
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Value-Probability Duality of Neural Networks

Anonymous Authors1

Abstract

It is typically thought that supervised training
of modern neural networks is a process of fit-
ting the groudtruth probabilities. However, many
counter-intuitive observations in language gener-
ation tasks let one wonder if this canonical prob-
abilistic explanation can really account for the
observed empirical success. To resolve this issue,
we propose an alternative value-based explana-
tion to the standard supervised learning procedure
in deep learning. The basic idea is to interpret
the learned neural network not as a probability
model but as a kind of action-value function (also
called Q-function (Sutton and Barto, 2018)). We
developed a theory based on this value-based in-
terpretation, in which the theoretical expectations
and empirical observations are better reconciled.

1. Introduction
In this paper we challenge, and fix, a standard explanation
of deep learning. The prevailing mindset nowadays is to
interpret a neural network f(w) as a parametric model of
the conditional probability distribution Pw[Y = y|X = x],
where X is an expected input of the task under concern
(e.g. an image/sentence/speech audio), and Y is an expected
output given X (e.g. a class label, a score, or a structured
object such as a sentence or an action plan) which is assumed
to follow a groundtruth distribution Ptrue. Training of the
neural network f(w) is then thought to be the process of
approximating Ptrue with Pw. Indeed, in (Goodfellow et al.,
2016), the deep learning textbook writes (p.138): “most
supervised learning algorithms in this book are based on
estimating a probability distribution p(y|x)”.

This probability interpretation of neural networks supports
two popular ways to use the learned probability model Pw

at inference/decision time. The first way is to choose the

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

most likely output in Pw:

yMAP
.
= arg max

y
Pw[Y = y|X = x] (1)

where MAP stands for maximum a-posteriori probability.
When Pw = Ptrue, yMAP is a provably optimal output in
many common scenarios (Bishop, 2006); see Section A for
a rigorous optimality analysis.

Another sensible decision rule is to sample the output from
the distribution Pw, which makes the actual output a ran-
dom variable, denoted by A here:

A ∼ Pw[Y = ·|X = x] (2)

When Pw = Ptrue, the stochastic outputA is not necessarily
optimal, but is necessarily a good output as long as the
expected output Y is the output of a good decision policy
(because A is identically distributed with Y ; see Section B
for more elaboration on the soundness of the sampling rule).

The two decision rules (1) and (2) underlie a long tradition
in the ML community that reduces the problem of learning
to make decisions to a probability estimation problem 1: If
we could estimate Ptrue perfectly, our decision would be
guaranteed good. In reality, the approximation of Ptrue with
Pw always comes with errors, but the correspondence (in
the limit) between decision making and probability estima-
tion still gives the reasonable expectation that the closer the
probability estimation is, the better the induced decision (by
the two decision rules) would be.

However, it is known that many neural networks with excel-
lent decision quality are actually poorly calibrated in terms
of probability estimation (Guo et al., 2017; Minderer et al.,
2021). In fact, Guo et al. (2017) reported that for some
popular NN architectures, more accurate models (in terms
of classification quality) tend to be worse calibrated in terms
of how Pw matches Ptrue.

More importantly, recent empirical studies in NLP found
that for a variety of language generation tasks, both the
MAP rule A = yMAP and the sampling rule A ∼ Pw lead
to very bad performance in terms of text/decision qual-
ity (Stahlberg and Byrne, 2019; Cohen and Beck, 2019;

1In another classic ML book, Bishop (2006) writes “determi-
nation of p(x, t) ... forms the subject of much of this book” (p.38).

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Value-Probability Duality of Neural Networks

Eikema and Aziz, 2020; Holtzman et al., 2019); this is the
case even for extensively-trained models with state-of-the-
art architectures. On the other hand, greedy or near-greedy
outputs, as a kind of “economic yet sub-optimal” choices
from the probabilistic perspective, turn out to work signif-
icantly better, and is often the only solution that is known
to work satisfactorily, not in cost, but in quality (Wu et al.,
2016). These paradoxical observations form an explainabil-
ity issue that challenges the probabilistic rationale behind
the empirical success in related domains (Section 2).

To resolve this issue, we propose an alternative value-based
explanation to the standard supervised learning procedure
in deep learning. The basic idea is to interpret the learned
neural network not as a probability model but as a kind of
action-value function (also called Q-function) (Sutton and
Barto, 2018). We will develop a theory based on this value-
based interpretation, in which the theoretical expectations
and empirical observations are better reconciled.

Specifically, in Section 3 we point out that a softmax-
normalized neural network model also comes with an un-
normalized sub-model for the logits, and that this logit
sub-model is the actual functioning part of the overall
model at inference/decision time. As a result, the standard
MLE training process for softmax probability model can
be equivalently seen as a certain learning dynamic for the
un-normalized sub-model. Now suppose we could directly
explain why the sub-models trained with this particular
learning dynamic will support good greedy decisions – in
a way that the explanation does not resort to probabilistic
semantics of the (sub-)model – then the probability-based
interpretation would become unnecessary and can be by-
passed. What is bypassed together is the clash between the
probabilistic interpretation and experimental observations.

In Section 4, we provide such a non-probabilistic expla-
nation. Without the probabilistic semantic, the “logit sub-
model” is re-interpreted as just a Q-function, and we show
that the “MLE-equivalent learning dynamic” of this Q-
function is a perturbed variant of a particular supervised
Q-learning algorithm family (called MABE). We mathemat-
ically prove that the unperturbed variant of this family is
indeed training the Q-function toward an optimal value func-
tion that gives optimal output under greedy decision. Then
we experimentally intervene the perturbation term, and show
that the perturbation (which makes the “MLE-equivalent
variant” different from the unperturbed variant) may have
little impact on the learning behavior in real world.

Moreover, in Section 5 we derive an equation from this
value-based theory which allows us to transform the learned
Q-values back to estimations of Ptrue, thus bringing back
the probabilistic semantic. However, the value-transformed
probability estimation, called dual probability in the paper,
encodes a different probability space from the canonical soft-

max probabilities. Intriguingly, running probability-based
decision rules (1) and (2) based on the dual probability leads
to dramatically better performance in all tasks we examined
(e.g. +14.6 BLEU for sampling and +17.3 for MAP in
WMT’14 en2de translation), and it also gives more reason-
able probability predictions. This result implies that the
standard supervised learning procedure in deep learning –
as a Q-learning procedure that has been (mis)understood as
a probability learning procedure – may indeed correspond
to a dual process of probability learning, but, the probability
space learned from this dual process may not be best repre-
sented by the softmax probabilities as usually perceived.

Overall, all the evidences above collectively reveal an inter-
esting phenomenon of value-probability duality, that neural
networks are perhaps both value functions and probability
functions in many deep learning settings (Section 6).

2. The Paradox
It is relatively well known that the probabilities predicted
by many deep neural networks (that well support decision
making in practice) do not match the true probabilities
very well (Guo et al., 2017). But this observation alone
does not necessarily contradict with the probabilistic ratio-
nale behind neural network learning. The genuine paradox
manifests itself through a reversal in terms of the quality
between “supposedly-rational” and “supposedly-irrational”
decisions from the probabilistic perspective. Such a rever-
sal was observed in a variety of language generation tasks,
such as machine translation (Koehn and Knowles, 2017),
abstractive summarization (Cohen and Beck, 2019), and
image captioning (Holtzman et al., 2019). In this work
we used three such tasks for experimentation: WMT’14
English→German (en2de), the most-widely used machine
translation (MT) benchmark, consisting of 4.5 millions train-
ing sentences; WMT’17 Chinese→English (zh2en), an-
other classic MT benchmark where the source and target
languages are remote, consisting of 21 millions training
examples; CNN/DailyMail, the most-widely used bench-
mark for abstractive document summarization, consisting
of nearly 300 thousands of document-abstract pairs.

2.1. The Expectations

In these tasks, the expected output y = (y1, y2, . . . , yT)
consists of a sequence of atomic decisions; each yt is called
a token without loss of generality. In this case, a neural
network f(w) is usually thought to be an auto-regressive
model that represents the token-wise conditional probabil-
ities: f[yt](x,y<t;w) = Pw[yt|x,y<t], where f[yt] de-
notes a vector-component of f ’s output that corresponds to
token yt, and y<t

.
= (y1, y2, . . . , yt−1) denotes the partial

output up to decision step t. Such a neural network encodes
Pw[y|x] through the product rule of probability, with

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Value-Probability Duality of Neural Networks

Pw[y|x] =
∏

t
Pw[yt|x,y<t] =

∏
t
f[yt](x,y<t;w). (3)

By substituting (3) into (1) and (2), we can effectively max-
imize or sample Pw using the neural network f(w) as we
did in one-shot decision tasks. In particular, finding the
MAP output (over all possible sentences of a natural lan-
guage) is a shortest-path problem that can be solved by a
backtracking search in realistic (yet costly) time, as demon-
strated by (Stahlberg and Byrne, 2019).

On the other hand, a seemly sub-optimal but economic
choice is to simply output a sequence y where each token yt

is a greedy decision that locally maximizes the token-wise
probability given the auto-regressive context:

ygreedy
.
= (y1 . . . yT) where yt = arg max

a
Pw[a|x,y<t]

(4)
Comparing (1) and (4), we see that the MAP decision rule
maximizes over the combinatorial space of all possible sen-
tences (= the output space), while the greedy decision rule
maximizes over the token space, which avoids the combi-
natorial search at the cost of returning outputs with lower
predicted probability. It is thus expected that the MAP rule
should give higher quality outputs than the greedy rule if
the model-predicted probability is a good indicator of the
true likelihood Ptrue.

In practice, beam search is a popular generalization of the
greedy rule that generates near-greedy outputs by making
each decision step based on not a single but a pool of auto-
regressive contexts. With the capacity of the pool, a.k.a. the
beam size, being 1, beam search degenerates exactly to the
greedy rule (4). With the beam size tuned toward infinity,
beam search will eventually (but extremely slowly) cover
the entire output space and will return the MAP output (1)
in the theoretical limit. It is thus expected that the output
quality of beam search should improve as beam size grows.

Moreover, the sampling rule (2) should have reasonable
performance if the neural network is well modeling the
probabilities of a desired output (see Appendix B). In other
words, if sampling a probability model cannot give rea-
sonable outputs, it must be because the model is not well
modeling the true probabilities – in that case there is no rea-
son to expect that picking the “most likely” token according
to the model (which is what the greedy rule (4) does) would
give anything significantly better.

