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Abstract

Neural Machine Translation (NMT) between
Chinese and low-resource languages (LRLs)
faces significant challenges due to limited,
noisy training data. We introduce MERIT, a
unified translation framework that transforms
the traditional English-centric ALT benchmark
into a Chinese-centric evaluation suite for
five Southeast Asian LRLs. Our approach
integrates Language-specific Token Prefixing
(LTP) for effective language conditioning and
supervised fine-tuning (SFT). A key innovation,
Group Relative Policy Optimization (GRPO)
guided by the Score Accuracy Reward (SAR)
function, strategically filters training data and
optimizes model performance. Experiments
with models up to 3 billion parameters (MERIT-
3B) confirm the efficacy of our method. Abla-
tion studies demonstrate substantial improve-
ments from SFT-LTP over zero-shot baselines,
while GRPO-SAR achieves further significant
gains using only 22.8% of the original data, in-
creasing BLEU-chrF scores by 17.4%. MERIT-
3B notably surpasses open-source models such
as NLLB-200 3.3B by 9.5 BLEU-4 points
on Chinese-Indonesian translation and out-
performs M2M-100 by 5.1 BLEU-4 points
on Chinese—Lao. These findings highlight
the pivotal role of targeted data curation and
reward-guided training over mere model scal-
ing, advancing multilingual translation in low-
resource settings. Code and data are available
at https://anonymous.4open.science/r/MERIT-
864/.

1 Introduction

The vision of Neural Machine Translation (NMT)
is to provide equitable access to information
for speakers of over 7,000 languages worldwide.
While English-French translation has achieved
near-human BLEU scores (Papineni et al., 2002),
many low-resource languages—including Chinese—
LRL directions such as Tibetan, Lao, or Taga-
log—remain virtually untranslatable due to the lack

of parallel corpora, standard orthographies, and an-
notated data (Costa-jussa et al., 2022).

Multilingual pretraining has shown impressive
zero-shot gains: mBART-50, mT5, and DeltaLM
achieve broad coverage but continue to overlook or
underperform on Southeast Asian and Chinese do-
mestic LRLs. NLLB-200 (Costa-jussa et al., 2022)
improves on this by expanding coverage to 200
languages and introducing the XSTS metric. How-
ever, Chinese—LRL performance still trails behind
English-pivoted directions.

Moreover, the lack of publicly available and
high-quality evaluation benchmarks hinders objec-
tive progress measurement. An ideal benchmark
should: (i) cover multiple Chinese—LRL direc-
tions, (i1) maintain sufficient balance in scale and
domain coverage, and (iii) avoid dependence on
English as a pivot. Without these features, model
improvements are difficult to reproduce or attribute
reliably.

To address the long-standing lack of evaluation
benchmarks for Chinese—low-resource language
(LRL) directions in Neural Machine Translation
(NMT), this paper makes the following three con-
tributions:

* We introduce the first Chinese-centric mul-
tilingual benchmark for low-resource lan-
guages, derived from the ASEAN Languages
Treebank (ALT) through various data filter-
ing (EPDS-DIV) and distillation (QE Agent)
techniques. This dataset targets low-resource
language scenarios and ensures balanced do-
main coverage and semantic consistency (Thu
et al., 2016).

* We compare multiple metrics through Strict-
Overlap and Semantic-Friendly measures on
five series of large language models (LLMs).
The evaluation is conducted using three ap-
proaches: zero-shot, supervised fine-tuning



(SFT), and Group Relative Policy Optimiza-
tion (GRPO), with the latter utilizing the
expert-rated validation set for training.

* We explore the impact of model scale, data
adaptation, and reward-based quality filter-
ing on Chinese—LRL translation performance.
Our results show that smaller open-source
models can match proprietary models when
trained with high-quality, strictly filtered data
and guided reinforcement. The proposed
MERIT framework effectively integrates and
leverages these components.

2 Related Work

Early Chinese-LRL Corpora. The CCMT
shared tasks released fewer than 200k sentence
pairs for ZH-UG and ZH-MN (Liu et al., 2021),
while Wiki-based mining typically yields only a
few thousand pairs for ZH-LO and ZH-FIL (Artetxe
and Schwenk, 2019). The ALT corpus (Thu
et al., 2016) extends coverage to 13 ASEAN lan-
guages but remains English-centric and lacks direct
Chinese—LRL alignment.

Multilingual Pretraining. Models like mBART-
50 (Liu et al., 2020), mT5 (Xue et al., 2021), and
DeltaLM (Ma et al., 2021) cover 50-101 languages,
but still overlook or underperform on languages
such as Tibetan and Uyghur. NLLB-200 (Costa-
jussa et al., 2022) improves BLEU by 44% on
FLORES-200 and adds the XSTS metric, but still
underperforms on Chinese—LRL due to data qual-

ity gaps.

LLM-based Machine Translation. Instruction-
tuned LLMs such as GPT-4o0 (Huang et al., 2025),
Claude-3.5 (Enis and Hopkins, 2024), and Gemini-
2.5 (DeepMind, 2025) show strong generalization
across many languages. Open-source models like
Qwen-2.5 (Cui and et al., 2025) and DeepSeek-v3
(Huang et al., 2025) serve as strong multilingual
baselines, though most published evaluations fo-
cus on FLORES-200 and overlook Chinese—LRL
directions.

Evaluation Limitations. Most multilingual
benchmarks pivot through English, mix domain
content, or lack human validation, reducing their
diagnostic value for Chinesee-LRL MT. Our
benchmark addresses these gaps with direct
Chinese-LRL alignment, domain balance, and
human-validated samples.

3 Methodology

3.1 Dataset

We construct a new test suite based on the ASEAN
Languages Treebank (ALT) corpus (Thu et al.,
2016). ALT is an English-centric multilingual cor-
pus that already provides sentence-level alignment
for several Southeast-Asian languages—Vietnamese
(vi), Burmese (my), Lao (1o), Tagalog (fil) and
Indonesian (id). Although Chinese is included as a
target aligned with English, no direct Chinese-LRL
alignment exists.

We therefore re-index sentences sharing the
same alt_id and semantic source to form direct
Chinese-LRL sentence pairs. In the resulting test
set, Chinese can serve either as the source or as
the reference language. The benchmark is clean,
stylistically consistent and typologically diverse,
enabling more controlled and fair evaluation of
multilingual NMT systems from a Chinese-centric
perspective.

