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Abstract001

Neural Machine Translation (NMT) between002
Chinese and low-resource languages (LRLs)003
faces significant challenges due to limited,004
noisy training data. We introduce MERIT, a005
unified translation framework that transforms006
the traditional English-centric ALT benchmark007
into a Chinese-centric evaluation suite for008
five Southeast Asian LRLs. Our approach009
integrates Language-specific Token Prefixing010
(LTP) for effective language conditioning and011
supervised fine-tuning (SFT). A key innovation,012
Group Relative Policy Optimization (GRPO)013
guided by the Score Accuracy Reward (SAR)014
function, strategically filters training data and015
optimizes model performance. Experiments016
with models up to 3 billion parameters (MERIT-017
3B) confirm the efficacy of our method. Abla-018
tion studies demonstrate substantial improve-019
ments from SFT-LTP over zero-shot baselines,020
while GRPO-SAR achieves further significant021
gains using only 22.8% of the original data, in-022
creasing BLEU-chrF scores by 17.4%. MERIT-023
3B notably surpasses open-source models such024
as NLLB-200 3.3B by 9.5 BLEU-4 points025
on Chinese–Indonesian translation and out-026
performs M2M-100 by 5.1 BLEU-4 points027
on Chinese–Lao. These findings highlight028
the pivotal role of targeted data curation and029
reward-guided training over mere model scal-030
ing, advancing multilingual translation in low-031
resource settings. Code and data are available032
at https://anonymous.4open.science/r/MERIT-033
864/.034

1 Introduction035

The vision of Neural Machine Translation (NMT)036

is to provide equitable access to information037

for speakers of over 7,000 languages worldwide.038

While English–French translation has achieved039

near-human BLEU scores (Papineni et al., 2002),040

many low-resource languages—including Chinese–041

LRL directions such as Tibetan, Lao, or Taga-042

log—remain virtually untranslatable due to the lack043

of parallel corpora, standard orthographies, and an- 044

notated data (Costa-jussà et al., 2022). 045

Multilingual pretraining has shown impressive 046

zero-shot gains: mBART-50, mT5, and DeltaLM 047

achieve broad coverage but continue to overlook or 048

underperform on Southeast Asian and Chinese do- 049

mestic LRLs. NLLB-200 (Costa-jussà et al., 2022) 050

improves on this by expanding coverage to 200 051

languages and introducing the XSTS metric. How- 052

ever, Chinese–LRL performance still trails behind 053

English-pivoted directions. 054

Moreover, the lack of publicly available and 055

high-quality evaluation benchmarks hinders objec- 056

tive progress measurement. An ideal benchmark 057

should: (i) cover multiple Chinese→LRL direc- 058

tions, (ii) maintain sufficient balance in scale and 059

domain coverage, and (iii) avoid dependence on 060

English as a pivot. Without these features, model 061

improvements are difficult to reproduce or attribute 062

reliably. 063

To address the long-standing lack of evaluation 064

benchmarks for Chinese–low-resource language 065

(LRL) directions in Neural Machine Translation 066

(NMT), this paper makes the following three con- 067

tributions: 068

• We introduce the first Chinese-centric mul- 069

tilingual benchmark for low-resource lan- 070

guages, derived from the ASEAN Languages 071

Treebank (ALT) through various data filter- 072

ing (EPDS-DIV) and distillation (QE Agent) 073

techniques. This dataset targets low-resource 074

language scenarios and ensures balanced do- 075

main coverage and semantic consistency (Thu 076

et al., 2016). 077

• We compare multiple metrics through Strict- 078

Overlap and Semantic-Friendly measures on 079

five series of large language models (LLMs). 080

The evaluation is conducted using three ap- 081

proaches: zero-shot, supervised fine-tuning 082
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(SFT), and Group Relative Policy Optimiza-083

tion (GRPO), with the latter utilizing the084

expert-rated validation set for training.085

• We explore the impact of model scale, data086

adaptation, and reward-based quality filter-087

ing on Chinese–LRL translation performance.088

Our results show that smaller open-source089

models can match proprietary models when090

trained with high-quality, strictly filtered data091

and guided reinforcement. The proposed092

MERIT framework effectively integrates and093

leverages these components.094

2 Related Work095

Early Chinese–LRL Corpora. The CCMT096

shared tasks released fewer than 200k sentence097

pairs for ZH–UG and ZH–MN (Liu et al., 2021),098

while Wiki-based mining typically yields only a099

few thousand pairs for ZH–LO and ZH–FIL (Artetxe100

and Schwenk, 2019). The ALT corpus (Thu101

et al., 2016) extends coverage to 13 ASEAN lan-102

guages but remains English-centric and lacks direct103

Chinese–LRL alignment.104

Multilingual Pretraining. Models like mBART-105

50 (Liu et al., 2020), mT5 (Xue et al., 2021), and106

DeltaLM (Ma et al., 2021) cover 50–101 languages,107

but still overlook or underperform on languages108

such as Tibetan and Uyghur. NLLB-200 (Costa-109

jussà et al., 2022) improves BLEU by 44% on110

FLORES-200 and adds the XSTS metric, but still111

underperforms on Chinese→LRL due to data qual-112

ity gaps.113

LLM-based Machine Translation. Instruction-114

tuned LLMs such as GPT-4o (Huang et al., 2025),115

Claude-3.5 (Enis and Hopkins, 2024), and Gemini-116

2.5 (DeepMind, 2025) show strong generalization117

across many languages. Open-source models like118

Qwen-2.5 (Cui and et al., 2025) and DeepSeek-v3119

(Huang et al., 2025) serve as strong multilingual120

baselines, though most published evaluations fo-121

cus on FLORES-200 and overlook Chinese–LRL122

directions.123

Evaluation Limitations. Most multilingual124

benchmarks pivot through English, mix domain125

content, or lack human validation, reducing their126

diagnostic value for Chinesee-LRL MT. Our127

benchmark addresses these gaps with direct128

Chinese–LRL alignment, domain balance, and129

human-validated samples.130

3 Methodology 131

3.1 Dataset 132

We construct a new test suite based on the ASEAN 133

Languages Treebank (ALT) corpus (Thu et al., 134

2016). ALT is an English-centric multilingual cor- 135

pus that already provides sentence-level alignment 136

for several Southeast-Asian languages–Vietnamese 137

(vi), Burmese (my), Lao (lo), Tagalog (fil) and 138

Indonesian (id). Although Chinese is included as a 139

target aligned with English, no direct Chinese–LRL 140

alignment exists. 141

We therefore re-index sentences sharing the 142

same alt_id and semantic source to form direct 143

Chinese–LRL sentence pairs. In the resulting test 144

set, Chinese can serve either as the source or as 145

the reference language. The benchmark is clean, 146

stylistically consistent and typologically diverse, 147

enabling more controlled and fair evaluation of 148

multilingual NMT systems from a Chinese-centric 149

perspective. 150

Language Selection. We deliberately focus on 151

five Southeast-Asian low-resource languages (vi, 152

my, lo, fil, id) for four data-driven reasons: 153

All five appear in ALT with reliable English 154

alignments, so that high-quality Chinese–LRL re- 155

alignment is feasible. 156

Indonesian rather than Malay is kept because 157

the two belong to the same Malayic subgroup and 158

share 90 % lexical overlap, to the extent that many 159

international surveys treat them as a single “Malay 160

macrolanguage” (Adelaar, 2012; Eberhard et al., 161

2023b), if both are included simultaneously, it will 162

result in redundancy of the experimental languages. 163

Malay already has over 1 million clean En–Ms 164

Languages Speaker Population1

(Eberhard et al., 2023a)
Filtered
Subset2 LRL

Chinese (zh) 1180M ✗ ✗
Hindi (hi) 345M ✗ ✗
Bengali (bn) 234M ✗ ✗
Japanese (ja) 121M ✗ ✗
Vietnamese (vi) 86M 10K ✓
Indonesian (id) 43M 10K ✓
Burmese (my) 33M 10K ✓
Tagalog (fil) 24M 10K ✓
Thai (th) 20M ✗ ✗
Malay (ms) 18M ✗ ✗

