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Abstract
The integration of Quantization and Low-Rank
Adaptation (LoRA) presents a promising avenue
for the memory-efficient fine-tuning of large lan-
guage models (LLMs) within GPU memory con-
straints. QLoRA, introduced by (Dettmers et al.,
2024), successfully demonstrates high-fidelity 4-
bit fine-tuning using an information-theoretically
optimal datatype, NormalFloat. However, chal-
lenges arise with lower-bit fine-tuning, such as
2-bit, where QLoRA often struggles with conver-
gence due to significant information loss from
quantization. In this study, we address these
challenges by adjusting the cumulative distribu-
tion function (CDF) offset of NormalFloat, which
significantly reduces information loss through
improved NormalFloat initialization. Further-
more, we introduce quantization group Adaptive
NormalFloat (AdaNF), a technique that dynami-
cally adjusts the NormalFloat CDF offset based
on the statistical characteristics of each quanti-
zation group in the parameters. This adaptive
approach minimizes the Lp norm of the quantiza-
tion error through a grid search, allowing for cus-
tomized quantization that preserves more informa-
tion. Our empirical investigations across various
models and downstream tasks in the low-bit fine-
tuning regime confirm that our method achieves
performance comparable to existing methods, ef-
fectively mitigating the limitations of prior ap-
proaches.

1. Introduction
The emergence of Large Language Models (LLMs) has
brought about a paradigm shift in AI technology, demon-
strating remarkable performance across a wide range of

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Natural Language Processing (NLP) applications (Brown
et al., 2020; Achiam et al., 2023; Touvron et al., 2023a;b;
Chowdhery et al., 2023; Team et al., 2023; Jiang et al.,
2023). LLMs excel as few-shot learners, performing vari-
ous downstream tasks through in-context learning with just
a few examples (Dong et al., 2022). However, in special-
ized domains requiring detailed knowledge not typically
covered in general training corpora, LLMs benefit signif-
icantly from fine-tuning to enhance accuracy (Liu et al.,
2022). Despite its effectiveness, full fine-tuning has become
impractical due to the substantial GPU resources required
for the massive parameters. To address these constraints,
reducing memory usage for optimizer states, gradients, and
model weights has been a focus. Low-Rank Adaptation
(LoRA) (Hu et al., 2021) is a widely adopted method that
achieves this by significantly reducing the number of train-
able parameters, representing the difference between frozen
pre-trained weights and fully fine-tuned weights using only
trainable low-rank matrices.

Further reductions in memory usage can be achieved
through the quantization of model weights. QLoRA
(Dettmers et al., 2024) successfully combines LoRA with
quantization for the first time, demonstrating high perfor-
mance in 4-bit quantized fine-tuning while significantly
reducing GPU memory requirements without incurring ad-
ditional costs. Nevertheless, when it comes to extremely
low bit fine-tuning regimes, such as 2-bit, QLoRA often
fails to converge on many downstream tasks (Li et al., 2023).
This suggests that LoRA fine-tuning alone is insufficient to
recover from the substantial information loss caused by low-
bit model quantization. Even though some efforts have been
made to mitigate this information loss through the strategic
initialization of LoRA components (Li et al., 2023; Guo
et al., 2023), a fundamental redesign of the NormalFloat
quantization data type used in QLoRA is necessary to make
low-bit fine-tuning more practical.

The motivation for redesigning the NormalFloat data type
stems from understanding why the original NormalFloat
experiences significant information loss in 2-bit fine-tuning.
As illustrated in Figure 1, when an outlier is present in
a quantization group, the original NormalFloat bases its
dequantization on the group’s maximum value, which cor-
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AdaNF: Quantization Group Adaptive NormalFloat for Low Bit Fine-tuning of LLMs

Figure 1. The left figure shows the log-scale weight distribution of a specific layer in LLAMA-2-7B. The red points represent the four
dequantized values within a particular quantization group using the original 2-bit NormalFloat. With our redesigned NormalFloat, we
obtain four blue points that are closer to the center. The right figure illustrates how the L3 norm of the quantization error varies with the
CDF offset (See section 2 and Appx. B.1) within the same quantization group. The four dequantized blue points in the left figure are
obtained from an offset of 0.96, resulting in minimal quantization error in this group. By adjusting the offset, we can find the optimal
value for each group that minimizes the quantization error.

responds to the outlier. Consequently, the four dequantized
values (red points in the left figure of Figure 1) are not rep-
resentative, as 50% of them are outliers, leading to high
quantization error. Therefore, in the 2-bit regime, it is cru-
cial to bring these dequantized values closer to the center
(blue points in the left figure of Figure 1), as this adjustment
can significantly reduce the quantization error.