Language Selection. We deliberately focus on
five Southeast-Asian low-resource languages (vi,
my, lo, fil, id) for four data-driven reasons:

All five appear in ALT with reliable English
alignments, so that high-quality Chinese-LRL re-
alignment is feasible.

Indonesian rather than Malay is kept because
the two belong to the same Malayic subgroup and
share 90 % lexical overlap, to the extent that many
international surveys treat them as a single “Malay
macrolanguage” (Adelaar, 2012; Eberhard et al.,
2023b), if both are included simultaneously, it will
result in redundancy of the experimental languages.
Malay already has over 1 million clean En—Ms

Speaker Population'  Filtered

Languages (Eberhard et al., 2023a)  Subset? R
Chinese (zh) 1180M X X
Hindi (hi) 345M X X
Bengali (bn) 234M X X
Japanese (ja) 121M X X
Vietnamese (vi) 86M 10K v
Indonesian (id) 43M 10K v
Burmese (my) 33M 10K v
Tagalog (fil) 24M 10K v
Thai (th) 20M X X
Malay (ms) 18M X X
Khmer (km)? 16M - v
Lao (1o) 4.3M 10K v

Table 1: Language Statistics from the ALT Corpus for
Chinese-Centric Multilingual Translation. ALT corpus
statistics sorted by L1 speaker population. All counts
refer to L1 speakers and are rounded to the nearest
million (M). LRL: Low-resource Language.



sentence pairs (e.g., MT-Wiki and multiple OPUS
sub-corpora), pushing it into the mid-resource tier
(Duong et al., 2017), whereas Indonesian still lacks
sizeable Chinese parallel data (<50 k pairs in total,
ALT contributes only 20 k) and is classified as low-
resource by FLORES-200 and NLLB benchmarks
(Goyal and et al., 2022; Team and Al, 2022).

Thai aggregated corpora exceed one million
sentence pairs and the language enjoys dedicated
WMT/IWSLT tracks (Lowphansirikul and Chuang-
suwanich, 2020), so it no longer fits a strict LRL
definition.

Khmer parallel resources are both small and
highly noisy, the WMT?20 corpus-filtering task em-
phasised that extensive cleaning is required (Koehn
et al., 2020); moreover, unlike the other languages
considered, Ethnologue reports virtually no L2
speaker community for Khmer (Simons and Fennig,
2023). Including Khmer would therefore demand
a language-specific filtering pipeline and would
undermine comparability with the other languages.

This reconstructed benchmark complements ex-
isting resources such as FLORES-200 (Costa-jussa
et al., 2022), particularly for Chinese—LRL direc-
tions in mainland and maritime Southeast Asia.
Unlike pivot-based benchmarks, our test set avoids
semantic distortion introduced by intermediate En-
glish, thus enabling more realistic, stable, and re-
producible evaluation for Chinese-centric multilin-
gual translation systems.

3.2 Model Overview

We evaluate five series representative LLMs, span-
ning both proprietary and open-source systems:

Qwen-2.5 (Ghosal et al., 2024; Cui and et al.,
2025): Chinese-English bilingual models fine-
tuned for multilingual transfer, evaluated on several
LRLs.

GPT-40 (Huang et al., 2025): OpenAl’s flagship
model tested on 16 languages, including several
low-resource directions such as En—Te and En—Sw.

Claude-3.5 (Enis and Hopkins, 2024): A multi-
lingual LLM from Anthropic, evaluated via MQM
metrics on pairs like En—Yoruba and En—Ambharic.

Gemini-2.5 (DeepMind, 2025): While lacking
peer-reviewed benchmarks on Chinese-LRL tasks,

!Speaker numbers derive from the most recent national
censuses or Ethnologue reports (2023-2025) and are expressed
in millions (M).

2Each ALT language contains approximately 20k aligned
sentence pairs from a shared English source. See https://
www2.nict.go. jp/astrec-att/member/mutiyama/ALT/.

3No L2 speaker community (Simons and Fennig, 2023).

its predecessor covers ultra-low-resource transla-
tion (e.g., En—Kalamang).

DeepSeek (Huang et al., 2025; Jiang et al.,
2025): A competitive open-source model evalu-
ated in the BenchMAX suite alongside GPT-40.

Zero-shot prompting was applied exclusively
to closed-source LLMs. For the Qwen-2.5 mod-
els, both SFT and GRPO-enhanced SFT were ap-
plied. Additional tests were conducted with SFT
and GRPO-enhanced SFT using enhanced data de-
rived from closed-source LL.Ms in the zero-shot
regime. The GRPO-enhanced SFT regime utilizes
a scoring agent trained on expert-rated develop-
ment sets, optimized with Score Accuracy Reward
(SAR) to ensure the selection of only high-quality
translations. Model performance is assessed using
the following metrics: BLEU-4, sacreBLEU, chrF,
ROUGE-L, METEOR, and BERTScore.

3.3 Scoring and Selection

To construct high-quality parallel corpora for low-
resource translation, we design a two-stage scoring
and filtering pipeline that integrates interpretable
statistical features with semantic evaluation, fol-
lowed by reference-free quality estimation and
threshold-based selection.

Stage I: Statistical and Semantic Scoring. We
extract key surface-level features such as sentence
length ratio and digit proportion difference, along
with aggregated indicators for token balance, punc-
tuation consistency, and lexical diversity. These
help identify formatting mismatches and align-
ment noise (Munteanu and Marcu, 2005; Sanchez-
Cartagena et al., 2018).

To assess deeper semantic alignment, we incor-
porate two additional signals: (i) conditional per-
plexity for fluency estimation, and (ii) instruction-
following discrepancy to capture semantic fidelity,
inspired by instruction-tuning objectives (Li et al.,
2023). All features are normalized and combined
through weighted scoring to penalize semantically
misaligned pairs (Espla-Gomis et al., 2020).

