
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SYNCHRONIZING PROBABILITIES IN MODEL-DRIVEN
LOSSLESS COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

It is well-known in the field of lossless data compression that probabilistic next-
symbol prediction can be used to compress sequences of symbols. Deep neural
networks are able to capture rich dependencies in data, offering a powerful means
of estimating these probabilities and hence an avenue towards more effective com-
pression algorithms. However, both compressor and decompressor must have ex-
actly matching predictions; even small non-deterministic differences (which often
happen with learned models due to hardware, software, or computation order)
can lead to cascading decoding failures. In this paper, we formalize the problem
of prediction mismatch in model-driven compression, and introduce Probability
Matching Interval Coding (PMATIC), a model-agnostic algorithm that tolerates
bounded prediction mismatch with low overhead. PMATIC works with the pre-
dicted probabilities, making it compatible as a drop-in replacement for the arith-
metic encoder in model-driven compression tools. We show theoretical correct-
ness and performance bounds for PMATIC, and validate these results on text data.
These results confirm that, when paired an advanced prediction model, PMATIC is
robust to prediction mismatch while achieving compression rates that out-perform
standard modern compression tools.

1 INTRODUCTION

1.1 MODEL-DRIVEN LOSSLESS COMPRESSION

A key task in modern information systems is data compression, the process of reducing the size of
text, images, video, or other data so it can be stored and transmitted more efficiently. In lossless
compression, the data is encoded into a compact representation from which the original can be
decoded exactly, in contrast to lossy compression, which only permits approximate reconstruction.
Compression is generally formalized as the problem of encoding a string of discrete symbols drawn
from a finite alphabet. In deep learning contexts, these symbols are often referred to as tokens. The
choice of symbols is domain-dependent: for text, tokens are typically subword units or characters;
for images, they may correspond to pixel intensities, color values, or transformed coefficients; and
for other domains, analogous discrete representations are used.

Lossless compression works by exploiting regularities in the data: common patterns are assigned
shorter codes, while rare patterns receive longer ones. These regularities may reflect simple statis-
tics, such as symbol frequencies, or more complex and context-dependent structure and even se-
mantic information. From this perspective, any lossless compression method implicitly defines a
probabilistic model of the data source, with compression effectiveness depending on how well the
model matches the true distribution. Some algorithms make this explicit, using predictive models
that estimate the probability of each symbol given its context [Cleary & Witten (1984)] in order to
generate the code; we refer to such algorithms as model-driven. Others, such as Lempel–Ziv–Welch
(LZW), ZIP, or bzip2, achieve their gains through dictionary-building or transforms, but nonetheless
rely on an implicit statistical model of the domain.1

In model-driven compression, the message is encoded sequentially, and for each symbol the model
makes a probabilistic prediction based on the context of the prior symbols so the encoding can more

1They can even be used to create explicit predictive models [Delétang et al. (2024)].

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

efficiently allocate bits to potential outcomes. To convert the predictive model into a compression
algorithm, the standard technique is to pair the model with arithmetic coding [Pasco (1976); Ris-
sanen (1976); Guazzo (1980)]. Arithmetic coding represents an entire message as a subinterval of
[0, 1), successively narrowing the interval according to the predicted probabilities of each symbol.
More probable symbols shrink the interval less and thus yield shorter average descriptions, while
less probable symbols shrink it more and thus require more bits. Unlike Huffman coding [Huffman
(1952)] (another commonly used technique), arithmetic coding adapts particularly well to changing
and context-dependent probabilities for each symbol. If the model closely reflects the true distribu-
tion of the data, arithmetic coding yields compression rates approaching the information-theoretic
limit. However, it is extremely sensitive to numerical precision, and small deviations can propagate
through the algorithm.

Model-driven lossless compression has a long history, arguably going back to Shannon (1948),
where Shannon tallies frequencies of characters in English, building first, second, and third order
Markov model predictions. The arithmetic coding approach for model-driven compression was
discussed by Cleary & Witten (1984) and further developed with a number of statistical or learned
predictive models across many domains. Many of these models focus on deriving the prediction
model from only the previously seen encoded symbols. In Schmidhuber & Heil (1996), it is clarified
that “offline” models are those trained on a separate files and model parameters are shared among
all machines responsible for encoding and decoding. In contrast “online” models use the current file
to update predictions. Schmidhuber & Heil (1996) use offline neural networks and get competitive
compression ratios. Many other works since, Knoll (2025); Cox (2016); Goyal et al. (2018); Bellard
(2019); Liu et al. (2019) have used LSTMs and other recurrent neural networks as predictive models.
Transformers were used as the predictive model in Bellard (2019; 2021); Mao et al. (2022).

This general arithmetic coding-based lossless compression technique, particularly when paired with
modern neural network-driven predictive models, has been shown to have significant promise in
numerous domains beyond text compression. These domains include lossless image compression
Toderici et al. (2016); Schiopu et al. (2018); Mentzer et al. (2019); Rhee et al. (2022); Chen et al.
(2024), compression of large numerical datasets such as time-series power data Ma et al. (2022),
and neural network checkpoints Kim & Belyaev (2025).

The incredible success of modern neural networks, particularly transformers, for natural language
processing has led to increased interest in using the model-driven approach to create more powerful
and context-adaptive codes for natural language compression. Recent work by Delétang et al. (2024)
shows that offline model-driven compression using modern models such as Llama 2 or Chinchilla
with arithmetic coding can deliver significant improvement over state-of-the-art lossless compres-
sion algorithms across domains including text and vision. Concurrently, LLM-driven text com-
pression tools such as LLMZip [Valmeekam et al. (2023)] and llama-zip [Buzanis (2024)] were
introduced to take advantage of the capabilities of these advanced models.

