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Abstract
Completing masked sequences is an important
problem in language modeling, and analyzing
how Transformer models perform this task is cru-
cial for understanding their mechanisms. In this
direction, we formulate the low-rank matrix com-
pletion problem as a masked language modeling
(MLM) task, and train a BERT model to solve
this task. We find that BERT succeeds in matrix
completion and outperforms the classical nuclear
norm minimization method. Moreover, the mean–
squared–error (MSE) loss curve displays an early
plateau followed by a sudden drop to near-optimal
values, despite no changes in the training proce-
dure or hyper-parameters. To gain interpretability
insights, we examine the model’s predictions, at-
tention heads, and hidden states before and after
this transition. Concretely, we observe that (i)
the model transitions from simply copying the
masked input to accurately predicting the masked
entries; (ii) the attention heads transition to inter-
pretable patterns relevant to the task; and (iii) the
embeddings and hidden states encode information
relevant to the problem.

1. Introduction
This paper investigates the behavior of Transformers trained
on the classical mathematical task of low-rank matrix com-
pletion [5] to gain insights into the mechanisms of Trans-
formers and their training process. In this setup, we assume
access to a matrix with some fraction of its entries missing,
and would like to complete the missing entries assuming the
ground truth matrix is low-rank. By treating a matrix as a
sequence of tokens, we find that training a BERT model [11]
in an online manner can successfully solve this problem to
a small error. Moreover, BERT can outperform the classical
nuclear norm minimization algorithm for matrix completion,
suggesting that BERT does not simply recover this classical
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Figure 1: Matrix completion using BERT; missing entries
in the matrix are encoded as masked positions in MLM.

algorithm (Please see Appendix A for details on low–rank
matrix completion and nuclear norm minimization).

Further, MSE loss curve during training undergoes a sudden
decrease (Fig. 2), marking the transition to a model that
generalizes well. Such a sudden decrease was also observed
in [7] for BERT trained in natural language setups. We find
that this decrease in loss marks an algorithmic shift from the
pre-transition model simply copying the input (predicting 0
at masked positions) to the post-transition model accurately
predicting missing values at masked positions.

2. BERT Solves Matrix Completion
We train a BERT model (with parameters θ) to predict miss-
ing entries given a masked matrix X̃ as input. For the model
output X̂ := X̂(X̃; θ) ∈ Rn×n, the training objective L(θ)
is the mean-squared-error (MSE) loss over all entries

L(θ) =
1

n2

n∑
i,j=1

(Xij − X̂ij)
2.

In experiments, data for matrix completion is generated as

X = UV ⊤; U, V ∈ Rn×r, Uij , Vij
iid∼ Unif[−1, 1]

∀i, j ∈ [n]× [r] so that X has rank at most r. To mask en-
tries at random, we sample binary matrices M ∈ {0, 1}n×n

such that Mij = 0 with probability pmask, indicating that
the element at position (i, j) is masked in the input matrix.
Define Ω := {(i, j) | Mij = 1}.
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Apart from the MSE (L) over all entries, we separately track
MSE over observed and masked entries,

Lobs =
1

|Ω|
∑

(i,j)∈Ω

(Xij − X̂ij)
2

Lmask =
1

|ΩC |
∑

(i,j)∈ΩC

(Xij − X̂ij)
2.

In the subsequent sections, we analyse a 4–layer, 8–head
BERT model trained upto MSE ∼ 4e−3 on 7× 7, rank−2
inputs for training dynamics and interpretability. Please see
Appendix B for details about experiments (including those
with larger model and input matrices), and Appendix D for
comparison of our approach to nuclear norm minimization.

