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ABSTRACT

Recently, text-to-motion (T2M) has become a basic setting for human motion gen-
eration. This work studies the evaluation of alignment between text and generated
motion, to credit the reliable use of T2M models. We consider solving the T2M
evaluation task by making use of a video language model (VLM). Our basic idea
is: render the generated human motion into a skinned video, and then use a VLM
for evaluation. To address information loss problem when 3D motion is rendered
into 2D video, we develop a method, which ensures reliable evaluation score by
analyzing VLM entropy. Our evaluation method, named VeMo, frees T2M eval-
uation from reliance on motion data while seamlessly leveraging the semantic
understanding and reasoning capabilities of advanced VLMs trained on Internet-
scale data. To systematically compare the empirical usefulness of different evalu-
ation methods, we manually annotate a meta-evaluation benchmark that includes
coarse-grained alignment labels and fine-grained judgmental reasons. Extensive
experiments and case studies demonstrate the effectiveness of the proposed VeMo.

1 INTRODUCTION

Text-to-motion (T2M) (Obludzyner et al., 2024) has emerged as a foundational setting for human
motion generation, where the objective is to produce continuous human motion sequences from
free-form natural language descriptions. This task underpins diverse practical applications, such as
humanoid robot control, video game character animation, and virtual reality interactions, driving
increasing research attention in T2M model development in recent years (Sahili et al., 2025).

Evaluating generated motions is essential for advancing T2M research, as reliable assessment sup-
ports model improvement across all generative tasks. Traditional metrics (e.g., FID, L1 distance)
focus on comparing generated motions with reference motions. However, one text prompt can map
to multiple valid motion sequences, reducing the effectiveness of these metrics. To address this chal-
lenge, recent work (Tevet et al., 2022; Voas et al., 2023; Wang et al., 2024) has pretrained evaluation
models on text-motion pairs to assess the generated motions in a reference-free manner. However,
the high cost of acquiring high-quality data hinders the evaluators’ ability.

Compared with motion data, vision data is much easier to acquire (Radford et al., 2021; Xu et al.,
2021). Pretrained vision-language models have been used for evaluating the generated images and
videos, and exhibit high correlation with human judgments (Tu et al., 2024; Liu & Zhang, 2025).
We consider solving the T2M evaluation task by making use of a video language model (VLM).
Our basic idea is: render the generated human motion into a skinned video, and then use a VLM
for evaluation. To address the problem of information loss caused by issues such as severe human
body self-occlusion when 3D motion is rendered into 2D video, we develop a method, which en-
sures reliable evaluation score by analyzing the entropy of the VLM. Our evaluation method, named
VeMo, frees T2M evaluation from reliance on motion data while seamlessly leveraging the semantic
understanding and reasoning capabilities of advanced VLMs trained on Internet-scale data.

To systematically compare the empirical usefulness of different evaluation methods, we established
the first test-only benchmark. We manually annotate 1101 diverse prompts from the HumanML3D
(Guo et al., 2022) test set, using two widely adopted T2M models (MDM (Tevet et al., 2022),
MotionGPT (Jiang et al., 2023)) to generate motions, which yields 2202 text-motion pairs for anno-
tation. This benchmark includes: 1) coarse-grained alignment labels (denoting overall text-motion
match) and 2) fine-grained judgment labels (e.g., Faithfulness and Naturalness). We also design
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Figure 1: Examplified descriptions (left), paired motion frames (middle), evaluation scores (right).
On the right side, human-aligned evaluation scores are marked in green, otherwise in red.

a pipeline (e.g., regenerate controversial motions) to ensure full consistency in oracle annotations.
The Inter-Annotator Agreement (Krippendorff’s Alpha) between oracle annotations and untrained
users’ annotations exceeds 0.67 (average by label types), demonstrating high data quality.

We compared VeMo with classic reference-based (Tevet et al., 2022) and recent reference-free eval-
uation methods (Voas et al., 2023; Wang et al., 2024). On our benchmark, VeMo shows the best
correlation with human judgments. This confirms that VeMo can provide reliable text-motion align-
ment assessment without using motion data and human labels, thus addressing existing limitations.
To get a qualitative sense, see Fig. 1. We summarize our contributions as follows:

• We study the use of VLMs to evaluate alignment between text and generated motion, en-
abling internet-scale data to benefit T2M evaluation without the need for T2M data.

• We present a meta-evaluation benchmark to assess prior metrics and our strategy (i.e.,
video-language models as evaluators), while also incorporating user study.

• We show that VeMo outperforms existing metrics in evaluating T2M alignment.

2 RELATED WORK

Text-to-motion generation (T2M) aims to to create human motion sequences from free-form nat-
ural language descriptions. Recent advances in T2M have centered around two model families:
One is discrete-token (VQ-VAE + autoregressive/LLM-based) methods. (Zhang et al., 2023a; Lou
et al., 2023; Jiang et al., 2023; Guo et al., 2024; Chen et al., 2024; Li et al., 2025) These methods
discretize motion into tokens with a VQ-VAE (Van Den Oord et al., 2017), then generate token
sequences through a transformer (Vaswani et al., 2017) or language model (Brown et al., 2020)
conditioned on text. Finally, the generated motion token sequence is decoded back into continuous
motion using the VQ-VAE decoder. Another research line focuses on continuous latent-space dif-
fusion. (Chen et al., 2023; Shafir et al., 2023; Zhang et al., 2023b; Tevet et al., 2022; 2024; Uchida
et al., 2025) These models bypass quantization by learning diffusion dynamics directly in a contin-
uous latent space. Emerging methods such as MoMADiff (Zhang et al., 2025) and LEAD (Andreou
et al., 2025) combine discrete and continuous strategies for finer control. The significant strides of
T2M models suggest that the evaluation of generated motion is a timely consideration.

Text-to-motion evaluation. Traditional metrics rely on reference motions. FID calculates scores
for each model by comparing distributions of generated and reference motions, rather than for each
text-motion pair, which is excluded from the main baselines and analyzed in Appendices (Table 7).
L1 distance measures the distance between each pair of generated and reference motions. Yet, one
prompt can map to multiple valid motions, reducing the effectiveness of these metrics. To get rid
of the reference, Tevet et al. (2022; 2024); Han et al. (2025) measure the Multimodal Distance
between text and motion embeddings. MoBERT Voas et al. (2023) trains an evaluation model using
fine-grained text-motion labels. However, there are no coarse-grained alignment labels. Motion-
Critic (Wang et al., 2024) integrates human perception on generated motions to train an evaluation
model. However, MotionCritic mainly studies the quality of the generated motion independent of
text. Overall, these methods’ generalization is constrained by limited text-motion data. VeMo en-
ables internet-scale text-vision data to benefit T2M evaluation without the need for motion data.
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Table 1: Comparison of related work in terms of critic model and human annotated dataset. T
denotes the text modality and M denotes the motion modality. “-” means no such resources.