2.2. The Observations

Surprisingly, however, in a number of language genera-
tion tasks, the greedy rule (4) and its close variants per-
form much better than the more principled decision rules
(1) and (2). Figure 1 illustrates the issue in WMT’14 en2de,
with an experiment designed to synthesize all the related

(4)(3)(2)(1)

BLEU log10 Pw

Empty output 0.0 -4.3
Sampling rule (2) 5.4 -62.2
Greedy rule (4) 25.6 -6.3
|beam| = 16 (near-greedy) 27.1 -5.6
|beam| = 1024 (approx. MAP) 8.6 -4.2
MAP rule (1) ≈ 2.1 a > -4.2
Human’s output 42.5 b -18.4

aStahlberg and Byrne (2019) reported BLEU= 2.1 for an ex-
haustive search of the MAP output on WMT’15 en2de.

bSee calculation method in Appendix F.1.

Figure 1: MLE models exhibit paradoxical observations
in WMT’14 en2de Translation. The performance is mea-
sured by the standard BLEU metric in the domain (Papineni
et al., 2002). log10 Pw gives the order-of-magnitude of the
probability as predicted by the trained model.

counter-intuitive observations together in a systematic and
self-contained way. In this experiment, a Transformer neu-
ral network with 60 millions parameters was trained using
the standard MLE loss (see Appendix F.1 for experiment
setting details). From Figure 1 we see that:

(1) Sampling the learned probability model Pw gives bad
outputs. Specifically, the performance of sampled output
(corresponding to “sampling” in Figure 1) is 5.4 (±0.3 for
90% confidence interval). As the baselines, human’s score is
42.5, and the best machine translation solution (“|beam|=16”
in Figure 1) is 27.1. The performance of sampling the
probability model is much closer to random output’s (≈ 0),
which is far from being a reasonable performance.

(2) The greedy rule gives good outputs, achieving a per-
formance score of 25.6. While another 1.5 score can be
obtained by relaxing the greedy pick to a few candidates
each time (“|beam|=16” in Fig.1), the gap is rather marginal.
In general, it is fair to say that greedy outputs are nearly the
best, or that near-greedy outputs are the best.

(3) Seeking to maximize the predicted probability gives
bad outputs: As we continue to increase the beam size,

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Value-Probability Duality of Neural Networks

we indeed find outputs with higher probability according to
the model (orange curve), but the actual translation quality
turns out to decrease (blue curve). With beam size = 1024,
the performance has dropped to 8.6. In fact, Stahlberg and
Byrne (2019) reported that the exact MAP output has a
performance score as low as 2.1 in a similar WMT’15 task.

(4) The learned probability model Pw significantly
over-estimates some clearly bad outputs, while under-
estimates, again significantly, some clearly good outputs
on the other hand. Specifically, the model predicts a prob-
ability of around 1/104 for the empty translation which
consists of nothing but an end-of-sequence token – clearly
such translation should never occur (and indeed the model
never saw any empty translation in the training data). 2 On
the other hand, the model assigns lower probability to the
best-performing outputs (e.g. Pw[ygreedy] ≈ 1/106 in Fig-
ure 1), and moreover, assigns much lower probability to
the true expected outputs provided by human (with average
predicted probability as low as 1/1018).

The above observations are not limited to the particular
task as demonstrated. See Appendix F.2 and F.3 for simi-
lar results in WMT’17 zh2en translation and in CNN-DM
summarization, respectively. The pattern is the same across
all tasks: Both maximizing and sampling the learned prob-
ability model perform poorly while going greedy or near-
greedy with the “local probabilities” performed dramatically
well, and the learned model systematically assigns very low
probabilities to desired outputs while giving much higher
probabilities to undesired outputs.

These observations create a paradox if we insist the prob-
abilistic explanation: On one hand, we see strong reasons
to reject the greedy rule – for three tokens A, B, C, saying
that “AC is more likely than BC because P (A) > P (B)”
(which is what the greedy rule is suggesting!) violates basic
principles of probability theory. On the other hand, we do
observe that the greedy rule works very well in reality, much
better than decisions based on P (AC) and P (BC).

2.3. Existing Explanations

The counter-intuitive observations above make one naturally
wonder if the learned neural networks are really supporting
decision making through good probability modeling. In-
deed, aspects of this problem have been called “beam search
curse” (Yang et al., 2018), “beam search bless” (Meister
et al., 2020), or “neural text degeneration” (Holtzman et al.,
2019) – these names may have suggested how paradoxical
the community are feeling about the problem. In the follow-
ing we briefly mention some existing explanations in the

2Probability over-estimation is not limited to this particular
output. It is a general trend that current probability models over-
estimate many very short and meaningless outputs (Wu et al., 2016;
Murray and Chiang, 2018).

literature. See Appendix D for an extended discussion of
related works.

Eikema and Aziz (2020) defended the probabilistic interpre-
tation, arguing that the MAP output is not a good decision
rule at all for the selected task. We however argue that tasks
like translation actually fall in the category that MAP is
provably optimal if the probability estimation is accurate
(see Appendix A), so inadequacy of MAP output can only
be caused by inaccuracy of probability modeling.

Many works (Ranzato et al., 2016; Zhang et al., 2019;
Wu et al., 2016; Stahlberg and Byrne, 2019; Cohen and
Beck, 2019; Holtzman et al., 2019) seek to find out why the
learned model deviates from the groundtruth distribution.
Factors such as exposure bias (Wang and Sennrich, 2020),
length bias (Wu et al., 2016), abnormal probability fluctua-
tions (Cohen and Beck, 2019), and long-tail errors (Holtz-
man et al., 2019), are identified, with many heuristic meth-
ods proposed to avoid the identified failure patterns. This
line of works however did not explain why (near-)greedy de-
cisions based on a model with so many issues can somehow
lead to good empirical result. Note that the heuristics pro-
posed in these works themselves have effectively made the
resulted solution deviating from the probability principles.
It is still unclear why we have to violate well-established
probability principles, either in the form of greedy decision
or by some sort of heuristic rules, to obtain competitive
performance from the learned “probability models”.

Meister et al. (2020) recently proposed to explain the effec-
tiveness of greedy output via a “uniform information density
(UID)” hypothesis in cognitive science. However, the pre-
cise mathematical expression of the UID hypothesis itself
is subject to different interpretations (Meister et al., 2021).
In contrast, in this paper we will propose a mathematically
accurate and non-probabilistic explanation.

3. A Duality View to MLE Training
We lay out a conceptual framework in this section which
aims at resolving the paradox as illustrated in Section 2
through a shift of mindset. Consider the standard MLE train-
ing process for neural networks: We collect a set of input-
output examples {x(i),y(i)}ni=1 with y(i) ∼ Ptrue[Y |X =
x(i)]. Then we train the model parameters toward the ones
that maximize the (log-)probability of the data in Pw:

wMLE = arg max
w

logPw[{y(1..n)}|{x(1..n)}]

= arg max
w

n∑
i=1

Ti∑
t=1

log f
[y

(i)
t]

(x(i),y(i)

<t;w)
(5)

where the neural network f models a softmax distribution

f[yt](x,y<t;w) =
eQ[yt]

(x,y<t;w)∑
a e

Q[a](x,y<t;w)
(6)

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Value-Probability Duality of Neural Networks

over the so-called logit vector Q(x,y<t;w). The training
of f(w) follows a learning dynamic driven by the gradient
of the MLE objective (5). 3 This gradient can be conve-
niently computed by substituting (6) into (5), yielding

∇w logPw[yt|x,y<t] (7)

= ∇wQ[yt](w)−∇wLogSumExp
(
Q(w)

)
= ∇wQ[yt](w)−

∑
a
f[a](w)∇wQ[a](w) (8)

where LogSumExp(Q)
.
= log

∑
a exp(Q[a]), and we omit-

ted (x,y<t) in Q’s and f ’s argument for brevity. (7) = (8)
is a simple fact known by many, and is often utilized for the
purpose of computing the gradient of the log likelihood.

We however argue that one can also understand (7) = (8) in
the opposite direction. Instead of viewing (8) as a method
to implement a learning dynamic of Pw through manipu-
lating Q(w), we can alternatively interpret (7) as a method
to implement a learning dynamic of Q(w) through manip-
ulating Pw. In this alternative perspective, we iterate the
function Q 4 for its own sake, in the particular way as pre-
scribed by (8), and the whole equation of (7) = (8) – as well
as its connection to the MLE objective (5) – is merely a
human-imposed explanation about this Q-oriented learning
dynamic. More generally, the iteration of Pw and the itera-
tion of Q(w) can be considered dual process to each other
that are taking place in parallel, in a learning dynamic that
has been conventionally named “the MLE training”.

While in principle one is free to choose either the P-iteration
view or the Q-iteration view, the former (i.e. the probabilis-
tic interpretation) will induce many conflicts between theo-
retical expectations and empirical observations, as shown
in Section 2. For this reason, we propose to explain the
empirical behaviors of softmax-normalized neural networks
from the Q-iteration perspective, in which what the neural
network is expected to output are not probabilities, but are
just the un-normalized Q-values. The Q-function is trained
with (8) being the update rule. At decision time, outputs are
generated by greedily choosing tokens according to their Q-
values. This is equivalent to choosing greedily according to
the softmax probabilities (6) (as the softmax transformation
is order preserving). Thus, the greedy-to-Q rule

ygreedy = (y1...T) , yt = arg max
a

Q[a](x,y<t;w) (9)

generates the same output with the greedy-to-P rule (4).

Note that in above we are not proposing a new algorithm,
but were only rephrasing the standard training and infer-
ence procedures in existing practice from another point of

3See Sec. C for how (5) corresponds exactly to real practice.
4In the new perspective we shall perhaps not call Q the “logits”

any more, a name that itself is suggesting that Q is nothing but the
logarithm of something else.

view. As the probabilistic semantic is entirely discarded,
all the probability-based assertions about the softmax out-
puts become unexpected, thus the weak performance of
probability-based decision rules and the unreasonable prob-
ability predictions are not paradoxical any more from the
Q-iteration perspective. The only thing that needs to be
explained is why the Q-iteration procedure (8) can learn a
good Q-function for greedy usage, which would be the main
topic of the next section.

Before turning to our account to the above question, we first
remark that “learning unnormalized Q-functions in support
of greedy decision making” is not a random problem we
posed here just for fitting a particular experimental result,
but is a classic research topic that has been extensively stud-
ied in reinforcement learning (RL) (Watkins, 1989; Mnih
et al., 2015; Sutton and Barto, 2018). In RL literature, such
a Q-function is also called an action-value function, or just
value function for short. Value functions support decision
making by assigning preferential scores to options so that
optimal ones can be identified, locally and greedily, without
checking the long-term consequence of the local decision.
A value function is called an optimal Q-function if the
induced greedy decision policy (9) gives optimal outputs.