3. Matrix Completion Capability Emerges
during Training

Figure 2: Sharp drop in training loss shortly after step 15000

We observe a sharp decrease in training loss at approxi-
mately step 15000 (Fig. 2). Interestingly, this decrease in
total loss is driven almost exclusively by the corresponding
decrease in Lmask, since Lobs is very close to 0 both before
and after the drop. We hypothesize that this sudden drop is
caused by an algorithmic shift; that is, the model switches to
a different, more accurate algorithm for prediction at miss-
ing entries and hence Lmask rapidly decreases following
that shift. Moreover, since Lobs barely changes during this
algorithmic shift, we hypothesize that (1) the model has 2
distinct mechanisms for prediction at masked and observed
entries after the algorithmic shift; and (2) that the mecha-
nism for prediction at observed positions is not significantly
affected by this algorithmic shift.

We note that this sudden drop is in MSE loss, i.e., not in
a discontinuous metric like accuracy. Hence, the idea of
sudden emergence being an artifact of discontinuous metrics
and poorly defined evals [31] is unlikely to explain the full
story in our setting.

3.1. Before the Algorithmic Shift – Copying

In this section, we demonstrate that before the algorithmic
shift, the model simply copies the input at all positions in
the matrix, and actual computation for missing entries does
not occur at this stage. In the following, Pre–shift denotes
the model at step 4000, and post–shift denotes model at the
end of training (step 50000).

3.1.1. VERIFYING COPYING VIA TOKEN INTERVENTION

To rigorously verify the copying hypothesis for the pre-shift
model, we use the following method – replace the masked
elements in the 7× 7, rank-2 input by the token correspond-
ing to a real value m. For such input, we would like to see
whether the model implements copying and outputs m at the
masked positions. For model output X̂ on this input, MSE
at observed positions is Lobs, and for masked positions the
MSE is defined as

L′
mask =

1

|ΩC |
∑

(i,j)∈ΩC

(X̂ij −m)2.

Lobs and L′
mask for this experiment averaged over 512 sam-

ples are compiled in Row 1, Table 1. The small loss values
verify the copying hypothesis – model output matches the
ground truth at observed positions, while at masked posi-
tions it outputs a value nearly equal to m, the replacement
mask value. Note that when the mask token is MASK (i.e.,
no replacement), we set m = 0, indicating that the model is
outputting 0 at the masked locations.

To further confirm this hypothesis, we sample random 7× 7
matrices for input; i.e., all entries in the matrix are i.i.d.
uniformly in [−1, 1]. Observe that these matrices do not
necessarily have a low–rank structure. Using these input
matrices on the same pre–shift model as before, we find that
model still copies the input (Row 2, Table 1) similar to the
rank–2 case.

3.1.2. ROLE OF ATTENTION HEADS

Attention heads at this stage (Fig. 9a) do not appear to at-
tend to any specific tokens in an interpretable manner. Since
the model is simply copying the masked input, we hypoth-
esize that attention heads (that combine different tokens)
are inconsequential to the model output. To quantitatively
verify this hypothesis we use uniform ablation: simply re-
place the softmax probabilities in the attention head by
1/n2 for all elements i.e. equally attend to all tokens (Sec.
4.6, [18]). With these ablations, there is negligible change
in model performance at both observed and masked posi-
tions. Averaged over 256 samples, Lobs = 3.4e−4 and
Lmask = 0.2236 when using all attention heads; whereas,
on ablating all heads, these values are 3.2e−4 and 0.2236
respectively. Clearly in this case, attention heads do not
substantially affect the model prediction.
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Figure 3: Attention heads in post–shift model show distinct regions in the input they attend to.

As further confirmation, we replace the key, query and value
weights in the pre–shift model by those from the post-shift
model. Averaged over 256 samples, Lobs is 5e–3, that is
similar to the optimal total MSE obtained at the end of
training, while Lmask = 0.2246, similar to that obtained
without replacing the weights.

3.2. After the Algorithmic Shift – Matrix Completion

We analyze the post-shift model separately for missing and
observed entries, with a focus on the role of attention heads
given the apparent interpretable patterns in Fig. 3. We
find that for observed entries, the model output is still not
substantially affected by the attention heads. However, for
masked entries, the effect is substantial. Moreover, at this
stage, the attention heads exhibit interpretable structure, that
indicates the model is actually solving matrix completion
instead of trivial copying.