Khmer (km)3 16M – ✓
Lao (lo) 4.3M 10K ✓

Table 1: Language Statistics from the ALT Corpus for
Chinese-Centric Multilingual Translation. ALT corpus
statistics sorted by L1 speaker population. All counts
refer to L1 speakers and are rounded to the nearest
million (M). LRL: Low-resource Language.
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sentence pairs (e.g., MT-Wiki and multiple OPUS165

sub-corpora), pushing it into the mid-resource tier166

(Duong et al., 2017), whereas Indonesian still lacks167

sizeable Chinese parallel data (<50 k pairs in total,168

ALT contributes only 20 k) and is classified as low-169

resource by FLORES-200 and NLLB benchmarks170

(Goyal and et al., 2022; Team and AI, 2022).171

Thai aggregated corpora exceed one million172

sentence pairs and the language enjoys dedicated173

WMT/IWSLT tracks (Lowphansirikul and Chuang-174

suwanich, 2020), so it no longer fits a strict LRL175

definition.176

Khmer parallel resources are both small and177

highly noisy, the WMT20 corpus-filtering task em-178

phasised that extensive cleaning is required (Koehn179

et al., 2020); moreover, unlike the other languages180

considered, Ethnologue reports virtually no L2181

speaker community for Khmer (Simons and Fennig,182

2023). Including Khmer would therefore demand183

a language-specific filtering pipeline and would184

undermine comparability with the other languages.185

This reconstructed benchmark complements ex-186

isting resources such as FLORES-200 (Costa-jussà187

et al., 2022), particularly for Chinese–LRL direc-188

tions in mainland and maritime Southeast Asia.189

Unlike pivot-based benchmarks, our test set avoids190

semantic distortion introduced by intermediate En-191

glish, thus enabling more realistic, stable, and re-192

producible evaluation for Chinese-centric multilin-193

gual translation systems.194

3.2 Model Overview195

We evaluate five series representative LLMs, span-196

ning both proprietary and open-source systems:197

Qwen-2.5 (Ghosal et al., 2024; Cui and et al.,198

2025): Chinese-English bilingual models fine-199

tuned for multilingual transfer, evaluated on several200

LRLs.201

GPT-4o (Huang et al., 2025): OpenAI’s flagship202

model tested on 16 languages, including several203

low-resource directions such as En–Te and En–Sw.204

Claude-3.5 (Enis and Hopkins, 2024): A multi-205

lingual LLM from Anthropic, evaluated via MQM206

metrics on pairs like En–Yoruba and En–Amharic.207

Gemini-2.5 (DeepMind, 2025): While lacking208

peer-reviewed benchmarks on Chinese–LRL tasks,209

1Speaker numbers derive from the most recent national
censuses or Ethnologue reports (2023–2025) and are expressed
in millions (M).

2Each ALT language contains approximately 20k aligned
sentence pairs from a shared English source. See https://
www2.nict.go.jp/astrec-att/member/mutiyama/ALT/.

3No L2 speaker community (Simons and Fennig, 2023).

its predecessor covers ultra-low-resource transla- 210

tion (e.g., En–Kalamang). 211

DeepSeek (Huang et al., 2025; Jiang et al., 212

2025): A competitive open-source model evalu- 213

ated in the BenchMAX suite alongside GPT-4o. 214

Zero-shot prompting was applied exclusively 215

to closed-source LLMs. For the Qwen-2.5 mod- 216

els, both SFT and GRPO-enhanced SFT were ap- 217

plied. Additional tests were conducted with SFT 218

and GRPO-enhanced SFT using enhanced data de- 219

rived from closed-source LLMs in the zero-shot 220

regime. The GRPO-enhanced SFT regime utilizes 221

a scoring agent trained on expert-rated develop- 222

ment sets, optimized with Score Accuracy Reward 223

(SAR) to ensure the selection of only high-quality 224

translations. Model performance is assessed using 225

the following metrics: BLEU-4, sacreBLEU, chrF, 226

ROUGE-L, METEOR, and BERTScore. 227

3.3 Scoring and Selection 228

To construct high-quality parallel corpora for low- 229

resource translation, we design a two-stage scoring 230

and filtering pipeline that integrates interpretable 231

statistical features with semantic evaluation, fol- 232

lowed by reference-free quality estimation and 233

threshold-based selection. 234

Stage I: Statistical and Semantic Scoring. We 235

extract key surface-level features such as sentence 236

length ratio and digit proportion difference, along 237

with aggregated indicators for token balance, punc- 238

tuation consistency, and lexical diversity. These 239

help identify formatting mismatches and align- 240

ment noise (Munteanu and Marcu, 2005; Sánchez- 241

Cartagena et al., 2018). 242

To assess deeper semantic alignment, we incor- 243

porate two additional signals: (i) conditional per- 244

plexity for fluency estimation, and (ii) instruction- 245

following discrepancy to capture semantic fidelity, 246

inspired by instruction-tuning objectives (Li et al., 247

2023). All features are normalized and combined 248

through weighted scoring to penalize semantically 249

misaligned pairs (Esplà-Gomis et al., 2020). 250

Stage II: Quality Estimation and Filtering. 251

A reference-free Quality Estimation (QE) model, 252

trained on human-annotated validation sets, further 253

evaluates translation adequacy and fluency (Rei 254

et al., 2020; Freitag et al., 2021). Sentence pairs 255

surpassing a calibrated threshold are retained. This 256

final stage ensures that the resulting dataset is both 257

scalable and high-quality, suitable for fine-tuning 258

compact models in low-resource scenarios. 259
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Figure 1: The overall workflow of the MERIT framework for Chinese-centric multilingual translation. (a) Data
Selection: Sentences from the ALT corpus are filtered and scored using perplexity (ppl) and inverse frequency
diversity (ifd) to construct and refine a high-quality multilingual dataset, yielding training and testing subsets for
five low-resource Southeast Asian languages. (b) Translation Scoring: A Translation Quality Estimation (QE)
dataset is created by language experts, followed by training a QE agent to assess the translation quality of additional
data. (c) Data Distilling: QE Agent trained by Group Relative Policy Optimization (GRPO) with Score Accuracy
Reward (SAR) leveraged to further evaluate more training data, yielding more high-quality training samples. (d)
Model Training: The MERIT-3B model is trained using Supervised Fine-Tuning (SFT), Language-specific Token
Prefixing (LTP) with LLM-Enhanced data argmentation to achieve optimal multilingual translation performance.