1.2 LLM NON-DETERMINISM AND PREDICTION MISMATCH

Despite its promise, LLM-driven compression faces serious practical obstacles. For instance, the
LLM inference pipeline must run for each token during the encoding and decoding steps, which can
make the process prohibitively slow, since large language models are often computationally expen-
sive to execute. This also requires the model, which may contain many gigabytes of parameters,
to be stored, thus adding a large overhead cost in memory as well. Recent work, such as has been
done to address concerns about the computational performance of LLM-driven compression, such
as Mittu et al. (2024) on improving speeds for LLMZip.

Another significant challenge, which we call prediction mismatch, arises when compressed data is
transmitted between an encoder and decoder running on different machines. As noted in Witten
et al. (1987), arithmetic coding with adaptive probability models, “It must be possible for the de-
coder to produce exactly the same probability distribution in the same context”. Achieving this is
unexpectedly difficult with modern machine learning models due to LLM non-determinism.

Non-determinism in the setting of machine learning and scientific computing means that multiple
runs of the same program with identical inputs (and identical random seeds) can produce different
outputs [Cooper et al. (2022); Semmelrock et al. (2025)]. One source of non-determinism occurs
in GPU hardware: floating point operations which are performed in a different order may result in

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

different outcomes due to rounding. These small numerical deviations, in a full inference pipeline
run, can cascade into large differences in what a model predicts [Shanmugavelu et al. (2025); Chen
et al. (2022)]. GPU libraries, like CUDA and cuDNN, state specifically in their documentation
that they do not guarantee determinism or reproducibility in many circumstances, such as when
different versions or architectures are used [NVIDIA Corporation (2025a;b)]. The effects of non-
determinism in CUDA is studied in Eryilmaz et al. (2024) where they note that non-determinism is
likely to remain in CUDA because of the runtime benefits CUDA gains through using parallelism.
Non-determinism in GPUs have also been examined and explored by Morin & Willetts (2020).
Works such as Coakley et al. (2022) and Atil et al. (2025) examined the issue of non-determinism
experimentally, finding significant variability, and Schlögl et al. (2023) study its causes.

Applying arithmetic coding directly under these conditions is usually immediately fatal: even subtle
differences in the encoder and decoder probability distributions can result in an incorrectly decoded
token, which then cascades to the rest of the message as it changes the context of subsequent tokens.

If the mismatch between the encoder and decoder distributions is arbitrarily large, recovery is im-
possible. However, if the mismatch is known to be small, they can exploit this closeness to reach
exact agreement on a third probability distribution. This robustness incurs a cost in compression
efficiency: the encoder will generally have to send extra information to ensure agreement, and the
agreed probability distribution may be less accurate than the original predictions. We refer to the
problem of constructing a shared distribution while minimizing the cost as probability matching.

1.3 CONTRIBUTIONS

This work introduces the probability matching problem as a framework for addressing prediction
mismatch in model-driven lossless compression and proposes PMATIC (Probability-Matched Inter-
val Coding) to address it. PMATIC is designed to convert any predictive model into a compression
algorithm which is robust to bounded prediction mismatch, and to be a drop-in replacement for
arithmetic coding in model-driven compression. This work also shows the following results:

• Theory: We prove that PMATIC guarantees correct decoding under a simple and general
model of bounded prediction mismatch (Section 2.1), and give theoretical bounds on the
cost incurred to ensure this robustness.

• Practice: We demonstrate experimentally that LLM-driven compression using PMATIC
achieves compression ratios significantly better than current standard methods, while re-
maining robust to prediction mismatch.

To our knowledge, this is the first work to explicitly address LLM non-determinism and prediction
mismatch as fundamental obstacles to model-driven compression. In Section 5, we validate our
approach by applying PMATIC with Llama 3.1 as the predictive model on Wikipedia data in the
presence of synthetically generated prediction mismatch. PMATIC is a proof of concept that small
amounts of variability in LLM computations can be combated in the application of data compression.

2 PROBLEM STATEMENT

Consider the case where an encoder and decoder are using the same model (such as a spe-
cific LLM with the same weights) to compute next-token probabilities over an input string x =
x(1)x(2) . . . x(n) whose entries x(i) are taken from a finite alphabet A of possible symbols. We
use the following notation: the i-symbol prefix of x is denoted as xi := x(1) . . . x(i); the set of all
finite strings drawn from the alphabet A is denoted as A∗ :=

⋃
i≥0 A

i.

Typically, an LLM computes its next-token probabilities by computing a real-valued (or, rather,
floating-point valued) weight, called a logit, for each outcome and then applying the softmax func-
tion to the vector of logits2Let functions MEnc,MDec : A∗ → RA take a string of symbols (the
context) and return a logit value for each symbol in the alphabet, representing what happens when
the model is run for inference at the encoder and decoder ends, respectively. We denote the predic-

2For simplicity we use the standard softmax with a ‘temperature’ parameter of 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

tions of MEnc,MDec for token i (expressed as logit vectors) as

u(i) := MEnc(xi−1) and v(i) := MDec(xi−1) (1)

which respectively induce probability vectors p(i) = softmax(u(i)) and q(i) = softmax(v(i)),
i.e. for any i ∈ [n] and k ∈ A,

p(i)k = softmax(u(i))k :=
eu(i)k∑
j∈A eu(i)j

and q(i)k = softmax(v(i))k :=
ev(i)k∑
j∈A ev(i)j

. (2)

When the token number i is fixed, we may drop it from the notation for clarity, so that the encoder
and decoder return logit vectors u,v which induce probability distributions p, q respectively.