However, in existing RL literature, the optimal Q-function
is typically learned via a Bellman value iteration procedure.
The manipulations on the Q-function in the “MLE dynamic”
(8) is clearly a very different procedure. In fact, different
from the typical RL setting where the learning is driven by
a reward signal, the dual process (8) of MLE optimization
relies on demonstrative samples of the expected output –
in other words, it is an imitation learning procedure of
Q-learning. Existing RL or imitation learning literature
cannot fully explain the value-based rationale behind this
uncommon (but empirically effectively) procedure: If the
standard supervised MLE training of deep neural networks
is actually learning Q-functions, what is the “target” of
this Q-learning dynamic? Is the learning steered toward
an optimal Q-function? Can we explain this procedure,
which works well in practice if (and to large extent, only
if) coupled with the greedy decision rule, without resorting
back to the probability interpretation? We seek to address
these questions in the next section.

4. MLE Training as a Perturbed Dynamic of
Optimal-Value Learning

Our general goal is to interpret the SGD dynamic of MLE
training as an SGD process of some objective function of Q.
There is however a technical obstacle: If we look at (8), the
gradient operator ∇w cannot be re-arranged to the head be-
cause of the f[a](w) term. As a result, it is not immediately
clear that (8) is computing a gradient of anything other than
the log-likehood (which is the interpretation we wanted to

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Value-Probability Duality of Neural Networks

bypass here).

Nonetheless, let us temporarily do a “wrong” algebraic
manipulation by moving ∇w to the head of (8) anyway,
making it “approximately” the gradient of the following
objective function:

JMABE(w,x,y)
.
=

T∑
t=1

(
Qyt(w)−

∑
a
f[a](w)Q[a](w)

)
=

T∑
t=1

(
Q(yt|x,y<t;w)− E

At∼Pw

[
Q(At|x,y<t;w)

])
(10)

Intuitively, JMABE measures the advantage of outputting the
expected token yt over a stochastic output At that follows
the softmax distribution induced by Q, where the advan-
tage is the difference of expected action-values between the
two outputs (as predicted by Q, under context x,y<t, for
each step t). The subscript MABE stands for Maximum
Advantage over Boltzmann Exploration.

From (8) to (10), we have (naively) understood the log-
likelihood gradient ∇w logPw as an approximation of
∇wJMABE, with the impact of ∂w over f(w) being ignored.
In this sense, the MLE optimization can be seen as a biased
SGD dynamic of JMABE optimization.

Interestingly, the log-likelihood gradient is not arbitrarily bi-
ased, but there is a precise connection between the gradients
of the two functions (see the proof in Appendix E.1):

Proposition 1. Given input x, output y = (y1 . . . yT), and
parametric model Q(w), for any model parameter wj ,

∂ logPw[y|x]

∂wj
=
∂JMABE
∂wj

(w,x,y) +

T∑
t=1

covt

[
Q,

∂Q

∂wj

]
where covt

[
Q, ∂Q∂wj

]
.
= cov

At∼Pt

[
Qt(At) ,

∂Qt

∂wj
(At)

]
=
∑
a

Pt(a) ·
(
Qt(a)−

∑
b

Pt(b)Qt(b)
)

·
(∂Qt
∂wj

(a)−
∑
b

Pt(b)
∂Qt
∂wj

(b)
)

(11)

• Pw is the softmax distribution induced by Q(w) as
prescribed by (3) and (6),
• Pt(a) denotes Pw[a|x,y<t], the probability that the

token at step t is a, according to Pw,
• Qt(a) denotes Q(a|x,y<t;w), the value of outputting

token a at step t, according to Q(w),
• ∂Qt

∂wj
(a) denote ∂Q

∂wj
(a|x,y<t;w), the partial derivative

of Q(a|x,y<t;w) at step t,

Intuitively, the covt term in (11) is the covariance between
the value and derivative of Q(At) when At follows the

Algorithm 1 The MABE(λ) algorithm.

Input: A sampleD = {x(1..n),y(1..n)}; a Q-modelQ(w)
with d parameters; perturbation coefficient λ.
for SGD step k = 0, 1, 2, . . . do

obtain a minibatch {x(i),y(i)}Bi=1 from D
set ∆← 1

B

∑B
i=1 ∆(i), where

∆(i) = ∇JMABE(w,x(i),y(i)) + λ cov(i)

∣∣∣
w=wk

and cov(i) =
〈∑Ti

t=1 covt

[
Q, ∂Q∂wj

]〉
j=1..d

update w using −∆ as the gradient estimator
end for
Output: arg maxQ(wk) as the decision rule.

Boltzmann exploration policy Pw. Proposition 1 asserts
that the gradient of the probability-learning objective (5)
differs from the gradient of the value-learning objective (10)
by exactly this covariance (or by the cumulative covariance
in sequential decision setting). For complex models with
millions or billions of parameters, if the model output is
not strongly correlated to the partial derivative of a single
parameter, the covariance term identified in Proposition 1
would have limited impact on the learning progress. As a
key result, we empirically found that this is indeed true, in
all the tasks we have experimented, that the perturbation
from this covariance term cannot significantly affect the
learning, not only in the final performance, but also in the
entire learning dynamic.

Specifically, consider a MABE(λ) family of Q-learning al-
gorithms as defined by Algorithm 1. MABE(0) optimizes
JMABE based on unbiased estimator of ∇JMABE. MABE(1)
adds the covariance term to the gradient estimator, thus
is equivalent to traditional MLE training. For other λ,
MABE(λ) does not seem to have principled interpretations,
but is simply constructed by perturbing the gradient esti-
mator with a λ multiple of the covariance, where λ can be
either positive or negative. By tuning λ to different values,
we can control how significantly the gradient is perturbed.

Figure 2 shows the learning curves of MABE(λ) under five
values of λ, ranging from −2 to 2. Generally speaking,
all the learning curves are similar, in all the three tasks be-
ing examined, not only in the end but almost throughout
the training process. Performance of the perturbed variant
MABE(1), a.k.a. MLE training, is slightly lower than the
unperturbed variant MABE(0) (see Fig. 7, 10, 13 in the ap-
pendix for the numerical scores). The learning under λ = 2
(which is 2x perturbed) was somewhat slower at the begin-
ning, but managed to catch up with other variants in later
stage of the learning. Importantly, MABE(1) – a.k.a. MLE
training – does not look like anything uniquely different
from the other “non-probabilistic” variants.

Conclusion 2. The SGD-based MLE training of softmax-

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Value-Probability Duality of Neural Networks

(a) WMT’14 (English→German) (b) WMT’17 (Chinese→English) (c) CNN/DailyMail Summarization

Figure 2: SGD dynamic of JMABE when the gradient is perturbed by the covariance term (11). Performance of the Q-greedy
decision rule is evaluated on the test set every 5000 steps. BLEU and ROUGE are standard metrics for corresponding tasks.

normalized neural networks is a mediocre variant in the
MABE(λ) family. Under the greedy decision rule, its per-
formance is generally similar to (often slightly lower than)
that of the unperturbed variant MABE(0).

So far we have re-interpreted a classic statistical learning
procedure (i.e. SGD-based MLE) as a Q-learning algorithm
(i.e. MABE(λ)). Now we investigate the optimality of
this Q-learning algorithm. Given that the performance of
MABE(λ) is similar under modest perturbation coefficient
λ, in the following we focus on analyzing MABE(0), the
learning dynamic without any perturbation. In the following
we prove that when the Q-model is expressive enough, the
global maximum of JMABE is indeed an optimal Q-function
(See the proof in Appendix E.2).
Theorem 3. Consider a tabular model Q(a; q) =∑d

j=1 1[a = j] · qj , where the parameter vector q =
(q1 . . . qd) directly encodes the action-values for each possi-
ble action a ∈ {1 . . . d}. Let p = (p1 . . . pd) be the softmax
distribution induced by q. Let q∗ be the Q-values that max-
imizes J(q) = EY∼Ptrue

[
Q(Y ; q)

]
− EA∼p

[
Q(A; q)

]
,

and p∗ the corresponding softmax distribution of q∗, then

(1) for any action a ∈ {1 . . . d},

p∗a · (1 + q∗a −Ep∗ [Q]) = Ptrue[Y = a] (12)

(2) let supp(Y) be the support of Ptrue (which is thus the
set of all expected actions),

max
a∈supp(Y)

q∗a > max
b 6∈supp(Y)

q∗b + 1 (13)

The function J in Theorem 3 is an idealized form of the
MABE objective JMABE, with the loss of parameterization in
Q(w) being ignored.

The inequality (13) in Theorem 3 suggests that optimal ac-
tions are separated from sub-optimal ones by at least a con-
stant margin, thus going greedy with q∗ can provably avoid

unexpected actions. This fact established a strict optimality
property for the global maximum of JMABE: Maximizing
JMABE over w guarantees to find the optimal Q-function 5

as long as the global maximum of JMABE is covered by the
parametric model Q(w).

As MABE(0) is just a standard stochastic gradient process
of JMABE optimization, this conditional optimality result
(which is subject to model errors, data errors, and optimiza-
tion errors) supports the soundness of the MABE family of
Q-learning algorithms to the same strength as how the SGD-
based MLE procedure has been justified in the probabilistic
explanation of deep learning. In this way, we subsumed the
SGD dynamic of MLE as a perturbed variant of a learning
dynamic towards optimal Q-function (where the perturba-
tion does not significantly affect the learning behavior).

5. The Dual Probabilities
In above we have been arguing that the empirical effec-
tiveness of standard deep learning procedures can be better
explained without interpreting the neural networks as proba-
bility models. In some cases, however, people may just want
to have a probability model (Papamakarios et al., 2017). In-
terestingly, our non-probabilistic theory entails a way to
bring back the probabilistic semantic by transforming the
learned Q-values back to probability estimations.

Specifically, (12) in Theorem 3 gives a precise relationship
between the Q-value of an action and the true probability
that the action is an desired one. The equation holds at the
global maximum q∗ of JMABE. In practice, the optimiza-
tion is never exact for modern neural networks , yet we
can still use the equation as a guidance to transform the
Q-values obtained from MABE optimization to an approx-

5Recall that a Q-function is optimal if the greedy policy (9)
finds optimal decisions (see Section 3).

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Value-Probability Duality of Neural Networks

Table 1: Dual probabilities significantly improve sampling and MAP (± gives 90% confidence interval from 9 trials).

WMT’14 en→de WMT’17 zh→en CNN / DailyMail
sampling |beam| = 1024 sampling |beam| = 1024 sampling |beam| = 1024

Softmax Probability 5.4 ±0.3 8.6 8.3 ±0.2 11.9 21.1 ±0.1 20.1
Dual Probability 20.0 ±0.2 25.9 17.7 ±0.1 21.1 27.9 ±0.1 27.1

(+14.6) (+ 17.3) (+ 9.4) (+ 9.2) (+ 6.8) (+ 7.1)

imation of the probabilities Ptrue. Specifically, let vector
q = (q1 . . . qd) be the Q-values predicted by a Q-function
for a given decision context, define

pdual
i = CLIP

(
pi (1 + qi − p · q)

)
/ Z (14)

where pi = softmax[i](q), CLIP(x)
.
= min(max(0, x), 1)

trims the predictions to [0, 1], and Z is the sum of the numer-
ator in (14) across all i. The clipping and Z-normalization
in (14) are not needed if q is exactly optimized.