Stage II: Quality Estimation and Filtering.
A reference-free Quality Estimation (QE) model,
trained on human-annotated validation sets, further
evaluates translation adequacy and fluency (Rei
et al., 2020; Freitag et al., 2021). Sentence pairs
surpassing a calibrated threshold are retained. This
final stage ensures that the resulting dataset is both
scalable and high-quality, suitable for fine-tuning
compact models in low-resource scenarios.
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Figure 1: The overall workflow of the MERIT framework for Chinese-centric multilingual translation. (a) Data
Selection: Sentences from the ALT corpus are filtered and scored using perplexity (ppl) and inverse frequency
diversity (ifd) to construct and refine a high-quality multilingual dataset, yielding training and testing subsets for
five low-resource Southeast Asian languages. (b) Translation Scoring: A Translation Quality Estimation (QE)
dataset is created by language experts, followed by training a QE agent to assess the translation quality of additional
data. (c) Data Distilling: QE Agent trained by Group Relative Policy Optimization (GRPO) with Score Accuracy
Reward (SAR) leveraged to further evaluate more training data, yielding more high-quality training samples. (d)
Model Training: The MERIT-3B model is trained using Supervised Fine-Tuning (SFT), Language-specific Token
Prefixing (LTP) with LLM-Enhanced data argmentation to achieve optimal multilingual translation performance.

3.4 Supervised Fine-Tuning

We fine-tune open-source models (Qwen-2.5 0.5B
and 3B) on the filtered Chinese-LRL data us-
ing supervised fine-tuning (SFT) (Fan et al.,
2021).  The training objective is to maxi-
mize the conditional likelihood of the target se-
quence ¥ = (y1,...,yn) given the source
sequence X = (z1,...,xy), using standard
sequence-to-sequence formulation with teacher
forcing (Sutskever et al., 2014; Williams and
Zipser, 1989).

Label smoothing with € = 0.1 is applied to avoid
over-confidence (Szegedy et al., 2016). Fine-tuning
is conducted independently for each Chinese—LRL
pair to account for language-specific morphology.
This strategy, paired with prior quality filtering,
yields strong gains over zero-shot performance,
echoing findings on targeted adaptation for mul-
tilingual NMT (Arivazhagan et al., 2019).

3.5 Language-specific Token Prefixing

To improve language discrimination in one-to-
many generation, we adopt Language-specific To-
ken Prefixing (LTP), which prepends a target lan-

guage token (e.g., [1o]) to both the source input
and prompt instruction. This token is added to the
tokenizer vocabulary and embedded as part of the
model input.

For each training sample, the source input is
modified as X’ = [lang] @ X, and the final model
input becomes a concatenation of the instruction
prompt and the language-tagged source sequence:
ey

Input = [Prompt & [lang]l @ xy, ..., )]

The training objective minimizes the negative
log-likelihood of the target sequence:

m
Lyiie = — Y log P(y; | y<i,Prompt, X; 6)

t=1
2
This extends target-language prefixing
ideas (Johnson et al., 2017) by combining sym-
bolic and prompt-based conditioning for unified
multilingual fine-tuning.

3.6 Group Relative Policy Optimization

Group Relative Policy Optimization (GRPO) is a
reinforcement learning strategy that refines model



outputs using reward feedback. Inspired by Rein-
forcement Learning with Human Feedback (RLHF)
techniques (Ouyang et al., 2022; Lu et al., 2022),
GRPO operates on mini-batches of candidate trans-
lations in this task, assigning scalar rewards based
on Score Accuracy Reward (SAR) scores. Subse-
quently, the model learns to maximize the expected
reward via policy gradient updates.

Unlike conventional pointwise objective func-
tions, GRPO introduces an intra-batch comparison
mechanism and normalizes rewards using a moving
baseline. This approach helps to reduce the vari-
ance of gradient estimates, thereby enhancing the
stability of the training process. Our experiments
indicate that GRPO is effective for translation eval-
uation, enabling the selection and improvement of
dataset translation quality.

3.7 Score Accuracy Reward Function

We define the Score Accuracy Reward (SAR) to
evaluate model completions based on their ability
to accurately reproduce specific numerical scores
present in ground-truth answers. This reward func-
tion is designed for tasks where precision in ex-
tracting or generating key numerical information is
critical. SAR rewards model outputs that closely
match these target numerical values (representing a
form of preference or correctness) while penalizing
deviations.

To extract the salient numerical score s; from the
completion content c;, we first delineate a match-
set, M (c;). This set comprises all integer values
identified within ¢; through the application of a
predefined regular expression, denoted as R. We
define a predicate Pr(m, c;) to be true if and only
if m is an integer yielded by matching the regular
expression R against the string c;. The match-set
M (¢;) is then formally defined as:

M(c;) ={m € Z| Pr(m,ci)} 3)

The extractor function E(c;) then determines the
score s; from this match-set. As per the reference,
if M (¢;) is not empty, s; is the minimum integer
found; otherwise, s; is set to -1:

si=FE(¢) = {ffilnM(ci),

itMe) 20
if M (CZ) = @
Given a ground-truth integer answer vector a =
(a1,az,...,an), we define a piecewise reward-
mapping function ¢(d) based on the absolute dif-
ference d = |s; — a;| between the extracted score

s; and the ground-truth answer a;. This function,
detailed in source, is:

2.0, ifd=0
o(d)=1<¢1.0, if1<d<10 (5)
0.0, otherwise

This mapping assigns the highest reward for an
exact match, a partial reward for close matches
(difference up to 10), and zero reward for larger
deviations or mismatches.

Finally, the reward r; for each instance ¢ is com-
puted based on s; and ¢(d). If a valid score s; > 0
was extracted, the reward is ¢(|s; — a;|). If no score
was extracted (s; < 0), the reward is 0.0:

r; = ¢(lsi — ail), %fSi >0 ©
0.0, if s; <0

The overall outcome is a reward vector r =
(r1,72,...,7n). This SAR mechanism, by focus-
ing on the accuracy of extracted numerical scores
against ground-truth values, provides a clear signal
for tasks requiring numerical precision. Similar
score-alignment objectives, where models are re-
warded for matching target scores or preferences,
have been successfully adopted in alignment train-
ing for various generation tasks (Wu et al., 2023).

4 Experiments and Analysis

4.1 Evaluation Method

We evaluate translation performance using both
overlap-based and semantic-aware metrics:

Strict-Overlap: BLEU-4 (Papineni et al., 2002),
sacreBLEU (Post, 2018), and ROUGE-L (Lin,
2004) assess lexical match and n-gram precision,
which are crucial for evaluating surface-level accu-
racy and fluency.

Semantic-Friendly: chrF (Popovic, 2015), ME-
TEOR (Banerjee and Lavie, 2005), and BERTScore
(Zhang et al., 2020) measure semantic similarity
and fluency robustness, capturing aspects that n-
gram overlap alone might miss.