Evaluation Model Generated M w/ Human Label

Input M-format Trained on M Input Test only Label granularity
Multimodal Distance T,M Fixed ✓ - - -
MoBERT T,M Fixed ✓ T,M ✗ Fine
MotionCritic M Fixed ✓ M ✗ Coarse
VeMo (Ours) T,M Any ✗ T,M ✓ Fine → Coarse

Meta-evaluation benchmarks, dedicated resources for comparing empirical usefulness of different
evaluation methods, have become foundational in mature generative tasks such as text-to-text/image
(Tu et al., 2024; Stufflebeam, 2011; Son et al., 2024). In the field of T2M, while prior works (Voas
et al., 2023; Wang et al., 2024) have introduced human-labeled datasets of generated motions, these
datasets were used to train their respective evaluation models, not designed to validate the evalua-
tive generalizability of different evaluation methods. This lays the research gap that our benchmark
specifically addresses: We compare the empirical usefulness, i.e., generalizability of different eval-
uation methods by making human labels unseen to them, that is, not providing trainset. Table 1
features the most related evaluation models and human-labeled datasets of generated motions.

3 DATASET FOR META EVALUATION

We first collect text and generated motions from existing resources (Sec. 3.1); Then we design a
pipeline to collect human annotations (Sec. 3.2). The overall pipeline is depicted in Figure 2(a).

3.1 COLLECT TEXTUAL DESCRIPTIONS AND GENERATED MOTIONS

Data source. HumanML3D (Guo et al., 2022) is a recent dataset, textually re-annotating motion
capture from the AMASS (Mahmood et al., 2019) and HumanAct12 (Guo et al., 2020) collections.
It contains 14,616 motions annotated by 44,970 textual descriptions, split in train, val, test sets. The
train and val splits of HumanML3D are widely adopted to train T2M models. We take the descrip-
tions from the HumanML3D’s test set as prompts to generate and evaluate motions. To ensure the
diversity and representativeness of the prompts, we used an advanced Sentence Transformer to re-
move duplicates from the prompts through hierarchical clustering, resulting in approximately 1.5k
prompts. Details of the deduplication can be found in the Appendices. Finally, we customized more
conditions to further filter the remaining 1.5k prompts. The removal conditions include spelling er-
rors in the action descriptors in the prompts, or prompts describing dexterous hand movements, gaze,
and other actions that do not belong to the HumanML3D joints. In the end, 1101 texts remained.

Motion generation. A trained T2M model will take textual motion annotations as input and output
motion sequence M = (mt)

N
t=1 of human poses represented by joint rotations or positions mt ∈

RJ×D. J is the number of joints and D is the dimension of the joint representation. Specifically,
we employ a diffusion-based MDM (Tevet et al., 2022) and an autoregressive MotionGPT (Jiang
et al., 2023) to generate motion data from 1101 selected prompts for subsequent meta-evaluation.
Because the codebases of these two models are widely adopted as the foundation for other methods
Tevet et al. (2024); Han et al. (2025), and both models are trained on the HumanML3D’s trainset
and support the animation of body actions for the 22-joint SMPL human model. Finally, we obtain
generated motions from MDM and MotionGPT, and there are a total of 2202 text-motion pairs.

Objective. After obtaining each pair of text T and generated motion M , an evaluation system ϕ
needs to take T and M as inputs and convert them into a scalar ϕ(T,M), which reflects the degree
of alignment between T and M . The ideal ϕ(T,M) is expected to correlate with human annotation.

3.2 VISUALIZE MOTION DATA FOR HUMAN ANNOTATION

To annotate a generated motion sequence M and the text used for generation, we first use Blender
(Community, 2018) software to convert the generated motion M into skinned human model video V .
We optimized the rendering environment and camera movement to ensure that the human model’s
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Figure 2: (a) Steps for collecting benchmark data. (b) Framework of our automatic metric: render
one motion into videos from multiple views and use video-language model as evaluator.

Table 2: Class weight on two data splits and inter-annotator agreement for different labels.

Alignment Faithfulness Naturalness
Positive ratio (MDM) 613/1101 621/1101 1069/1101
Positive ratio (MotionGPT) 506/1101 528/1101 1046/1101

entire body is fully visible in the video, with clear movements, and that the model itself occupies
more than 1/10 of the frame, more details can be found in Appendices.

We also implement a strict process to ensure annotation quality. Specifically, we designed our
human annotation collection to use single-choice questions, as selection is generally easier and
more reliable than direct rating (Kendall, 1948; Wang et al., 2024). Given a text and a rendered
video V as materials, we instructed postgraduate students as oracle annotators to select one option
per fine-grained criterion, which defines the reason why a text-motion pair is mismatched.

• Text-Motion Faithfulness: Does the human in the video execute the action depicted in the
text completely, accurately, and in the correct order? Select from “Yes” or “No”.

• Motion Naturalness: Is the human motion in the video natural, without joint distortion or
strange movements that go beyond the text description? Select from “Yes” or “No”.

Specifically, oracle annotators need to recheck cases with inconsistent annotations, unify the an-
notation results through discussion, or regenerate motions for annotation — until consistent oracle
annotations are obtained for all data. The dataset’s statistical information is shown in Table 2. We
also conducted user study in the experimental section, where we invited participants with at least a
bachelor’s degree to independently perform annotations based on the above criteria, and we reported
the Inter-Annotator Agreement (IAA) with the oracle annotations in Section 5.4.

The amount of unnatural data is rare. We aggregate the fine-grained judgmental reasons into coarse-
grained Alignment labels: A text-motion pair is considered “aligned” only when both its Faithful-
ness and Naturalness labels are marked as “Yes”; otherwise, it is deemed “unaligned”. Finally, we
obtained more balanced Alignment labels, which indicate whether the generated motions faithfully
and naturally match the prompt. Note that prior evaluation model (Voas et al., 2023) is developed
on human labels for Faithfulness and Naturalness. Our datasets can serve as a test set to study its
empirical usefulness, i.e., generalizability. Although our annotation pipeline supports more criteria,
in this work, we only consider the above, which we believe is the most important.
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4 VIDEO LANGUAGE MODEL AS EVALUATION MODEL

We first formulate how to convert paired text and motion into normalized VLM scores (Sec. 4.1).
Then, we devise an entropy-based technique to ensure high-quality VLM score with low information
loss when 3D motion is rendered into video (Sec. 4.2). The process is shown in Fig. 2(b).