3.4 Supervised Fine-Tuning260

We fine-tune open-source models (Qwen-2.5 0.5B261

and 3B) on the filtered Chinese–LRL data us-262

ing supervised fine-tuning (SFT) (Fan et al.,263

2021). The training objective is to maxi-264

mize the conditional likelihood of the target se-265

quence Y = (y1, . . . , yM ) given the source266

sequence X = (x1, . . . , xN ), using standard267

sequence-to-sequence formulation with teacher268

forcing (Sutskever et al., 2014; Williams and269

Zipser, 1989).270

Label smoothing with ε = 0.1 is applied to avoid271

over-confidence (Szegedy et al., 2016). Fine-tuning272

is conducted independently for each Chinese–LRL273

pair to account for language-specific morphology.274

This strategy, paired with prior quality filtering,275

yields strong gains over zero-shot performance,276

echoing findings on targeted adaptation for mul-277

tilingual NMT (Arivazhagan et al., 2019).278

3.5 Language-specific Token Prefixing279

To improve language discrimination in one-to-280

many generation, we adopt Language-specific To-281

ken Prefixing (LTP), which prepends a target lan-282

guage token (e.g., [lo]) to both the source input 283

and prompt instruction. This token is added to the 284

tokenizer vocabulary and embedded as part of the 285

model input. 286

For each training sample, the source input is 287

modified as X ′ = [lang]⊕X , and the final model 288

input becomes a concatenation of the instruction 289

prompt and the language-tagged source sequence: 290

Input = [Prompt⊕ [lang]⊕ x1, . . . , xn] (1) 291

The training objective minimizes the negative 292

log-likelihood of the target sequence: 293

LMLE = −
m∑
t=1

logP (yt | y<t, Prompt, X; θ)

(2) 294

This extends target-language prefixing 295

ideas (Johnson et al., 2017) by combining sym- 296

bolic and prompt-based conditioning for unified 297

multilingual fine-tuning. 298

3.6 Group Relative Policy Optimization 299

Group Relative Policy Optimization (GRPO) is a 300

reinforcement learning strategy that refines model 301
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outputs using reward feedback. Inspired by Rein-302

forcement Learning with Human Feedback (RLHF)303

techniques (Ouyang et al., 2022; Lu et al., 2022),304

GRPO operates on mini-batches of candidate trans-305

lations in this task, assigning scalar rewards based306

on Score Accuracy Reward (SAR) scores. Subse-307

quently, the model learns to maximize the expected308

reward via policy gradient updates.309

Unlike conventional pointwise objective func-310

tions, GRPO introduces an intra-batch comparison311

mechanism and normalizes rewards using a moving312

baseline. This approach helps to reduce the vari-313

ance of gradient estimates, thereby enhancing the314

stability of the training process. Our experiments315

indicate that GRPO is effective for translation eval-316

uation, enabling the selection and improvement of317

dataset translation quality.318

3.7 Score Accuracy Reward Function319

We define the Score Accuracy Reward (SAR) to320

evaluate model completions based on their ability321

to accurately reproduce specific numerical scores322

present in ground-truth answers. This reward func-323

tion is designed for tasks where precision in ex-324

tracting or generating key numerical information is325

critical. SAR rewards model outputs that closely326

match these target numerical values (representing a327

form of preference or correctness) while penalizing328

deviations.329

To extract the salient numerical score si from the330

completion content ci, we first delineate a match-331

set, M(ci). This set comprises all integer values332

identified within ci through the application of a333

predefined regular expression, denoted as R. We334

define a predicate PR(m, ci) to be true if and only335

if m is an integer yielded by matching the regular336

expression R against the string ci. The match-set337

M(ci) is then formally defined as:338

M(ci) = {m ∈ Z | PR(m, ci)} (3)339

The extractor function E(ci) then determines the340

score si from this match-set. As per the reference,341

if M(ci) is not empty, si is the minimum integer342

found; otherwise, si is set to -1:343

si = E(ci) =

{
minM(ci), if M(ci) ̸= ∅
−1, if M(ci) = ∅

(4)344

Given a ground-truth integer answer vector a =345

(a1, a2, . . . , aN ), we define a piecewise reward-346

mapping function ϕ(d) based on the absolute dif-347

ference d = |si − ai| between the extracted score348

si and the ground-truth answer ai. This function, 349

detailed in source, is: 350

ϕ(d) =


2.0, if d = 0

1.0, if 1 ≤ d ≤ 10

0.0, otherwise

(5) 351

This mapping assigns the highest reward for an 352

exact match, a partial reward for close matches 353

(difference up to 10), and zero reward for larger 354

deviations or mismatches. 355

Finally, the reward ri for each instance i is com- 356

puted based on si and ϕ(d). If a valid score si ≥ 0 357

was extracted, the reward is ϕ(|si−ai|). If no score 358

was extracted (si < 0), the reward is 0.0: 359

ri =

{
ϕ(|si − ai|), if si ≥ 0

0.0, if si < 0
(6) 360

The overall outcome is a reward vector r = 361

(r1, r2, . . . , rN ). This SAR mechanism, by focus- 362

ing on the accuracy of extracted numerical scores 363

against ground-truth values, provides a clear signal 364

for tasks requiring numerical precision. Similar 365

score-alignment objectives, where models are re- 366

warded for matching target scores or preferences, 367

have been successfully adopted in alignment train- 368

ing for various generation tasks (Wu et al., 2023). 369

4 Experiments and Analysis 370

4.1 Evaluation Method 371

We evaluate translation performance using both 372

overlap-based and semantic-aware metrics: 373

Strict-Overlap: BLEU-4 (Papineni et al., 2002), 374

sacreBLEU (Post, 2018), and ROUGE-L (Lin, 375

2004) assess lexical match and n-gram precision, 376

which are crucial for evaluating surface-level accu- 377

racy and fluency. 378

Semantic-Friendly: chrF (Popovic, 2015), ME- 379

TEOR (Banerjee and Lavie, 2005), and BERTScore 380

(Zhang et al., 2020) measure semantic similarity 381

and fluency robustness, capturing aspects that n- 382

gram overlap alone might miss. 383

Each metric is computed on the reconstructed 384

ALT test suite for five Chinese–LRL pairs. We 385

report averages across directions, comparing 386

zero-shot prompting, SFT, and GRPO-enhanced 387

regimes. 388

To provide a balanced evaluation that captures 389

both lexical precision and semantic adequacy, we 390

propose a composite metric, BLEU-chrF. This met- 391

ric integrates insights from both the Strict-Overlap 392
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and Semantic-Friendly categories of evaluation393