3.2.1. OBSERVED ENTRIES

To check the effect of attention heads, we uniformly ablate
all attention heads in the post-shift model. Averaged over
256 samples, this leads to Lobs = 9.2e−5 when using all
attention heads, compared to 3.7e−3 with ablation (close
to the total MSE at model convergence). However, Lmask

increases from 0.0128 to 0.2183, essentially the value in
the pre-shift model. Further , we replace attention (key,
query, value) weights in the post–shift model by weights
from a pre–shift model. Indeed, averaged over 256 samples,

Lobs = 9.5e−4 in this case, supporting our claim.

Finally, since attention crucially depends on the position
of elements, we randomly permute the positional embed-
dings in the post–shift model. That is, the embedding orig-
inally encoding position i in the input now represents po-
sition π(i) for some random permutation π : [n2] → [n2].
Averaged over 256 samples, Lobs = 2.4e−4, whereas
Lmask = 0.5687, implying that the observed positions are
negligibly affected compared to masked positions due to this
intervention. This supports our ‘sub–algorithm’ hypothesis;
from an intuitive viewpoint, positional information is not
required for copying.

3.2.2. MISSING ENTRIES

To confirm that attention heads causally affect the model
output for missing entries, in addition to uniform ablations,
we perform causal interventions (activation patching) [37]
on the hidden states just after the attention heads. This
involves replacing the hidden state after an attention head for
input A with the hidden state obtained at the same attention
head, but for a different input A′. Ideally, if that head is
causally relevant to the output, then such an intervention
should steer the model towards the output for A′, instead
of A. We find in our case that for A = X and A′ = −X,
such an intervention simultaneously on all attention heads
clearly steers the model output at missing entries towards
−X (more details in Appendix J).

3



How Do Transformers Fill in the Blanks? A Case Study on Matrix Completion

(a) ℓ2 norm of token embeddings is symmet-
ric around 0

(b) PCA of token embeddings shows distinct
components for sign and magnitude of real
value

(c) Positional embeddings in the same col-
umn cluster together (t-SNE)

Figure 4: Embeddings in the post–shift model display interpretable behavior.

Denote attention head H in layer L by the tuple (L, H). We
can group the attention heads depending on the specific
regions of the input matrix they attend to: (a) the same row
as the query element – the ‘block–diagonal’ patterns, e.g. (2,
1); (b) the same column as the query element – the ‘parallel–
off–diagonal’ patterns, e.g. (2, 2); (c) the query element
itself – the ‘diagonal’ patterns, specifically in the last layer,
e.g. (4, 3). There are also some other attention heads that do
not neatly fit into either of these 3 categories – for example,
all heads in layer 1 except (1,2), (1,3); (3,3); (4,2), (4,5–7).
In this context, we note that uniformly ablating heads (3,3),
(4,2), (4,5–7) gives Lobs = 9.36e−5, Lmask = 0.01575
compared to Lobs = 9.44e−5, Lmask = 0.01428 without
ablation, i.e. these uninterpretable heads do not significantly
affect the output.

Additional Experiments We investigate attention heads
when the observed entries in the input are arranged in a
structured manner to analyse the function of individual at-
tention heads (Appendix E). Further, we also probe hidden
states of intermediate layers to understand the working of
the model (Appendix I). Moreover, positional and token em-
beddings of the model also exhibit structure relevant to the
problem, in some cases before the algorithmic shift occurs
(Appendix F).

4. The Curious Case of Embeddings
Interpretable Embeddings In the post–shift model, posi-
tional and token embeddings also exhibit interesting proper-
ties related to the input elements and structure. For instance,
the ℓ2 norm of token embeddings corresponding to values
from −1.5 to 1.5 is symmetric w.r.t. 0 as seen in Fig. 4a.
Further, the PCA of token embeddings in Fig. 4b shows that
the embeddings have a separable structure based on the sign
of the real–valued input (y–axis), and continuous variation
w.r.t. the absolute value of the real–valued input (x–axis).