4.1 FORMULATE VLM SCORES

A text-to-motion model T2M(·) takes a textual prompt T as the input and outputs a motion sequence
M = (mt)

N
t=1, where mt is a pose vector at timestep t, encoding joint angles, positions, etc. We

denote Iscore as the instruction template (Fig. 2 (b)) and denote random variable Y as the candidate
answer, taking values from {y+ = “yes”, y− = “no”}. To compute the alignment score with VLM,
we first use Blender software (Community, 2018) to render the motion M into a video V = (vt)

N
t=1,

using the environment the same as in Section 3.2. A pretrained VLM (e.g., InternVL3-14B(Zhu
et al., 2025)) then outputs the likelihood of y ∈ Y with Iscore, T and V . Finally, we aggregate the
likelihood on each y into a normalized distribution representing alignment score:

PVLM(Y = y+|Iscore, T, V ) =
LH(y+|Iscore, T, V )

LH(y−|Iscore, T, V ) + LH(y+|Iscore, T, V )
(1)

where LH is conditional likelihood, output by VLM. As examplified in Figure 2 (b), we take “yes”
as y+, which refers to alignment between text and motion; we take “no” as y−, which refers to
misalignment between text and motion. Notably, evaluating T2M models with VLMs involves ren-
dering 3D information to 2D information, where accumulated biases and noise (e.g., single-view
occlusion) may hamper the quality of VLM scores. To this end, we do not sample the hard predic-
tion (i.e., words) from VLM’s continuous output (i.e., likelihood). The likelihood reflects VLM’s
confidence in the answer and can help us estimate the information loss, we will discuss later.

4.2 SELECT LOW ENTROPY SCORES AS EVALUATION

Large language models suffer from the notorious hallucination problem (Huang et al., 2025), and the
same is true for VLMs (Liu et al., 2024) — the model may also fabricate answers, even if a definite
judgment cannot be drawn from the data input to the model. Fortunately, recent research (Farquhar
et al., 2024) has revealed that there is a strong correlation between hallucination and the entropy of
the model’s output, with speculative hallucinations typically occurring alongside high entropy.

Intuitively, when a rendered video loses important 3D information, such as when the lower body is
occluded, we can only guess whether the person in the video is performing a specific leg movement,
which is a case of speculative hallucinations. Inspired by the success in speculative hallucination
detection, we estimate whether an input rendered video contains sufficient information to answer
the textual question by calculating the entropy as follows:

H[Y |Iscore, T, V ] = −
∑
y∈Y

PVLM(Y = y|Iscore, T, V ) log [PVLM(Y = y|Iscore, T, V )] (2)

Based on Eq. (2), we render each motion M into K videos (V i)Ki=0 from different views, and take
the final evaluation score SVLM for each text-motion pair as follows:

SVLM(T,M) = PVLM(Y = y+|Iscore, T, V
′), V ′ = argmin

V ∈(V i)Ki=0

H[Y |Iscore, T, V ] (3)

We validate the entropy-based design in detail in Section 5.4.

5 EXPERIMENTS

We first detail the experimental settings (Section 5.1) and baseline metrics for comparison (Section
5.2). Subsequently, we compare the VeMo with existing automatic metrics on our meta-evaluation
benchmark (Section 5.3). Finally, we validate our key designs and provide deeper analysis in Section
5.4, and end the Experiments Section with case studies.
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5.1 EXPERIMENTAL SETTINGS

Implementation details. We conducted experiments on 1×A100-80G GPU, using LabelStudio
(Tkachenko et al., 2020-2025) as frontend for user study, detailed in Appendices. We converted the
Alignment labels derived from human judgments (see Section 3.2) into binary labels for subsequent
meta-evaluation: 0 indicates that the generated motion is not aligned with the prompt used to gen-
erate it, while 1 indicates that the generated motion is aligned with its prompt. The meta-evaluation
dataset (Sec. 3) is only used for testing, unlike previous works Voas et al. (2023); Wang et al. (2024)
where it was also used to fine-tune evaluation models. We take InternVL3-14B (Zhu et al., 2025)
as our base in main experiments, and use VeMo as a zero-shot evaluation model, without the use of
any text-motion pairs for training or any human label for in-context learning (Dong et al., 2022).

Datasets and metrics. We conducted meta-evaluation experiments on the dataset detailed in Section
3, aiming to identify which evaluation scores are most suitable for evaluating text-motion alignment.
To this end, we measure the correlation between different evaluation scores and human judgment
using the following metrics: 1) AUC-ROC measures a binary classifier’s ability to distinguish pos-
itive from negative classes, defined as the area under the ROC curve (Metz, 1978). ROC curve plots
True Positive Rate (TPR) against False Positive Rate (FPR) across all possible decision thresholds.
2) AUPR assesses classifier performance (evaluational for imbalanced data) as the area under the
Precision-Recall curve (plots Precision vs. Recall). 3) Kendall’s τ (Kendall, 1945; 1948) mea-
sures the correspondence between evaluation scores-based ranking and human scores-based rank-
ing. Values close to 1/-1 indicate strong agreement/disagreement. 4) Spearman’s ρ (Zwillinger &
Kokoska, 1999) measures the monotonic association between evaluation scores-based ranking and
human scores-based ranking. This one varies between -1 and +1 with 0 implying no correlation.
5) KS (Kolmogorov–Smirnov) test statistic (Massey Jr, 1951) quantifies the maximum separation
between the cumulative distribution functions of evaluation scores with positive/negative human la-
bels. 6) Mann-Whitney U Test (p-value) (McKnight & Najab, 2010) is a nonparametric test. Its
null hypothesis is that the positive and negative human-labeled score distributions are identical, and
the alternative hypothesis is that the positive human-labeled score distribution is greater.

5.2 BASELINES.

L1 Distance measures the physical distance between each pair of generated and reference motions.
However, collecting a comprehensive reference set is very difficult and expensive, limiting the use
scenarios (see related work). We adopt the Minus L1 Distance to ensure its direction aligns with
human labels, since a smaller original L1 Distance corresponds to a positive human label.

Multimodal Distance (MM Dist) is computed as the Euclidean distance between the embedding of
each pair of generated motion and corresponding text. We use the widely adopted biencoder ((Tevet
et al., 2022)) to encode motion and text. We take the Minus MM Dist to ensure its direction aligns
with human labels, since a smaller original distance corresponds to a positive human label.

R@K-Precision. For each generated motion, the text used to generate it and 31 randomly selected
mismatched texts in the test set form a prompt pool. This is followed by ranking the MM distances
between the motion embedding and the embedding of each prompt in the pool. The MM distance
between the motion and its corresponding prompt that ranks top-K is treated as a successful retrieval
and the pair is scored as 1; otherwise, scored as 0. We report the results when K takes values from
1 to 3, denoted as R@1-Precision, R@2-Precision, and R@3-Precision respectively.

MoBERT (Voas et al., 2023) trains a evaluation model on text-motion data to generate alignment
score, denoted as MoBERT-base. To further integrate human rating guidance, Voas et al. (2023)
tunes the base model on human annotated Faithfulness label and Naturalness label, resulting in
MoBERT-F and MoBERT-N respectively. We also aggregate the two scores with min/max opera-
tion. We did not re-implement MoBERT but directly used their open-source model for experiments.