measures by taking the arithmetic mean of the394

BLEU-4 score and the chrF score:395

BLEU-chrF =
BLEU-4 + chrF

2
(7)396

By averaging these two widely-used metrics, one397

emphasizing n-gram precision and the other char-398

acter n-gram recall and F-score. We aim to achieve399

a more holistic assessment of translation quality,400

particularly for tasks where both lexical fidelity and401

semantic resemblance are important.402

4.2 Main Result403

Table 2 presents our evaluation results across five404

Chinese–LRL directions, categorizing metrics into405

Strict-Overlap (Papineni et al., 2002; Post, 2018,?;406

Lin, 2004) and Semantic-Friendly (Popovic, 2015;407

Banerjee and Lavie, 2005; Zhang et al., 2020).408

Among leading closed-source models, Gemini-409

2.5 Flash consistently achieves top scores in BLEU-410

4 and chrF across multiple languages, such as Fil-411

ipino (BLEU-4: 49.26, chrF: 42.68) and Indonesian412

(BLEU-4: 48.73, chrF: 41.93). Claude-3.5 Sonnet413

excels in ROUGE-L for Lao (14.00) and Burmese414

(24.44).415

The proposed Multilingual Expert-Reward416

Informed Tuning (MERIT) framework, demon-417

strates notable strengths. Specifically, MERIT-3B418

significantly outperforms the similarly sized open-419

source NLLB-200 3.3B model across several met-420

rics for Filipino, Indonesian, and Vietnamese. For421

instance, on Filipino, MERIT-3B achieves 29.71422

BLEU-4 and 49.88 METEOR compared to NLLB-423

200’s 25.05 and 46.10, respectively. Furthermore,424

MERIT-3B shows substantial gains over smaller 425

open-source baselines on particularly challenging 426

low-resource language pairs. 427

Notably, our MERIT-3B model demonstrates 428

substantial advantages over the DeepSeek-r1 7B. 429

MERIT-3B consistently outperforms DeepSeek-r1 430

7B on lexical similarity metrics such as BLEU-4 431

and chrF across all five evaluated languages. Fur- 432

thermore, when benchmarked against Qwen-2.5 433

7B, MERIT-3B, with only approximately 42.9% of 434

its parameters, achieves highly competitive transla- 435

tion quality. For instance, on Filipino, MERIT-3B 436

reaches 99.7% of Qwen-2.5 7B’s ROUGE-L score 437

(31.91 vs. 31.99) and over 98.3% of its BLEU-4 438

score (29.71 vs. 30.21). Similar competitiveness is 439

observed for Indonesian, where MERIT-3B attains 440

approximately 95.7% of Qwen-2.5 7B’s BLEU-4 441

score (34.73 vs. 36.28) and 93.2% of its ROUGE-L 442

score (26.63 vs. 28.56). 443

These results underscore the efficacy of our 444

reward-informed filtering and specialized fine- 445

tuning approach, particularly in enhancing perfor- 446

mance for low-resource languages and achieving 447

competitive results within the open-source land- 448

scape relative to model scale. 449

4.3 Module Comparison 450

To investigate the contribution of each component, 451

we conduct an ablation study on Qwen-2.5 0.5B 452

and Qwen-2.5 3B across four distinct setups: zero- 453

shot (serving as our baseline), Supervised Fine- 454

Tuning with Language-Token Prefixing (SFT-LTP), 455

SFT-LTP followed by reward-enhanced tuning us- 456

ing Group Relative Policy Optimization with Score 457

Accuracy Reward (GRPO-SAR), and finally our 458

full SFT-LTP + GRPO-SAR with an additional 459

LLMs-Enhanced (LLME) stage. 460

As detailed in Table 3, initial SFT-LTP yields 461

substantial improvements in both BLEU-4 and 462

chrF scores over the zero-shot baselines across 463

all languages for both model sizes. For instance, 464

Qwen-2.5 3B sees its overall BLEU-chrF score in- 465

crease from 9.10 to 15.53 after SFT-LTP. Introduc- 466

ing GRPO-SAR provides further consistent gains. 467

Notably, for the Qwen-2.5 3B model, GRPO-SAR 468

significantly boosts performance on low-resource 469

pairs like Chinese–Lao, improving BLEU-4 from 470

1.17 (SFT-LTP) to 4.39 and chrF from 2.22 (SFT- 471

LTP) to 5.17. Even with its limited capacity, 472

the Qwen-2.5 0.5B model benefits remarkably 473

from GRPO-SAR, achieving an overall BLEU-chrF 474

score of 4.39, which is nearly a 40-fold increase 475
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Strict-Overlap BLEU-4 sacreBLEU ROUGE-L

Model fil id lo my vi fil id lo my vi fil id lo my vi FT OS

GPT-4o 45.26 47.77 28.10 30.48 45.03 43.60 45.81 27.38 29.53 44.50 33.62 31.40 12.33 23.57 28.25 ✗ ✗
Claude-3.5 Sonnet 42.97 47.35 32.20 30.92 45.14 43.38 46.54 32.65 30.14 44.55 35.03 31.17 14.00 24.44 28.45 ✗ ✗
Gemini-2.5 Flash 49.26 48.73 35.79 36.91 39.24 47.48 47.20 35.03 36.07 38.63 35.89 30.83 13.53 23.92 24.62 ✗ ✗
DeepSeek-v3 46.19 41.83 25.57 26.68 41.29 44.12 41.38 25.25 26.29 40.90 35.15 30.06 12.75 22.95 28.27 ✗ ✓

Qwen-2.5 32B 43.56 47.87 23.27 20.43 46.23 42.01 46.61 22.48 19.50 44.63 34.97 31.85 11.84 20.61 29.08 ✗ ✓
DeepSeek-r1 32B 37.98 43.29 12.97 8.87 42.57 37.14 42.27 12.71 8.43 41.45 32.40 29.92 10.04 16.31 28.11 ✗ ✓
Qwen 2.5-7B 30.21 36.28 6.17 6.43 35.22 29.75 36.41 5.67 5.42 35.07 31.99 28.56 9.86 16.41 27.81 ✗ ✓
DeepSeek-r1 7B 14.77 20.94 0.79 0.37 12.53 15.31 24.17 0.86 0.46 16.16 24.58 23.32 8.67 5.67 18.52 ✗ ✓
NLLB-200 3.3B 25.05 25.27 15.86 20.83 25.30 24.21 23.64 15.19 20.13 22.97 31.45 25.73 11.49 18.68 25.51 ✗ ✓
DeepSeek-r1 1.5B 0.07 0.08 0.05 1.06 0.05 0.03 0.06 0.01 0.11 0.02 0.77 0.90 1.80 3.80 0.55 ✗ ✓
M2M-100 1.2B 2.13 9.53 0.05 0.00 3.33 1.32 9.47 0.01 0.00 3.19 9.88 21.65 4.69 0.00 13.01 ✗ ✓
MERIT-3B (Ours) 29.71 34.73 5.15 4.56 31.20 27.20 33.16 4.28 3.54 29.25 31.91 26.63 8.40 13.68 21.18 ✓ ✓