We call the probability predictions by (14), the dual prob-
abilities of the Q-values. Note that the dual probabilities
pdual are different from the predictions computed directly
from the softmax transformation (which gives p); the former
“calibrates” the latter with a scaling factor 1 + qi + p · q.

Empirically, we found that the dual probabilities (14) per-
form much better than the commonly used softmax probabil-
ities, when both are used in probability-compatible decision
rules, as Table 1 shows (also see Appendix F.1, F.2 and F.3).

Taking WMT’14 en2de as example, translations by sam-
pling the dual probabilities attain a BLEU score of 20.0,
which is a gain of +14.6 (or +370%) over sampling with
the traditional softmax probabilities (cf. Figure 1). The dual
probability makes pure probability sampling a much more
competitive decision rule now. Similarly, the dual probabili-
ties also drastically improve the real-world performance of
(approximate) probability maximization. For search with
beam size = 1024, for example, its BLEU score in WMT’14
en2de is lifted from 8.6 to 25.9, a gain of +17.3, and the
score is higher than greedy’s (as theoretically expected).
Moreover, the dual probability of the empty output is now
strictly zero on 2736 of the 2737 testing instances. In fact,
the raw scaling factor 1 + qi − p · q of the end-of-seq token
was negative (thus was clipped to 0) in all but one instances.
It is only a pity that the model will also assign zero probabil-
ity for most of the reference translations (2614 out of 2737,
which is less than the number for empty outputs though).
On the other hand, the dual probability model is much more
confident for self-generated outputs; see Fig. 6 in Sec. F.1.

Similar gains in probability prediction and utilization can be
observed in all tasks we examined. See Appendix F.1, F.2
and F.3 for more details. Overall, dual probability models
exhibit much more reasonable behaviors than traditional
softmax probability models.

Importantly, the dual probability formula (14) does not use
any hyperparameter, and is derived from first principles. Re-
call that in Section 3 we proposed to think of the Q-learning
dynamic of (8) as a dual process that simultaneously opti-
mizes the Q-values and the softmax probabilities. But now,
in light of the advantage of the dual probabilities as observed
in this section, it seems that the probability given by (14)
is a more accurate probability model. As a result, if we
say that the neural network is representing both value and
probability, the probability counterpart seems to be better
represented by the probability given in (14), instead of by
the commonly recognized softmax probability.

6. Conclusions
To summarize, we have seen how the current practice of
neural networks contradicts with its canonical probabilistic
explanation in some complex decision tasks. This moti-
vated us to develop an alternative explanation, in which the
classic SGD-based MLE optimization process of softmax-
normalized neural networks is interpreted as a supervised
Q-learning algorithm (MABE(1)). Our value-based theory
is inherently free of the paradoxical probabilistic semantics,
and yet can induce a dual probability space when needed.

Based on the evidences reported in this paper, one can both
say that the neural network trained from “SGD-based MLE
optimization” is modeling an action-value function, whose
theoretical optimality is characterized by Theorem 3 and
Conclusion 2, or, one could also say that the neural network
is indeed modeling a probability space, of not the softmax
probability (6), but of the dual probability (14).

Although this duality phenomenon may best manifest it-
self in sequential decision tasks,6 we believe the conceptual
implications of our duality theory can affect all deep learn-
ing tasks because the probability interpretation of neural
networks has been framed as a unified logical framework
for all learning tasks. Our results challenged this shared
mindset, and our theory provides a better unified frame-
work to reason about deep neural networks. This is in some
sense analogous to the situation of wave-particle duality in
physics, where the wave properties of matter may manifest

6In one-shot classification tasks, the MAP rule (1) degenerates
to the greedy rule (4), thus many problems observed in this paper
won’t show up, except that the inaccuracy of softmax probability
estimations can still be observed (Guo et al., 2017).

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Value-Probability Duality of Neural Networks

itself only in a few experiments of (sub-)atomic scale, but
its conceptual implications can apply broadly.

References
Emma Akbareian. The blue and black (or white and gold)

dress: Actual colour, brand, and price details revealed.
The Independent, 2015.

Christopher M Bishop. Pattern recognition and machine
learning. 2006.

Eldan Cohen and Christopher Beck. Empirical analysis
of beam search performance degradation in neural se-
quence models. In International Conference on Machine
Learning, pages 1290–1299. PMLR, 2019.

Bryan Eikema and Wilker Aziz. Is map decoding all you
need? the inadequacy of the mode in neural machine
translation. In Proceedings of the 28th International
Conference on Computational Linguistics, pages 4506–
4520, 2020.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In Interna-
tional Conference on Machine Learning, pages 1321–
1330. PMLR, 2017.

Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowd-
hary, Jonathan Clark, Christian Federmann, Xuedong
Huang, Marcin Junczys-Dowmunt, William Lewis,
Mu Li, et al. Achieving human parity on automatic
chinese to english news translation. arXiv preprint
arXiv:1803.05567, 2018.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin
Choi. The curious case of neural text degeneration. In
International Conference on Learning Representations,
2019.

Philipp Koehn and Rebecca Knowles. Six challenges for
neural machine translation. In Proceedings of the First
Workshop on Neural Machine Translation, pages 28–39,
2017.

Rosa Lafer-Sousa, Katherine L Hermann, and Bevil R Con-
way. Striking individual differences in color perception
uncovered by ‘the dress’ photograph. Current Biology,
25(13):R545–R546, 2015.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvinine-
jad, Abdelrahman Mohamed, Omer Levy, Veselin Stoy-
anov, and Luke Zettlemoyer. Bart: Denoising sequence-
to-sequence pre-training for natural language generation,
translation, and comprehension. In Proceedings of the

58th Annual Meeting of the Association for Computa-
tional Linguistics, pages 7871–7880, 2020.

Clara Meister, Ryan Cotterell, and Tim Vieira. If beam
search is the answer, what was the question? In Pro-
ceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 2173–
2185, 2020.

Clara Meister, Tiago Pimentel, Patrick Haller, Lena Jäger,
Ryan Cotterell, and Roger Levy. Revisiting the Uni-
form Information Density hypothesis. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 963–980, On-
line and Punta Cana, Dominican Republic, Novem-
ber 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.emnlp-main.74. URL https:
//aclanthology.org/2021.emnlp-main.74.

Matthias Minderer, Josip Djolonga, Rob Romijnders,
Frances Hubis, Xiaohua Zhai, Neil Houlsby, Dustin Tran,
and Mario Lucic. Revisiting the calibration of modern
neural networks. Advances in Neural Information Pro-
cessing Systems, 34, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

Kenton Murray and David Chiang. Correcting length bias in
neural machine translation. In Proceedings of the Third
Conference on Machine Translation: Research Papers,
pages 212–223, 2018.

Takayuki Osa, Joni Pajarinen, and Gerhard Neumann. An
Algorithmic Perspective on Imitation Learning. Now
Publishers Inc., 2018. ISBN 168083410X.

Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio
Ranzato. Analyzing uncertainty in neural machine trans-
lation. In International Conference on Machine Learning,
2018.

George Papamakarios, Theo Pavlakou, and Iain Murray.
Masked autoregressive flow for density estimation. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30,
2017.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meeting
of the Association for Computational Linguistics, pages
311–318, 2002.

https://aclanthology.org/2021.emnlp-main.74
https://aclanthology.org/2021.emnlp-main.74

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Value-Probability Duality of Neural Networks

Matt Post. A call for clarity in reporting bleu scores. In Pro-
ceedings of the Third Conference on Machine Translation
(WMT), pages 186–191, 2018.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and
Wojciech Zaremba. Sequence level training with recur-
rent neural networks. In International Conference on
Learning Representations, 2016.

Abigail See, Peter J Liu, and Christopher D Manning. Get
to the point: Summarization with pointer-generator net-
works. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1073–1083, 2017.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural
machine translation of rare words with subword units.
In Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pages 1715–1725, 2016.

Felix Stahlberg and Bill Byrne. On nmt search errors and
model errors: Cat got your tongue? In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3347–3353, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N Gomez, L ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, pages 6000–6010, 2017.

Chaojun Wang and Rico Sennrich. On exposure bias, hallu-
cination and domain shift in neural machine translation.
In Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 3544–3552,
2020.

CJCH Watkins. Learning from delayed rewards. PhD thesis,
King’s College, University of Cambridge, 1989.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu,
L ukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku
Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Mac-
duff Hughes, and Jeffrey Dean. Google’s neural machine
translation system: Bridging the gap between human and
machine translation. CoRR, abs/1609.08144, 2016. URL
http://arxiv.org/abs/1609.08144.

Yilin Yang, Liang Huang, and Mingbo Ma. Breaking the
beam search curse: A study of (re-)scoring methods
and stopping criteria for neural machine translation. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3054–3059,
October-November 2018.

Wen Zhang, Yang Feng, Fandong Meng, Di You, and Qun
Liu. Bridging the gap between training and inference for
neural machine translation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4334–4343, 2019.

Hongmei Zhao, Jun Xie, Qun Liu, Yajuan Lü, Dongdong
Zhang, and Mu Li. Introduction to china’s cwmt2008 ma-
chine translation evaluation. In Proceedings of Machine
Translation Summit XII: Papers, 2009.

http://arxiv.org/abs/1609.08144

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Value-Probability Duality of Neural Networks

A. On the Optimality of Probability Maximization
The Maximum-A-Posteriori principle is very intuitive in the sense that, given an input, if we have to make one and only one
output, then selecting the one that we think is most likely to be the expected output Y is a quite natural idea. For a number
of common performance metrics, this intuition is indeed formally supported by the provable optimality of maximizing the
true probability Ptrue.

Specifically, given a decision task with expected input X and expected output Y , suppose the goal is to determine the actual
output A so as to maximize an expected utility

EX,A[U(X,A)] =
∑
x

P(x)
∑
a

P(a|x) U(x,a) (15)

where

U(x,a) =
∑
y

Ptrue(y|x) δ(a,y) (16)

and δ(a,y) is a similarity score between output a and output y.

Case 1: Suppose δ is a binary score that simply measures if the actual output A has correctly predicted Y or not; that is,
suppose U(a,y) = 1[a = y]. In this case the expected utility corresponds to the commonly used prediction accuracy,
and we have U(x,a) =

∑
y Ptrue(y|x) 1[a = y] = Ptrue(a|x), so maximizing the probability Ptrue(a|x) is equivalent to

maximizing the utility U(x,a), given the input x.