MotionCritic (Wang et al., 2024) mainly studies text-independent ranking of motions, and inte-
grates human perception on generated motions to train a evaluation model. Specifically, the evalua-
tion scores indicate whether one motion is judged as superior to another, rather than their distance.
We include the officially trained MotionCritic in our baseline without re-implementation.
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Table 3: Results of the correlation between different evaluation scores and human judgements, re-
ported on meta-evaluation dataset. ↑ means larger is better, ↓ means lower is better.

Evaluation Method AUC-ROC ↑ AUPR ↑ KS ↑ τ ↑ ρ ↑ p-value ↓
(reference-based automatic evaluation method)
Minus L1 Distance 0.627 0.628 0.204 0.180 0.220 <1e-6
(reference-free automatic evaluation method)
Minus Multimodal Distance 0.513 0.521 0.048 0.018 0.022 0.149
R@1-Precision 0.508 0.559 0.016 0.024 0.024 0.129
R@2-Precision 0.504 0.573 0.007 0.009 0.009 0.343
R@3-Precision 0.498 0.590 0.005 -0.005 -0.005 0.595
MoBERT-base 0.526 0.541 0.057 0.037 0.045 0.018
MoBERT-F 0.532 0.548 0.087 0.045 0.055 0.005
MoBERT-N 0.549 0.551 0.088 0.069 0.084 4e-05
MoBERT-max(F/N) 0.549 0.553 0.088 0.069 0.084 4e-05
MoBERT-min(F/N) 0.534 0.549 0.086 0.048 0.058 0.003
MotionCritic 0.506 0.517 0.027 0.009 0.010 0.312
VeMo (Ours) 0.720 0.743 0.354 0.311 0.381 <1e-6

User-1 Score 0.829 0.878 0.658 0.659 0.659 <1e-6
User-2 Score 0.835 0.876 0.670 0.677 0.677 <1e-6
User-3 Score 0.833 0.877 0.665 0.666 0.666 <1e-6

5.3 MAIN RESULTS

Table 3 details the experimental results on meta-evaluation dataset. We compare VeMo with existing
evaluation scores, adhering to their official implementations. We mark the best automatic results
in bold and underline the second-best. VeMo significantly outperforms all other automatic methods
in all 6 metrics, highlighting a strong correlation with human judgements, even without training
on motion data. Among reference-free methods, the maximum improvement of VeMo in the KS
statistic is more than 4 times that of the best alternative, and the p-value < 1e − 6, indicating
that the scores with positive human labels are generally and significantly higher than those with
negative human labels; In terms of the correlation coefficients τ and ρ, VeMo also achieves a 4-fold
improvement, highlighting a strong correlation between VeMo and human judgments; AUC-ROC
and AUPR discuss the performance of evaluation scores used in binary classification across a wider
range of thresholds, and VeMo also achieves top-1 performance, with an improvement of up to
0.171. Based on the results, we also make a few comparisons as follows.

First, a lower KS statistic (0.048) indicates that the distribution difference between the Multimodal
Distance with positive human labels and that with negative human labels is small. The τ and ρ coef-
ficients between are close to 0, indicating that the Minus Multimodal Distance has a very weak cor-
relation with human labels, and using Multimodal Distance as an evaluation score to assess whether
the text and generated motion are aligned is not trustworthy. The standard R@K-Precision is cal-
culated based on the Minus Multimodal Distance, so we arrive at the same conclusion.

Second, MoBERT is the second-performing reference-free method. MoBERT-base shows a neg-
ative correlation with human judgment. After tuning with human feedback, the evaluation scores
output by MoBERT-F and MoBERT-N show a positive correlation with human evaluations. Yet,
compared to VeMo, which neither incorporates any human feedback on motion nor has been trained
on motions, MoBERT still has lower discriminative power in distinguishing positive and negative
human labels. We also notice that MotionCritic, a evaluation model that only takes generated mo-
tion as input, performs worse than the classic multimodal distance, indicating that it is necessary to
consider both the text and the generated motion when evaluating text-motion alignment.

Third, the τ and ρ coefficients for users’ scores are close to 0.7, outperforming all other evaluation
scores—indicating that no automatic metric can yet fully replace human evaluations. Furthermore,
the coefficients of reference-free baselines are less than 0.1, and the ρ coefficient of reference-
based L1 distance exceed 0.2, indicating that existing reference-free methods not only have a weak
correlation with human evaluations but also cannot replace reference-based methods. In contrast,
τ and ρ for VeMo exceed 0.3, demonstrating that our approach not only achieves a meaningful
correlation with human evaluations but also can outperform reference-based evaluation methods.
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Table 4: Agreement (Krippendorff’s Alpha) between users and oracle annotators. User id (U) versus
Alignment (A) labels, Faithfulness (F) labels, Naturalness (N) labels.

U A F N U A F N U A F N
1 0.6566 0.6376 0.7356 2 0.6681 0.6564 0.7896 3 0.6563 0.6348 0.7505

Table 5: Impact of view selection on the correlation between VeMo scores and human judgments.
The results are reported on MDM split, ↑ means larger is better, ↓ means lower is better.

VeMo (view selection) AUC-ROC ↑ AUPR ↑ KS ↑ τ ↑ ρ ↑ p-value ↓
InternVL3-14B (human-opt view) 0.723 0.740 0.342 0.315 0.385 <1e-6
InternVL3-14B (min entropy view) 0.720 0.743 0.354 0.311 0.381 <1e-6
InternVL3-14B (random view) 0.711 0.734 0.322 0.299 0.366 <1e-6
InternVL3-14B (max entropy view) 0.706 0.722 0.319 0.291 0.356 <1e-6

5.4 ANALYSIS

What is the agreement between naive users and oracle annotators? We present in Table 4 the
inter-annotator agreements (IAA) between naive users and oracle annotators, calculated using Krip-
pendorff’s Alpha (Krippendorff, 2011). Merely by using the descriptions of the criteria in Section
3.2 to instruct naive users to complete single-choice questions, we can achieve high inter-annotator
agreement. This conclusion is consistent with the finding regarding the performance of user scores
from the main experiment presented in Table 3. Additionally, we use LabelStudio (Tkachenko et al.,
2020-2025) as the frontend for user annotation, see Appendices for more details.