We denote the encoding and decoding algorithms (also called compressing and decompressing, re-
spectively) as functions whose operation depends on an LLM model (MEnc and MDec respectively)
as well as on more traditional inputs. Specifically, the encoder takes LLM MEnc and input token
string x and returns a bitstring b which is the encoded input. Then, the decoder takes b and its own
LLM MDec and returns a decoded string x̂:

Enc(MEnc;x) = b and Dec(MDec; b) = x̂ . (3)

Given a constraint on the difference between MEnc and MDec’s outputs on any given context, we
say that the algorithm is mismatch-tolerant with respect to that constraint if, for all MEnc,MDec that
satisfy the constraint,

Dec(MDec; Enc(MEnc;x)) = x for all x . (4)

The goal is to design algorithms which can tolerate a given amount of mismatch between the encoder
and decoder probability distributions while minimizing the cost in compression efficiency.

2.1 THE BOUNDED PREDICTION MISMATCH SETTING

Since the encoder and decoder are using the same LLM on the same inputs, it is reasonable to
assume that they obtain logits whose difference is bounded by some reasonably small ε > 0. A
natural choice for this is to assume that their difference has bounded L∞ norm (i.e. elementwise):
∥u−v∥∞ := maxk∈A |uk−vk| ≤ ε. We first define the following a measure of difference between
two probability distributions:
Definition 1. The conditional total variation distance (dCTV) between two probability distributions
p, q on an alphabet A is defined as the maximum total variation distance (dTV) of p and q after
conditioning on some (nonempty) S ⊆ A, i.e.

dCTV(p, q) := max
∅̸=S⊆A

dTV(p(·|S), q(·|S)) (5)

where p(·|S) and q(·|S) are, respectively, p and q conditioned on the outcome being in S.

Note that there is no divide-by-zero issue with conditioning on any (nonempty) S since all probabil-
ities are induced via the softmax function and hence strictly positive. Bounded prediction mismatch
then bounds conditional TV distance:
Proposition 1. If u,v induce probability distributions p = softmax(u) and q = softmax(v) over
A, and ∥u− v∥∞ ≤ ε, then dCTV(p, q) ≤ ε

2 .

Proof. Using the definition of TV distance, the conditional TV distance can be rewritten as

dCTV(p, q) = max
∅̸=S⊆A
S∗⊆S

|p(S∗|S)− q(S∗|S)| (6)

=⇒ max
∥u−v∥∞≤ε

dCTV(p, q) = max
∥u−v∥∞≤ε

max
∅̸=S⊆A
S∗⊆S

|p(S∗|S)− q(S∗|S)| (7)

= max
∅̸=S⊆A
S∗⊆S

max
∥u−v∥∞≤ε

|p(S∗|S)− q(S∗|S)| (8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

So, if max
∥u−v∥∞≤ε

|p(S∗|S)− q(S∗|S)| ≤ ε
2 for all S∗ ⊆ S ⊆ A, then max

∥u−v∥∞≤ε
dCTV(p, q) ≤ ε

2 .

In other words, the conditional TV distance between p, q induced by ∥u−v∥∞ ≤ ε can be bounded
by first fixing S∗ ⊆ S ⊆ A and then bounding |p(S∗|S) − q(S∗|S)| over all p, q whose logits are
within ε of each other in L∞ distance. We assume WLOG that the u,v maximizing |p(S∗|S) −
q(S∗|S)| has q(S∗|S) > p(S∗|S) (otherwise S∗ can be changed into S\S∗), so the goal is to
maximize q(S∗|S)− p(S∗|S) given the logit L∞ bound. This is achieved by letting

vk = uk + ε for k ∈ S∗ and uk − ε for k ̸∈ S∗ (9)
Let p∗ := p(S∗|S) and q∗ := q(S∗|S), which are both scalars in [0, 1]. Then, given (9),

q∗ =

∑
k∈S∗ euk+ε∑

k∈S∗ euk+ε +
∑

k∈S\S∗ euk−ε
=

eεp∗

eεp∗ + e−ε(1− p∗)
(10)

=⇒ q∗ − p∗ ≤ max
p∗∈[0,1]

(eεp∗

eεp∗ + e−ε(1− p∗)
− p∗

)
= tanh

(ε
2

)
≤ ε

2
. (11)

Tracing this bound back to the conditional TV distance concludes the proof.

3 THE PMATIC ALGORITHM

The Probability Matching Interval Coding (PMATIC) algorithm addresses prediction mismatch by
ensuring that the encoder and decoder use a common probability distribution for each token. The first
step of PMATIC is to convert the input token string into a bitstring using a dictionary that associates
each token with a length-ℓ := ⌈log2(| A |)⌉ bitstring. We will call each bit in this bitstring a token bit.
PMATIC encodes these tokens bits with arithmetic coding using next-bit conditional probabilities
derived from the token’s encoder prediction vector. At each step, the next-bit prediction is a scalar
in [0, 1] giving the probability that the token bit equals 1. The key idea is to divide the interval
[0, 1] into a set of bins (disjoint equal-length intervals which cover [0, 1]). Then, instead of using
their exact predictions, the encoder and decoder use either the center of the bin their predictions
fall into or the nearest boundary between two bins; which one to use is decided by the encoder and
communicated to the decoder by use of auxiliary ‘helper’ bits, which are also sent via arithmetic
coding. This procedure can be viewed as quantizing the probability of each token bit.

For any token xi in the message, we denote its corresponding bitstring by bi := bi(1) . . . bi(ℓ) and
define the following parameters and notation:

• δ > 0, which represents the amount of prediction mismatch (per bit) which the algorithm
can tolerate, as measured by conditional TV distance.

• r > 0 is the radius of the quantization bins (so the width of a bin is 2r); r will be chosen
to maximize performance given δ. We will assume that r = 1/(2m) for some integer m;
in practice this entails rounding r up or down slightly to the nearest such value, which will
still be at the correct scale relative to δ. We also always set r > 2δ.

• Let h(p) := p log
(
1
p

)
+ (1 − p) log

(
1

1−p

)
be the binary entropy function (the entropy of

a Bernoulli random variable with probability p), and H(p) be the more general entropy
function for a probability vector p over a finite set.