To address this issue, we first introduce an updated version
of the NormalFloat data type, which we call Dynamic Nor-
malFloat. This new version adjusts the dequantized values
based on the ratio of the quantile output of the reference
CDF offset to the quantile output of our chosen CDF offset.
By selecting a lower CDF offset, the adjustment from the
red points to the blue points in Figure 1 is achieved through
this redesigned data type. Additionally, since each quantiza-
tion group has unique statistical characteristics, we propose
the quantization group Adaptive NormalFloat (AdaNF),
which identifies the optimal CDF offset for each quanti-
zation group through grid search by minimizing the Lp
norm of the quantization error (see the right figure of Fig-
ure 1). We evaluate our quantization framework through
experiments on various models and downstream tasks in the
low-bit fine-tuning regime. Our method outperforms exist-
ing approaches for 2-bit fine-tuning and shows comparable
performance for 3-bit and 4-bit fine-tuning.

2. Method
In this section, we propose quantization group Adaptive
NormalFloat (AdaNF), an advantageous quantization data
type for low-bit LLM fine-tuning. We begin by introduc-
ing the concept of Dynamic NormalFloat with a single off-
set, which involves adjusting the NormalFloat initialization

based on the ratio between the quantile output, determined
by a specific CDF offset, and a reference quantile value.
This adjustment aims to reduce information loss from quan-
tized weight parameters. Additionally, we describe how to
dynamically determine the improved NormalFloat initializa-
tion for each quantization group using this newly defined
Dynamic NormalFloat.

2.1. Dynamic NormalFloat with a Single Offset

In the original NormalFloat (Dettmers et al., 2024), they set
a default CDF offset coffset to 0.9677083. Then, they obtain
the normalized quantization map within the range [−1, 1]
by dividing all quantile values from symmetric NormalFloat
(see Definition B.1) or asymmetric NormalFloat (see Def-
inition B.2) by the maximum quantile value Q(coffset), as
explained in Appx. B.1. Using this k-bit normalized Nor-
malFloat quantization map qkNF (see (4)), the quantized out-
put of the i-th group tensor W flat

i is obtained as shown in
(5)1. The dequantized weight tensor W flat

deq,i is then calcu-
lated from this quantized tensor W flat

q,i as follows:

W flat
deq,i = absmax(W flat

i ) ·W flat
q,i

= absmax(W flat
i ) ·Qk

NF

( W flat
i

absmax(W flat
i )

)
Since the maximum and minimum outputs of the func-
tion Qk

NF are 1 and -1, respectively, absmax(W flat
i ) and

−absmax(W flat
i ) will be the maximum and minimum among

the possible dequantized values for the i-th quantization
group. In low-bit fine-tuning, such as 2-bit, all four possible

1The detailed formulation of the original NormalFloat, with
respect to a CDF offset, and the group quantization process are
elaborated in Appx. B.1.
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dequantized values should be representative within the i-th
quantization group. However, if there is an extreme outlier
in the group, absmax(W flat

i ) and −absmax(W flat
i ) may not

be representative, leading to significant quantization errors.