Does entropy-based view selection work? Table 5 validates entropy-based design (Sec. 4.2) in
VeMo. We take the human optimized rendering view (Sec. 3.2) as V 0 (human-opt view) and ran-
domly rotate the camera around the human body to consider another view V 1. We randomly extract
a view from {V 0, V 1} for evaluation marked random view. We select the view with the high-
est/lowest entropy from {V 0, V 1}, resulting in the evaluation of max entropy view and min entropy
view. The results of the view corresponding to the lowest entropy of VLM scores are close to those
of VLM scores calculated using the human-optimized view, and outperform those using the random
view and the max entropy view. This indicates that using low-entropy estimation is a powerful so-
lution for reducing labor costs associated with setting up rendering environments. Additionally, this
demonstrates that within our VeMo framework, the predictive entropy of large models can be used
to analyze the reliability of input data. Detailed rendering settings can be found in the Appendices.

What is the performance of VeMo when it is based on different models? Table 9 shows that
InternVL3-14B consistently achieves top-1 performance across all metrics. Because the APIs for
private VLMs are expensive, difficult to reproduce, and typically inaccessible in terms of per-token
likelihood, we only consider the following open-source models for comparison: (1) Multimodal
Models Supporting Video Input trained on extensive multimodal data (e.g., images, text, tool inter-
actions), which can jointly encode text and video; (2) Video-Text Foundation Models focusing on
video temporal reasoning, which can also jointly encode text and video; (3) Video-Text Representa-
tion Learning Models, which encode text and video into vectors independently and finally compute
the inner product score. The results show that Video-Text Representation Learning Models exhibit
significantly poor performance, with both τ and ρ coefficients being far below 0.3; In contrast, the
coefficients of both Multimodal Models Supporting Video Input and Video-Text Foundation Models
are around 0.3, which demonstrates the importance of jointly encoding text and video.

Does the number of frames input to the VLM matter? Table 9 in Appendices shows the results
for VeMo using different numbers of frames uniformly sampled from input video. In our experi-
mental setup, exceeding 32 frames results in Out of Memory for InternVL3-14B (Zhu et al., 2025)
and InternVL3.5-14B (Wang et al., 2025a); the InternVideo2.5 (Wang et al., 2025b) model has only
8B parameters and supports an input of 128 frames, while ViCLIP-L-14 (Wang et al., 2023) only
supports an input of 8 frames. Overall, using more frames leads to a slight improvement in perfor-
mance. However, when 128 frames are input, InternVideo2.5 exhibits a slight performance drop,
indicating the presence of saturation. Nevertheless, the magnitude of these performance changes is
relatively small and does not affect the conclusions drawn from the main experiment.
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Figure 3: Two interesting cases where the evaluation scores from VeMo clearly align with human
labels, while those from others are ambiguous. Prompts (T) are taken from the HumanML3D testset.

Table 6: Extending VeMo score to HumanML3D benchmark for T2M model evaluation.

T2M Model VeMo ↑ FID ↓ MM Dist ↓ R@1 ↑ R@2 ↑ R@3 ↑

MDM (Tevet et al., 2022) .6171±.0024 .544±.044 5.566±.027 .491±.001 .681±.001 .782±.001
MotionGPT (Jiang et al., 2023) .5723±.0034 .232±.008 3.096±.008 .492±.003 .681±.003 .778±.002
StableMofus. (Huang et al., 2024) .6528±.0001 .098±.003 2.770±.006 .553±.003 .748±.002 .841±.002
MLD-M (Dai et al.) .6626±.0002 .073±.003 2.810±.008 .548±.003 .738±.003 .829±.002
MotionLCM-V2 (Dai et al.) .6638±.0005 .072±.003 2.767±.007 .546±.003 .743±.002 .837±.002

Real .6825±.0000 .002±.000 2.974±.008 .511±.003 .703±.003 .797±.002

Benchmark of T2M Approaches. We base VeMo on InternVL3-14B (32-frame) with human-opt
view selection and report VeMo scores on the HumanML3D benchmark covering representative
T2M models to give the community a clear baseline for comparison. As shown in Table 6, we
observed that several T2M models outperform the ground truth on certain reference-free metrics
(e.g., MM Dist and R@K-Precision), which suggests those evaluators can be overfit or “hacked.”
FID is a reference-based method and has a high correlation with the VeMo metric.

Impact of K (number of views). Detailed experiments and analyses can be found in Appendices
(Table 12, Table 13), and we directly present the important conclusions: (1) Selecting the min-
entropy view (i.e., the most confident view) consistently outperforms selecting the max-entropy
view when K > 1. (2) The largest gain occurs when moving from K = 1 to K = 2; beyond K = 2
performance quickly saturates. Thus K = 2 provides a strong balance between reliability and cost.

More in-depth analyses. To further study the performance boundaries of VeMo, we provide extra
results in Appendices, including Computational Overhead, Efficiency Tradeoff, Acceleration,
Stability of the VLM-Generated Scores, Future Direction and etc.

Case studies. Figure 3 shows interesting cases where the evaluation scores from VeMo clearly align
with human labels, while those from other methods are ambiguous. In the left case, the prompt
contains abstract concepts, requiring an understanding that people usually wave hand to express a
friendly “hello.” VeMo faithfully grasps the underlying action corresponding to the prompt, assign-
ing high confidence score that align with human label; while baseline methods fail to comprehend
the complex semantics in the sentence. The person in the right case drinks water with the back of
their head unnaturally. VeMo recognizes that “anti-human style” of the human motion, thus assign-
ing a low score and determining that the generated motion is unaligned with the prompt. Taking the
two cases into consideration, we find that VeMo can understand the complex semantics and human
style while evaluating generated motions. This further validates the effectiveness of VeMo.

6 CONCLUSION

We considered the evaluation of T2M alignment, proposed a new meta-evaluation benchmark to
solve the problem that there is no shared testbed to fairly compare the generalizability of automatic
evaluators. Moreover, we use the VLM to solve T2M evaluation, and devise an entropy-based tech-
nique to foster a high-quality VLM score when 3D motion is rendered into 2D video. Our method,
named VeMo benefits T2M evaluation from internet-scale text-vision data and achieves human-
aligned evaluation performance. This evaluation method can potentially not only provide a fairer
comparison for different T2M models but also offer more accurate feedback for the development of
new models. Extra analyses and codes can be found in the Appendices and Supplemental.
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STATEMENT

Ethics statement. The evaluation method we propose does not raise new ethical concerns, but may
inherit the internal biases of the video language model on which VeMo is based. Key biases include
Western-centric cultural representation imbalance, implicit cultural stereotypes, and limited grasp
of contextual cultural nuance—all of which could skew VeMo’s assessments of human movements,
gestures, or social interactions across diverse cultural contexts, compromising the framework’s fair-
ness and generalizability. Please refer to (Nayak et al., 2024) for more details.

Reproducibility statement. We provide in the Experimental Section and Appendices a clear setup
for reproducibility. We also upload the code of the full evaluation pipeline, as well as the resources
of the main experiment as supplemental materials. This ensures reproducibility.