Each metric is computed on the reconstructed
ALT test suite for five Chinese—LRL pairs. We
report averages across directions, comparing
zero-shot prompting, SFT, and GRPO-enhanced
regimes.

To provide a balanced evaluation that captures
both lexical precision and semantic adequacy, we
propose a composite metric, BLEU-chrF. This met-
ric integrates insights from both the Strict-Overlap
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Figure 2: Performance—Scale Trade-offs of MERIT-3B
and Baseline Models on Chinese-Centric Multilingual
Translation. Comparison of BLEU-chrF scores against
model size (log-scale) across MERIT-3B, open-source,
and estimated closed-source models.

and Semantic-Friendly categories of evaluation
measures by taking the arithmetic mean of the
BLEU-4 score and the chrF score:

BLEU-chrF = w @)

By averaging these two widely-used metrics, one

emphasizing n-gram precision and the other char-

acter n-gram recall and F-score. We aim to achieve

a more holistic assessment of translation quality,

particularly for tasks where both lexical fidelity and
semantic resemblance are important.

4.2 Main Result

Table 2 presents our evaluation results across five
Chinese-LRL directions, categorizing metrics into
Strict-Overlap (Papineni et al., 2002; Post, 2018,7?;
Lin, 2004) and Semantic-Friendly (Popovic, 2015;
Banerjee and Lavie, 2005; Zhang et al., 2020).

Among leading closed-source models, Gemini-
2.5 Flash consistently achieves top scores in BLEU-
4 and chrF across multiple languages, such as Fil-
ipino (BLEU-4: 49.26, chrF: 42.68) and Indonesian
(BLEU-4: 48.73, chrF: 41.93). Claude-3.5 Sonnet
excels in ROUGE-L for Lao (14.00) and Burmese
(24.44).

The proposed Multilingual Expert-Reward
Informed Tuning (MERIT) framework, demon-
strates notable strengths. Specifically, MERIT-3B
significantly outperforms the similarly sized open-
source NLLB-200 3.3B model across several met-
rics for Filipino, Indonesian, and Vietnamese. For
instance, on Filipino, MERIT-3B achieves 29.71
BLEU-4 and 49.88 METEOR compared to NLLB-
200’s 25.05 and 46.10, respectively. Furthermore,

MERIT-3B shows substantial gains over smaller
open-source baselines on particularly challenging
low-resource language pairs.

Notably, our MERIT-3B model demonstrates
substantial advantages over the DeepSeek-r1 7B.
MERIT-3B consistently outperforms DeepSeek-r1
7B on lexical similarity metrics such as BLEU-4
and chrF across all five evaluated languages. Fur-
thermore, when benchmarked against Qwen-2.5
7B, MERIT-3B, with only approximately 42.9% of
its parameters, achieves highly competitive transla-
tion quality. For instance, on Filipino, MERIT-3B
reaches 99.7% of Qwen-2.5 7B’s ROUGE-L score
(31.91 vs. 31.99) and over 98.3% of its BLEU-4
score (29.71 vs. 30.21). Similar competitiveness is
observed for Indonesian, where MERIT-3B attains
approximately 95.7% of Qwen-2.5 7B’s BLEU-4
score (34.73 vs. 36.28) and 93.2% of its ROUGE-L
score (26.63 vs. 28.56).

These results underscore the efficacy of our
reward-informed filtering and specialized fine-
tuning approach, particularly in enhancing perfor-
mance for low-resource languages and achieving
competitive results within the open-source land-
scape relative to model scale.

4.3 Module Comparison

To investigate the contribution of each component,
we conduct an ablation study on Qwen-2.5 0.5B
and Qwen-2.5 3B across four distinct setups: zero-
shot (serving as our baseline), Supervised Fine-
Tuning with Language-Token Prefixing (SFT-LTP),
SFT-LTP followed by reward-enhanced tuning us-
ing Group Relative Policy Optimization with Score
Accuracy Reward (GRPO-SAR), and finally our
full SFT-LTP + GRPO-SAR with an additional
LLMs-Enhanced (LLME) stage.

As detailed in Table 3, initial SFT-LTP yields
substantial improvements in both BLEU-4 and
chrF scores over the zero-shot baselines across
all languages for both model sizes. For instance,
Qwen-2.5 3B sees its overall BLEU-chrF score in-
crease from 9.10 to 15.53 after SFT-LTP. Introduc-
ing GRPO-SAR provides further consistent gains.
Notably, for the Qwen-2.5 3B model, GRPO-SAR
significantly boosts performance on low-resource
pairs like Chinese—Lao, improving BLEU-4 from
1.17 (SFT-LTP) to 4.39 and chrF from 2.22 (SFT-
LTP) to 5.17. Even with its limited capacity,
the Qwen-2.5 0.5B model benefits remarkably
from GRPO-SAR, achieving an overall BLEU-chrF
score of 4.39, which is nearly a 40-fold increase



Strict-Overlap | BLEU-4 \ sacreBLEU \ ROUGE-L \

Model | fil id lo my vi | fil id lo my vi | fil id lo my vi | FT|OS
GPT-40 4526 47.77 28.10 30.48 45.03 | 43.60 45.81 27.38 29.53 4450 | 33.62 3140 1233 2357 2825 | X X
Claude-3.5 Sonnet | 42.97 4735 32.20 30.92 45.14 | 43.38 4654 32.65 30.14 4455 | 3503 31.17 14.00 2444 2845 | X X
Gemini-2.5 Flash 49.26 48.73 3579 3691 39.24 | 47.48 47.20 35.03 36.07 38.63 | 3589 30.83 1353 2392 2462 | X X
DeepSeek-v3 46.19 41.83 2557 26.68 41.29 | 44.12 41.38 2525 2629 4090 | 35.15 30.06 12.75 2295 28.27 X v
Qwen-2.5 32B 43.56 47.87 2327 2043 46.23 | 42.01 46.61 2248 1950 44.63 | 3497 3185 11.84 20.61 29.08 X v
DeepSeek-r1 32B 3798 4329 1297 887 4257 | 37.14 4227 1271 843 4145 | 3240 2992 10.04 1631 28.11 X v
Qwen 2.5-7B 30.21 3628 6.17 643 3522 29.75 3641 567 542 3507 | 3199 28.56 9.86 1641  27.81 X v
DeepSeek-r1 7B 1477 2094 0.79 0.37 1253 | 1531 24.17 0.86 046 16.16 | 2458 23.32 8.67 5.67 18.52 X v
NLLB-200 3.3B 25.05 2527 15.86 20.83 2530 | 2421 23.64 15.19 20.13 2297 | 3145 2573 1149 18.68 2551 X v
DeepSeek-rl 1.5B 0.07 0.08 0.05 1.06  0.05 0.03 0.06 0.01 0.11 0.02 0.77 0.90 1.80 3.80 0.55 X v
M2M-100 1.2B 2.13 9.53 0.05 0.00 3.33 1.32 9.47 0.01 0.00 3.19 9.88 21.65 4.69 0.00 13.01 X v
MERIT-3B (Ours) | 29.71 3473 5.15 456 3120 | 27.20 33.16 4.28 3.54 2925 | 3191 26.63 8.40 13.68 21.18 v v
Semantic-Friendly | chrF \ METEOR \ BERTScore