To address this issue, we propose Dynamic NormalFloat,
which adjusts the maximum and minimum dequantized val-
ues inward (i.e., reduces their absolute values) compared to
absmax(W flat

i ) and −absmax(W flat
i ). This ensures that all

possible dequantized values are more representative within
the group. This adjustment is achieved by further reducing
the quantization output range of Qk

NF from [−1, 1]. The
updated quantization data type is defined as follows:

Definition 2.1. (Dynamic NormalFloat) Let Q be the quan-
tile function of the standard normal distribution N(0, 1).
For a CDF offset coffset ∈ (0.5, 1.0), each i-th quantized
value of the k-bit NormalFloat data type, denoted as qi, is
derived from either Definition B.1 or Definition B.2. The
reference offset is cref. The k-bit Dynamic NormalFloat data
type qDNF is then represented as follows:

qkDNF|coffset,cref =
q|coffset

Q(cref)
=

[q1, q2, · · · , q2k ]
Q(cref)

(1)

The range of qDNF is
[
−Q(coffset)

Q(cref)
, Q(coffset)

Q(cref)

]
. Therefore, if

coffset is less than cref, the range of qDNF becomes smaller
than [−1, 1]. This means that the absolute value of a dequan-
tized weight parameter must be less than absmax(W flat

i ).
For the j-th element of the dequantized weight tensor in
group i, we have:

|W flat
deq,i(j)| = absmax(W flat

i )
∣∣∣Qk

DNF

(
W flat

i (j)

absmax(W flat
i )

)∣∣∣
≤ absmax(W flat

i )
Q(coffset)

Q(cref)
< absmax(W flat

i ),

where Qk
DNF is the k-bit Dynamic NormalFloat quantization

function defined by qkDNF. Thus, with a properly chosen
coffset, qkDNF can potentially result in less quantization error
compared to the original quantization map qkNF.

2.2. Quantization Group Adaptive NormalFloat

We now introduce quantization group Adaptive
NormalFloat (AdaNF), which dynamically determines an
appropriate CDF offset for the Dynamic NormalFloat data
type in each quantization group to minimize quantization
error. Since each quantization group has unique statistical
characteristics, adjusting the CDF offset for each group
can more effectively preserve information during low-bit
quantization compared to using a single offset. We measure
the quantization error between the original weight tensor
and the dequantized weight tensor using the Lp norm. This
error metric is then used to identify the optimal CDF offset
for each group through grid search. Finding an optimal

order of the norm p for each case is crucial. A p value that is
too large will cause the quantization to be overly influenced
by outliers, while a p value that is too small will ignore
outliers entirely. Therefore, it is essential to strike a balance
by selecting an appropriate p that adequately considers
outliers without being dominated by them. Our algorithm
addresses this by exploring and tuning p to achieve this
balance. The detailed algorithm is provided in Algorithm 1.

Algorithm 1 Grid Search for AdaNF

1: Input: original weight of a group W , reference CDF
offset cref, number of grids n, start grid for CDF offset
cstart, end grid for CDF offset cend, order of the norm p

2: Initialize c∗ = cstart, E∗ = inf
3: for i = 1, · · · , n do
4: coffset = cstart +

cend−cstart
n−1 (i− 1)

5: create the k-bit Dynamic NormalFloat qkDNF|coffset,cref

6: perform nearest rounding with qkDNF|coffset,cref :

Wq = Qk
DNF|coffset,cref

(
W

absmax(W )

)
7: get the dequantized weight Wdeq = absmax(W )Wq

8: compute the quantization error E = ∥W −Wdeq∥p
9: if E < E∗ then

10: c∗ ← coffset, E∗ ← E
11: end if
12: end for
13: return c∗

After obtaining the optimal CDF offset for each quantiza-
tion group through Algorithm 1, we initialize each Dynamic
NormalFloat data type with the corresponding offset. Sub-
sequently, the weight parameters are quantized using group
quantization, as detailed in Appx. B.1.1, and these quantized
weights remain fixed during the fine-tuning process. For the
fine-tuning, we employ the LoRA method, as described in
Appx. B.2.