• Let DKL(p∥q) := p log
(
p
q

)
+(1− p) log

(
1−p
1−q

)
be the binary Kullback Liebler divergence

(the divergence between two Bernoulli random variables with proabilities p, q respectively).

• Let Sbj−1
i

:= {a ∈ {0, 1}ℓ : aj−1 = bj−1
i } denote the set of length-ℓ bitstrings whose first

j − 1 bits agree with bi.

3.1 THE PMATIC ENCODER

Consider encoding the jth bit, bi(j), of token xi. Let the encoder and decoder prediction vectors for
token i be, respectively, p(i) := softmax(MEnc(xi−1)) and q(i) := softmax(MDec(xi−1)). The
predictions for the jth bit bi(j) for the encoder and decoder, conditional on the prior bits in bi, are

pi(j) := Pp(i)

[
bi(j) = 1 |Sbj−1

i

]
and qi(j) := Pq(i)

[
bi(j) = 1 |Sbj−1

i

]
(12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

These can be computed directly using p(i) (or q(i)) by setting all values outside of Sbj−1
i

to 0 and
renormalizing to get the conditional probability distribution.

The interval [0, 1] is then split into radius-r intervals, which we call bins, I1, I2, . . . Im, where
m = 1/(2r) (which, as assumed above, is an integer) and Ik = [2r(k − 1), 2rk]. The center of bin
Ik is therefore ck := 2r(k − 1) + r, and we denote the δ-interior of Ik (the set of points in Ik at
least δ away from any point outside Ik) by

Iδk =


[0, 2r − δ] if k = 1

[2r(m− 1) + δ, 1] if k = m

[2r(k − 1) + δ, 2rk − δ] if k ̸= 1,m

(13)

Iδ1 , I
δ
m need special definition as they have an edge next to the edge of [0, 1] instead of another bin.

Note that if pi(j) ∈ Iδk and |pi(j)− qi(j)| ≤ δ, then qi(j) ∈ Ik, and that if pi(j) ̸∈ Iδk for all k, then
there is instead a unique integer k ̸= 1,m for which |2rk − pi(j)| < δ.

In addition to the token bit bi(j), PMATIC encodes (prior to the token bit) a helper bit

b′i(j) =

{
0 if bi(j) ∈ Iδk for some k

1 otherwise
(14)

This encoding is done with arithmetic coding using probabilities p′ := δ/r for the helper bit and

p̂i(j) =

{
ck = 2r(k − 1) + r if pi(j) ∈ Iδk
2rk for the integer k s.t. |2rk − pi(j)| < δ otherwise

(15)

for the token bit. The probability p̂i(j) is the common probability of token bit j that both the encoder
and decoder agree to use.

The intuition for the helper bits is that when pi(j) ∈ Iδk , the encoder knows that the decoder’s
probability qi(j) ∈ Ik (the same bin), so the encoder quantizes to the bin center and tells the decoder
to do the same by sending the helper bit b′i(j) = 0. If pi(j) is not in the δ-interior of its bin, the
encoder no longer knows that the decoder probability lies in the same bin. However, in this case both
probabilities must be near the same boundary point between two bins, so the encoder quantizes to
the nearest boundary point and tells the decoder to do the same by sending the helper bit b′i(j) = 1.
In either case, they agree on the probability to use for encoding and decoding. The probability of
being in the δ-interior of a bin is ≈ δ/r, which is very small if r ≫ δ. This gives the helper bits low
entropy and hence makes them highly compressible via arithmetic coding.

To summarize, given a token xi and context xi−1, the PMATIC encoder does the following:

1. Computes p(i) = softmax(MEnc(xi−1)), gets the bitstring bi corresponding to xi, and
computes the conditional next-bit probabilities pi(1), . . . , pi(ℓ) ∈ [0, 1].

2. Computes for each bit bi(j) the helper bit b′i(j) and quantized probability p̂i(j) ((14), (15)).
3. Encodes the bitstring b′i(1)bi(1) . . . b

′
i(ℓ)bi(ℓ) using arithmetic coding, where the encoding

probability for each helper bit b′i(j) is p′ = δ/r and the encoding probability for each token
bit bi(j) is p̂i(j).

3.2 THE PMATIC DECODER

The PMATIC decoder takes the encoded message y and decodes it sequentially in pairs of bits.
Each pair consists of a helper bit and a token bit; the helper bit is decoded first using p′ = δ/r
as the probability (since helper bits are always encoded using this probability), and determines the
quantized probability to use. Analogous to the encoder next-bit prediction, let the decoder next-bit
prediction for bit j of token i be denoted qi(j). Then the decoder decodes the token bit using the
quantized probability:

q̂i(j) =

{
ck for k s.t. qi(j) ∈ Ik if b′i(j) = 0

2rk for k ∈ {1, . . . ,m− 1} s.t. |2rk − qi(j)| is minimized if b′i(j) = 1
(16)

After decoding all the bits, the helper bits are discarded and the token bits are converted back into
a token string using the token-bitstring dictionary. PMATIC is successful when q̂i(j) is the same as
p̂i(j) produced in the encoder step. This is discussed in greater detail in the next section.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4 ANALYSIS

We wish to: (i) show that PMATIC ensures correct decoding if the conditional TV distance be-
tween the encoder and decoder token predictions is at most δ; (ii) show (in expectation) theoretical
performance bounds. Since we compress in bits, all logarithms are base-2 unless noted otherwise.

4.1 CORRECTNESS

Theorem 1. If dCTV(p(i), q(i)) ≤ δ, then q̂i(j) = p̂i(j) for all j (i.e. the encoder and decoder will
agree on the quantized probabilities for all bits corresponding to token xi).