Model | fil id lo my vi | fil id lo my vi | fil id lo my vi | FT |OS
GPT-40 39.36 41.13 2420 26.76 39.62 | 67.80 70.34 53.66 56.59 69.44 | 68.59 70.84 5627 57.04 7041 X X
Claude-3.5 Sonnet | 38.71 4130 28.38 28.79 39.65 | 67.52 70.29 58.53 58.88 69.23 | 6828 71.55 60.72 57.68 7040 | X X
Gemini-2.5 Flash 42.68 4193 30.61 32.09 34.66 | 70.14 70.87 60.21 61.85 60.31 | 71.67 7277 6393 6239 60.88 | X X
DeepSeek-v3 39.80 3695 2237 2443 36.86 | 68.04 67.10 51.41 53.66 6743 | 70.02 68.81 5482 5421 68.87 X v
Qwen-2.5 32B 37777 41.35 2036 18.13 39.80 | 66.61 70.57 46.72 4329 69.76 | 67.73 71.73 50.50 45.09 71.13 X v
DeepSeek-rl 32B 3362 37.62 1277 981 3697 | 61.60 66.75 34.07 2737 6695 | 63.32 68.54 36.09 2736 68.65 X v
Qwen-2.57B 27.88 3368 739 795 3328|5451 6256 2084 2325 63.00 | 5495 62.82 2224 2335 6328 | X v
DeepSeek-rl 7B 1543 21.60 220 1.35 14.87 | 36.02 4935 845 646 37.61 | 3422 49.07 1.46 -4.10 3654 | X v
NLLB-200 3.3B 2248 2357 1492 18.69 2243 | 46.10 4528 36.27 4228 4573 | 48.61 5434 4480 4893 5259 | / v
DeepSeek-rl 1.5B 0.33 0.38 0.36 1.87 0.24 1.99 2.34 2.17 3.80 143 | -27.97 -26.07 -20.48 -19.68 -2948 | X v
M2M-100 1.2B 5.16 1821 0.26 0.01 6.49 4.65 14.00 0.57 0.11 6.10 | -16.71 -1.68 -10.04 -16.34 -9.51 v v
MERIT 3B (Ours) | 25.52 30.22 5.81 5.53 2698 | 49.88 5646 1655 1693 50.50 | 46.70 4558 1145 16.12  32.87 v v

Table 2: Evaluation on five Southeast Asian languages. Strict-Overlap metrics include BLEU-4, sacreBLEU, and
ROUGE-L. Semantic-Friendly metrics include chrF, METEOR, and BERTScore. For each metric column: Bold
values indicate the highest score, and Underlined values indicate the second highest score across all models. FT:

Fine-tuned; OS: Open Source.

\ BLEU-4 chrF \
Model Overall
| fil id lo my vi fil id lo my vi | (BLEU-chrF)
Qwen2.5-0.5b 0.03 0.03 0.02 0.01 0.01 0.16 0.12 0.40 0.25 0.06 0.11
+ SFT-LTP 1.8641.83 4.0244.00 0.25¢40.22 0.1510.14 3.1243.11 4.8514.69 10.38410.26 141t1.00 1.0740.82 8.55+8.50 3.57+3.46
+ GRPO-SAR 2.3112.28 4.3244.29 02640.24 0.1610.16 6.2916.27 5.0014.84 10.64410.52 1.38140.98 1.2240.96 12.36412.30 4.3914.28
+LLME 0.3210.29 0.4510.42 0.0810.06 0.0710.06 0.7910.78 1.2011.0a 1.6611.54 0.4540.05 1.25¢1.00 2.8212.76 0.91+10.80
Avg. 1.13 221 0.15 0.10 2.55 2.80 5.70 0.91 0.95 5.95 225
Qwen2.5-3b 5.80 14.25 1.11 1.83 17.06 8.83 17.71 2.05 3.03 19.35 9.10
+SFLLTP | 2301417.21 260011175 1.1770.05 2.53t0.60 279411087 | 20.14111.81 2425654 2221017 3531050 24.5515.20 | 15.5316.43
+GRPOSAR | 25.58110.75 291111486 4391325 27710.05 325411548 | 236211478 278311012 5071312 3451042 27.881s.53 | 18237013
+LLME 29.71423.01 34.73120.48 S5.15t4.0a 4.5642.73 31.20114.14 | 25.52416.60 30.22412.51 5.8l43.76 5.5312.50 26981763 19.94410.84
Avg. 21.03 26.02 2.96 292 27.19 19.53 25.00 3.81 3.89 24.69 15.70

Table 3: Ablation Study of Qwen-2.5 0.5B and Qwen-2.5 3B on five Southeast Asian languages. All values are
rounded to two decimal places. Improvements over the Zero-shot baseline (underlined rows).

(a 3890% relative improvement) over its zero-shot
baseline score of 0.11. This underscores the effi-
cacy of reward modeling, consistent with findings
in instruction tuning (Ouyang et al., 2022; Wu et al.,
2023).

Our proposed LLMs-Enhanced (LLME) stage
demonstrates further advancements, particularly
for the larger Qwen-2.5 3B model. With LLME,
the Qwen-2.5 3B model achieves the highest over-
all BLEU-chrF score of 19.94, representing a 10.84
absolute point improvement (a 119% relative in-
crease) over its zero-shot baseline. This highlights
the synergistic benefits of our full pipeline. While
the LLME stage yields more modest gains for the
Qwen-2.5 0.5B model in the current setup (overall

BLEU-chrF of 0.91), the substantial cumulative im-
provements from SFT-LTP and GRPO-SAR on this
smaller model, and the peak performance achieved
by the 3B model with LLME, collectively validate
the effectiveness and scalability of our modular tun-
ing strategy in significantly enhancing translation
quality.

