show that PMATIC ensures correct decoding if the conditional TV distance be-
tween the encoder and decoder token predictions is at most δ; (ii) show (in expectation) theoretical
performance bounds. Since we compress in bits, all logarithms are base-2 unless noted otherwise.

4.1 CORRECTNESS

Theorem 1. If dCTV(p(i), q(i)) ≤ δ, then q̂i(j) = p̂i(j) for all j (i.e. the encoder and decoder will
agree on the quantized probabilities for all bits corresponding to token xi).

Proof. Consider bit j of token i; without loss of generality we can assume that all previous bits in i
and all previous tokens were decoded correctly (since, if any bits are incorrectly decoded, there must
be a first one). Since dCTV(p(i), q(i)) ≤ δ, we know that |pi(j)− qi(j)| ≤ δ (since pi(j), qi(j) are
derived by conditioning p(i), q(i) on the outcome coming from the set Sbj−1

i
).

First, the decoder will decode the helper bit b′i(j) using the probability δ/r. Since δ/r is fixed and
used for all helper bits, the encoder and decoder probabilities match and the helper bit is decoded
correctly. Now we consider two cases: b′i(j) = 0, and b′i(j) = 1.

If b′i(j) = 0, this means that computed encoder next-bit predictor pi(j) falls in the δ-interior Iδk of
some bin; since |pi(j) − qi(j)| ≤ δ, this means qi(j) ∈ Ik (not necessarily the δ-interior, just the
bin itself). Thus, since both the encoder and decoder quantize to the center ck of the bin, we have
p̂i(j) = q̂i(j) = ck and the token bit is encoded correctly.

If b′i(j) = 1, then there is some k ∈ {1, . . . ,m− 1} such that |pi(j)− 2rk| ≤ δ (note that 2rk here
is the boundary between two bins). Then, since we set r > 2δ and bins have width 2r:

|pi(j)− 2rk| ≤ δ =⇒ |qi(j)− 2rk| ≤ 2δ (17)

=⇒ |qi(j)− 2rk′| ≥ 2r − 2δ > 2δ for any integer k′ ̸= k (18)
=⇒ q̂i(j) = 2rk = p̂i(j). (19)

Thus, in either case, the encoder and decoder agree on the next-bit probability for bi(j) and the
decoder will decode the bit and update the arithmetic code interval correctly.

Note that, by Theorem 1 and Proposition 1, if the LLM has logits that differ by at most ε between
the encoder and decoder, then compressing with PMATIC using δ = ε/2 guarantees correctness.

4.2 COMPRESSION LOSS

For the compression performance analysis, we make the following simplifying assumptions:

• The encoder’s next-token probabilities are the true probabilities. This means that the ex-
pected increase in message length for each bit bi(j) is DKL(pi(j)∥p̂i(j)) (Cover & Thomas,
2006, Thm 5.4.3), and that the no-mismatch optimal expected message length per token xi

is H(pi) where H(·) is the entropy.

• Within each individual bin, the encoder next-bit probability is roughly uniformly distributed
(so e.g. it’s not disproportionately likely to fall next to the bin boundary and the probability
of being within δ of a bin boundary is ≈ δ/r).3

We consider the compression loss of PMATIC over traditional (non-mismatch-tolerant) arithmetic
coding, i.e. the extra message length incurred by PMATIC in order to tolerate a conditional TV
distance bound of δ with a bin width of r. This loss comes from two sources:

3This assumption is reasonable and holds up well in practice if the bins are relatively small. If desired,
PMATIC can modified so that this assumption is not necessary for the analysis, by adding a PRNG (pseudo-
random number generator) to the encoder and decoder to (pseudo)randomly translate the bins by a value within
[−r, r]. This ensures that for any pi(j), it has at most δ/r chance of being within δ of a bin boundary.
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1. Helper bit encoding: the helper bits require extra message bits to send. Since all helper bits
are (approximately) Bernoulli with parameter δ/r, the expected extra encoding length per
helper bit is the binary entropy h(δ/r) = δ

r log
(
r
δ

)
+

(
r−δ
r

)
log

(
r

r−δ

)
.