Proof. Consider bit j of token i; without loss of generality we can assume that all previous bits in i
and all previous tokens were decoded correctly (since, if any bits are incorrectly decoded, there must
be a first one). Since dCTV(p(i), q(i)) ≤ δ, we know that |pi(j)− qi(j)| ≤ δ (since pi(j), qi(j) are
derived by conditioning p(i), q(i) on the outcome coming from the set Sbj−1

i
).

First, the decoder will decode the helper bit b′i(j) using the probability δ/r. Since δ/r is fixed and
used for all helper bits, the encoder and decoder probabilities match and the helper bit is decoded
correctly. Now we consider two cases: b′i(j) = 0, and b′i(j) = 1.

If b′i(j) = 0, this means that computed encoder next-bit predictor pi(j) falls in the δ-interior Iδk of
some bin; since |pi(j) − qi(j)| ≤ δ, this means qi(j) ∈ Ik (not necessarily the δ-interior, just the
bin itself). Thus, since both the encoder and decoder quantize to the center ck of the bin, we have
p̂i(j) = q̂i(j) = ck and the token bit is encoded correctly.

If b′i(j) = 1, then there is some k ∈ {1, . . . ,m− 1} such that |pi(j)− 2rk| ≤ δ (note that 2rk here
is the boundary between two bins). Then, since we set r > 2δ and bins have width 2r:

|pi(j)− 2rk| ≤ δ =⇒ |qi(j)− 2rk| ≤ 2δ (17)

=⇒ |qi(j)− 2rk′| ≥ 2r − 2δ > 2δ for any integer k′ ̸= k (18)
=⇒ q̂i(j) = 2rk = p̂i(j). (19)

Thus, in either case, the encoder and decoder agree on the next-bit probability for bi(j) and the
decoder will decode the bit and update the arithmetic code interval correctly.

Note that, by Theorem 1 and Proposition 1, if the LLM has logits that differ by at most ε between
the encoder and decoder, then compressing with PMATIC using δ = ε/2 guarantees correctness.

4.2 COMPRESSION LOSS

For the compression performance analysis, we make the following simplifying assumptions:

• The encoder’s next-token probabilities are the true probabilities. This means that the ex-
pected increase in message length for each bit bi(j) is DKL(pi(j)∥p̂i(j)) (Cover & Thomas,
2006, Thm 5.4.3), and that the no-mismatch optimal expected message length per token xi

is H(pi) where H(·) is the entropy.

• Within each individual bin, the encoder next-bit probability is roughly uniformly distributed
(so e.g. it’s not disproportionately likely to fall next to the bin boundary and the probability
of being within δ of a bin boundary is ≈ δ/r).3

We consider the compression loss of PMATIC over traditional (non-mismatch-tolerant) arithmetic
coding, i.e. the extra message length incurred by PMATIC in order to tolerate a conditional TV
distance bound of δ with a bin width of r. This loss comes from two sources:

3This assumption is reasonable and holds up well in practice if the bins are relatively small. If desired,
PMATIC can modified so that this assumption is not necessary for the analysis, by adding a PRNG (pseudo-
random number generator) to the encoder and decoder to (pseudo)randomly translate the bins by a value within
[−r, r]. This ensures that for any pi(j), it has at most δ/r chance of being within δ of a bin boundary.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

1. Helper bit encoding: the helper bits require extra message bits to send. Since all helper bits
are (approximately) Bernoulli with parameter δ/r, the expected extra encoding length per
helper bit is the binary entropy h(δ/r) = δ

r log
(
r
δ

)
+

(
r−δ
r

)
log

(
r

r−δ

)
.

If r ≫ δ, then the first term dominates and the entropy of each helper bit is ≈ δ
r log

(
r
δ

)
.

2. Quantization loss: the quantized probability p̂i(j) is different than the true probability
pi(j), incurring a quantization loss of DKL(pi(j)∥p̂i(j)).
Since r ≤ p̂i(j) ≤ 1−r (all bin centers and boundaries are in [r, 1−r]) and |pi(j)−p̂i(j)| ≤
r, the quantization loss satisfies DKL(pi(j)∥p̂i(j)) ≤ 2 log(e)r, since KL divergence is
bounded above by χ2 divergence (Polyanskiy & Wu, 2025, Ch. 7):

DKL(pi(j)∥p̂i(j)) ≤ log(e)
(pi(j)− p̂i(j))

2

p̂i(j)(1− p̂i(j))
≤ 2 log(e)r (20)

since the numerator is ≤ r2 and the denominator is ≥ (1/2)r.

Note that these losses respond in opposite directions when the bin radius r is increased: larger bins
mean lower helper bit entropy but a bigger difference between the true probability and the quantized
probability. This means that setting r to balance the loss terms gives an approximate minimizer of
the objective function: any other r′ ̸= r will make one of the loss terms larger, so balancing the loss
terms incurs a total loss of at most 2 times the optimal. This is achieved (approximately) with

2 log(e)r =
δ

r
log

(r
δ

)
=⇒ r ≈

√
δ log

(
1
δ

)
√
2 log e

(21)

and yields a total loss on the order of O
(√

δ log
(
1
δ

))
(note that one of the loss terms is itself O(r),

so the total loss should be proportional to r when balancing the loss terms).

5 EXPERIMENTS

We test PMATIC on text using Llama 3.1 8B (quantized) as the predictive model and synthetic mis-
matched probabilities, and compare to gzip and non-mismatch-robust Llama-driven compression.

5.1 SETUP

We run our experiment on two datasets. One dataset is the first (nearly) 10 MB of the enwik8
benchmark Hutter (2006), consisting of a collection of Wikipedia articles from 2006. We split our
file into smaller files of size ≈ 5 KB and compress each file separately. In total this is composed of
1, 329, 443 words (9, 923, 563 characters) which get tokenized into 2, 598, 410 tokens. The second
dataset consists of 1000 randomly selected articles from Wikipedia (pulled in September 2025) with
non-ASCII characters removed; in total this is composed of 401, 786 words (2, 558, 990 characters)
which get tokenized into 596, 154 tokens. Each article is compressed individually.