Case 2: Suppose for any given x, the expected output Y is deterministic, denoted by yx. Equivalently, we are assuming that
there exists a unique groundtruth behind each observation; for example, given a picture x, the object in that picture is always,
say, a dog, no matter when or how many times the picture is observed. In this case, the distribution Ptrue degenerates and
has Ptrue(yx|x) = 1, so we have U(x,a) =

∑
y Ptrue(y|x) δ(a,y) = δ(a,yx). Now as long as δ is a similarity score, it

is necessary that for any a, δ(a,yx) ≤ δ(yx,yx) (i.e. yx is the one that is most similar to itself); in other words, the utility
function U(x,a) = δ(a,yx) attains its maximum at a = yx. On the other hand, as Ptrue(a|x) also attains its maximum
at a = yx (because Ptrue(yx|x) = 1), maximizing Ptrue(a) is again equivalent to maximize U(x,a) in this case (that is,
when Y is deterministic conditioned on X and δ is a similarity score).

Case 3: In reality, the determinism assumption in Case 2 can be slightly relaxed, to the situation that the expected output
Y is not deterministic, but all the possible “utterances” of Y has the same equivalent “meaning” (and that δ is a measure
of semantic similarity). For example, it is very common that given a question (e.g. “what does the following English
sentence mean in German?”), there is a definite answer at the semantic level, but this answer may admit multiple different
yet equivalent expressions in natural language. In this case, there is still a unique groundtruth at the semantic level, and it
is reasonable to say that an answer A to the question should be judged affirmatively as long as it matches any equivalent
utterance of this unique groundtruth.

It can be proved that for Case 3, delivering the “most likely” output yMAP is still optimal, for a similar reason as in Case
2. Specifically, given input x, let supp(Y) be the support of the distribution Ptrue conditioned on x. Suppose we replace
the average-form utility (16) to a function that measures how similar the actual output a is with any expected output
y ∈ supp(Y), that is,

U(x,a) = max
y∈supp(Y)

δ(a,y) , where Y ∼ Ptrue(·|x). (17)

(17) entails that U(x,a) would attain its maximum at any a ∈ supp(Y). This means the maximum point of Ptrue, which
must be within the support of Ptrue (i.e. within supp(Y)), is necessarily a maximum point of the U(x,a) in (17) too. Note
that the similarity measure δ in (17) is general and needs not to be binary.

In summary, from above we see that maximizing the true probability of Y – suppose we could do it – is guaranteed to be
exactly optimal either if the instance-wise utility is binary (Case 1), or if the groundtruth is unique (Case 2) or “essentially
unique” (Case 3). As these conditions are quite common in practice, the optimality helps justify the widely-held conceptual
reduction from optimal decision to probability estimation, and also underlie the widely-adopted decision rule of maximum
a-posteriori which replaces the true probability Ptrue with the estimated a-posteriori probability Pw, with the hope that Pw,
as a “close” approximation of Ptrue, can still achieve “good” performance.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Value-Probability Duality of Neural Networks

B. On the Optimality of Probability Sampling
A probability model that specifies the distribution of the actual output conditioned on given input is usually called a decision
policy in machine learning literature (particularly in reinforcement learning literature) (Sutton and Barto, 2018). As a special
case, a deterministic policy maps each input to a definite output, and is also called a discriminant function in statistics and
statistical learning literature (Bishop, 2006). The probability sampling rule (2) asks the decision making agent to generate
the actual output A by sampling a learned distribution Pw of the expected output Y . In other words, Pw is used as a
decision policy under the sampling rule.

When Pw = Ptrue, the actual output A sampled from policy Pw would be identically distributed with the expected output
Y which follows Ptrue. In this case if Y is a “target of prediction” that is to be used in the utility function for similarity
comparison, as in the case of (16) and (17) in Section A, then an identically distributed A to such Y is not necessarily
optimal. Instead, an optimal policy may generate the MAP output, which is deterministic, as discussed in Section A.

However, the probability sampling rule enjoys a universal quality guarantee, regardless of the utility function, if the expected
output Y itself is the outcome of another policy. This can be easily observed from the expected utility formula (15), where
the performance of a policy depends only on the probability distributions induced by the policy. If Y is considered an
expected output, this is equivalent to say that Ptrue is an expected policy, in this case a policy giving the identical distribution
Pw = Ptrue is necessarily an expected policy too, by virtue of (15). In particular, if Y ∼ Ptrue is the outcome of an optimal
policy, then the probability sampling rule (2) based on Pw = Ptrue is necessarily an optimal decision rule too.

As a concrete example, consider the famous picture in Figure 3, and suppose the task is to predict the color of the

Figure 3

dress in it by observing the picture (only). The ground truth is that the dress is in
blue and black (Akbareian, 2015), but average human beings are known to have
divergent opinions on their observed color: 57% saw the dress as blue and black,
30% saw it as white and gold, 11% saw it as blue and brown, and 2% reported it
as ”other color”, according to Lafer-Sousa et al. (2015). In this case, it is clear
that the optimal decision should match the unique and deterministic groundtruth
(and following the MAP rule based on the human distribution indeed gives the
optimal decision in this example). Yet, a decision policy that with probability
57% outputs “blue and black” and with probability 30% outputs “white and gold”
should be considered as good as human beings in predicting the groundtruth (for
this particular picture), even though it may not be the optimal policy.

Importantly, in many practices, the outputs in training data are indeed generated
by randomly recruiting a group of human beings and letting them access to the
same task inputs with what the AI/ML models would access to; the training data
thus obtained does not represent the groundtruth, the true target of prediction, but
is merely a sample of the “human policy”. What matters here is only the overall
conditional distribution (conditioned on the input) as represented by the training
data, and reproducing the same distribution in AI/ML model’s actual outputs should thus be considered as good (or as bad),
no matter what the utility behind the human choices actually is.

In summary, making the actual output A identically distributed with Y (or with as close distribution as possible) is a
reasonable decision rule when the expected output Y represents an imitation target at distributional level. In practice, this
idea has been indeed widely adopted, and is known as behavior cloning in imitation learning (Osa et al., 2018). It also forms
the basic idea of language modeling in NLP.

C. Is the Training of Auto-regressive Models in Practice Exactly following MLE Principle?
The MLE principle is the theoretical foundation for the standard cross-entropy loss based training of auto-regressive models.
This is explicitly documented in numerous literature. However, deep learning practice often deviate from its claimed
theoretical rationale in some nuanced yet important ways, and some readers of this paper might think that the “actual training
algorithm” for the auto-regressive models we studied is not optimizing the MLE objective (5), but is instead optimizing the
token-level cross-entropy loss (for example, a reviewer of an older version of the paper is holding this position).

We point out that the objective function of ”maximizing the (averaged) token probability”, of ”maximizing the (averaged)

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Value-Probability Duality of Neural Networks

sequence probability”, and of ”maximizing the training data’s probability” – denoted by Jtoken, Jseq, and Jdata (resp.) –
these three objectives differ only in a constant factor. Specifically, for a training data consisting of n (x(i),y(i)) pairs,

Jdata
.
= logPw[{y(1..n)}|{x(1..n)}] =

n∑
i=1

Ti∑
t=1

logPw[y(i)

t |x(i),y(i)

<t]

Jseq
.
=

1

n

n∑
i=1

logPw[y(i)|x(i)] =
1

n

n∑
i=1

Ti∑
t=1

logPw[y(i)

t |x(i),y(i)

<t] = Jdata/n

Jtoken
.
=

1∑n
i=1 Ti

n∑
i=1

Ti∑
t=1

logPw[y(i)

t |x(i),y(i)

<t] = Jdata/
∑n

i=1
Ti

where n and all the Ti’s are constants. This means the three objectives must share the same optimization landscape
everywhere (including the same set of global optima, local optima, saddle points, etc.). Whenever one objective function is
increased/decreased, the other two are necessarily increased/decreased too (and to the same rate).

Among the three, Jdata is exactly the MLE objective (5), which is in the sum-form. In order to estimate its gradient with
a mini-batch, we have to turn it into average-form, e.g. to either Jseq or Jtoken. In this, a notable implementation detail
is that most popular training programs of auto-regressive models (huggingface, fairseq, tensor2tensor, etc.) sample the
mini-batch in the unit of complete sequence, not in the unit of token. In other words, the mini-batch obtained in real-world
training programs is an i.i.d. sample of only the sequence-level loss Jseq . In particular, tokens in the same sequence are not
independently sampled – they are either included together or excluded together in the mini-batches.

In summary, current training programs in practice are doing faithful SGD-based optimization for the MLE objective Jdata,
with the sequence-level loss Jseq being a surrogate objective.

D. Extended Discussion on Related Works
The facts shown in Section 2, that both maximizing and sampling the learned probability model perform poorly while
going greedy or near-greedy with the local probabilities performed surprisingly well, and that the model assigns very low
probabilities to desired outputs while giving much higher probabilities to undesired outputs, make one naturally wonder if
the learned neural networks are really supporting decision making through good probability modeling. In this section we
discuss some existing explanations in the literature on this issue.

Eikema and Aziz (2020) defended the probabilistic interpretation of the learned translation models by showing that
the predicted probabilities Pw do match the groundtruth probabilities Ptrue in some statistics. They then attributed the
pathological behavior of MAP output to the high entropy of the distribution being represented, arguing that when the most
probable output has a probability as low as 1/104, one should simply not trust the MAP rule. While this argument does
make sense, we stress that the low predicted probability of the MAP output (or equivalently, the high entropy of Pw) itself
is suggesting that the learned distribution Pw is very different from the true distribution Ptrue as the latter should have
been highly concentrated. In fact, tasks like text translation or summarization fall in the category that the expected output
is essentially unique, either directly at utterance level like in the specific WMT’14 dataset, or at the semantic level more
generally; in this case the MAP output would be optimal if the learned probability Pw were indeed accurate about estimating
Ptrue (see Section A for elaborations). In other words, the inadequacy of MAP output can only be caused by the inaccuracy
of probability modeling.

Many works do posit that the learned model deviates from the groundtruth distribution, and they seek to find out why.
Ranzato et al. (2016) suggested that the distributional mismatch could be due to the inevitable discrepancy between the
decision contexts that the model will encounter at training and testing time (in translation, for example, the decision context
corresponds to the partial translations y<t). Wang and Sennrich (2020) attributes the beam search pathology (observation
(3) in Section 2.2) to this discrepancy. Subsequent studies, such as (Zhang et al., 2019), proposed methods to reduce this
exposure bias in order to facilitate better probability modeling. This line of works however did not explain why (near-)greedy
decisions based on a model that is suffering from the exposure bias can somehow lead to good empirical result. It appears
that the model we obtained is not arbitrarily biased, but the bias happens to best support a certain kind of decision rule (i.e.
the greedy rule), across different tasks, different models, and different data sets.