Semantic-Friendly chrF METEOR BERTScore

Model fil id lo my vi fil id lo my vi fil id lo my vi FT OS

GPT-4o 39.36 41.13 24.20 26.76 39.62 67.80 70.34 53.66 56.59 69.44 68.59 70.84 56.27 57.04 70.41 ✗ ✗
Claude-3.5 Sonnet 38.71 41.30 28.38 28.79 39.65 67.52 70.29 58.53 58.88 69.23 68.28 71.55 60.72 57.68 70.40 ✗ ✗
Gemini-2.5 Flash 42.68 41.93 30.61 32.09 34.66 70.14 70.87 60.21 61.85 60.31 71.67 72.77 63.93 62.39 60.88 ✗ ✗
DeepSeek-v3 39.80 36.95 22.37 24.43 36.86 68.04 67.10 51.41 53.66 67.43 70.02 68.81 54.82 54.21 68.87 ✗ ✓

Qwen-2.5 32B 37.77 41.35 20.36 18.13 39.80 66.61 70.57 46.72 43.29 69.76 67.73 71.73 50.50 45.09 71.13 ✗ ✓
DeepSeek-r1 32B 33.62 37.62 12.77 9.81 36.97 61.60 66.75 34.07 27.37 66.95 63.32 68.54 36.09 27.36 68.65 ✗ ✓
Qwen-2.5 7B 27.88 33.68 7.39 7.95 33.28 54.51 62.56 20.84 23.25 63.00 54.95 62.82 22.24 23.35 63.28 ✗ ✓
DeepSeek-r1 7B 15.43 21.60 2.20 1.35 14.87 36.02 49.35 8.45 6.46 37.61 34.22 49.07 1.46 -4.10 36.54 ✗ ✓
NLLB-200 3.3B 22.48 23.57 14.92 18.69 22.43 46.10 45.28 36.27 42.28 45.73 48.61 54.34 44.80 48.93 52.59 ✓ ✓
DeepSeek-r1 1.5B 0.33 0.38 0.36 1.87 0.24 1.99 2.34 2.17 3.80 1.43 -27.97 -26.07 -20.48 -19.68 -29.48 ✗ ✓
M2M-100 1.2B 5.16 18.21 0.26 0.01 6.49 4.65 14.00 0.57 0.11 6.10 -16.71 -1.68 -10.04 -16.34 -9.51 ✓ ✓
MERIT 3B (Ours) 25.52 30.22 5.81 5.53 26.98 49.88 56.46 16.55 16.93 50.50 46.70 45.58 11.45 16.12 32.87 ✓ ✓

Table 2: Evaluation on five Southeast Asian languages. Strict-Overlap metrics include BLEU-4, sacreBLEU, and
ROUGE-L. Semantic-Friendly metrics include chrF, METEOR, and BERTScore. For each metric column: Bold
values indicate the highest score, and Underlined values indicate the second highest score across all models. FT:
Fine-tuned; OS: Open Source.

Model
BLEU-4 chrF Overall

(BLEU-chrF)fil id lo my vi fil id lo my vi

Qwen2.5-0.5b 0.03 0.03 0.02 0.01 0.01 0.16 0.12 0.40 0.25 0.06 0.11
+ SFT-LTP 1.86↑1.83 4.02↑4.00 0.25↑0.22 0.15↑0.14 3.12↑3.11 4.85↑4.69 10.38↑10.26 1.41↑1.00 1.07↑0.82 8.55↑8.50 3.57↑3.46

+ GRPO-SAR 2.31↑2.28 4.32↑4.29 0.26↑0.24 0.16↑0.16 6.29↑6.27 5.00↑4.84 10.64↑10.52 1.38↑0.98 1.22↑0.96 12.36↑12.30 4.39↑4.28
+ LLME 0.32↑0.29 0.45↑0.42 0.08↑0.06 0.07↑0.06 0.79↑0.78 1.20↑1.04 1.66↑1.54 0.45↑0.05 1.25↑1.00 2.82↑2.76 0.91↑0.80

Avg. 1.13 2.21 0.15 0.10 2.55 2.80 5.70 0.91 0.95 5.95 2.25

Qwen2.5-3b 5.80 14.25 1.11 1.83 17.06 8.83 17.71 2.05 3.03 19.35 9.10
+ SFT-LTP 23.01↑17.21 26.00↑11.75 1.17↑0.05 2.53↑0.69 27.94↑10.87 20.14↑11.31 24.25↑6.54 2.22↑0.17 3.53↑0.50 24.55↑5.20 15.53↑6.43

+ GRPO-SAR 25.58↑19.78 29.11↑14.86 4.39↑3.28 2.77↑0.93 32.54↑15.48 23.62↑14.78 27.83↑10.12 5.17↑3.12 3.45↑0.42 27.88↑8.53 18.23↑9.13
+ LLME 29.71↑23.91 34.73↑20.48 5.15↑4.04 4.56↑2.73 31.20↑14.14 25.52↑16.69 30.22↑12.51 5.81↑3.76 5.53↑2.50 26.98↑7.63 19.94↑10.84

Avg. 21.03 26.02 2.96 2.92 27.19 19.53 25.00 3.81 3.89 24.69 15.70

Table 3: Ablation Study of Qwen-2.5 0.5B and Qwen-2.5 3B on five Southeast Asian languages. All values are
rounded to two decimal places. Improvements over the Zero-shot baseline (underlined rows).