We run our algorithm with two choices of r, δ. The first setting uses δ = 0.001 and r = 0.05. Given
δ = 0.001, the approximate minimizer r given in (21) would be r ≈ 0.047; we choose r = 0.05
since it is close and divides [0, 1] into intervals evenly. The second setting uses δ = 0.00001 and
r = 0.005, with r chosen again to be on the right scale and to divide the [0, 1] evenly.4

We used a quantized version of Llama 3.1 8B as our LLM model [Grattafiori et al. (2024)]. This
model includes a tokenizer with a 128, 256-token alphabet. To speed up the algorithm, we use a
rolling context window of maximum size 512 which resets every 256 tokens via truncation: each
time the context length reaches 512, we drop the oldest 256 tokens. Our program ran on a high-
preformance computing system with Xeon CPU nodes and Volta GPUs.

The first step of our processing is to tokenize each file. Since PMATIC assigns each token in the
alphabet a unique fixed-length bitstring, we assign a random 17-bit5 representation for each token
and convert the file to a bitstring. The same bitstring dictionary is used across all files in each setting.

4Since we chose r only through a rough approximation of the optimization process, it may be possible to
improve performance by further refining the value of r.

5Each token requires a length-17 bitstring representation since ⌈log(128, 256)⌉ = 17.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Setting 1 Setting 2 No mismatch gzip
r 0.05 0.005
δ 0.001 0.00001

logit mismatch bound 0.002 0.00002 0.0
1000 Articles Bits per token 5.34 3.52 2.81 16.41

Bits per character 1.24 0.82 0.65 3.82
Total file size (bytes) 398,073 262,643 209,317 1,223,143

Compression ratio 13.30% 8.78% 7.00% 40.88%
enwik8 Bits per token 4.13 2.59 2.38 14.11

Bits per character 1.08 0.68 0.62 3.70
Total file size (bytes) 1,343,029 840,678 773,785 4,583,706

Compression ratio 13.53% 8.47% 7.80% 46.19%

Figure 1: Compression results of PMATIC algorithm with two robustness levels compared to 1)
when the same LLM-driven compression is used when there is no mismatch and 2) gzip (mod-
ern standard for text compression). The total raw size of the 1000 random Wikipedia articles is
2, 992, 016 bytes. We use the first ≈ 10 MB of enwik8, with total raw size 9, 923, 563 bytes.

The maximum logit mismatch is selected in each setting to be ε = 2δ, to ensure the conditional
TV distance is always at most δ (as per Proposition 1). The encoding of the text is done with the
probabilities given by the model. We then create a synthetic mismatched probability distribution for
the decoder by adding IID uniform noise from [−ε, ε] to each logit of the encoder’s distribution.

Encoding and decoding the helper and token bits generated by PMATIC is done with arithmetic
coding, using the implementation from Buzanis (2024).

5.2 RESULTS

PMATIC successfully decoded all files, validating our theoretical correctness result, and its per-
formance validates the theoretical performance analysis. Our results show that PMATIC provides
robustness to numerical deviations without significant loss over the extremely good rates of LLM-
based compression on text. PMATIC increases the number of bits per token by ≈ 2 to tolerate
a 0.002 mismatch per logit, and by ≈ 0.2 to tolerate a 0.00002 mismatch per logit, and achieves
significantly better compression rates than gzip, a widely-used modern compression algorithm.

6 FUTURE WORK

While PMATIC has good theoretical and experimental performance in enabling model-driven com-
pression to tolerate bounded prediction mismatch, there remain significant challenges. While
PMATIC was validated using synthetic prediction mismatch, it remains to be validated on datasets
that include real-world LLM prediction mismatch. A related problem is to extend PMATIC (or
design another mismatch-robust coding technique) to allow for stochastically-bounded mismatch
rather than mismatch with a hard upper bound for all logits. For practical usage, the tradeoff be-
tween prediction model size, compression efficiency, and computational performance should be
characterized so that a model exhibiting a good balance of these characteristics can be chosen.

In addition, the fundamental limits of model-driven compression under prediction mismatch (that
is, how much additional message length is mathematically required to correct a given amount of po-
tential mismatch) remain unknown, and theoretical research into the mathematical and information-
theoretic properties of the problem will be needed to address these fundamental limits.

Finally, LLM (and large neural network) non-determinism remains a significant challenge in several
contexts outside of model-driven compression, such as ensuring reproducibility of experimental re-
sults in machine learning. It may be interesting to explore whether PMATIC, or similar approaches,
might offer certain tools to address LLM non-determinism in these contexts.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Berk Atil, Sarp Aykent, Alexa Chittams, Lisheng Fu, Rebecca J. Passonneau, Evan Radcliffe,
Guru Rajan Rajagopal, Adam Sloan, Tomasz Tudrej, Ferhan Ture, Zhe Wu, Lixinyu Xu,
and Breck Baldwin. Non-determinism of ”deterministic” llm settings, 2025. URL https:
//arxiv.org/abs/2408.04667.

Fabrice Bellard. Lossless data compression with neural networks. URL: https://bellard.
org/nncp/nncp. pdf, 2019.

Fabrice Bellard. Nncp v2: Lossless data compression with transformer. Preprint at Fabrice Bellard
https://bellard. org/nncp/nncp v2. pdf, 2021.

Alexander Buzanis. llama-zip: An llm-powered lossless compression tool. https://github.
com/AlexBuz/llama-zip, 2024. Commit on main branch; accessed 2025-05-19.