Wu et al. (2016) observed that the beam search pathology is associated with the tendency to output shorter sentences under

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Value-Probability Duality of Neural Networks

more extensive search. Stahlberg and Byrne (2019) confirmed that this length bias is mostly due to errors in probability
estimation, instead of to errors caused by the non-admissible search. On the other hand, Cohen and Beck (2019) observed
abnormal fluctuations of token-wise probabilities in pathological outputs, providing another factor associated to the search
pathology. In addition, Holtzman et al. (2019) found that the inadequacy of the sampled output (observation (1) in Section
2.2) is related to errors in the long tail of the distribution. All these works also complemented their discoveries with heuristic
rules to prevent the search/sampling procedure from running into the identified pathological situations. These studies
identified the failure patterns when the probability-based decision rules are getting wrong. But again, they did not shed
too much light on why probability-incompatible decision rules such as the greedy rule turn out to work much better. Note
that the heuristics proposed in these works themselves have effectively made the resulted search or sampling procedure
a deviation from the probability principles. These results leave it open for why we have to deviate from well-established
probability principles, either in the form of greedy decision or by some sort of heuristic-augmented search/sampling, to
obtain competitive performance from the learned “probability models”.

Meister et al. (2020) connected the pathological fluctuation of token-level probabilities as observed in (Cohen and Beck,
2019) to a “uniform information density (UID)” hypothesis in cognitive science, offering a probability-based explanation to
the effectiveness of greedy output. However, the precise mathematical expression of the UID hypothesis itself is subject
to different interpretations (Meister et al., 2021). For example, Meister et al. (2020) examined a number of different
regularization terms, all considered as a form of UID regularization; it turns out that the two “purest UID regularizers”
performed the worst, while a “greedy UID regularizer” (Eq.11 of the paper, which literally penalizes for deviating from the
greedy output) performs the best. It is then subject to debate regarding if the greedy UID regularizer here has facilitated
preference to UID outputs or directly to greedy outputs. In contrast, in this paper we seek to develop a mathematically clear
and non-probabilistic account to explain the effectiveness of greedy outputs.

E. Proofs
E.1. Proof of Proposition 1

(Proposition 1). Given input x, output y = (y1 . . . yT), and parametric model Q(w), we have

∂ logPw[y|x]

∂wj
=
∂JMABE
∂wj

(w,x,y) +

T∑
t=1

covt

[
Q,

∂Q

∂wj

]
, ∀j

where covt

[
Q, ∂Q∂wj

]
.
= cov

At∼Pt

[
Qt(At) ,

∂Qt

∂wj
(At)

]
=
∑
a

Pt(a) ·
(
Qt(a)−

∑
b

Pt(b)Qt(b)
)
·
(∂Qt
∂wj

(a)−
∑
b

Pt(b)
∂Qt
∂wj

(b)
)

• Pw is the softmax distribution induced by Q(w) as prescribed by (3) and (6),
• Pt(a) denotes Pw[a|x,y<t], the probability that the token at step t is a, according to Pw,
• Qt(a) denotes Q(a|x,y<t;w), the value of outputting token a at step t, according to Q(w),
• ∂Qt

∂wj
(a) denote ∂Q

∂wj
(a|x,y<t;w), the partial derivative of Q(a|x,y<t;w) at step t,

Proof. From (8) (and (3)), we have that for any component j of the model parameter w,

∂ logPw[y|x]

∂wj
=

T∑
t=1

(∂Q[yt]

∂wj
(x,y<t;w)−

∑
a

f[a](x,y<t;w)
∂Q[a]

∂wj
(x,y<t;w)

)
.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Value-Probability Duality of Neural Networks

By definition of JMABE (i.e. (10)),

∂JMABE(w,x,y)

∂wj
=

∂

∂wj

T∑
t=1

(
Q[yt](x,y<t;w)−

∑
a

f[a](a|x,y<t;w)Q[a](x,y<t;w)
)

=

T∑
t=1

(
∂Q[yt]

∂wj
(x,y<t;w)−

∑
a

f[a](x,y<t;w)
∂Q[a]

∂wj
(x,y<t;w)

−
∑
a

Q[a](x,y<t;w)
∂f[a]

∂wj
(x,y<t;w)

)

=
∂ logPw[y|x]

∂wj
−
∑
t

∑
a

Qt(a)
∂Pt
∂wj

(a)

So now we only need to prove that ∑
a

Qt(a)
∂Pt
∂wj

(a) = cov
At∼Pt

[
Qt(At) ,

∂Qt
∂wj

(At)
]
. (18)

At the right-hand side of (18), Qt(At) and ∂Qt

∂wj
(At) are two random variables defined on top of the sample space ofAt ∼ Pt.

Recall that for any random variables X and Y , cov[X,Y]
.
= E[(X −E[X])(Y −E[Y])] = E[X(Y −E[Y])], thus

cov
At∼Pt

[
Qt(At) ,

∂Qt
∂wj

(At)
]

= E
At∼Pt

[
Qt(At)

(∂Qt
∂wj

(At)− E
At∼Pt

[∂Qt
∂wj

(At)
])]

=
∑
a

Pt(a) Qt(a)
(∂Qt
∂wj

(a)−
∑
b

Pt(b)
∂Qt
∂wj

(b)
)

(19)

=
∑
a

Pt(a) Qt(a)
∂ logPt(a)

∂wj
(20)

=
∑
a

Qt(a)
∂Pt(a)

∂wj

Note that from (19) to (20) we have utilized the equation (8) again.

E.2. Proof of Theorem 3

(Theorem 3). Consider a tabular model Q(a; q) =
∑d
j=1 1[a = j] · qj , where the parameter vector q = (q1 . . . qd) directly

encodes the action-values for each possible action a ∈ {1 . . . d}. Let p = (p1 . . . pd) be the softmax distribution induced

by q. Let q∗ be the Q-values that maximizes J(q) = EY∼Ptrue

[
Q(Y ; q)

]
−EA∼p

[
Q(A; q)

]
, and p∗ the corresponding

softmax distribution,

(1) for any action a ∈ {1 . . . d},
p∗a · (1 + q∗a −Ep∗ [Q]) = Ptrue[Y = a]

(2) let supp(Y) be the support of Ptrue (which is thus the set of all expected actions),

max
a∈supp(Y)

q∗a > max
b 6∈supp(Y)

q∗b + 1

Proof. We first prove Conclusion (1). Applying Proposition 1 to J(q) – which corresponds to a special case of JMABE with
T = 1 (single step) and |supp(X)| = 1 (single input) – yields

∂J

∂qj
= E
Y∼Ptrue

[∂Q
∂qj

(Y ; q)
]
− E
A∼p

[∂Q
∂qj

(A; q)
]
− cov

A∼p

[
Q(A; q),

∂Q

∂qj
(A; q)

]
(21)

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Value-Probability Duality of Neural Networks

Since ∂Q
∂qj

(a; q) = 1[a = j], we have that for any random variable Z,

EZ

[∂Q
∂qj

(Z; q)
]

=
∑
z

P[Z = z]
∂Q

∂qj
(z; q) =

∑
z

P[Z = z] 1[a = j] = P[Z = j]. (22)

Applying (22) to (21), yields

∂J

∂qj
= Ptrue(j)− pj − cov

A∼p

[
Q(A; q),

∂Q

∂qj
(A; q)

]
= Ptrue(j)− pj + Ep[Q] ·Ep[

∂Q

∂qj
]−Ep[Q · ∂Q

∂qj
]

= Ptrue(j)− pj + E[Q] · pj −Ep[Q · ∂Q
∂qj

]

With the same the argument as in (22), we similarly have Ep[Q · ∂Q∂qj] =
∑
a pa · qa · 1[a = j] = pa · qa, thus

∂J

∂qj
= Ptrue(j)− pj + Ep[Q] · pj − pj · qj (23)

At p∗ and q∗, ∂J
∂qj

= 0 for all j, so

p∗j · (1 + q∗j −Ep∗ [Q]) = Ptrue(j) , ∀j ∈ {1 . . . d} (24)

which gives Conclusion (1).

To derive Conclusion (2), we will prove a stronger result, that

Proposition 4. A q∗ that maximizes J will assign the same action-value, Ep∗ [Q] − 1, to every unexpected action
b 6∈ supp(Y).

What immediately follows Proposition 4 is that there must be at least one expected action a ∈ supp(Y) such that
q∗a > Ep∗ [Q] (as otherwise no action would have action-value above the averaged action-value Ep∗ [Q]), and therefore,
maxa∈supp(Y) q

∗
a > Ep∗ [Q] = maxb6∈supp(Y) q

∗
b + 1.

Now we prove Proposition 4. Consider an arbitrary unexpected action b 6∈ supp(Y). For any such b, Ptrue(b) = 0. As a
result, the left-hand side of (24) must be zero too, for j = b; that is, p∗b · (1 + q∗b −Ep∗ [Q]) = 0. So there can be only two
possibilities: either 1 + q∗b −Ep∗ [Q] = 0 – which is exactly what Proposition 4 is asserting – or p∗b = 0. In the following
we show that p∗b = 0 is impossible, even as a limit.

Strictly speaking, p∗b cannot be exactly zero simply because p∗ is a softmax distribution with finite logits. But one may
wonder the possibility that a p∗ with p∗b = 0 is a supremum of J in the limit; in that case the optimization of J(q) (i.e. the
MABE optimization) may update q∗b towards −∞ (although never reaches it), thus breaks Proposition 4. 7

It turns out that such a supremum with q∗b = −∞ cannot exist for the J as defined. Specifically, consider the process of taking
an arbitrary q with qb = E[Q]−1 then decreasing qb down toward−∞ (while keeping all other qj 6=b fixed). As qb < E[Q]−1
throughout this process, we have 1 + qb−E[Q] < 0 all the time, and thus by (23), ∂J∂qb = Ptrue(b)− pb(1 + qb−E[Q]) > 0
throughout the process. Since qb is decreasing, J must be also decreasing due to the positive derivative. Therefore, J cannot
attain a maximum (or supremum) at qb = −∞, not even a local maximum/supremum. See Figure 4 in Section 4 for a visual
illustration of the shape of the function J in the special case of two actions (i.e. d = 2), where b = 2 and qb = −∞ is a
local infimum of J .

As an example, Figure 4 illustrates the function J when there are only two actions (i.e. d = 2) and assume action 1 is the
expected/desired one. In this case q = (q1, q2), and Figure (4) shows the cross section at q1 = 0 for the 2D function J(q)
(the shape is the same at all q1’s). The global maximum of J(q) is attained at q2 = Ep[q]− 1. Notably, we see that the
MABE objective function J is non-convex, and yet it has a unique local maximum point.

7Note that in this case Ep∗ [Q] =
∑

i p
∗
i q
∗
i is still finite, thus well defined, because lim

q∗
b
→−∞

p∗bq
∗
b = 0.

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Value-Probability Duality of Neural Networks

Figure 4: Shape of the MABE objective J(q), for q = (q1, q2).

