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ABSTRACT

Object-centric learning (OCL) aims to learn unsupervised representations that
isolate individual objects from their context, motivated by goals such as out-of-
distribution (OOD) generalization, compositional generalization, and structured
environment modeling. Most prior work has developed slot-based mechanisms
for object separation, typically evaluated on unsupervised object discovery.
Recent advances in segmentation provide a scalable alternative: class-agnostic
models can separate objects directly in pixel space, enabling independent encod-
ing. We show that such segmentation-based approaches achieve strong zero-shot
performance on OOD object discovery benchmarks, scale naturally to foundation
models, and flexibly handle a variable number of objects. For the task of object
discovery, segmentation therefore offers a practical substitute for slot-based OCL.
A broader question is how object separation contributes to downstream goals. We
address this in the setting of OOD robustness, focusing on spurious background
correlations. We introduce a training-free probe, Object-Centric Classification
with Applied Masks (OCCAM), and find that segmentation-based encodings of
individual objects improve robustness compared to slot-based OCL methods. Our
study does not address compositional generalization or reasoning tasks directly,
but provides a complementary benchmark where object-centric representations
deliver tangible benefits. We release our code and tools to enable the commu-
nity to explore segmentation-based object-centric representations at scale, and to
support practical applications of OCL beyond object discovery.

1 INTRODUCTION

Object-centric learning (OCL) seeks to develop representations of complex scenes that indepen-
dently encode each foreground object separately from background cues, ensuring that one object’s
representation is not influenced by others or the background (Greff et al., 2019; Burgess et al., 2019).
This constitutes a foundational element for many objectives: it supports modeling of structured envi-
ronments (Schölkopf et al., 2021), enables robust out-of-distribution (OOD) generalization (Dittadi
et al., 2022; Arefin et al., 2024; Wiedemer et al., 2024; Mamaghan et al., 2025; Kapl et al., 2025),
facilitates compositional perception of complex scenes (Greff et al., 2020), and deepens our under-
standing of object perception in human cognition (Spelke, 1990a; Téglás et al., 2011; Wagemans,
2015). However, despite these broad goals, most research in OCL has centered on advancing “slot-
centric” methods that separate objects and encode them into slots, evaluated using unsupervised
object discovery as the primary metric (Locatello et al., 2020; Jiang et al., 2023; Seitzer et al., 2023;
Didolkar et al., 2025; Kipf et al., 2022; Elsayed et al., 2022; Greff et al., 2019). In this paper, we
challenge the continued emphasis on developing mechanisms to separate objects in representation
space as the main challenge to be addressed in OCL.

We first show that sample-efficient class-agnostic segmentation models, such as High-Quality Entity
Segmentation (HQES) (Lu et al., 2023) are far stronger than the latest slot-centric OCL approaches,
already achieving impressive zero-shot object discovery. Moreover, these models are scalable, with
foundation models like Segment Anything (SAM) (Kirillov et al., 2023; Ravi et al., 2025) showing
remarkable zero-shot segmentation, addressing much of what is usually tackled with slot-centric
approaches. While prior work has occasionally used predicted masks in OCL pipelines, segmenta-
tion has not been systematically proposed as a substitute for slot-based discovery. This perspective
motivates a broader question: How does the ability to separate objects within scenes contribute to
other OCL objectives, such as OOD generalization?
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Figure 1: Where Should We Go? OCL progress
is mostly measured on benchmarks where foun-
dational segmentation models already excel in a
zero-shot setting, eliminating the need for unsu-
pervised methods. We call for new benchmarks
assessing the downstream efficacy of OCL and
consider robustness to spurious backgrounds as
one example.

We bridge this gap by directly linking OCL
to OOD generalization, especially in known
hard settings with spurious background cues.
We introduce Object-Centric Classification
with Applied Masks (OCCAM), a simple,
object-centric probe for robust zero-shot im-
age classification. OCCAM consists of two
stages: (1) generating object-centric represen-
tations via object-wise mask generation, and (2)
applying OCL representations to downstream
applications, such as image classification in the
presence of spurious backgrounds, by selec-
tively focusing on relevant object features while
discarding misleading background cues.

Empirically, we find that, on Stage (1), sample-
efficient segmentation models outperform cur-
rent OCL approaches in obtaining object-
centric representations without additional train-
ing. However, on Stage (2) — the task of iden-
tifying relevant object cues amidst numerous
possible masks — remains a challenge. Nev-
ertheless, when Stage (2) is executed correctly,
simple OCL probes such as OCCAM already
have the potential for robust OOD generaliza-
tion.

We recommend more focus by future OCL works on creating benchmarks, methodologies for testing
real-world applications where object-centric representations offer clear practical benefits, encourag-
ing theory motivated by specific real-world tasks.

2 RELATED WORK

We review object-centric learning (OCL) from three angles: motivation, evaluation, and methodolo-
gies. For extended related work see § A.