Boyuan Chen, Mingzhi Wen, Yong Shi, Dayi Lin, Gopi Krishnan Rajbahadur, and Zhen Ming (Jack)
Jiang. Towards training reproducible deep learning models. In Proceedings of the 44th Interna-
tional Conference on Software Engineering, ICSE ’22, pp. 2202–2214. ACM, May 2022. doi:
10.1145/3510003.3510163. URL http://dx.doi.org/10.1145/3510003.3510163.

Kecheng Chen, Pingping Zhang, Hui Liu, Jie Liu, Yibing Liu, Jiaxin Huang, Shiqi Wang, Hong Yan,
and Haoliang Li. Large language models for lossless image compression: Next-pixel prediction
in language space is all you need. arXiv preprint arXiv:2411.12448, 2024.

J. Cleary and I. Witten. Data compression using adaptive coding and partial string matching. IEEE
Transactions on Communications, 32(4):396–402, 1984. doi: 10.1109/TCOM.1984.1096090.

Kevin Coakley, Christine R. Kirkpatrick, and Odd Erik Gundersen. Examining the effect of imple-
mentation factors on deep learning reproducibility. In 2022 IEEE 18th International Conference
on e-Science (e-Science), pp. 397–398. IEEE, October 2022. doi: 10.1109/escience55777.2022.
00056. URL http://dx.doi.org/10.1109/eScience55777.2022.00056.

A. Feder Cooper, Jonathan Frankle, and Christopher De Sa. Non-determinism and the lawlessness
of machine learning code. In Proceedings of the 2022 Symposium on Computer Science and Law,
CSLAW ’22, pp. 1–8. ACM, November 2022. doi: 10.1145/3511265.3550446. URL http:
//dx.doi.org/10.1145/3511265.3550446.

T.M. Cover and J.A. Thomas. Elements of Information Theory (Wiley Series in Telecommunications
and Signal Processing). Wiley-Interscience, USA, 2006. ISBN 0471241954.

David Cox. Syntactically informed text compression with recurrent neural networks. arXiv preprint
arXiv:1608.02893, 2016.

Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, Marcus
Hutter, and Joel Veness. Language modeling is compression, 2024. URL https://arxiv.
org/abs/2309.10668.

Bahadir Eryilmaz, Osman Alperen Koras, Jorg Schlotterer, and Christin Seifert. Investigating
the Impact of Randomness on Reproducibility in Computer Vision: A Study on Applications
in Civil Engineering and Medicine . In 2024 IEEE 6th International Conference on Cog-
nitive Machine Intelligence (CogMI), pp. 265–274, Los Alamitos, CA, USA, October 2024.
IEEE Computer Society. doi: 10.1109/CogMI62246.2024.00042. URL https://doi.
ieeecomputersociety.org/10.1109/CogMI62246.2024.00042.

Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, and Idoia Ochoa. Deepzip: Lossless data
compression using recurrent neural networks. CoRR, abs/1811.08162, 2018. URL http://
arxiv.org/abs/1811.08162.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, et al. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

10

https://arxiv.org/abs/2408.04667
https://arxiv.org/abs/2408.04667
https://github.com/AlexBuz/llama-zip
https://github.com/AlexBuz/llama-zip
http://dx.doi.org/10.1145/3510003.3510163
http://dx.doi.org/10.1109/eScience55777.2022.00056
http://dx.doi.org/10.1145/3511265.3550446
http://dx.doi.org/10.1145/3511265.3550446
https://arxiv.org/abs/2309.10668
https://arxiv.org/abs/2309.10668
https://doi.ieeecomputersociety.org/10.1109/CogMI62246.2024.00042
https://doi.ieeecomputersociety.org/10.1109/CogMI62246.2024.00042
http://arxiv.org/abs/1811.08162
http://arxiv.org/abs/1811.08162
https://arxiv.org/abs/2407.21783

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

M. Guazzo. A general minimum-redundancy source-coding algorithm. IEEE Transactions on In-
formation Theory, 26(1):15–25, 1980. doi: 10.1109/TIT.1980.1056143.

David A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
the IRE, 40(9):1098–1101, 1952. doi: 10.1109/JRPROC.1952.273898.

Marcus Hutter. The hutter prize for lossless compression of human knowledge. http://prize.
hutter1.net/, 2006. Accessed: 2025-09-11.

Yuriy Kim and Evgeny Belyaev. An efficient compression of deep neural network checkpoints based
on prediction and context modeling, 2025. URL https://arxiv.org/abs/2506.12000.

Byron Knoll. cmix: A data compression program. https://www.byronknoll.com/cmix.
html, 2025. Accessed: 2025-09-23.

Qian Liu, Yiling Xu, and Zhu Li. Decmac: A deep context model for high efficiency arithmetic
coding. In 2019 International Conference on Artificial Intelligence in Information and Commu-
nication (ICAIIC), pp. 438–443. IEEE, 2019.

Zhoujun Ma, Hong Zhu, Zhuohao He, Yue Lu, and Fuyuan Song. Deep lossless compression algo-
rithm based on arithmetic coding for power data. Sensors, 22(14), 2022. ISSN 1424-8220. doi:
10.3390/s22145331. URL https://www.mdpi.com/1424-8220/22/14/5331.

Yu Mao, Yufei Cui, Tei-Wei Kuo, and Chun Jason Xue. Trace: A fast transformer-based general-
purpose lossless compressor. In Proceedings of the ACM Web Conference 2022, pp. 1829–1838,
2022.

Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc Van Gool. Practical
full resolution learned lossless image compression. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 10629–10638, 2019.

Fazal Mittu, Yihuan Bu, Akshat Gupta, Ashok Devireddy, Alp Eren Ozdarendeli, Anant Singh,
and Gopala Anumanchipalli. Finezip: Pushing the limits of large language models for practical
lossless text compression. arXiv preprint arXiv:2409.17141, 2024.

Miguel Morin and Matthew Willetts. Non-determinism in tensorflow resnets, 2020. URL https:
//arxiv.org/abs/2001.11396.