3. Experiments
In this section, we present experimental results for Dynamic
NormalFloat (DNF) and AdaNF 2 on Natural Language
Understanding (NLU) and Natural Language Generation
(NLG) tasks. We compare our algorithm with QLoRA
(Dettmers et al., 2024) and other low-bit fine-tuning meth-
ods, such as LoftQ (Li et al., 2023) and ApiQ (Liao & Monz,
2024). Additionally, we use full fine-tuning and full preci-
sion LoRA (Hu et al., 2021) for reference. For the NLU
task, we empirically assess the performance of these algo-
rithms by quantizing the encoder-only DeBERTaV3-base
model (He et al., 2021) and fine-tuning it on the General

2The more accurate terminology would be QLoRA with DNF
and QLoRA with AdaNF, as DNF and AdaNF refer to quantization
data types. However, for simplicity, we use the terms DNF and
AdaNF.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

AdaNF: Quantization Group Adaptive NormalFloat for Low Bit Fine-tuning of LLMs

Language Understanding Evaluation (GLUE) benchmark
(Wang et al., 2018). For the NLG task, we evaluate the
performance by quantizing the decoder-only LLAMA-2-7B
model (Touvron et al., 2023b) and fine-tuning it on two
NLG datasets: WikiText-2 (Merity et al., 2016) and GSM8k
(Cobbe et al., 2021). The experimental setup details about
implementation, datasets, and hyperparameter choice are
provided in Appx. C.1.

3.1. Experimental Results

3.1.1. NLU WITH DEBERTAV3-BASE

We begin with Natural Language Understanding (NLU) ex-
periments utilizing the relatively smaller DeBERTaV3-base
model. The outcomes of these experiments are detailed in
Table 2 in Appx. C.2. We assess the 2-bit fine-tuning ef-
fectiveness of our quantization methods, DNF with a single
CDF offset and AdaNF, in comparison to two baselines:
QLoRA and LoftQ, across 8 different tasks in the GLUE
benchmark. For AdaNF, we explore two scenarios: one em-
ploying the L2.5 norm and the other using the L3 norm to
evaluate quantization error. In terms of evaluation metrics, a
higher score indicates better performance across all 8 tasks.

When comparing the best results of our methods with
QLoRA for each task, our methods outperform QLoRA
across all 8 tasks in the GLUE benchmark. This con-
firms that our redesigned quantization data types, DNF and
AdaNF, are indeed improved versions of the original Nor-
malFloat. Notably, AdaNF with the L3 norm consistently
surpasses QLoRA in all tasks, demonstrating that the L3
norm is particularly effective for measuring quantization er-
ror. This norm effectively balances the influence of outliers
within each quantization group, leading to reduced informa-
tion loss and superior performance in 2-bit fine-tuning (for
more detailed insights, see section 2.2).

When comparing our best results to those of LoftQ, our
methods show better performance in three tasks: MNLI,
QNLI, and SST-2. This suggests that our quantization ap-
proach is already competitive with the current state-of-the-
art LoftQ. Additionally, when comparing our methods in-
ternally, AdaNF generally outperforms DNF in nearly all
cases, except for the MNLI task when comparing DNF with
AdaNF using the L2.5 norm. This observation supports the
underlying intuition of the AdaNF algorithm: adaptively
finding the optimal CDF offset for each quantization group
based on minimal quantization error with the Lp norm leads
to better performance than applying the same offset to all
quantization groups.

3.1.2. NLG WITH LLAMA-2-7B

To assess the scalability of our methods, we also conducted
Natural Language Generation (NLG) experiments using the

Table 1. Quantitative results on two NLG tasks with LLAMA-2-
7B. We compare our methods, DNF and AdaNF, against three other
quantized fine-tuning baselines. For reference, LoRA fine-tuning
without quantization, which is not included in the table, achieves
a perplexity of 5.08 on WikiText-2 and an accuracy of 38.5 on
GSM8K. N.A. means the model fails to converge.