Use of LLMs in writing. We only use LLMs to polish writing, e.g., grammar/spelling checking.
We also double-check the polished texts to try our best to optimize the readers’ experience.
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A APPENDICES

A.1 DETAILS ON BENCHMARK DATA COLLECTION

Data source. We based our benchmark data on HumanML3D (Guo et al., 2022), a recent dataset.
HumanML3D textually re-annotating motion capture from the AMASS (Mahmood et al., 2019) and
HumanAct12 (Guo et al., 2020) collections. It contains 14,616 motions annotated by 44,970 tex-
tual descriptions, split in train, val, test sets. The train and val splits of HumanML3D are widely
adopted to train T2M models. We take the descriptions from the HumanML3D’s test set as prompts
to generate and evaluate motions. To ensure the diversity and representativeness of the prompts,
we use Sentence Transformer, i.e., all-mpnet-base-v2 (Song et al., 2020), to encode all prompts
for deduplication. Specifically, we recursively merged pairs of clusters of sample data, using the
cosine distance given by these embeddings, with a clustering threshold of 0.8, resulting in approx-
imately 1.5k prompts. Finally, we customized more conditions to further filter the remaining 1.5k
prompts. The removal conditions include spelling errors in the action descriptors in the prompts,
or prompts describing dexterous hand movements, gaze, and other actions that do not belong to the
HumanML3D joints. In the end, 1101 texts remained.

Motion generation. A trained T2M model will take textual motion annotations as input and output
motion sequence M = (mt)

N
t=1 of human poses represented by joint rotations or positions mt ∈

RJ×D. J is the number of joints and D is the dimension of the joint representation. Specifically,
we employ a diffusion-based MDM (Tevet et al., 2022) and an autoregressive MotionGPT (Jiang
et al., 2023) to generate motion data from 1101 selected prompts for subsequent meta-evaluation.
Because the codebases of these two models are widely adopted as the foundation for other methods
Tevet et al. (2024); Han et al. (2025), and both models are trained on the HumanML3D’s trainset and
support the animation of body actions for the 22-joint SMPL human model. For MDM, we use the
official checkpoint “humanml trans dec 512 bert-50steps”; for MotionGPT, we also use the official
checkpoint “OpenMotionLab/MotionGPT-base”. Finally, we obtain generated motions from MDM
and MotionGPT, and there are a total of 2202 text-motion pairs.

A.2 DETAILS ON VISUALIZATION SETTINGS

To annotate a generated motion sequence M and the text used for generation, we first use Blender
(Community, 2018) software to convert the generated motion M into skinned human model video
V . Specifically, we first use the smplx Python package to create a neutral SMPL model (Loper et al.,
2023). Then, we run SMPLify (Bogo et al., 2016) to convert the motion sequence M into a 3D voxel
representation (.obj file), which can be directly imported into the Blender environment. Finally, we
use Blender 4.0.2 to render the voxels and generate the videol as follows.

We configure the rendering resolution to 1088×1088 pixels, with PNG set as the output format
for intermediate frame images to ensure high-quality image data for subsequent video compilation.
The scene background is configured as a natural white color (RGB: 1.0, 1.0, 1.0) with an intensity
value of 0.6, which avoids overexposure while ensuring the human model stands out clearly against
the background. A chessboard-patterned floor is added to the scene to provide spatial reference and
enhance visual layering. This floor has a size of 10×10 units and is divided into 10×10 grid divisions;
its vertical position (Z-axis) is aligned with the lowest point of the human model’s bounding box to
ensure it fits naturally under the model. The floor uses a semi-transparent material (transparency
set to 0.5) based on the Principled BSDF shader, and a chessboard texture is applied via UV smart
projection to ensure the pattern is evenly distributed and displayed correctly. Additionally, the floor
is set to be unselectable to prevent accidental modification during the rendering process. For the
human model, a custom “DarkBronzeSkinMaterial” is developed to simulate a realistic skin-like
appearance. The material’s base color is set to an RGB value of (0.3, 0.15, 0.07) (a deep brown
with warm bronze undertones), the metallic attribute is adjusted to 0.4 to enhance subtle reflective
properties, and the roughness is set to 0.6 to soften excessive gloss, resulting in a natural texture that
better showcases the model’s contour details and motion changes.

Lighting is provided by a single SUN-type light source with an energy value of 4.5 to ensure suffi-
cient and uniform illumination of the human model. The light source is fixed at the spatial position
(-4, -6, 6) and rotated to face the geometric center of the human model—this rotation is calculated
by converting the vector from the light source to the model’s center into an Euler angle, ensuring the

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 4: The user-interface of LabelStudio used for human annotation.

Table 7: Model-level correlation between different evaluation scores and human judgements, re-
ported on meta-evaluation dataset. ↑ means larger is better.

Evaluation Method τ ↑ ρ ↑ Evaluation Method τ ↑ ρ ↑
(reference-based automatic evaluation method)

Minus L1 Distance (w/ ref.) 0.6138 0.8172 Minus FID (w/ ref.) 0.6032 0.8066
(reference-free automatic evaluation method)

Minus Multimodal Distance 0.5503 0.7600 MoBERT-base 0.4762 0.7043
R@1-Precision 0.5745 0.7922 MoBERT-F -0.4021 -0.5779
R@2-Precision 0.5676 0.7595 MoBERT-N -0.4127 -0.6622
R@3-Precision 0.6096 0.7988 MoBERT-max(F/N) -0.4868 -0.7193
MotionCritic 0.5609 0.7901 MoBERT-min(F/N) -0.4339 -0.6110
VeMo (min entropy view) 0.7196 0.8774 VeMo (human-opt view) 0.7090 0.8834

User-1 Score 0.6915 0.8758 User-2 Score 0.5532 0.7726

light rays are directed toward the model and minimizing harsh shadows that could obscure motion
details. For camera configuration, a new camera is created for each frame of the motion sequence to
maintain consistent framing of the human model. The camera’s position is determined by offsetting
the human model’s geometric center by a fixed vector (-1, -3, 0.6); similarly to the light source, the
camera is rotated to face the model’s center (using the vector from the camera to the model’s center
converted to an Euler angle). This setup ensures that the human model’s entire body remains fully
visible in each frame, and the model occupies more than 1/10 of the frame area as required. After
rendering all motion frames into individual PNG images, the images are compiled into a video file
using the H.264 codec (libx264) with a frame rate of 20 FPS and a quality parameter of 9. This
codec and parameter combination balances video quality and file size, resulting in a smooth motion
video that clearly presents the details of the generated motion sequence. Finally, we use LabelStudio
as a frontend for human annotation, and the user-interface is shown in Figure 4.
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Table 8: Extra ablation result on usefulness of Eq. (1).