NVIDIA Corporation. NVIDIA cuBLAS Library Documentation, 2025a. URL https://docs.
nvidia.com/cuda/cublas/. Version: CUDA cuBLAS.

NVIDIA Corporation. NVIDIA cuDNN Backend API: Odds and Ends (Determinism and Re-
producibility), 2025b. URL https://docs.nvidia.com/deeplearning/cudnn/
backend/latest/developer/misc.html. cuDNN Developer Documentation.

Richard Clark Pasco. Source coding algorithms for fast data compression. PhD thesis, Stanford
University CA, 1976.

Yury Polyanskiy and Yihong Wu. Information Theory: From Coding to Learning. Cambridge
University Press, 2025.

Hochang Rhee, Yeong Il Jang, Seyun Kim, and Nam Ik Cho. Lc-fdnet: Learned lossless image
compression with frequency decomposition network. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 6033–6042, 2022.

Jorma J Rissanen. Generalized kraft inequality and arithmetic coding. IBM Journal of research and
development, 20(3):198–203, 1976.

Ionut Schiopu, Yu Liu, and Adrian Munteanu. Cnn-based prediction for lossless coding of photo-
graphic images. In 2018 Picture Coding Symposium (PCS), pp. 16–20. IEEE, 2018.

11

http://prize.hutter1.net/
http://prize.hutter1.net/
https://arxiv.org/abs/2506.12000
https://www.byronknoll.com/cmix.html
https://www.byronknoll.com/cmix.html
https://www.mdpi.com/1424-8220/22/14/5331
https://arxiv.org/abs/2001.11396
https://arxiv.org/abs/2001.11396
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/deeplearning/cudnn/backend/latest/developer/misc.html
https://docs.nvidia.com/deeplearning/cudnn/backend/latest/developer/misc.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Alex Schlögl, Nora Hofer, and Rainer Böhme. Causes and effects of unanticipated nu-
merical deviations in neural network inference frameworks. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural In-
formation Processing Systems, volume 36, pp. 56095–56107. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/af076c3bdbf935b81d808e37c5ede463-Paper-Conference.pdf.

J. Schmidhuber and S. Heil. Sequential neural text compression. IEEE Transactions on Neural
Networks, 7(1):142–146, 1996. doi: 10.1109/72.478398.

Harald Semmelrock, Tony Ross-Hellauer, Simone Kopeinik, Dieter Theiler, Armin Haberl, Stefan
Thalmann, and Dominik Kowald. Reproducibility in machine learning-based research: Overview,
barriers and drivers, 2025. URL https://arxiv.org/abs/2406.14325.

Sanjif Shanmugavelu, Mathieu Taillefumier, Christopher Culver, Oscar Hernandez, Mark Coletti,
and Ada Sedova. Impacts of floating-point non-associativity on reproducibility for hpc and deep
learning applications. In Proceedings of the SC ’24 Workshops of the International Conference on
High Performance Computing, Network, Storage, and Analysis, SC-W ’24, pp. 170–179. IEEE
Press, 2025. ISBN 9798350355543. doi: 10.1109/SCW63240.2024.00028. URL https://
doi.org/10.1109/SCW63240.2024.00028.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27
(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen, Joel Shor, and
Michele Covell. Full resolution image compression with recurrent neural networks. CoRR,
abs/1608.05148, 2016. URL http://arxiv.org/abs/1608.05148.

Chandra Shekhara Kaushik Valmeekam, Krishna Narayanan, Dileep Kalathil, Jean-Francois Cham-
berland, and Srinivas Shakkottai. Llmzip: Lossless text compression using large language models,
2023. URL https://arxiv.org/abs/2306.04050.

Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for data compres-
sion. Commun. ACM, 30:520–540, 1987. URL https://api.semanticscholar.org/
CorpusID:3343393.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/af076c3bdbf935b81d808e37c5ede463-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/af076c3bdbf935b81d808e37c5ede463-Paper-Conference.pdf
https://arxiv.org/abs/2406.14325
https://doi.org/10.1109/SCW63240.2024.00028
https://doi.org/10.1109/SCW63240.2024.00028
http://arxiv.org/abs/1608.05148
https://arxiv.org/abs/2306.04050
https://api.semanticscholar.org/CorpusID:3343393
https://api.semanticscholar.org/CorpusID:3343393

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A APPENDIX

A.0.1 LLM USAGE

We used LLMs (specifically GPT-5) as an assistant for the background literature search, writing, and
coding. This entailed asking the LLM to: search for and summarize related papers; write sample
paragraphs, which we could then use as a guideline for our own writing or take phrases from; and
explain any terms we came across which we were unsure of.

For the code for our experiments, we consulted LLMs in several different ways. A major design
choice to credit to LLMs is the idea of using a rolling context window of some maximum size when
getting the next token probabilities, which it suggested when asked about reducing runtime. We also
asked LLMs to write various small parts of the code which are standard operations, for instance, a
script to aggregate statistics for the experiments to be printed on the screen, a function that changes
byte arrays to bitstrings, some helper functions to setup arithmetic coding when running without
PMATIC, and even a one line function to compute entropy. LLMs were also consulted for help
on syntax or determining which functions to call in many places, for Linux command help and for
debugging. In the earlier iterations of our code, we used LLM generated code to setup the Llama
model, but later many of those critical parts were replaced. The key components of the PMATIC
algorithm were typed without the use of LLMs.

13

	Introduction
	Model-Driven Lossless Compression
	LLM Non-Determinism and Prediction Mismatch
	Contributions

	Problem Statement
	The Bounded Prediction Mismatch Setting

	The PMATIC Algorithm
	The PMATIC Encoder
	The PMATIC Decoder

	Analysis
	Correctness
	Compression Loss

	Experiments
	Setup
	Results

	Future Work
	Appendix
	LLM Usage