(a 3890% relative improvement) over its zero-shot476

baseline score of 0.11. This underscores the effi-477

cacy of reward modeling, consistent with findings478

in instruction tuning (Ouyang et al., 2022; Wu et al.,479

2023).480

Our proposed LLMs-Enhanced (LLME) stage481

demonstrates further advancements, particularly482

for the larger Qwen-2.5 3B model. With LLME,483

the Qwen-2.5 3B model achieves the highest over-484

all BLEU-chrF score of 19.94, representing a 10.84485

absolute point improvement (a 119% relative in-486

crease) over its zero-shot baseline. This highlights487

the synergistic benefits of our full pipeline. While488

the LLME stage yields more modest gains for the489

Qwen-2.5 0.5B model in the current setup (overall490

BLEU-chrF of 0.91), the substantial cumulative im- 491

provements from SFT-LTP and GRPO-SAR on this 492

smaller model, and the peak performance achieved 493

by the 3B model with LLME, collectively validate 494

the effectiveness and scalability of our modular tun- 495

ing strategy in significantly enhancing translation 496

quality. 497

4.4 Effect of Data Distillation on Performance 498

We assess the impact of our quality filtering ap- 499

proach by comparing full-scale Supervised Fine- 500

Tuning with Language-Token Prefixing (SFT-LTP) 501

against subsequent reward-informed filtering and 502

tuning via GRPO-SAR, using our MERIT-3B 503

model. Table 4 details the number of retained train- 504

ing instances per language and the corresponding 505

7



overall BLEU-chrF scores for these configurations.506

The SFT-LTP stage utilizes the full set of 40,000507

training instances. In contrast, the GRPO-SAR508

stage strategically curates this data, drastically re-509

ducing the volume to only 9,126 instances. This510

constitutes an average data reduction of 77.2%,511

with the most significant reduction observed for512

Vietnamese, where the training data was cut by513

87.8% (from 8,000 to 976 instances). Remarkably,514

despite this substantial data pruning, the overall515

BLEU-chrF score not only signifies the efficient516

retention of highly informative samples but actu-517

ally improves from 15.53 (achieved with SFT-LTP518

on 40,000 instances) to 18.23 with GRPO-SAR519

on the reduced dataset. This represents a relative520

performance increase of approximately 17.4%.521

These findings underscore the efficacy of our522

reward-based filtering (GRPO-SAR) as a data-523

efficient strategy that can simultaneously reduce524

training data requirements and enhance model per-525

formance. This offers a compelling alternative to526

training on larger, potentially noisier, unfiltered527

datasets. The benefits of leveraging reward signals528

for targeted data curation align with effective strate-529

gies observed in other generative AI tasks, such as530

summarization and dialogue tuning (Lu et al., 2022;531

Ouyang et al., 2022).532

4.5 Further Discussion533

Our work, culminating in the MERIT framework,534

demonstrates the significant potential of combining535

data filtering techniques, such as the Score Accu-536

racy Reward (SAR) driven GRPO, with efficient537

fine-tuning strategies like Language-Token Prefix-538

ing (LTP) for multilingual translation, especially539

into low-resource languages (LRLs). The proposed540

BLEU-chrF composite metric has also provided a541

balanced view of lexical and semantic performance.542

While MERIT-3B exhibits strong performance rela-543

tive to its scale and against comparable open-source544

models, several limitations persist and pave the way545

for future exploration.546

First, script-related challenges, particularly for547

Lao and Burmese, can introduce encoding incon-548

sistencies. These not only affect the performance549

of QE agents used in SAR but also potentially skew550

standard evaluation metrics. Future iterations could551

incorporate more robust character normalization or552

transliteration techniques at the data preprocessing553

stage, or develop QE models less sensitive to such554

variations.555

Second, the current reward model underlying556

GRPO-SAR, while effective, may inadvertently pri- 557

oritize adequacy (accuracy of content, as captured 558

by our specific SAR function focusing on numer- 559

ical or key information matching) sometimes at 560

the expense of optimal fluency. This can occasion- 561

ally lead to subtle grammatical artifacts in some 562

translations. Future work could investigate multi- 563

objective reward functions that explicitly balance 564

adequacy, fluency, and even other aspects like style 565

or register, potentially drawing on more diverse 566

human feedback signals beyond simple ratings. 567

Moreover, as noted by Zhang et al. (2022), many 568

LLMs, including some baselines we compared 569

against, are often evaluated in zero-shot or few-shot 570

settings for translation. This might not fully reveal 571

their capabilities, which could be significantly en- 572

hanced with more sophisticated prompting strate- 573

gies or in-context learning techniques specifically 574

tailored for translation. Exploring how our data 575

filtering and fine-tuning methods can synergize 576

with advanced prompting for even larger LLMs 577

is a promising direction. 578

5 Conclusion 579

This work introduces MERIT, a unified framework 580

combining a reconstructed benchmark and modu- 581

lar training strategies for Chinese–Low-Resource 582

Language (LRL) neural machine translation. We 583

reconstruct a clean and balanced evaluation suite 584

from the ALT corpus, enabling reliable assess- 585

ment across five Southeast Asian languages. On 586

the training side, MERIT incorporates language- 587

conditioned fine-tuning and reward-guided data se- 588

lection to improve translation quality efficiently. 589

Experiments demonstrate that our MERIT-3B 590

model outperforms comparable open-source mod- 591

els and approaches the performance of significantly 592

larger proprietary systems, particularly in LRL 593

scenarios. Ablation results confirm that reward- 594

informed filtering with GRPO-SAR is especially 595

effective, achieving better performance with less 596

data. 597

Overall, our findings reinforce the importance 598

of strategic data selection and modular fine-tuning 599

over sheer model scale in low-resource settings. 600

Future work will extend MERIT to more languages 601

and explore scaling with stronger reward functions 602

and larger base models. 603
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A Appendix818