VeMo, human-opt view AUC-ROC ↑ AUPR ↑ KS ↑ τ ↑ ρ ↑
InternVL3-14B (w/ Eq. (1)) 0.723±.000 0.740±.000 0.342±.000 0.315±.000 0.385±.000
InternVL3-14B (w/o Eq. (1)) 0.627±.006 0.743±.004 0.254±.012 0.262±.013 0.262±.013

A.3 EXPERIMENTS ON MODEL-LEVEL CORRELATION

Settings. For the data belonging to the MDM split, we randomly divide it into two groups and repeat
this process 10 times, resulting in a total of 20 random sub-splits. We perform the same procedure
for the MotionGPT split, which also generates 20 random sub-splits. Ultimately, we obtain 40 sub-
splits in total, with each sub-split containing approximately 500 data samples. Subsequently, each
sub-split is analyzed independently: first, we calculate the FID score following (Tevet et al., 2022);
then, we sum up all text-motion scores for each evaluation method. Finally, for each metric, we have
a sequence of model-level scores with a length of 40, which can be used to compute the correlation
coefficients τ and ρ. Table 7 reports model-level correlation of different evaluation methods.

Based on Table 7, we have several findings: 1) First, we observe that the model-level MoBERT
score of the model fine-tuned on human-labeled samples exhibits a negative correlation with human
scores, which is contrary to the case at the sample level (see Table 3). This may be attributed to
the insufficient amount of human-labeled data, which causes the fine-tuned model to suffer from
overfitting and assign extreme scores for false positive/negative samples. 2) Second, among auto-
matic methods, VeMo ranks first in terms of model-level correlation, followed by reference-based
methods. This is consistent with the findings from the sample-level evaluation (Table 3), indicating
that both VeMo and reference-based methods can provide stable and consistent evaluations. 3) Fi-
nally, VeMo’s model-level scores achieve or even surpass human user scores. The reason for this is
that users are instructed to make binary selections, and inconsistent cases largely affect model-level
scores. In contrast, VeMo can generate intermediate scores for cases it is uncertain about, thereby
improving its model-level performance. Overall, although model-level scores cannot be used to
evaluate text-motion alignment, the experimental results demonstrate that VeMo has the potential to
evaluate the overall performance of T2M models, which we leave for future research.

A.4 EXTRA ANALYSIS

What about using VLM’s output sentence instead of the predicted distribution? To study the
usefulness of Eq. (1), we replace Eq. (1) with matches of “yes” or “no” from the sentences generated
by the VLM. This produces binary (i.e., 0/1) prediction scores, then we compare these scores with
our original distribution-based scores. Note that the entropy of the output sentence of the VLM
cannot be calculated, so we evaluate it under the same setting of human-opt view as in Table 5. The
results in Table 8 show that VeMo w/ Eq. (1) outperforms VeMo w/o Eq. (1) in terms of AUC, KS, τ
and ρ (most important), indicating that Eq. (1) can significantly enhance the correlation between the
evaluation scores and humans. VeMo w/o Eq. (1) yields binary scores, and the precision and recall
under most thresholds are the same, which is slightly beneficial for AUPR calculation. Notably, the
VeMo scoring procedure (soft distributional scoring per Eq. (1)) yields stable, zero-variance scores
for deterministic input video. The VeMo scores are substantially more reliable than scores obtained
via naive deterministic decoding of VLM outputs (i.e., w/o Eq. (1)).

Computational overhead and efficiency tradeoff of the VeMo pipeline. Our full VeMo pipeline
consists of three stages: Joint-to-Mesh, Mesh-to-Video, and VLM inference. Converting a rendered
3D mesh into multi-view videos does not increase the Joint-to-Mesh overhead. For the rendering
process, we measured the time and peak RAM using the Rendering-to-Body-Model video converter:
the per-motion time and peak RAM for the Joint-to-Mesh stage are 182s and 793MiB, respectively,
while the corresponding values for the Mesh-to-Video stage are 31s and 256MiB. The runtime, mem-
ory footprint, and evaluation performance of VeMo under different VLM configurations (human-opt
view) are shown in Table 10. The primary time bottleneck is rendering, but rendering is highly
parallelizable because its peak RAM is low. The primary RAM bottleneck is VLM inference; using
smaller VLMs (for example, InternVL3-1B) reduces memory requirements at the cost of modest
performance degradation. This trade-off makes VeMo practical for different resource budgets.
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Table 9: Ablation studies on number of input frames and VLM used as VeMo.

VeMo (num frames) AUC-ROC ↑ AUPR ↑ KS ↑ τ ↑ ρ ↑ p-value ↓

(Multimodal Models Supporting Video Input)
InternVL3-14B (32 frames) 0.723 0.740 0.342 0.315 0.385 <1e-6
InternVL3-14B (8 frames) 0.720 0.738 0.343 0.311 0.381 <1e-6
InternVL3.5-14B (32 frames) 0.709 0.734 0.331 0.296 0.363 <1e-6
InternVL3.5-14B (8 frames) 0.698 0.721 0.306 0.281 0.343 <1e-6

(Video-Text Foundation Models)
InternVideo2.5 (128 frames) 0.684 0.700 0.292 0.260 0.318 <1e-6
InternVideo2.5 (32 frames) 0.688 0.706 0.292 0.266 0.325 <1e-6
InternVideo2.5 (8 frames) 0.669 0.688 0.263 0.239 0.292 <1e-6

(Video-Text Representation Learning Model)
ViCLIP-L-14 (8 frames) 0.559 0.543 0.099 0.084 0.103 1e-06

Table 10: VeMo Performance Under Different VLM Configurations (Human-Opt View).

VeMo (human-opt view) Per-Video Time/Peak-RAM AUC-ROC AUPR KS τ ρ

InternVL3-14B (32-frame) 1.597s / 33221MiB 0.723 0.740 0.342 0.315 0.385
InternVL3-14B (8-frame) 0.415s / 30000MiB 0.720 0.738 0.343 0.311 0.381
InternVL3-8B (32-frame) 0.889s / 18332MiB 0.687 0.706 0.291 0.264 0.324
InternVL3-8B (8-frame) 0.233s / 15998MiB 0.683 0.701 0.284 0.258 0.316
InternVL3-1B (32-frame) 0.295s / 4470MiB 0.630 0.627 0.215 0.184 0.225
InternVL3-1B (8-frame) 0.084s / 2503MiB 0.642 0.645 0.231 0.201 0.246

Efficient version of VeMo. Distilling VLM into a smaller scoring model is attractive for efficiency.
However, T2M generation exhibits many diverse, valid solutions and limited coverage of motion
space; a distilled model risks overfitting to limited T2M data in much the same way as current
reference-free evaluators. To address the practical time bottleneck from mesh rendering, we explored
a lightweight alternative: directly visualizing joint trajectories as stick-figure videos (i.e., skipping
Joint-to-Mesh). This eliminates the rendering overhead while preserving temporal joint information
for the VLM. The runtime and memory profile for this converter is negligible: the Visualizing-to-
Stick-Figure-Video converter achieves a per-frame time of 0.007s with a peak RAM of 0MiB. As
shown in Table 11, we evaluated VeMo using stick-figure videos. Although absolute performance
drops relative to full-body renderings, VeMo on stick figures still substantially outperforms the best
reference-free baseline and is therefore suitable for rapid, online analyses and iterative workflows.