The t-SNE projection of positional embeddings also show an
interesting clustering pattern; positions in the same column
tend to cluster together as seen in Fig. 4c. This is especially
important because we have not used any marker tokens to
mark the end of a row or column. Additionally, the ℓ2 norm
of positional embeddings (Fig. 8) is nearly constant across
positions, except for a drop at positions around 21−26; that
is, most of the middle row of the 7× 7 input. This can be
understood as the model marking the ‘origin’ of the position
range from 1 to 49, and use it in subsequent computation.

Do embeddings change abruptly? Unlike attention
heads (Fig. 9), embeddings might not abruptly change with
the algorithmic shift. Similar to [23], we compute the top–2
principal components of the token embeddings at the final
step (50000), and project the token embeddings at intermedi-
ate training steps on these components. The results (Fig. 7)
show that the embeddings align very closely to the final ar-
rangement before the actual drop in loss. This hints towards
a possibility that even though the model undergoes a sudden
algorithmic shift, some components evolve beforehand and
possibly are a driving force behind the shift.

5. Discussion
To conclude, BERT can be trained to solve low rank matrix
completion as an instance of masked language modeling.
We also showed that a sudden drop in training loss marks
an algorithmic shift in the model from merely copying the
input to actually solving the task. The question of why
this shift occurs suddenly rather than gradually, as well as a
concrete characterization of the algorithm used by the model
for missing entries are interesting directions for future work.
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A. Low Rank Matrix Completion
Low-rank matrix completion is a well-studied problem in machine learning and statistics. This problem finds applications in
recommender systems, where given an incomplete matrix of user ratings on some items, the goal is to recover the missing
entries assuming the ground truth matrix is low-rank. For a matrix X ∈ Rn×n, denote its observed (visible) entries by the
set Ω ⊂ [n]× [n], and the set of missing entries by ΩC = [n]× [n] \ Ω. Formally, the problem is

min
U

rank(U) s.t. Uij = Xij ∀(i, j) ∈ Ω.

Nuclear norm minimization Since rank is not a convex function of the matrix entries, nuclear norm minimization [5] is a
widely used convex optimization approach to low-rank matrix completion. The modified optimization problem is,

min
U

∥U∥∗ s.t. Uij = Xij ∀(i, j) ∈ Ω (1)

where ∥U∥∗ denotes the nuclear norm (sum of singular values) of matrix U . A regularized version of this problem for λ > 0
is

min
U

 1

|Ω|
∑

(i,j)∈Ω

(Uij −Xij)
2 + λ∥U∥∗

 . (2)

B. Experimental details
Data Preprocessing We tokenize real values as follows: discretize the range [−10, 10] (all matrix entries in our ex-
periments are in this range) in steps of size ϵ = 0.01, and assign token IDs to these values with IDs starting from
1; the mask token (MASK) is assigned token ID 0. Input to the transformer is the tokenized masked sequence
Xmask = TOK(Vec(X ⊙M)) , where TOK denotes tokenization, Vec denotes vectorizing the n × n matrix to a
n2-dimensional vector and ⊙ denotes the element-wise product. Due to this discretization, in experiments, MSE will be
with the rounded-off version of X to 2 decimals.

Training We use the BERT model implementation from the HuggingFace library [35], with ‘absolute’ positional embed-
dings and no dropout. Since the model maps a sequence of discrete token IDs to a sequence of real values, we compute the
MSE loss between the real valued model output, and the discretized real values in the ground truth matrix. For example, for
input sequence [0.12, 0.45, 0.87] ∈ R3, corresponding discretized and masked token sequence [“0.12”, “MASK”, “0.87”],
and output [x1, x2, x3] ∈ R3, the MSE loss is 1

3

[
(x1 − 0.12)2 + (x2 − 0.45)2 + (x3 − 0.87)2

]
.