WikiText-2 (↓) GSM8K (↑)
4bit 3bit 2bit 4bit 3bit 2bit

QLoRA 5.70 5.73 N.A. 38.2 32.1 N.A.
LoftQ 5.24 5.63 7.85 38.0 36.2 26.5
ApiQ 5.28 5.53 7.46 36.4 36.0 26.0

DNF 5.21 5.55 6.93 35.4 33.7 27.6
AdaNF (L2) 5.19 5.48 6.88 36.7 32.4 22.8
AdaNF (L3) 5.19 5.48 6.80 35.8 33.5 25.5

larger LLAMA-2-7B model. The results of these experi-
ments are summarized in Table 1. We compare the low-
bit fine-tuning performance of our quantization algorithms,
DNF with a single CDF offset and AdaNF, against three
baselines: QLoRA, LoftQ, and ApiQ, on WikiText-2 and
GSM8k. For AdaNF, we evaluate two cases: one using the
L2 norm and another using the L3 norm to measure quanti-
zation error. The evaluation metrics used are perplexity for
WikiText-2 and accuracy for GSM8K.

For the WikiText-2 experiments, all our methods demon-
strate improved perplexity than the three other baselines
across 2-bit, 3-bit, and 4-bit settings, with the exception
of the DNF 3-bit case. However, even in this instance, the
perplexity of DNF 3-bit is only slightly higher than that of
ApiQ 3-bit, the most recent of the three baselines. Notably,
in the challenging 2-bit scenario, AdaNF with L3 norm
achieves the best perplexity score of 6.80, where QLoRA
fails to converge. Overall, AdaNF with L3 norm consistently
shows the best performance on WikiText-2, indicating that
the L3 norm effectively captures quantization error and aids
AdaNF in finding the optimal CDF offset for each quanti-
zation group, minimizing information loss. Additionally, it
is evident that both versions of AdaNF outperform DNF in
terms of perplexity across all bit settings.

For the GSM8K experiments, our method demonstrates out-
standing performance in the challenging 2-bit case. Specifi-
cally, DNF with a single CDF offset achieves an accuracy of
27.6, surpassing the 26.5 achieved by LoftQ (Li et al., 2023),
the current state-of-the-art for 2-bit fine-tuning on GSM8K.
While DNF outperforms all baselines in the 2-bit fine-tuning
scenario, its accuracy for 3-bit and 4-bit fine-tuning is lower
compared to other methods. For instance, in the 3-bit setting,
both DNF and AdaNF improve upon the original QLoRA
but still trail behind LoftQ and ApiQ. Further optimization
of our algorithm, such as finer hyperparameter tuning, could
enhance these results (see Algorithm 1).
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A. Related Work
Due to the significant computational and memory demands of Large Language Models (LLMs), numerous parameter-
efficient fine-tuning (PEFT) methods have been developed. These methods reduce memory and computational costs by
optimizing a much smaller subset of parameters compared to the original LLMs (Hu et al., 2021; Houlsby et al., 2019;
Qin & Eisner, 2021; Lester et al., 2021; Li & Liang, 2021; An et al., 2022; Liu et al., 2022; Zaken et al., 2021; Sung
et al., 2021; Karimi Mahabadi et al., 2021). Among these, LoRA (Hu et al., 2021) is the most widely adopted. It trains
low-rank adapter layers on top of the frozen base model, offering stable training due to the implicit regularization of low-rank
adaptation. Furthermore, LoRA facilitates easy modular adaptation across different tasks. Many LoRA variants have since
been introduced to closely match the performance of full fine-tuning on more challenging downstream tasks (Zhang et al.,
2023; Renduchintala et al., 2023; Kopiczko et al., 2023; Xia et al., 2024; Nikdan et al., 2024).

Combining model quantization with LoRA can further reduce GPU memory consumption during the fine-tuning of LLMs.
While many model quantization methods have been developed mainly for inference purposes (Frantar et al., 2022a;b; Shao
et al., 2023; Xiao et al., 2023; Dettmers et al., 2023; Kim et al., 2023; Lin et al., 2023; Chee et al., 2024), QLoRA (Dettmers
et al., 2024) is the first to demonstrate that fine-tuning a quantized 4-bit model with minimal performance degradation
is possible by combining NormalFloat quantization with a small set of learnable low-rank adapter weights. However,
in extremely low-bit scenarios like the 2-bit regime, QLoRA suffers from significant performance degradation due to
substantial weight information loss. To mitigate this, (Li et al., 2023; Guo et al., 2023) explore strategic initialization of
LoRA matrices. (Liao & Monz, 2024) proposes a different approach to quantized fine-tuning by focusing on minimizing
activation error instead of weight error. (Qin et al., 2024) addresses information loss from low-bit quantization by calibrating
a bias constant groupwisely based on information entropy maximization. Nevertheless, to the best of our knowledge, our
AdaNF quantization is the first to highlight the importance of CDF offset initialization in NormalFloat for low-bit fine-tuning,
further improving performance through adaptive initialization of the NormalFloat offset for each quantization group.