A.1 Ethics Statements819

This work presents a Chinese-centric multilin-820

gual translation benchmark targeting five Southeast821

Asian low-resource languages (LRLs), constructed822

from publicly available corpora and evaluated un-823

der reproducible protocols. We aim to support re-824

sponsible research in multilingual NLP by releas-825

ing rigorous evaluation resources while proactively826

addressing ethical concerns related to data prove-827

nance, model fairness, environmental impact, and828

potential misuse.829

Data Privacy and Consent All data is derived830

from the publicly available ASEAN Languages831

Treebank (ALT), which includes multilingual trans-832

lations of government and news texts. While the833

dataset is openly licensed, the original collection834

did not explicitly document consent procedures or835

personal identifiable information (PII) removal. To836

mitigate this, we apply a multi-stage filtering pro-837

cess to exclude named entities, explicit language,838

and potentially sensitive content. Nonetheless, due839

to the limitations of automated and manual filter-840

ing, some residual risk may remain. We follow the841

data statements framework (Bender and Friedman,842

2018) and document licensing, provenance, and843

usage constraints in the appendix.844

Bias and Fairness Despite the use of a three-845

stage filtering pipeline and expert-rated supervi-846

sion, the training data may still encode latent cul-847

tural, linguistic, or regional bias—particularly due848

to its English-pivoted design and limited coverage849

of dialectal variations or non-standard orthogra-850

phies. Annotators are bilingual graduate students,851

and while they are experienced, demographic di-852

versity is limited. Future work will prioritize the853

inclusion of more diverse annotators and typolog-854

ically broader sources to mitigate such represen-855

tational imbalances. Our work aligns with global856

AI ethics principles of fairness, transparency, and857

non-maleficence (Gebru et al., 2018).858

Environmental Impact Model training and in-859

ference were conducted on a single-node NVIDIA860

A100 80GB GPU. We log training FLOPs and wall-861

clock runtime for both the SFT and GRPO stages.862

While the GRPO procedure improves data effi-863

ciency through reward-based filtering, it introduces864

additional computational cost. We estimate that865

the total training corresponds to a typical single-866

node compute workload and plan to explore more 867

lightweight reward models or compute-efficient 868

alternatives to reduce carbon impact in future itera- 869

tions (emn, 2023). 870

Intended Use and Misuse Risks The benchmark 871

is designed to support objective evaluation and 872

supervised training for Chinese–LRL translation 873

tasks. It is intended for academic research and 874

language technology development, particularly in 875

regions underrepresented in NLP. However, misuse 876

is possible—such as generating misinformation or 877

content targeting marginalized communities. We 878

explicitly discourage such applications and recom- 879

mend that any downstream use include fairness au- 880

diting, risk controls, and human oversight (Mitchell 881

et al., 2018). 882

Transparency and Reproducibility We adhere 883

to the ACL Responsible NLP Research Check- 884

list (Review, 2023) and release all code, data, 885

and model checkpoints under a CC BY-NC 4.0 886

license. All filtering procedures, model configura- 887

tions, and hyperparameter settings are fully docu- 888

mented. Some language-specific heuristics (e.g., 889

token ratio thresholds) were empirically selected 890

and may not generalize across domains; future val- 891

idation is necessary to ensure robustness. 892

A.2 Limitations 893

Despite the encouraging results achieved by our 894

proposed framework and the MERIT-3B model, 895

this work has several limitations that warrant dis- 896

cussion and offer avenues for future improvement. 897

First, while our evaluation benchmark improves 898

upon existing English-pivoted resources by con- 899

structing direct Chinese–LRL sentence pairs, its 900

current scope is confined to five Southeast Asian 901

languages. Other significant low-resource lan- 902

guages, including domestic Chinese minority lan- 903

guages such as Tibetan, Uyghur, and Kazakh, 904

remain unaddressed due to the scarcity of high- 905

quality aligned corpora. Expanding the linguistic 906

diversity of our benchmark is crucial for assessing 907

broader generalizability. 908

Second, the ALT-based test suite, although se- 909

mantically aligned through shared alt_id index- 910

ing, is fundamentally constrained by its original 911

English-centric design. While our realignment ef- 912

forts aim to mitigate semantic drift when adapt- 913

ing it for Chinese–LRL evaluation, some resid- 914

ual domain-specific or stylistic artifacts originating 915
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from the English-centric source may persist and916

subtly influence translation assessment.917

Third, although our methodology employs a QE918

agent and the statistical-semantic Score Accuracy919

Reward (SAR) function for automatic data filter-920

ing, the scale of human validation for these com-921

ponents is currently limited. The expert-rated set922

used for developing or validating the reward model923

is modest in size. This might restrict the overall924

robustness and generalizability of the SAR model,925

particularly its alignment with nuanced human pref-926

erences across diverse linguistic phenomena. Fu-927

ture work should prioritize the integration of more928

extensive and varied human annotations.929

Fourth, while we have evaluated a range of930

LLMs under zero-shot, SFT, and GRPO regimes,931

the decoding strategies (e.g., beam size, sampling932

temperature) and specific prompt formats were kept933

fixed across these models for controlled compar-934

ison. These settings can significantly influence935

translation behavior and perceived quality, espe-936

cially for proprietary models whose internal mech-937

anisms are opaque. A more exhaustive exploration938

of model-specific optimal decoding parameters and939

prompt engineering could reveal further perfor-940

mance variations.941

Finally, due to computational resource con-942

straints, our current experiments, including the de-943

velopment and evaluation of the MERIT-3B model944

and its associated fine-tuning framework (SFT-LTP,945

GRPO-SAR), have been conducted on models up to946

the 3B parameter scale. We have not yet extended947

this framework to significantly larger parameter948

models (e.g., 7B+, or state-of-the-art models in the949

tens or hundreds of billions of parameters). Apply-950

ing and evaluating our data filtering and reward-951

informed tuning strategies on such larger-scale952

models is an important next step to ascertain their953

scalability and potential for even greater perfor-954

mance gains, though this would require substantial955

additional computational resources. Furthermore, a956

detailed efficiency analysis, including training time,957

inference latency, and computational cost of the fil-958

tering and fine-tuning stages, was not conducted959

and would be valuable for assessing practical de-960

ployability.961

A.3 Experimental Setup962

All experiments were conducted on a local worksta-963

tion equipped with two NVIDIA RTX 3090 GPUs964

(24 GB). Under a 2×2 parallel configuration, the965

per-GPU batch size was set to 8 with a gradient966

accumulation step of 2, resulting in an effective to- 967

tal batch size of 32. The maximum input sequence 968

length was set to 1024 tokens, and the initial learn- 969

ing rate was configured as 2e-4. The system envi- 970

ronment included Ubuntu 20.04, CUDA 12.1, and 971

Python 3.10, with PyTorch 2.1 and Transformers 972

v4.49 as the core libraries. 973

All training was performed using standard 974

mixed-precision (fp16) computation via custom 975

training scripts. Due to hardware limitations, the 976

batch size was carefully adjusted to fit within the 977

available GPU memory, and no experiments were 978

conducted using larger-parameter models. To en- 979

sure reproducibility, all random seeds were fixed, 980

and detailed runtime logs were maintained for each 981

experiment. 982

A.4 Reward Function 983

In this study, we introduce the Score Accuracy 984

Reward (SAR) function as a key component of the 985

reward mechanism for evaluating the numerical 986

accuracy of generated outputs. Specifically, we 987

design a step-wise reward strategy, which operates 988

as follows: 989

• A reward of 2.0 is assigned if the model’s 990

output exactly matches the reference answer. 991

• A reward of 1.0 is assigned if the output devi- 992

ates from the reference by a small margin. 993

• A reward of 0.0 is assigned if the deviation 994

exceeds the acceptable threshold. 995

This step-wise reward formulation differs from 996

conventional binary reward functions commonly 997

used in correctness or format-checking tasks. It is 998

motivated by two main considerations: 999

(1) Task-specific suitability. SAR is designed 1000

for numerical question answering and tasks that 1001

require precise arithmetic reasoning. In such set- 1002

tings, the reference answer is often a numeric value 1003

with an acceptable tolerance range rather than a 1004

single exact string. Therefore, outputs that are nu- 1005

merically close to the reference can be considered 1006

approximately correct. Compared to rigid binary 1007

matching, the step-wise reward better aligns with 1008

the intrinsic characteristics of these tasks. 1009

(2) More informative training signal. Unlike 1010

traditional 0/1 rewards, step-wise rewards provide 1011

finer-grained feedback, allowing the model to re- 1012

ceive gradient signals that vary with the degree of 1013

deviation. This facilitates smoother optimization 1014
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and more stable convergence during training, en-1015

abling the model to gradually improve its numeric1016

prediction capabilities. In contrast, overly rigid1017

reward mechanisms may lead to sparse or unin-1018

formative training signals and hinder early-stage1019

learning.1020

A.5 Recruitment And Payment1021

To ensure the accuracy and objectivity of human1022

evaluation, we recruited ten annotators with aca-1023

demic backgrounds in the target Southeast Asian1024

languages. All annotators were either language1025

instructors or graduate students from relevant uni-1026

versities. For each target language, two annotators1027

were assigned, and a cross-review protocol was1028

adopted to enhance annotation quality and consis-1029

tency.1030

All participants had formal training in transla-1031

tion or linguistics and possessed strong language1032

comprehension and evaluative capabilities. Anno-1033

tators were compensated at a rate of 1 RMB per1034

evaluated sample. Before the evaluation began, all1035

participants received detailed instructions and train-1036

ing on annotation guidelines. Participation was1037

voluntary, and compensation was provided propor-1038

tionally based on the amount of completed work.1039

Since the dataset contains no personally identi-1040

fiable information (PII) and the task involves only1041

linguistic quality assessment, the annotation pro-1042

cess entails no ethical risks and does not require1043

institutional ethics approval.1044

Algorithm 1 Elite Parallel Data Sampler
Input: XML dataset Dxml;
Target sizes {Ttrain, Tdev, Ttest};
Domain set D
Output: Datasets {Dtrain, Ddev, Dtest}