If r ≫ δ, then the first term dominates and the entropy of each helper bit is ≈ δ
r log

(
r
δ

)
.

2. Quantization loss: the quantized probability p̂i(j) is different than the true probability
pi(j), incurring a quantization loss of DKL(pi(j)∥p̂i(j)).
Since r ≤ p̂i(j) ≤ 1−r (all bin centers and boundaries are in [r, 1−r]) and |pi(j)−p̂i(j)| ≤
r, the quantization loss satisfies DKL(pi(j)∥p̂i(j)) ≤ 2 log(e)r, since KL divergence is
bounded above by χ2 divergence (Polyanskiy & Wu, 2025, Ch. 7):

DKL(pi(j)∥p̂i(j)) ≤ log(e)
(pi(j)− p̂i(j))

2

p̂i(j)(1− p̂i(j))
≤ 2 log(e)r (20)

since the numerator is ≤ r2 and the denominator is ≥ (1/2)r.

Note that these losses respond in opposite directions when the bin radius r is increased: larger bins
mean lower helper bit entropy but a bigger difference between the true probability and the quantized
probability. This means that setting r to balance the loss terms gives an approximate minimizer of
the objective function: any other r′ ̸= r will make one of the loss terms larger, so balancing the loss
terms incurs a total loss of at most 2 times the optimal. This is achieved (approximately) with

2 log(e)r =
δ

r
log

(r
δ

)
=⇒ r ≈

√
δ log

(
1
δ

)
√
2 log e

(21)

and yields a total loss on the order of O
(√

δ log
(
1
δ

))
(note that one of the loss terms is itself O(r),

so the total loss should be proportional to r when balancing the loss terms).

5 EXPERIMENTS

We test PMATIC on text using Llama 3.1 8B (quantized) as the predictive model and synthetic mis-
matched probabilities, and compare to gzip and non-mismatch-robust Llama-driven compression.

5.1 SETUP

We run our experiment on two datasets. One dataset is the first (nearly) 10 MB of the enwik8
benchmark Hutter (2006), consisting of a collection of Wikipedia articles from 2006. We split our
file into smaller files of size ≈ 5 KB and compress each file separately. In total this is composed of
1, 329, 443 words (9, 923, 563 characters) which get tokenized into 2, 598, 410 tokens. The second
dataset consists of 1000 randomly selected articles from Wikipedia (pulled in September 2025) with
non-ASCII characters removed; in total this is composed of 401, 786 words (2, 558, 990 characters)
which get tokenized into 596, 154 tokens. Each article is compressed individually.

We run our algorithm with two choices of r, δ. The first setting uses δ = 0.001 and r = 0.05. Given
δ = 0.001, the approximate minimizer r given in (21) would be r ≈ 0.047; we choose r = 0.05
since it is close and divides [0, 1] into intervals evenly. The second setting uses δ = 0.00001 and
r = 0.005, with r chosen again to be on the right scale and to divide the [0, 1] evenly.4

We used a quantized version of Llama 3.1 8B as our LLM model [Grattafiori et al. (2024)]. This
model includes a tokenizer with a 128, 256-token alphabet. To speed up the algorithm, we use a
rolling context window of maximum size 512 which resets every 256 tokens via truncation: each
time the context length reaches 512, we drop the oldest 256 tokens. Our program ran on a high-
preformance computing system with Xeon CPU nodes and Volta GPUs.

The first step of our processing is to tokenize each file. Since PMATIC assigns each token in the
alphabet a unique fixed-length bitstring, we assign a random 17-bit5 representation for each token
and convert the file to a bitstring. The same bitstring dictionary is used across all files in each setting.

4Since we chose r only through a rough approximation of the optimization process, it may be possible to
improve performance by further refining the value of r.