We use the MSE loss on all elements of the input and output matrices for training. We additionally fix the masking
probability pmask = 0.3 in all cases. Using a 12–layer, 12–heads per layer BERT model with a linear read–out layer, the
train loss is optimized using Adam with constant step size 5e−5 for 50000 epochs (without weight decay or warmup). Data
at each step is obtained by sampling 256 train and 64 test matrices. Since the training is ‘online’, train and test losses are
nearly identical at all points in training, and thus we will not separately analyze them.

We additionally train a smaller BERT model with 4 layers and 8 heads per layer, with step-size 1e−4 on square matrices of
order 7 and rank−2. We use this smaller model primarily to keep our interpretability analyses tractable; in any case the
attention heads are similar to those in larger models (Appendix L).

The model converges to a total MSE of the order 1e−3 (i.e. solves matrix completion well) for all runs – square matrices of
order 7, 10, 12, 15 and rank 2, 3, 3, 4 respectively. For the 4−layer 8−heads case, we obtain comparable performance (final
total MSE ∼ 4e−3) to the 12–layer, 12–head model. The plot in Figure 2 demonstrates the loss evolution over the course
of training the model in the smaller model setup. All discussion in the subsequent sections is specifically for the 4−layer,
8−heads model on a 7× 7 rank–2 input. In addition, ‘pre–shift’ denotes this model at step 4000, while ‘post–shift’ denotes
model at the end of training i.e. step 50000.
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C. Pre–shift copying

Mask = “MASK” Mask = “0.44” Mask = “-0.24”

Input Samples ↓ L′
mask Lobs L′

mask Lobs L′
mask Lobs

Rank−2 matrices 3e-4 3.3e-4 4e-4 2.8e-4 3.7e-4 2.7e-4
Random matrices 2.8e-4 3.5e-4 3.7e-4 3e-4 3.6e-4 2.8e-4

Table 1: Pre–shift model implements copying, predicting the value for mask token at missing entries.

D. Nuclear Norm Minimization

Figure 5: BERT outperforms nuclear norm minimization.

Is it possible that the model is implicitly implementing
nuclear-norm minimization to predict missing entries in
the input?

We use CVXPY to solve matrix completion using nuclear–
norm minimization at various levels of pmask comparing
it to the output of a BERT model trained on pmask = 0.3.
We find that BERT performs better than nuclear norm
minimization w.r.t. MSE; at the same time, the nuclear
norm of BERT solution is larger (Fig. 5)

Further, we also solve the regularized version of the above
problem (Eq. 2) to attempt to match the performance of
BERT at some λ > 0, and verify if the model indeed
implicitly optimizes such an objective. We find that this
is not the case, as for various values of λ, BERT still
outperforms regularized MSE minimization; please see
Appendix D for details.

We use the regularized version of the nuclear norm mini-
mization problem as detailed in Sec. D, and obtain the following L,Lobs, Lmask for various values of λ. We average our
results over 256 samples generated in the same way as the training data for BERT (including rounding off to 2 decimal
places) for the sake of comparison.

λ Lobs Lmask L
0.0005 1.015e−5 0.040728 0.012173
0.001 3.686e−5 0.040456 0.01211
0.0015 7.959e−5 0.040505 0.012155
0.002 0.00013769 0.040734 0.012264
0.005 0.00078591 0.043402 0.013516
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E. Attention Heads with Structured Mask

Figure 6: Attention heads for a structured mask attend to specific entries in the input. Left: structured mask (blue denotes
missing entries)

Since the maps in Fig. 3 are averaged over multiple random masks and input matrices, it is difficult to extract more specific
details about the algorithm, apart from the coarse–grained insights as above. To remedy this, we generate inputs with specific
mask structure, see for example Fig. 6. This implies that for different input matrices, the mask i.e. ΩC remains the same.
This step helps us highlight how an attention head attends to input elements based on the element being masked or observed.
From the results in Fig. 6, it is evident that different attention heads focus on specific parts of the input. For instance,

1. (2, 1), (3,4) and (4,8) are significantly active only at the masked rows, and in those cases has maximal attention at the
only observed positions in those rows. In other words, this head acts as a ‘masked–only’ head.