1 Stage 1: Domain Balancing Global pool M∗ ←
∅

2 foreach domain d ∈ D do
3 Md ← { f ∈ Dxml | domain(f) = d } M∗ ←

M∗ ∪Md

4 N ←
∑

d |Md|; Pd ← |Md|/N (∀d)
5 Stage 2: Proportional Split Generation fore-

ach split t ∈ {train, dev, test} do
6 St ← ∅ foreach domain d ∈ D do
7 nt(d) ← ⌊Tt · Pd⌋ St ← St ∪

SHUFFLE(Md)[: nt(d)]

8 ∆← Tt − |St| if ∆ > 0 then
9 St ← St ∪ SAMPLE(M∗ \ St, ∆)

10 else
11 if ∆ < 0 then
12 St ← HEAD(St, Tt)

13 M∗ ←M∗ \ St

14 Stage 3: Domain Proportion Verification fore-
ach domain d ∈ D do

15 εd ←
∣∣ |Strain∩Md|/|Strain|−Pd

∣∣ if εd ≥ 0.05
then

16 GLOBALSHUFFLE({St}); goto Stage 2

17 Stage 4: Output Generation foreach split t ∈
{train, dev, test} do

18 SHUFFLE(St)

19 return {Strain, Sdev, Stest}
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Method
# Training Size Overall

fil id lo my vi (Size / BLEU-chrF)

MERIT-3B
+ SFT-LTP 8,000 8,000 8,000 8,000 8,000 40,000 / 15.53

+ GRPO-SAR 1,851↓76.9% 1,779↓77.7% 2,058↓74.2% 2,462↓69.2% 976↓87.8% 9,126↓77.2% / 18.23↑17.4%
+ LLME 2,891↓63.9% 3,104↓61.2% 3,300↓58.8% 3,764↓53.0% 2,193↓72.6% 15,252↓61.9% / 19.94↑28.4%

Table 4: Training size comparison across five low-resource languages for MERIT-3B. Overall column shows
total training data (with percentage reduction relative to initial 40,000) and BLEU-chrF score (with percentage
improvement relative to the SFT-LTP stage).
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Figure 3: Training loss and reward evolution across SFT and GRPO strategies.

Algorithm 2 Data Integrity Validation
Input: Candidate splits {St};
Anomaly threshold τanom = 0.7;
Validity threshold τvalid = 0.8;
PCA dimension k; Regularization λ.
Output: Validation ∈ {True, False}

20 Stage 1: Feature Extraction Foutlier ← ∅ X ←
∅

21 foreach sample s ∈ Strain do
22 e ← CNNENCODER(s)

c ← BERTEMBED(s) v ←
L2NORMALIZE

(
[e∥c]

)
X ← X ∪ {v}

23 STANDARDIZE(X) PCA(X, k)
24 Stage 2: Cluster Anomaly Discovery

C ← HDBSCAN(X) foreach cluster
Ck ∈ C do

25 ρk ← |Ck|/|X| Σ ←
COSINESIMILARITY(Ck) foreach sample
xi ∈ Ck do

26 si ← 1 − 1
|Ck|

∑
j∈Ck

Σij if si > τanom

then
27 Foutlier ← Foutlier ∪ {xi}

28 wk ← ρk ·
(
1− |Foutlier ∩ Ck|/|Ck|

)
29 Stage 3: Composite Validity Score Vgeo ←∏

k w
ρk
k Vpen ← e−λ |Foutlier| V ← Vgeo · Vpen

30 Stage 4: Validation Check if V < τvalid then
31 is Valid ← False; PURGECORRUPTED-

DATA(St)
32 else
33 is Valid← True

A.6 Feature Extraction 1045

Let H ′,W ′ denote the height and width of the final 1046

CNN feature map after L layers. Let de be the 1047

number of CNN output channels, and let dc be the 1048

BERT hidden dimension (which equals the token 1049

embedding size dm). 1050

Let the training set be Strain = {si}Ni=1. Each 1051

sample si comprises an image simg
i and text stexti , 1052

processed as follows: 1053

1. CNN Encoding: 1054

F
(0)
i = simg

i (8) 1055

F
(l)
i = ReLU

(
W (l) ∗ F (l−1)

i + b(l)
)
, (9) 1056

F
(L)
i ∈ Rde×H′×W ′

(10) 1057

eji =
1

H ′W ′

H′∑
h=1

W ′∑
w=1

F
(L)
i (j, h, w) (11) 1058

ei = [e1i , . . . , e
de
i ]⊤ ∈ Rde (12) 1059

2. BERT Embedding: 1060

X
(0)
i =

[
Etok(wt) + Epos(t)

]T
t=1

(13) 1061

X
(ℓ)
i = TransformerLayer(ℓ)

(
X

(ℓ−1)
i

)
,

(14)
1062

ci = X
(L′)
i [1] ∈ Rdc (15) 1063
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3. Concatenation & Normalization:1064

ui =

[
ei
ci

]
∈ Rde+dc (16)1065

vi =
ui

∥ui∥2
(17)1066

4. Matrix Assembly:1067

X =

v⊤
1
...

v⊤
N

 ∈ RN×(de+dc) (18)1068

5. PCA Reduction:1069

Z = PCAk(X) =

z⊤1
...

z⊤N

 ∈ RN×k (19)1070

A.7 Cluster Anomaly Detection1071

1. DBSCAN Clustering:1072

Nϵ(zi) = {zj : ∥zj − zi∥2 ≤ ϵ} (20)1073

zi ⇐⇒ |Nϵ(zi)| ≥ MinPts (21)1074

(22)1075

1076

zi ⇝ zj ⇐⇒ ∃ (zi0 , . . . , zim) (23)1077

zp, zq ⇔ ⇐⇒ ∃ zo : zp, zq ⇝ zo (24)1078

2. Clustering Procedure:1079

(a) Mark all zi unvisited, set cluster counter1080

c← 0.1081

(b) For each unvisited zi:1082

i. Mark zi visited; let N ← Nϵ(zi).1083

ii. If |N | < MinPts, label zi as noise.1084

iii. Else:1085

c← c+ 1, Cc ← {zi} (25)1086

(c) expand(C,N):1087

zj :


if unvisited: mark visited
N ′ ← Nϵ(zj)

if |N ′| ≥ MinPts, N ← N ∪N ′

(26)

1088

if zj /∈ C, then C ← C ∪ {zj} (27)1089

(d) Resulting clusters: C1, . . . , CK1090

3. Cosine Similarity: 1091

Σij =
z⊤i zj

∥zi∥2 ∥zj∥2
(28) 1092

4. Anomaly Score: 1093

si = 1− 1

|Ck|
∑
j∈Ck

Σij (29) 1094

5. Outlier Set: 1095

Foutlier = { i | si > τanom} (30) 1096

6. Cluster Weighting: 1097

ρk =
|Ck|
N

(31) 1098

δk = 1− |Foutlier ∩ Ck|
|Ck|

(32) 1099

wk = ρk δk (33) 1100
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