B. Preliminaries
B.1. NormalFloat Quantization

Given that we employ NormalFloat as the framework for our quantization in the low bit LLM fine-tuning, we first present
the definition of NormalFloat (Dettmers et al., 2024).

Definition B.1. (Symmetric NormalFloat) Q is the quantile function of the standard normal distribution N(0, 1), also
known as the inverse cumulative distribution function (CDF). Then, for the CDF offset coffset ∈ (0.5, 1.0), each ith quantized
value of the k-bit symmetric NormalFloat data type is represented as

qi = Q
(
1− coffset +

2coffset − 1

2k − 1
× (i− 1)

)
(2)

for all i = 1, 2, · · · , 2k.

The NormalFloat (NF) data type is based on Quantile Quantization (Dettmers et al., 2021), an information-theoretically
optimal data type that ensures each quantization bin contains an equal number of values from the input tensor. (2) in
Definition B.1 means the 2k equally spaced quantiles over the range of probabilities [1− coffset, coffset]. Similarly, we can
define the asymmetric NormalFloat that includes 0, (2k−1 − 1) negative values, and 2k−1 positive values.

Definition B.2. (Asymmetric NormalFloat) Q is the quantile function of the standard normal distribution N(0, 1). Then, for
the CDF offset coffset ∈ (0.5, 1.0), each ith quantized value of the k-bit asymmetric NormalFloat data type is represented as

qi =


Q
(
1− coffset +

0.5−(1−coffset)
2k−1−1

× (i− 1)
)
, if 1 ≤ i < 2k−1,

Q(0.5)(= 0), if i = 2k−1,

Q
(
0.5 + coffset−0.5

2k−1 × (i− 2k−1)
)
, if 2k−1 < i ≤ 2k.

(3)

For (3) in Definition B.2, the first case means 2k−1 equally spaced quantiles over the range of probabilities [1− coffset, 0.5],
and the third case means 2k−1 + 1 equally spaced quantiles over the range of probabilities [0.5, coffset]. After obtaining
discrete values from either symmetric NormalFloat or asymmetric NormalFloat, we normalize them to the range [−1, 1] by
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dividing each value by the maximum value Q(coffset). Thus, the exact values of the normalized k-bit NormalFloat data type
are as follows:

qkNF =
q

Q(coffset)
=

[q1, q2, · · · , q2k ]
Q(coffset)

(4)

This allows us to quantize the input weight parameters by normalizing them into the same range [−1, 1] via absolute
maximum rescaling.

B.1.1. GROUP QUANTIZATION

In addition to using NormalFloat as our quantization data type, our framework relies on group quantization to effectively
handle outlier issues in the weight parameters. Group quantization involves dividing the input tensor into smaller chunks
that are independently quantized. This approach indirectly reduces the number of outliers in each group, leading to smaller
quantization errors. Group quantization can be implemented by dividing the weight tensor W ∈ Rd×h into ng contiguous
groups of size G. This is done by flattening the weight tensor into a vector W flat ∈ Rdh×1 and then slicing this vector into
ng = d×h

G quantization groups. When we define the k-bit NormalFloat quantization function as Qk
NF and denote the i-th

group tensor as W flat
i for 1 ≤ i ≤ ng , the quantized output W flat

q,i can be expressed as

W flat
q,i = Qk

NF

( W flat
i

absmax(W flat
i )

)
(5)

B.2. Low-Rank Adaptation

Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a Parameter Efficient Fine-Tuning (PEFT) method that reduces the
memory needed for optimizer state and gradient storage by utilizing a small set of trainable parameters, while keeping
the main full model parameters fixed. These finetunable parameters, known as adapters, are implemented as factorized
projections that augment the original base model. This allows the forward pass to be modified through the adapted model,
which can be expressed as:

W ′ = W + αBA

where W ∈ Rd×k is a pre-trained weight matrix, B ∈ Rd×r, A ∈ Rr×k, and α is a scalar. Here, we note that the rank r is
much smaller than min(d, k). During backpropagation, the gradients flow through the fixed base model weights, which do
not receive updates. Instead, only the small number of parameters in the low-rank adapters are updated. We use LoRA as
the learnable parameters in our framework.