2. (4,3) and (4,4) correspond roughly to an identity map, slightly deviating in the masked rows. In these cases, again
the maximal attention score corresponds to the only observed position in these rows. That is, this head acts as an
‘identity–map’ head.

3. Further, there are multiple ‘parallel off-diagonal’ heads that completely ignore the masked rows for their computation.
These heads include (2,2–4), (2,6); (3,2), (3,3), (3,5). Additionally, there are also attention heads like (3,1), (3,6)
that attend to only the observed element of each masked row. Collectively these heads act as ‘observed-only’ heads,
attending to only observed entries, and using this information to compute missing entries.

4. There also exist attention heads that respond systematically to changes in the mask. For example, consider attention
heads (2, 5), (2, 7), (2, 8) in Fig. 10. For each row, these heads attend to the element in the 6th and 2nd column
respectively for part (a) and (b). On a closer look, the connecting link between these two mask patterns is that, the
longest contiguous unmasked column is exactly the column that these heads attend to. We hypothesize that this
information is somehow used by the model in its inner computation for masked entries.

5. Finally, Heads (1,1–2), (1, 5–8) do not fall in any of the categories above . These heads are mostly static across
different mask / input variations (for example, comparing Fig 3 and 6), and the patterns suggest that these heads almost
exclusively focus on the middle row of the input matrix and some other elements. A possible function of these heads is
to process positional and token embeddings (input to the first layer) so that this information can be used appropriately
in the subsequent layers.
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F. Embeddings

(a) Step 4000 (b) Step 10000 (c) Step 14000

(d) Step 16000 (e) Step 20000

Figure 7: Projection of token embeddings along principal components of embeddings at step 50000.

Figure 8: ℓ2 norm of positional embeddings in post–shift model.
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G. Evolution of Attention Heads during training

(a) Step 4000

(b) Step 14000
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(c) Step 16000

(d) Step 20000

Figure 9: Attention heads across various training steps.
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H. Attention Heads with structured mask

(a)

(b)

Figure 10: Attention heads and corresponding masks; blue denotes masked position in the input matrix.

14



How Do Transformers Fill in the Blanks? A Case Study on Matrix Completion

I. Probing

Figure 11: Layer 3 and 4 store information about the rows of the masked
input matrix.

We probe for properties of the input matrix in
the hidden states of the model, to concretely
determine how the model computes the out-
put. We use our 12–layer model in this case,
for enhancing contrast between probing in
different layers. Specifically, for every ele-
ment in the input, we use a linear probe [3]
on its hidden state after a given layer, map-
ping the hidden state to the n−dimensional
masked row that this element belongs to.
Missing entries are replaced by 0, and the lin-
ear probe is fit using least squares. The results
for this experiment in Fig. 11 demonstrate
that, layer 3 and 4 in the model correspond
quite strongly to the probe target, compared
to other layers. This suggests that the model
tracks input information in its intermediate
layers and uses it for computation.

J. Causal effect of Attention heads
To verify whether attention heads actually contribute towards the model output, or are simply a side–effect of some other
latent factor in the model, we employ 2 methods used earlier to quantify the contribution of attention heads in transformers.

1. Uniform Ablation Following the methodology in (Sec 4.6, [18]), for a square matrix input of order n, we set each
element of the n2 × n2 softmax attention matrix to 1/n2. That is, attend equally to all tokens in the input sequence,
and remove any learned information about attending to specific positions in the input.