F. More Experimental Results
In this section we present our experimental results in details, task by task.

F.1. Translation-WMT14en2de

The WMT’14 NewsTest English→German (en2de) task asks to translate English sentences in news articles into German
sentences, and is among the most-used public benchmarks in machine translation. In this task, the expected input X is an
English sentence following distribution defined by the training data, the expected output Y is a sequence of German tokens,
ending with a special End-Of-Sentence(EOS) token. EOS is generated either as part of the actual output (by the learned
model), or is forced by the system when the translation is 2x long compared with the source sentence.

The training dataset 8 consists of 4.5 million sentences of translation examples, and the testing dataset consists of 2737
examples. The data was pre-processed and post-processed using the BPE tokenizer (Sennrich et al., 2016) provided by
YouTokenToMe 9, with shared vocabulary of size 37000. We used SacreBLEU (Post, 2018) to calculate the BLEU scores.

We first trained the standard TransformerBase neural network (Vaswani et al., 2017) for 100, 000 SGD steps with the
standard cross-entropy loss, which corresponds exactly to the MLE procedure (5) as discussed in the paper. We followed the
same hyperparameter setting recommended in (Vaswani et al., 2017), which is known to achieve a BLEU score around 27.3
under a near-greedy decision rule. A dropout rate of 0.1 and labeling smoothing of 0.1 are applied, again as recommended
by (Vaswani et al., 2017).

The learned neural network was then used to power a number of different decision rules:

• Temperature-regulated Sampling: A generalization of the pure sampling rule (2), in which the sampling probabilities
are scaled by a temperature parameter β, with P[At = y|x,y<t] ∝ (Pw[Yt = y|x,y<t])1/β . When β = 1, the
temperature-regulated sampling implements exactly the probability sampling rule (2). With β tuned toward 0, the
parameterized sampling deviates from the genuine probability predictions, and is biased more and more toward
near-greedy outputs. The greedy rule corresponds to β = 0.

• Greedy Decoding: The greedy decision rule (4).

• Beam Search: The standard and vanilla version of beam-search decoding, which uses the estimated probability as the
heuristic score of a partial output in the search (see Algorithm 1 in (Stahlberg and Byrne, 2019)).

The translation performance on the testing set is reported in Figure 5. The figure also shows the estimated probabilities
according to the softmax probability model (the sentence-level probability of the translation for each testing instance was
estimated, then their logarithms with base 10 were averaged over all testing instances). As discussed in Section 2.2, these
results exhibit counter-intuitive behaviors if we think of the learned neural network as a probability model.

8https://nlp.stanford.edu/projects/nmt/
9https://github.com/VKCOM/YouTokenToMe

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Value-Probability Duality of Neural Networks

In comparison, the translation performance and the estimated probabilities make much more sense if we instead use the dual
probabilities as prescribed by (14), as Figure 6 shows: The sampling output based on dual probabilities is still not the best
(as expected, see Section B), but is much more reasonable now. Going greedy with the dual probabilities gives better outputs
than sampling (25.6 vs 20.0), and in fact is giving the same output with the greedy ones under softmax probabilities (this is
expected as both probability models are order preserving). The beam search result, approximately representing the MAP
output, is further slightly better the greedy ones (25.9 vs 25.7) under the dual probabilities, which again aligns with the
expectation that truly maximizing the probabilities should help with the performance (instead of hurting it, as in the case of
softmax probability).

In terms of probability estimation, the dual probability model is generally less perplexed than the softmax model, as Figure
6(right) shows. The likelihood of empty output (which is zero) is also correctly estimated by the dual probabilities now. It is
only a pity that the model will also assign zero probability for most of the reference translations (2614 out of 2737, which is
less than that for empty outputs though). In fact, the dual probability model will assign reasonable likelihood to most tokens
in the reference translations, but may only occasionally judge some tokens as “impossible”; however, once there is a single
token is judged so in a reference translation, the probability of the whole sentence becomes zero. We tend to think of this as
a fragile nature of the probability-based method in general.

Finally, Figure 7 shows the learning curves of different MABE(λ) variants in WMT’14 en2de, which complements Figure
2(a) of Section 4 with more numerical details. All variants use the same hyperparameter setting with the aforementioned
MLE training, except that label smoothing is disabled (as it is incompatible to value learning). Each point in the figure gives
the test-set BLEU score of model trained by a given algorithm variant for a given number of SGD steps. The results are
averaged over four trials, and ± indicates standard deviation.

We see that all algorithms demonstrate similar learning curves, with MABE(2) slighly left behind at the beginning stage.
MABE(0), the unperturbed variant, appears to perform slightly better than other perturbed variants.

F.2. Translation-WMT17zh2en

The WMT’17 Chinese→English (zh2en) task asks to translate news articles in Chinese into English. The expected input X
is a Chinese sentence (distribution defined by the training data), and the expected output Y is a sequence of English tokens,
again ending with the EOS token which is either generated or forced when the output reaches 2x long than the input. As the
two languages are more distinct, it is generally considered a harder translation task than WMT’14 en2de.

The raw WMT’17 zh2en training data contains 25 million sentences of translation examples from three sources: News
Commentary, UN Parallel Corpus and CWMT Corpus. 10 We cleaned the raw data following the steps described in (Hassan
et al., 2018) (with slight difference in parameter details):

• Sentences with illegal characters (such as URLs, characters of other languages) and empty sentences are removed.

• Duplicate translation examples are dropped.

• Both the source and target sentences should contain at least 3 words and at most 80 words.

• Chinese sentences without any Chinese characters are discarded.

The final training data set consists of about 21 million sentence-pairs. The testing set newstest2017 was left intact. For
Chinese data, we adopting the Jieba tokenizer11 before the byte pair encoding (BPE). English sentences are tokenized using
the scripts provided in Moses before using BPE. The BPE vocabularies for Chinese and English are generated separately,
each with a merge-operation budget of 32000. The generated Chinese and English vocabulary contains 50K and 33K
sub-word tokens, respectively.

We conducted the same set of experiments in WMT’17 zh2en as we did in WMT’14 en2de: We trained a TransformerBase
neural network (8 heads for each multi-head module in both encoder and decoder layers; 512 for the dimensions of input and
output layers, and 2048 for the inner feed-forward layers), first with the standard MLE loss then with the MABE(λ) losses,
for 100, 000 SGD steps each. The hyperparameter setting is identical across all losses (optimizer and learning rate settings

10https://www.statmt.org/wmt17/translation-task.html#download
11https://github.com/fxsjy/jieba

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Value-Probability Duality of Neural Networks

followed (Vaswani et al., 2017), training batch size is roughly 36,000 English tokens, drop-out rate is 0.3), except that the
label smoothing weight is 0.1 for MLE (0.0 for MABE variants, including MABE(1)). BLEU calculation is by SacreBLEU.

Figure 8 illustrates the behaviors of the MLE model under various decision rules. We see that Probability sampling and
maximization (approximated by beam search with beam size = 1024) failed in WMT’17 zh2en too, achieving only 8.3 and
11.9, respectively. In comparison, greedy outputs reaches 22.6, which is only 0.8 BLEU lower than the best solution (beam
search with beam size = 4). All the four observations discussed in Section 2.2 occurred in WMT’17 zh2en too. Similarly,
the dual probabilities dramatically improve the performance of sampling and MAP in WMT’17 zh2en, to the levels that
match the expectations much better, as Figure 9 shows.

Trends in the learning curves of different MABE variants (Figure 10) also very much resembled what we saw in WMT’14
en2de. Each data point is the averaged result over four trials, with ± indicating the standard deviation. There is no clear
“winner” or “loser”– MABE(2), which receives doubled perturbation, is again slower in the learning progress at the beginning,
but it quickly catches up and slightly exceeds other variants around the end of the training. The experimental results once
again support our main hypothesis that the covariance-based perturbation in MABE(λ) does not make significant difference
under modest λ.

F.3. Summarization-CNN/DM

The CNN/DailyMail Summarization task asks to generate abstracts for news articles collected from CNN and DailyMail.
The excepted input X is a full news article in English, and the expected output Y is a (much shorter) sequence of English
tokens, ending with EOS. EOS is forced if the length of the output reaches 1024. Comparing with translation tasks, the
CNN/DailyMail task has about 30x larger inputs and about 3x larger outputs.

The datasets were prepared by following the procedure used by Lewis et al. (2020). We first downloaded the raw
CNN/DailyMail dataset 12, then pre-processed the data (including the train-dev-test split) using scripts 13 from (See et al.,
2017). Then following the code repository 14 of (Lewis et al., 2020), we used the GPT-2’s BPE model to convert the
pre-processed data into tokenized sequences over a BPE vocabulary. The final training data consists of nearly 0.3 million
article-abstract pairs, and the testing set consists of 2000. ROUGE, the standard document-summarization metric, was
employed for performance measurement. More specifically, the ROUGE score reported below is the arithmetic mean of the
F1 scores of ROUGE-1, ROUGE-2, and ROUGE-L.

The TransformerBase neural network in this task has 8 attention heads, 768 dimensions for input and output layers, and 2048
dimensions for the inner feed-forward layers. We trained the neural network on an A100 GPU, again using the cross-entropy
(=MLE) loss and the MABE(λ) loss with λ = −2,−1, 0, 1, 2. Each training lasts for 50, 000 gradient steps, and each step
is based on a mini-batch of about 64 instances. Drop-out rate is 0.1, and label smoothing is 0.1 for MLE; no label smoothing
for MABE variants. All the decision rules used at test time are identical to the ones used in translation experiments.

From Figure 11 we see that the probability sampling and maximization rules perform better in CNN/DailyMail summariza-
tion, but still have wide gap in performance compared with the greedy rule (8.0 and 9.0 ROUGE scores lower, respectively).
Once again, the dual probability model largely filled the gap here, as Figure 12 shows.

Figure 13 shows the learning curves of different MABE variants on CNN/DailyMail. Each data point is the mean value
over two trials, and ± gives the standard deviation. It appears that positive perturbations (MABE(1) and MABE(2)) lead
to slightly lower result, while negative perturbations (MABE(-1) and MABE(-2)) lead to slightly higher result. The gap
between the unperturbed variant MABE(0) and and the MLE-equivalent variant MABE(1) is relatively larger in this task
(around 1 ROUGE score).

12https://cs.nyu.edu/∼kcho/DMQA/
13https://github.com/abisee/cnndailymail
14https://github.com/pytorch/fairseq/blob/main/examples/bart/README.summarization.md

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Value-Probability Duality of Neural Networks

BLEU log10 Pw

sampling 5.4 -62.2
β = 0.75 18.3 -13.5
β = 0.5 23.2 -7.8
β = 0.25 25.1 -6.5
greedy 25.6 -6.3
|beam| = 4 26.8 -5.8
|beam| = 16 27.1 -5.6
|beam| = 64 25.6 -5.4
|beam| = 256 21.5 -5.1
|beam| = 512 16.2 -4.7
|beam| = 1024 8.6 -4.2
empty 0.0 -4.3
expected 42.4 a -18.4

aSee calculation method in Section F.4.