4.4 Effect of Data Distillation on Performance

We assess the impact of our quality filtering ap-
proach by comparing full-scale Supervised Fine-
Tuning with Language-Token Prefixing (SFT-LTP)
against subsequent reward-informed filtering and
tuning via GRPO-SAR, using our MERIT-3B
model. Table 4 details the number of retained train-
ing instances per language and the corresponding



overall BLEU-chrF scores for these configurations.

The SFT-LTP stage utilizes the full set of 40,000
training instances. In contrast, the GRPO-SAR
stage strategically curates this data, drastically re-
ducing the volume to only 9,126 instances. This
constitutes an average data reduction of 77.2%,
with the most significant reduction observed for
Vietnamese, where the training data was cut by
87.8% (from 8,000 to 976 instances). Remarkably,
despite this substantial data pruning, the overall
BLEU-chrF score not only signifies the efficient
retention of highly informative samples but actu-
ally improves from 15.53 (achieved with SFT-LTP
on 40,000 instances) to 18.23 with GRPO-SAR
on the reduced dataset. This represents a relative
performance increase of approximately 17.4%.

These findings underscore the efficacy of our
reward-based filtering (GRPO-SAR) as a data-
efficient strategy that can simultaneously reduce
training data requirements and enhance model per-
formance. This offers a compelling alternative to
training on larger, potentially noisier, unfiltered
datasets. The benefits of leveraging reward signals
for targeted data curation align with effective strate-
gies observed in other generative Al tasks, such as
summarization and dialogue tuning (Lu et al., 2022;
Ouyang et al., 2022).

4.5 Further Discussion

Our work, culminating in the MERIT framework,
demonstrates the significant potential of combining
data filtering techniques, such as the Score Accu-
racy Reward (SAR) driven GRPO, with efficient
fine-tuning strategies like Language-Token Prefix-
ing (LTP) for multilingual translation, especially
into low-resource languages (LRLs). The proposed
BLEU-chrF composite metric has also provided a
balanced view of lexical and semantic performance.
While MERIT-3B exhibits strong performance rela-
tive to its scale and against comparable open-source
models, several limitations persist and pave the way
for future exploration.

First, script-related challenges, particularly for
Lao and Burmese, can introduce encoding incon-
sistencies. These not only affect the performance
of QE agents used in SAR but also potentially skew
standard evaluation metrics. Future iterations could
incorporate more robust character normalization or
transliteration techniques at the data preprocessing
stage, or develop QE models less sensitive to such
variations.

Second, the current reward model underlying

GRPO-SAR, while effective, may inadvertently pri-
oritize adequacy (accuracy of content, as captured
by our specific SAR function focusing on numer-
ical or key information matching) sometimes at
the expense of optimal fluency. This can occasion-
ally lead to subtle grammatical artifacts in some
translations. Future work could investigate multi-
objective reward functions that explicitly balance
adequacy, fluency, and even other aspects like style
or register, potentially drawing on more diverse
human feedback signals beyond simple ratings.

Moreover, as noted by Zhang et al. (2022), many
LLMs, including some baselines we compared
against, are often evaluated in zero-shot or few-shot
settings for translation. This might not fully reveal
their capabilities, which could be significantly en-
hanced with more sophisticated prompting strate-
gies or in-context learning techniques specifically
tailored for translation. Exploring how our data
filtering and fine-tuning methods can synergize
with advanced prompting for even larger LLMs
is a promising direction.

5 Conclusion

This work introduces MERIT, a unified framework
combining a reconstructed benchmark and modu-
lar training strategies for Chinese—Low-Resource
Language (LRL) neural machine translation. We
reconstruct a clean and balanced evaluation suite
from the ALT corpus, enabling reliable assess-
ment across five Southeast Asian languages. On
the training side, MERIT incorporates language-
conditioned fine-tuning and reward-guided data se-
lection to improve translation quality efficiently.

Experiments demonstrate that our MERIT-3B
model outperforms comparable open-source mod-
els and approaches the performance of significantly
larger proprietary systems, particularly in LRL
scenarios. Ablation results confirm that reward-
informed filtering with GRPO-SAR is especially
effective, achieving better performance with less
data.

Overall, our findings reinforce the importance
of strategic data selection and modular fine-tuning
over sheer model scale in low-resource settings.
Future work will extend MERIT to more languages
and explore scaling with stronger reward functions
and larger base models.
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A Appendix

A.1 Ethics Statements

This work presents a Chinese-centric multilin-
gual translation benchmark targeting five Southeast
Asian low-resource languages (LRLs), constructed
from publicly available corpora and evaluated un-
der reproducible protocols. We aim to support re-
sponsible research in multilingual NLP by releas-
ing rigorous evaluation resources while proactively
addressing ethical concerns related to data prove-
nance, model fairness, environmental impact, and
potential misuse.

Data Privacy and Consent All data is derived
from the publicly available ASEAN Languages
Treebank (ALT), which includes multilingual trans-
lations of government and news texts. While the
dataset is openly licensed, the original collection
did not explicitly document consent procedures or
personal identifiable information (PII) removal. To
mitigate this, we apply a multi-stage filtering pro-
cess to exclude named entities, explicit language,
and potentially sensitive content. Nonetheless, due
to the limitations of automated and manual filter-
ing, some residual risk may remain. We follow the
data statements framework (Bender and Friedman,
2018) and document licensing, provenance, and
usage constraints in the appendix.

Bias and Fairness Despite the use of a three-
stage filtering pipeline and expert-rated supervi-
sion, the training data may still encode latent cul-
tural, linguistic, or regional bias—particularly due
to its English-pivoted design and limited coverage
of dialectal variations or non-standard orthogra-
phies. Annotators are bilingual graduate students,
and while they are experienced, demographic di-
versity is limited. Future work will prioritize the
inclusion of more diverse annotators and typolog-
ically broader sources to mitigate such represen-
tational imbalances. Our work aligns with global
Al ethics principles of fairness, transparency, and
non-maleficence (Gebru et al., 2018).