C. More Details about Experiments
C.1. Experimental Setup

Implementation Details We follow the implementation setup from (Li et al., 2023), with our work largely based on the
HuggingFace Transformers codebase (Paszke et al., 2019). In our model implementation, we retain the original weight
matrices in a frozen state and incorporate low-rank adapters into the weight matrices within the all Multi-Head Attention
(MHA) and Feedforward Neural Network (FNN) layers. For the GLUE NLU task, we also quantize the embedding layer of
DeBERTaV3-base. For LoRA, we use ranks of 32 for DeBERTaV3-base and 64 for LLAMA-2-7B. Model quantization is
then applied to the weight matrices augmented with low-rank adapters. We perform 2-bit fine-tuning for the NLU task and 2,
3, and 4-bit fine-tuning for the NLG task. We use symmetric NormalFloat (see Definition B.1) for our DNF and AdaNF. The
NVIDIA H100 80GB GPUs are used as computing resources.

Datasets For NLU, we use total 8 tasks in GLUE, which includes three natural language inference tasks: MNLI (Williams
et al., 2017), QNLI (Rajpurkar et al., 2016), RTE (Dagan et al., 2005), two single sentence classification tasks: SST-2
(Socher et al., 2013), CoLA (Warstadt et al., 2019), and three similarity and paraphrase tasks: MRPC (Dolan & Brockett,
2005), STS-B (Cer et al., 2017), QQP. For NLG, we utilize WikiText-2, a dataset derived from Wikipedia articles, and
GSM8K, also known as the Grade School Math 8K, a specialized benchmark designed to evaluate the arithmetic reasoning
capabilities of language models.
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C.1.1. HYPERPARAMETER CHOICE

When utilizing DNF quantization, we need to set two hyperparameters: the reference CDF offset cref and a specific CDF
offset coffset. For AdaNF quantization, five hyperparameters are required: cref, number of grids n, starting grid for CDF
offset cstart, ending grid for CDF offset cend, and the norm order p (see Algorithm 1). For all experiments, cref is set to 0.995.

In the NLU experiments with the DeBERTaV3-base model, for DNF, we set coffset to 0.9 for the QNLI, SST-2, MRPC,
CoLA, QQP, and STS-B tasks, and to 0.88 for the MNLI and RTE tasks. In the same NLU experiments, for AdaNF, we
measure quantization error using L2.5 and L3 norms (see line 8 in Algorithm 1), meaning p can be 2.5 or 3. For p = 2.5,
the hyperparameters (n, cstart, cend) are set to (10, 0.9, 0.99) for MNLI, QNLI, SST-2, and CoLA, and (15, 0.85, 0.99) for
RTE, MRPC, QQP, and STS-B. For p = 3, we use (15, 0.85, 0.99) only for CoLA and (10, 0.9, 0.99) for all other tasks.

In the NLG experiments with the LLAMA-2-7B model, for DNF, coffset is set to 0.95, 0.98, and 0.99 for 2-bit, 3-bit, and
4-bit, respectively. For AdaNF in the same NLG experiments, we measure quantization error using L2 and L3 norms. For
p = 2, the hyperparameters (n, cstart, cend) are set to (10, 0.9, 0.99), (10, 0.9, 0.99), and (15, 0.95, 0.9967) for 2-bit, 3-bit,
and 4-bit, respectively. For p = 3, the hyperparameters are (10, 0.9, 0.99), (15, 0.95, 0.9967), and (15, 0.95, 0.9967) for
2-bit, 3-bit, and 4-bit, respectively.