Table 11: VeMo performance on stick-figure videos.

VeMo on Stick-Figure-Video AUC-ROC AUPR KS τ ρ

InternVL3-14B (32-frame) 0.608 0.626 0.145 0.153 0.187
InternVL3-14B (8-frame) 0.619 0.633 0.176 0.169 0.206
InternVL3-8B (32-frame) 0.604 0.607 0.148 0.147 0.180
InternVL3-8B (8-frame) 0.606 0.608 0.159 0.150 0.184
InternVL3-1B (32-frame) 0.560 0.548 0.108 0.085 0.104
InternVL3-1B (8-frame) 0.571 0.563 0.118 0.100 0.123

Impact of K (the number of views) on evaluation performance. We pre-extract six views per
motion by uniformly rotating the camera around the body (the engineered “human-opt” view plus
five random rotations). For evaluation we sample K views without replacement from these six,
and report metrics for two view-selection strategies: the minimum-entropy view (Table 12) and the
maximum-entropy view (Table 13). Here is the Conclusion:

• Selecting the minimum-entropy view (i.e., the most confident view) consistently outper-
forms selecting the maximum-entropy view when K > 1.
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• The largest gain occurs when moving from K = 1 to K = 2; beyond K = 2 performance
quickly saturates. Thus K = 2 provides a strong balance between reliability and cost.

• Generating additional views incurs roughly 30 seconds of rendering per extra perspective
per motion. Given this cost, we recommend using the engineered human-opt view (i.e.,
human-opt, K = 1), which already achieves performance close to a higher-K regime.

Table 12: Min-entropy based view selection.

K AUC-ROC AUPR KS τ ρ

1 0.706 0.729 0.304 0.291 0.357
2 0.721 0.742 0.346 0.312 0.382
3 0.719 0.742 0.349 0.310 0.380
4 0.721 0.746 0.356 0.313 0.384
5 0.723 0.748 0.361 0.315 0.386
6 0.721 0.745 0.358 0.312 0.382

Table 13: Max-entropy based view selection.

K AUC-ROC AUPR KS τ ρ

1 0.706 0.729 0.304 0.291 0.357
2 0.711 0.728 0.324 0.298 0.365
3 0.705 0.720 0.312 0.290 0.355
4 0.701 0.718 0.308 0.284 0.347
5 0.699 0.715 0.308 0.282 0.345
6 0.699 0.712 0.308 0.281 0.344

Combining information from multiple views. To probe whether multi-view fusion helps, we ran
an experiment using videos where each frame contains two synchronized views (one human-optimal
view and one randomly rotated view). Evaluation with InternVL3-14B (32-frame) yields the follow-
ing metrics: For the video containing two synchronized views, the performance metrics are AUC-
ROC of 0.716, AUPR of 0.740, KS of 0.348, Kendall’s tau (τ ) of 0.306, and Spearman’s rho (ρ)
of 0.374. In contrast, for the video using only the human-opt view, the corresponding metrics are
AUC-ROC of 0.723, AUPR of 0.740, KS of 0.342, τ of 0.315, and ρ of 0.385. We find that naively
combining multiple views can confuse current VLMs and slightly degrade VeMo performance. This
suggests that effective multi-view integration likely requires improvements in VLM video under-
standing (better temporal and multi-view fusion). We therefore identify multi-view fusion as an
important avenue for future work rather than claiming a simple aggregation rule is sufficient today.

A.5 FUTURE DIRECTION.

Evaluation on the extent of failure cases. The VeMo score was intentionally designed to answer
the most fundamental and objectively measurable question in text-to-motion (T2M): Does the gen-
erated motion match the text? Current automatic metrics often struggle to reliably distinguish even
coarse-grained “yes/no” alignment, so we focused first on this basic and well-defined problem. Fine-
grained degrees of adherence (e.g., mostly correct with small mistakes vs. completely wrong) are
important; however, they require richer annotations and more capable evaluation tools. We view
fine-grained alignment as an important direction for future work.

Scaling the meta-evaluation. The meta-evaluation benchmark introduced in this work has a fo-
cused goal: to construct a fair human-rating reference and to verify the basic evaluation effective-
ness of T2M evaluators. Our experiments and analyses are framed around this objective, and they
demonstrate that the VLM-based T2M score is substantially closer to human ratings than existing
automatic evaluators, which is an important step toward improving T2M evaluation. Notably, scal-
ing the meta-evaluation to cover a much wider range of motion complexity and more T2M models
is valuable in future but also labor-intensive and outside the core contributions claimed in paper.

Boundaries of entropy-based view selection. VLMs may give incorrect high-entropy predictions
for input videos, these edge cases are usually considered out-of-distribution for the model (Liu
et al., 2024; Farquhar et al., 2024). This limitation reflects a gap between VLM video-understanding
capabilities and human perception. Addressing these corner cases will require VLMs with more
human-like motion perception and higher-fidelity grounding. Finally, perfect agreement between
any automatic evaluator and human raters is unattainable (Table 3), since T2M alignment is subjec-
tive and multimodal. Our primary objective is to narrow the gap between automatic T2M evaluators
and human judgment; tackling remaining edge cases is an important direction for future work.

Beyond the offline analysis presented, we believe VeMo can provide concrete value for T2M
training in two practical ways: (1) Training-data curation. Recent efforts augment training sets with
motions recovered from video (Ding et al., 2025). VeMo can serve as an automatic filter to remove
low-quality or noisy converted motions in trainset. (2) Training-time reward shaping. VeMo can be
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combined with offline reinforcement-learning schemes as an auxiliary reward signal; by periodically
re-scoring and updating offline data, models can be steered toward higher-quality generations.

A.6 LIMITATIONS AND BROADER DISCUSSION

Our research focuses on using video-language model (VLM) as evaluator but shares VLM limita-
tions. To be more clear, this evaluation score is influenced by inherent biases in VLMs, as identified
in studies by Fei et al. (2023). Addressing this requires strategies for fair, interpretable outcomes
from complex models, presenting a promising research area. We believe that improvements in au-
tomatic evaluation metrics can be used to generate supervisory signals to guide the performance
of T2M models to reach the cognitive level of VLMs. Some recent works have attempted to train
T2M models using generated answers from VLMs indirectly (Han et al., 2025; Pappa et al., 2024),
but they still rely on old metrics such as FID, Multimodal distance for evaluation. Our work not
only provides support for these empirical usages, but also studies the loss associated with the scores
generated by VLMs and reveals the gap with human-level performance.
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