Environmental Impact Model training and in-
ference were conducted on a single-node NVIDIA
A100 80GB GPU. We log training FLOPs and wall-
clock runtime for both the SFT and GRPO stages.
While the GRPO procedure improves data effi-
ciency through reward-based filtering, it introduces
additional computational cost. We estimate that
the total training corresponds to a typical single-
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node compute workload and plan to explore more
lightweight reward models or compute-efficient
alternatives to reduce carbon impact in future itera-
tions (emn, 2023).

Intended Use and Misuse Risks The benchmark
is designed to support objective evaluation and
supervised training for Chinese—LRL translation
tasks. It is intended for academic research and
language technology development, particularly in
regions underrepresented in NLP. However, misuse
is possible—such as generating misinformation or
content targeting marginalized communities. We
explicitly discourage such applications and recom-
mend that any downstream use include fairness au-
diting, risk controls, and human oversight (Mitchell
et al., 2018).

Transparency and Reproducibility We adhere
to the ACL Responsible NLP Research Check-
list (Review, 2023) and release all code, data,
and model checkpoints under a CC BY-NC 4.0
license. All filtering procedures, model configura-
tions, and hyperparameter settings are fully docu-
mented. Some language-specific heuristics (e.g.,
token ratio thresholds) were empirically selected
and may not generalize across domains; future val-
idation is necessary to ensure robustness.

A.2 Limitations

Despite the encouraging results achieved by our
proposed framework and the MERIT-3B model,
this work has several limitations that warrant dis-
cussion and offer avenues for future improvement.

First, while our evaluation benchmark improves
upon existing English-pivoted resources by con-
structing direct Chinese-LRL sentence pairs, its
current scope is confined to five Southeast Asian
languages. Other significant low-resource lan-
guages, including domestic Chinese minority lan-
guages such as Tibetan, Uyghur, and Kazakh,
remain unaddressed due to the scarcity of high-
quality aligned corpora. Expanding the linguistic
diversity of our benchmark is crucial for assessing
broader generalizability.

Second, the ALT-based test suite, although se-
mantically aligned through shared alt_id index-
ing, is fundamentally constrained by its original
English-centric design. While our realignment ef-
forts aim to mitigate semantic drift when adapt-
ing it for Chinese-LRL evaluation, some resid-
ual domain-specific or stylistic artifacts originating



from the English-centric source may persist and
subtly influence translation assessment.

Third, although our methodology employs a QE
agent and the statistical-semantic Score Accuracy
Reward (SAR) function for automatic data filter-
ing, the scale of human validation for these com-
ponents is currently limited. The expert-rated set
used for developing or validating the reward model
is modest in size. This might restrict the overall
robustness and generalizability of the SAR model,
particularly its alignment with nuanced human pref-
erences across diverse linguistic phenomena. Fu-
ture work should prioritize the integration of more
extensive and varied human annotations.

Fourth, while we have evaluated a range of
LLMs under zero-shot, SFT, and GRPO regimes,
the decoding strategies (e.g., beam size, sampling
temperature) and specific prompt formats were kept
fixed across these models for controlled compar-
ison. These settings can significantly influence
translation behavior and perceived quality, espe-
cially for proprietary models whose internal mech-
anisms are opaque. A more exhaustive exploration
of model-specific optimal decoding parameters and
prompt engineering could reveal further perfor-
mance variations.

Finally, due to computational resource con-
straints, our current experiments, including the de-
velopment and evaluation of the MERIT-3B model
and its associated fine-tuning framework (SFT-LTP,
GRPO-SAR), have been conducted on models up to
the 3B parameter scale. We have not yet extended
this framework to significantly larger parameter
models (e.g., 7B+, or state-of-the-art models in the
tens or hundreds of billions of parameters). Apply-
ing and evaluating our data filtering and reward-
informed tuning strategies on such larger-scale
models is an important next step to ascertain their
scalability and potential for even greater perfor-
mance gains, though this would require substantial
additional computational resources. Furthermore, a
detailed efficiency analysis, including training time,
inference latency, and computational cost of the fil-
tering and fine-tuning stages, was not conducted
and would be valuable for assessing practical de-
ployability.

A.3 Experimental Setup

All experiments were conducted on a local worksta-
tion equipped with two NVIDIA RTX 3090 GPUs
(24 GB). Under a 2x2 parallel configuration, the
per-GPU batch size was set to 8 with a gradient
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accumulation step of 2, resulting in an effective to-
tal batch size of 32. The maximum input sequence
length was set to 1024 tokens, and the initial learn-
ing rate was configured as 2e-4. The system envi-
ronment included Ubuntu 20.04, CUDA 12.1, and
Python 3.10, with PyTorch 2.1 and Transformers
v4.49 as the core libraries.

All training was performed using standard
mixed-precision (fp16) computation via custom
training scripts. Due to hardware limitations, the
batch size was carefully adjusted to fit within the
available GPU memory, and no experiments were
conducted using larger-parameter models. To en-
sure reproducibility, all random seeds were fixed,
and detailed runtime logs were maintained for each
experiment.

A.4 Reward Function

In this study, we introduce the Score Accuracy
Reward (SAR) function as a key component of the
reward mechanism for evaluating the numerical
accuracy of generated outputs. Specifically, we
design a step-wise reward strategy, which operates
as follows:

* A reward of 2.0 is assigned if the model’s
output exactly matches the reference answer.

* A reward of 1.0 is assigned if the output devi-
ates from the reference by a small margin.

* A reward of 0.0 is assigned if the deviation
exceeds the acceptable threshold.

This step-wise reward formulation differs from
conventional binary reward functions commonly
used in correctness or format-checking tasks. It is
motivated by two main considerations:

(1) Task-specific suitability. SAR is designed
for numerical question answering and tasks that
require precise arithmetic reasoning. In such set-
tings, the reference answer is often a numeric value
with an acceptable tolerance range rather than a
single exact string. Therefore, outputs that are nu-
merically close to the reference can be considered
approximately correct. Compared to rigid binary
matching, the step-wise reward better aligns with
the intrinsic characteristics of these tasks.

(2) More informative training signal. Unlike
traditional 0/1 rewards, step-wise rewards provide
finer-grained feedback, allowing the model to re-
ceive gradient signals that vary with the degree of
deviation. This facilitates smoother optimization



and more stable convergence during training, en-
abling the model to gradually improve its numeric
prediction capabilities. In contrast, overly rigid
reward mechanisms may lead to sparse or unin-
formative training signals and hinder early-stage
learning.