2. Causal Interventions In the uniform ablation setup, it is possible that setting the softmax probabilities to a given
value might change the distribution of resultant hidden states, and consequently degrade model performance. A more
principled technique to analyse the effect of a specific component is to replace the hidden state just after that component
by hidden states on a different input, and analyse how this affects the final output [37]. In our case, we intervene on
attention heads by replacing the hidden state after an attention head for input matrix X by the hidden state for input
(−X). Importantly, this change does not affect properties like rank of the input, and hence the hidden states obtained
are from the same distribution as those for input X.

Pre–shift In the pre–shift model, we want to demonstrate that removing attention heads does not affect the model
predictions significantly. For this, we uniformly ablate all attention heads in the pre–shift model, and measure the effect
averaging over 256 samples. We get that Lobs = 3.4e−4 and Lmask = 0.2236 when using all attention heads; whereas, on
ablating all heads, these values are 3.2e−4 and 0.2236 respectively. Clearly, in the pre–shift model, attention heads do not
substantially affect the model prediction.

Post–shift In the post–shift model, we want to demonstrate that the attention heads causally affect the output. Using
uniform ablation, we get that Lobs = 9.2e−5 and Lmask = 0.0128 when using all attention heads; whereas, on ablating all
heads, these values are 3.7e−3 and 0.2183 respectively.

From these observations, we could claim causal effect of attention heads for prediction at missing entries. A stronger test
however is through causal interventions,

Step 1 Extract the hidden states for all attention layers from the model on some input matrix X; call these h+. Concretely,
these hidden states are obtained just after the matrix product of the softmax attention probabilties and the value matrix
and hence before the output matrix product.
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Step 2 Change the input to the model to −X, however, also replace the hidden states just after the attention layers with h+

obtained in Step 1. Call the output of the model in this setup as fp(−X,X).

We observe that, the MSE between fp(−X,X) and X , averaged over 256 samples at masked positions is approximately
0.014 (this is comparable to optimal Lmask), compared to the MSE between fp(−X,X) and −X being 0.8066. This
demonstrates that the attention heads are causally relevant to the model output for missing entries.

K. Related Work
Mathematical problem solving capabilities of Transformers have been a topic of interest lately [20; 6; 4]. In fact, [20] show
that learning addition from samples is equivalent to low–rank matrix completion. Further, [6] show that it is possible to train
a transformer based model to solve various linear algebraic tasks e.g. eigendecomposition, matrix inversion, etc.; however,
to the best of our knowledge, interpretability studies for such tasks have not been conducted before. For interpretability in
simpler math tasks, [15] mechanistically analyse GPT-2 small on predicting whether a number is ‘greater-than’ a given
number, by formulating the problem as a natural language task. [30; 32; 9] analyse BERT from an interpretability perspective.
More recently, there has been a line of research works analysing decoder based models to reverse–engineer the mechanisms
employed by these models, termed as ‘mechanistic interpretability’ [12; 26; 27; 34; 10; 28; 21; 22; 19; 29; 16]. We note
that our setting is distinct from the recent work on solving mathematical tasks like linear regression through ‘in–context’
learning in transformers [4; 1; 8; 13; 14; 2; 25; 33]. Whether our model learns to implicitly ‘implement’ an optimization
procedure as shown in some of these works is an open question.

Further, [23; 24; 27; 36; 17] analyse ‘grokking’, the sudden emergence of generalization during model training. In the
context of training dynamics of MLM, [7] analyses ‘breakthroughs’ (sudden drop in loss and associated improvement in
generalization capabilities of the model), specifically for BERT. They show that the breakthrough marks the transition of the
model to a generalizing one. Their work however is focused on language tasks, distinct from our setting which is more
mathematical in nature. We also note that their work is not in the online training setting; our setup is online in the sense of
sampling new data at every step of training.
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L. Attention Heads for larger inputs

Figure 12: Attention heads in 12 layers, 12–heads model on 7× 7 rank–2 input
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Figure 13: Attention heads in 12 layers, 12–heads model on 12× 12 rank–3 input
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Figure 14: Attention heads in 12 layers, 12–heads model on 15× 15 rank–4 input
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