5Each token requires a length-17 bitstring representation since ⌈log(128, 256)⌉ = 17.
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Setting 1 Setting 2 No mismatch gzip
r 0.05 0.005
δ 0.001 0.00001

logit mismatch bound 0.002 0.00002 0.0
1000 Articles Bits per token 5.34 3.52 2.81 16.41

Bits per character 1.24 0.82 0.65 3.82
Total file size (bytes) 398,073 262,643 209,317 1,223,143

Compression ratio 13.30% 8.78% 7.00% 40.88%
enwik8 Bits per token 4.13 2.59 2.38 14.11

Bits per character 1.08 0.68 0.62 3.70
Total file size (bytes) 1,343,029 840,678 773,785 4,583,706

Compression ratio 13.53% 8.47% 7.80% 46.19%

Figure 1: Compression results of PMATIC algorithm with two robustness levels compared to 1)
when the same LLM-driven compression is used when there is no mismatch and 2) gzip (mod-
ern standard for text compression). The total raw size of the 1000 random Wikipedia articles is
2, 992, 016 bytes. We use the first ≈ 10 MB of enwik8, with total raw size 9, 923, 563 bytes.

The maximum logit mismatch is selected in each setting to be ε = 2δ, to ensure the conditional
TV distance is always at most δ (as per Proposition 1). The encoding of the text is done with the
probabilities given by the model. We then create a synthetic mismatched probability distribution for
the decoder by adding IID uniform noise from [−ε, ε] to each logit of the encoder’s distribution.

Encoding and decoding the helper and token bits generated by PMATIC is done with arithmetic
coding, using the implementation from Buzanis (2024).

5.2 RESULTS

PMATIC successfully decoded all files, validating our theoretical correctness result, and its per-
formance validates the theoretical performance analysis. Our results show that PMATIC provides
robustness to numerical deviations without significant loss over the extremely good rates of LLM-
based compression on text. PMATIC increases the number of bits per token by ≈ 2 to tolerate
a 0.002 mismatch per logit, and by ≈ 0.2 to tolerate a 0.00002 mismatch per logit, and achieves
significantly better compression rates than gzip, a widely-used modern compression algorithm.

6 FUTURE WORK

While PMATIC has good theoretical and experimental performance in enabling model-driven com-
pression to tolerate bounded prediction mismatch, there remain significant challenges. While
PMATIC was validated using synthetic prediction mismatch, it remains to be validated on datasets
that include real-world LLM prediction mismatch. A related problem is to extend PMATIC (or
design another mismatch-robust coding technique) to allow for stochastically-bounded mismatch
rather than mismatch with a hard upper bound for all logits. For practical usage, the tradeoff be-
tween prediction model size, compression efficiency, and computational performance should be
characterized so that a model exhibiting a good balance of these characteristics can be chosen.

In addition, the fundamental limits of model-driven compression under prediction mismatch (that
is, how much additional message length is mathematically required to correct a given amount of po-
tential mismatch) remain unknown, and theoretical research into the mathematical and information-
theoretic properties of the problem will be needed to address these fundamental limits.

Finally, LLM (and large neural network) non-determinism remains a significant challenge in several
contexts outside of model-driven compression, such as ensuring reproducibility of experimental re-
sults in machine learning. It may be interesting to explore whether PMATIC, or similar approaches,
might offer certain tools to address LLM non-determinism in these contexts.
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A APPENDIX

A.0.1 LLM USAGE

We used LLMs (specifically GPT-5) as an assistant for the background literature search, writing, and
coding. This entailed asking the LLM to: search for and summarize related papers; write sample
paragraphs, which we could then use as a guideline for our own writing or take phrases from; and
explain any terms we came across which we were unsure of.

For the code for our experiments, we consulted LLMs in several different ways. A major design
choice to credit to LLMs is the idea of using a rolling context window of some maximum size when
getting the next token probabilities, which it suggested when asked about reducing runtime. We also
asked LLMs to write various small parts of the code which are standard operations, for instance, a
script to aggregate statistics for the experiments to be printed on the screen, a function that changes
byte arrays to bitstrings, some helper functions to setup arithmetic coding when running without
PMATIC, and even a one line function to compute entropy. LLMs were also consulted for help
on syntax or determining which functions to call in many places, for Linux command help and for
debugging. In the earlier iterations of our code, we used LLM generated code to setup the Llama
model, but later many of those critical parts were replaced. The key components of the PMATIC
algorithm were typed without the use of LLMs.
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