Figure 5: On WMT’14 en→de, MLE model exhibits paradoxical behaviors.

Figure 6: On WMT’14 en→de, dual probabilities give much more reasonable probability predictions.

BLEU (greedy)
@90k steps @95k steps @100k steps

MLE (ls=0.1) 25.2 25.5 25.6
MABE(0) 25.2 25.6 25.5
MABE(1) 25.4 25.3 25.3
MABE(2) 25.0 25.1 25.2
MABE(-1) 25.5 25.2 25.5
MABE(-2) 25.0 25.1 25.2

Figure 7: On WMT’14 en→de, different MABE(λ) variants have similar learning dynamics.

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Value-Probability Duality of Neural Networks

BLEU log10 Pw

sampling 8.3 -46.3
β = 0.75 16.7 -14.6
β = 0.5 20.3 -10.2
β = 0.25 22.0 -8.8
greedy 22.6 -8.5
|beam| = 4 23.4 -7.9
|beam| = 16 22.9 -7.5
|beam| = 64 22.1 -7.3
|beam| = 128 21.7 -7.1
|beam| = 256 21.0 -7.0
|beam| = 512 19.3 -6.8
|beam| = 1024 11.9 -5.9
empty 0.00 -4.5
expected 41.82 a -35.2

aSee calculation method in Section F.4.

Figure 8: On WMT’17 zh→en, MLE model exhibits paradoxical behaviors.

Figure 9: On WMT’17 zh→en, dual probabilities give much more reasonable probability predictions.

BLEU (greedy)
@90k steps @95k steps @100k steps

MLE (ls=0.1) 22.5 22.9 22.6
MABE(0) 22.8 23.1 23.0
MABE(1) 22.4 22.4 22.1
MABE(2) 23.1 23.4 23.3
MABE(-1) 22.5 22.5 22.7
MABE(-2) 22.5 22.6 22.4

Figure 10: On WMT’17 zh→en, different MABE(λ) variants have similar learning performance.

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Value-Probability Duality of Neural Networks

ROUGE log10 Pw

sampling 21.1 -91.5
β = 0.75 27.4 -23.5
β = 0.5 28.6 -14.6
β = 0.25 28.9 -12.4
greedy 29.1 -11.6
|beam| = 4 29.6 -8.5
|beam| = 16 28.7 -7.2
|beam| = 64 27.5 -7.3
|beam| = 128 26.1 -6.5
|beam| = 256 25.5 -6.7
|beam| = 1024 20.1 -5.9
empty 0.00 -5.8
expected 100.00 a -85.7

aLack of multi-reference data to calculate the actual
ROUGE scores. ROUGE=100 for the reference sum-
marizations in single-reference data set.

Figure 11: On CNN/DailyMail, MLE model exhibits paradoxical behaviors.

Figure 12: On CNN/DailyMail, dual probabilities give more reasonable probability predictions.

ROUGE (greedy)
@40k steps @45k steps @50k steps

MLE (ls=0.1) 28.7 28.8 29.1
MABE(0) 29.2 28.8 29.1
MABE(1) 28.0 27.8 28.1
MABE(2) 28.5 28.4 28.5
MABE(-1) 28.9 29.0 29.4
MABE(-2) 29.4 29.3 29.4

Figure 13: On CNN/DailyMail, different MABE(λ) variants have similar learning performance.

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Value-Probability Duality of Neural Networks

F.4. Estimating The Performance of Expected Outputs

Accurately benchmarking human’s performance is important for us to calibrate our understanding and expectation on the
results from AI systems. To fairly evaluate the quality of human translation, it is important that we use independent samples
of the “actual human translation” A and of the “expected human translation” Y to calculate the BLEU scores. However,
the standard WMT dataset only provide a single reference translation for each source sentence, in which case A and Y
are strongly coupled and would always lead to a BLEU of strictly 100, which over-estimated the human performance.
Fortunately, Ott et al. (2018) released a dataset which provides ten human translations (per source sentence) for 500
instances in the WMT’14 en→de test set. See Table 2 for an example of the multi-reference data. For WMT’17 zh→en, the
CWMT2008 dataset(Zhao et al., 2009) provides a multi-reference data for Chinese→English news translation in which each
source sentence is attached with four human translations. We used these multi-reference datasets to measure the task score
of expected output (i.e. human translation) in Figure 5 and 8.

Specifically, for each source sentence x(i) in the multi-reference dataset, we randomly sampled a human translation as
the expected output y(i), then randomly sampled (with replacement) another human translation as the actual output a(i).
The (independently) sampled expected and actual outputs for the whole corpus are then fed to the SacreBLEU script to
compute a BLEU score. This process was repeated for 50 times to guarantee statistical significance. For English→German
translation, the mean corpus-BLEU score of human translations is 42.54 (95% confidence interval: 42.15 - 42.93) For
Chinese→English translation, the mean corpus-BLEU score is 41.82 (95% confidence interval: 41.43 - 42.20).

For the CNN/DailyMail summarization task, we did not find multi-reference dataset, thus simply marked 100 for human
outputs.

Table 2: An example of multi-reference translations for WMT’14 en2de. Source is the source sentence #1 in the dataset,
Target is the official translation in newstest2014, and Reference1-10 are the additional translations provided by (Ott et al.,
2018).

[Source]: Orlando Bloom and Miranda Kerr still love each other
[Target]: Orlando Bloom und Miranda Kerr lieben sich noch immer
[Reference1]: Orlando Bloom und Miranda Kerr lieben sich noch
[Reference2]: Orlando Bloom und Miranda Kerr lieben sich immer noch .
[Reference3]: Orlando Bloom und Miranda Kerr lieben sich noch immer .
[Reference4]: Orlando Bloom und Miranda Kerr lieben sich immer noch .
[Reference5]: Orlando Bloom und Miranda Kerr lieben einander immer noch
[Reference6]: Orlando Bloom und Miranda Kerr lieben einander immer noch
[Reference7]: Orlando Bloom und Miranda Kerr lieben sich immer noch
[Reference8]: Orlando Bloom und Miranda Kerr lieben sich immer noch
[Reference9]: Orlando Bloom und Miranda Kerr lieben sich immer noch
[Reference10]: Orlando Bloom und Miranda Kerr lieben sich noch immer .

F.5. Reproducibility and Source Code

We provided our research source code in supplementary material to facilitate reproducibility. The README.md file gives
detailed instructions to run

• Experiment1 (Figure 2, 7, 10, 13): train a model with MABE(λ) losses and with the label-smoothed MLE loss
• Experiment2 (Figure 1, 5, 8, 11): run different decision rules based on the learned softmax probability model
• Experiment3 (Table 1, Figure 6, 9, 12): run the same set of decision rules based on the learned dual probability model

on all the three tasks as discussed above: WMT’14 en2de, WMT’17 zh2en, and CNN/DailyMail.

The entire experimentation pipeline is fully de-randomized once the random seed is specified. It takes roughly 240 hours to
run the full experiment pipeline with one seed, on an A100 GPU. In total, the multi-seed experiment results presented in the
paper take about 800 GPU hours (for A100).

Finally, as an implementation trick to conveniently compute the covariance term (11) with automatic differentiation library
(e.g. pytorch), we utilized the equation (19) in Section E.1, which gives

cov
At∼Pt(w)

[
Qt(At;w) , ∇wQt(At;w)

] ∣∣∣
w=w+

(25)

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Value-Probability Duality of Neural Networks

=
∑
a

Pt(a;w) Qt(a;w)
(
∇wQt(a;w)−

∑
b

Pt(b;w)∇wQt(b;w)
) ∣∣∣

w=w+

=
∑
a

Pt(a;w+) Qt(a;w+)
(
∇wQt(a;w)−

∑
b

Pt(b;w
+)∇wQt(b;w)

) ∣∣∣
w=w+

= ∇w

(∑
a

Pt(a;w+) Qt(a;w+)
(
Qt(a;w)−

∑
b

Pt(b;w
+)Qt(b;w)

)) ∣∣∣
w=w+

(26)

(27)

So, in our pytorch-based implementation, we first compute the function in (26) (the part highlighted by the underline), scale
it by λ and add to the JMABE function, then perform back-propagation over the composite loss, which will give the MABE(λ)
gradient as prescribed in Algorithm 1, due to (26).

G. Limitations and Future Works
In this section we discuss limitations of the current work, as well as the opportunities for future works.

First of all, the current paper focuses on studying a foundation of machine learning, and specifically, seeking to challenge
and improve a widely-held mindset on a widely-used training procedure in machine learning. Consequently, this paper is
largely a theory paper (where the theory is defended not by pure mathematics but by a combination of mathematical and
experimental evidences). The primary goal here is thus not to propose new algorithms that immediately give empirical gains.

However, we believe our value-based theory implies many opportunities to invent such new algorithms in the future. One
direction is to investigate deeper into the MABE(λ) algorithm family. In our experiments, we see that the commonly used
MABE(1) (a.k.a. MLE) is usually not the best-performing variant in this family, and the unperturbed variant MABE(0)
often performs slightly better (e.g. compare the two in Figure 7, 10, and 13). The MABE(λ) algorithms presented in this
paper are in the “vanilla version”, without tricks such as label smoothing; the hyperparameters are set to the optimal setting
for the MLE baseline (because our goal is not to beat it but to subsume it). It would be interesting works to develop and
fine-tune the MABE(λ) into a more fully-fledged solution.

The dual probability formula (14) employed a simple heuristic way to “adjust” the probability predictions – by first clipping
to [0, 1] then normalizing the sum. As the choice here is somewhat arbitrary, it is possible that this adjustment could distort
the probability predictions (with the payoff of preserving the axiom of probability). Note that such adjustment is only needed
because the Q-values are not perfectly learned. Further investigation on the best way to refine the dual probability prediction
here can be an interesting future work.

We also note that the beam search with beam size = 1024 in our experiment would take much longer time than greedy
decoding (50x for translation and 150x for summarization) – it is clear that beam search is a bottleneck if we seriously want
to explore the combinatorial solution space (previously such exploration is not meaningful given the pathological behavior
of traditional softmax probability). It would be interesting to see if more advanced search algorithms (such as MCTS) can
better utilize the dual probability model.

Finally, there are also open questions in our value-based interpretation. For example, one limitation of the current theory is
that it cannot explain why near-greedy outputs, such as search based on the “problematic” softmax probability but with
a small beam (e.g. 4), can slightly outperform pure greedy outputs (although the margin is limited – e.g. 27.1 vs 25.6 in
WMT’14 en2de – and the gain quickly disappears as the search scales up). Of course, it would be always interesting to test
our theory in more machine learning tasks.