A.5 Recruitment And Payment

To ensure the accuracy and objectivity of human
evaluation, we recruited ten annotators with aca-
demic backgrounds in the target Southeast Asian
languages. All annotators were either language
instructors or graduate students from relevant uni-
versities. For each target language, two annotators
were assigned, and a cross-review protocol was
adopted to enhance annotation quality and consis-
tency.

All participants had formal training in transla-
tion or linguistics and possessed strong language
comprehension and evaluative capabilities. Anno-
tators were compensated at a rate of 1 RMB per
evaluated sample. Before the evaluation began, all
participants received detailed instructions and train-
ing on annotation guidelines. Participation was
voluntary, and compensation was provided propor-
tionally based on the amount of completed work.

Since the dataset contains no personally identi-
fiable information (PII) and the task involves only
linguistic quality assessment, the annotation pro-
cess entails no ethical risks and does not require
institutional ethics approval.
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Algorithm 1 Elite Parallel Data Sampler

Input: XML dataset Dyp;

Target sizes {T‘traina Tiev, ﬂest};

Domain set D

Output: Datasets { Diain, Ddev, Diest }

Stage 1: Domain Balancing Global pool M* +
0

foreach domain d € D do

L Mgy < { f € Dymi | domain(f) =d} M* «+
M* U My
N + Ed |Md s Pd — ’Md’/N (Vd)
Stage 2: Proportional Split Generation
ach split t € {train, dev, test} do
S; < 0 foreach domain d € D do
L ne(d) <« |T; - Py St

fore-

— StU

SHUFFLE(Mj)[: nt(d)]
A« T, — |S¢| if A > 0 then

| S« Sy USAMPLE(M*\ S, A)
else

L

M* « M*\ S;
Stage 3: Domain Proportion Verification fore-
ach domain d € D do
€4 ‘ ’Straiand|/|Strain| —Pd’ ife; > 0.05
then
| GLOBALSHUFFLE({S;}); goto Stage 2

if A < 0 then
L S+ HEAD(St, Tt)

Stage 4: Output Generation foreach split t €
{train, dev, test} do
| SHUFFLE(S;)

return {Straim Sdev; Stest}




# Training Size Overall

Method fil id lo my vi (Size / BLEU-chrF)
MERIT-3B
+SFT-LTP 8,000 8,000 8,000 8,000 8,000 40,000/ 15.53
+GRPO-SAR | 1,85176.0% L7719 77.79% 2,058 74296 246269 2% 976 87.8% 9,126 77 29 / 1823117 4%
+ LLME 2,891 63.9% 3,104 61.2% 3,300, 58.8% 3,764 53.0% 2,193 72.6% 15,252 61.0% / 19.94128.4%

Table 4: Training size comparison across five low-resource languages for MERIT-3B. Overall column shows
total training data (with percentage reduction relative to initial 40,000) and BLEU-chrF score (with percentage
improvement relative to the SFT-LTP stage).
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Figure 3: Training loss and reward evolution across SFT and GRPO strategies.
Algorithm 2 Data Integrity Validation A.6 Feature Extraction

Input: Candidate splits {S;};

Anomaly threshold Typem = 0.7;

Validity threshold 7yai4 = 0.8;

PCA dimension k; Regularization .

Output: Validation € {True, False}

Stage 1: Feature Extraction Fygier + 0 X <«

Let H', W’ denote the height and width of the final
CNN feature map after L layers. Let d. be the
number of CNN output channels, and let d. be the
BERT hidden dimension (which equals the token
embedding size d,,,).

7 Let the training set be Strain': {Si}?il- Each
foreach sample s € Syai, do sample s; comprises an image s; © and text s{*",
e . i CNNENCODER(s) processed as follows:
c — BERTEMBED(s) Vv —
L2NORMALIZE([elc]) X « X U {v} 1. CNN Encoding:
STANDARDIZE(X) PCA(X, k) 0) img
Stage 2: Cluster Anomaly Discovery B =s; ®)
C <+ HDBSCAN(X) foreach cluster Fi(l) = ReLU(W(l) " Fi(l_l) + b(l)), )
CreCdo (L) dex H' xW'
R <V (R FimeR (10
COSINESIMILARITY(C}) foreach sample 4 1 VL
si 1 — % Z'EC Eij if Si > Tanom h=1w=1
then e ei=lef,...,ef]T e R% (12)
L Fouttier = Foutlier U {$1}
| wy — p - (1 _ |Foutlier N Ck|/|ck’) 2. BERT Embedding:

Stage 3: Composite Validity Score Ve, <
Hk wzk Vpen e AMFousier] 17 Vgeo . Vpen

X = [Buok(we) + Bpos()],_,  (13)

¢ -1
Stage 4: Validation Check if V' < 7,4, then Xi( )= TransformerLayer(z) (Xz( ))7
is Valid < False; PURGECORRUPTED- (14)
else

L is Valid « True
14




3. Concatenation & Normalization:

w; = H € Rietde (16)
C;

vi= o a7
|2

4. Matrix Assembly:
vi
X = : | eRVxUetde) (1)

-
VN

5. PCA Reduction:

Z=PCA(X)=| : | eR™* (19)
ZN

A.7 Cluster Anomaly Detection
1. DBSCAN Clustering:

Ne(zi) ={z; : |z; —zill2 <€} (20)
z; <= |Nc(z;)| > MinPts (21)
(22)

z; ~ Zj < E!(zio,...7zim) (23)
Zp,Zq & > JZo: Zp,Zq > 2, (24)

2. Clustering Procedure:

(a) Mark all z; unvisited, set cluster counter

c+ 0.
(b) For each unvisited z;:

i. Mark z; visited; let N < N (z;).
ii. If [N| < MinPts, label z; as noise.
ii. Else:
c—c+1, C.<+{z} (25

(c) expand(C, N):

if unvisited: mark visited
zj: § N' < N(z;)
if IN'| > MinPts, N+ NUN’
(26)

ifz; ¢ C, then C < CU{z;} (27)

(d) Resulting clusters: C',...,Ck

15

3. Cosine Similarity:

T,.
Z; Zj

V. —
Y Nzl Nzl

4. Anomaly Score:

1
i=loigy 2 B

j€Ck
5. Outlier Set:
J—"outlier = {Z | S; > Tanom}

6. Cluster Weighting:

_ |G|
N
‘Jroutlier N Ck|
5y = 1 — [Loutlier [TT7k]
: |Ci|
wy = pg O

(28)

(29)

(30)

(31

(32)

(33)
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