Regarding the choice of learning rate, for NLU experiments, we follow the setup in (Li et al., 2023), except for RTE, where
we use 1× 10−4. For all NLG experiments, we use 4× 10−4 as the learning rate.

C.2. Result Table for NLU with DeBERTaV3-base

Table 2. 2-bit fine-tuning quantitative results on the GLUE NLU tasks with the DeBERTaV3-base model. We compare our methods, DNF
and AdaNF, against two other quantized fine-tuning baselines. N.A. means the model fails to converge.

MNLI QNLI RTE SST MRPC CoLA QQP STSB
Acc(mm) Acc Acc Acc Acc Matt Acc P/S Corr

Full fine-tuning 90.6 94.0 82.0 95.3 89.5/93.3 69.2 92.4/89.8 91.6/91.1
LoRA 90.5 94.6 85.1 95.1 89.9/93.6 69.9 92.0/89.4 91.7/91.1

QLoRA 78.7 80.4 56.7 86.9 73.8/82.7 N.A. 87.1/82.7 83.6/83.3
LoftQ 86.1 89.9 61.7 92.0 83.6/87.2 47.5 91.0/87.9 87.5/87.0

DNF 85.1 88.2 52.3 89.0 73.5/82.0 25.7 89.9/86.4 83.2/82.9
AdaNF (L2.5 norm) 31.8 91.0 58.1 92.9 75.0/83.5 39.4 90.3/87.1 85.6/85.3
AdaNF (L3 norm) 87.0 89.6 58.5 91.9 79.7/86.3 30.3 89.6/86.0 85.5/85.2

D. Discussion
In this paper, we introduce a novel algorithm called quantization group Adaptive NormalFloat (AdaNF) for low bit fine-
tuning. We first redefine NormalFloat as Dynamic NormalFloat (DNF), which provides an improved initialization for
quantization by appropriately choosing the cumulative distribution function (CDF) offset relative to a reference CDF offset.
We then adaptively find the optimal CDF offset for DNF through a grid search for each quantization group, minimizing the
quantization error computed using an Lp norm. Our empirical investigation demonstrates the outperforming performance
of our method for 2-bit fine-tuning on natural language generation (NLG) tasks, and comparable performance on natural
language understanding (NLU) tasks, corroborating our claims. Moving forward, since the strategic initialization of LoRA
introduced by (Li et al., 2023) is orthogonal to our method, a careful combination of these two approaches may potentially
yield further improvements in low-bit quantized fine-tuning.

Limitation Although our low-bit fine-tuning approach achieves high performance, it still lags behind full precision
fine-tuning due to inherent information loss from quantization. The primary goal of low-bit fine-tuning research is to narrow
this performance gap and push the limits of what is possible. We have not yet conducted comprehensive hyperparameter
tuning with our method, and systematic tuning could bring our algorithm closer to its optimal performance. While our
empirical results are promising, we currently lack solid theoretical guarantees to explain why our algorithm performs so
well. Establishing a theoretical foundation will enhance the sustainability of our method and provide insights for further
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algorithmic improvements. Additionally, conducting more extensive experiments on larger language models and more
challenging downstream datasets, accompanied by error bars, will strengthen our findings and demonstrate the robustness of
our approach.

Broader Impacts Our work on the quantization group Adaptive NormalFloat (AdaNF) algorithm for efficient low bit
fine-tuning has significant positive impacts in terms of reducing the computational and energy requirements of large
language model fine-tuning, thereby mitigating the environmental impact of AI systems. It can also democratize access to
state-of-the-art models for organizations with limited resources. However, quantization inherently introduces information
loss, which could amplify existing biases and fairness issues in the underlying models, leading to potentially harmful and
discriminatory outputs. The improved accessibility of our method also raises concerns about potential misuse for generating
misinformation or hate speech. To address these negative impacts, robust bias mitigation techniques, fairness evaluation
frameworks for quantized models, rigorous testing, monitoring, and ethical governance frameworks must be developed
and implemented. Continued research efforts are needed to realize the efficiency benefits while proactively addressing the
associated risks and potential harms.
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