Motivation. OCL is motivated by several perspectives: uncovering latent generative factors (e.g.,
position, color) (Fumero et al., 2023), capturing causal structure (Liu et al., 2023b; Schölkopf et al.,
2021), modeling human cognition (Spelke, 1990a; Téglás et al., 2011; Wagemans, 2015), and even
mimicking how infants learn to track objects (Dittadi et al., 2022). It also aims to model scene com-
positionality (Greff et al., 2020), with claims of improved efficiency, generalization, and robustness
(Locatello et al., 2020; Kipf et al., 2022; Seitzer et al., 2023; Wiedemer et al., 2024; Mamaghan
et al., 2025; Kapl et al., 2025; Arefin et al., 2024). Yet the empirical evidence that OCL really
achieves these goals or brings substantial downstream benefits is very limited. We address this gap
by demonstrating OCL benefits for robust classification.

Evaluation. Despite claims of efficiency and generalization (Kipf et al., 2022; Kapl et al., 2025;
Arefin et al., 2024; Wiedemer et al., 2024), OCL lacks scalable benchmarks. The progress is mostly
tracked via unsupervised object discovery (Locatello et al., 2020; Jiang et al., 2023; Seitzer et al.,
2023; Didolkar et al., 2025; Kipf et al., 2022; Elsayed et al., 2022; Greff et al., 2019). We argue for
broader evaluations, as modern foundational segmentation models now surpass OCL in discovery
(see Table 1, Figure 3).

Methodologies. SlotAttention (Locatello et al., 2020) popularized iterative slot-based representa-
tions. Its variants include Dinosaur (Seitzer et al., 2023; Didolkar et al., 2025), which leverages
DINO features (Caron et al., 2021; Dosovitskiy et al., 2021), and SlotDiffusion (Jiang et al., 2023),
that combines slots with diffusion decoders (Rombach et al., 2022). OCL has also been studied
for OOD segmentation (Dittadi et al., 2022), compositional generalization (Mamaghan et al., 2025;
Kapl et al., 2025), and robust classification via CoBalT (Arefin et al., 2024). In our experiments, we
compare against SlotDiffusion, (FT-)Dinosaur, and CoBalT.
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Figure 2: Overview of Object-Centric Classification with Applied Masks (OCCAM). There are
two main parts. The first part (§ 3.1) uses entity segmentation masks for object-centric representa-
tion generation. The second part (§ 3.2) performs robust classification by selecting representations
corresponding to the foreground object and using them for classification. Indices [i0, . . . , ik, . . .]
correspond to each object in the scene.

3 METHOD

Notations. We denote an image as x ∈ [0, 1][3, H, W] and a label as y ∈ Y = {1, . . . , C}, where
C is the number of classes. We will write an image encoder, or a feature extractor, as ψ and image
embedding, or feature vector, as ψ(x) ∈ Rd, where d ≥ 1 is the feature dimensionality. We
define the classifier’s pre-softmax logits as f(ψ(x)) ∈ R|Y| and softmax probabilities as p(ψ(x)) =
Softmax(f(ψ(x))) ∈ [0, 1]|Y|. For simplicity, we will use p(ψ(x)) and p(x) interchangeably. We
also denote indices for the last two dimensions in tensors as superscripts (e.g., last two dimensions
of sizes H, W for x) and all other dimensions as subscripts (e.g., first dimension of size 3 in x). We
will use shorthands “FG” and “BG” for foreground and background, respectively.

Our Object-Centric Classification with Applied Masks (OCCAM) pipeline is summarized in Fig-
ure 2. We use object-centric representations to reduce spurious correlations in image classification.
It consists of two main parts: 1. generate object-centric representations, 2. perform robust classifi-
cation by classifying an image using only representations of the foreground object. In the following
subsections, we will explain these parts in more detail.

3.1 GENERATING OBJECT-CENTRIC REPRESENTATIONS

To generate the object-centric representations, we first generate masks for all objects and back-
grounds in the image using a mask generator. We then apply generated masks to images by combin-
ing masks with images. Each object is then encoded with an image encoder.

Generating masks. To produce object representations given an original image x ∈ [0, 1][3, H, W] ,
we generate a set of masks for all the foreground objects and the background. That is done with
the help of a mask generator S, which takes x as input and assigns each pixel in x to one of Kmax

masks. The output of this model is the stack of K binary masks, with each mask m corresponding
to a different object: m ∈ {Si, i = 1 . . .K},m ∈ {0, 1}[H, W ]. An OCL method like FT-Dinosaur
(Didolkar et al., 2025) or an external segmentation model like High-Quality Entity Segmentation
(HQES) (Lu et al., 2023) can be used as a mask generator in this pipeline. We will call the mask
generator as the mask model or the masking method interchangeably.

Applying masks. After producing the binary masks for each object, we segregate the pixel contents
for each mask by applying the mask on the input image. We will interchangeably call the mask
applying operation as the mask method throughout the paper. One way to apply masks to images
is to simply add a gray background to all but selected pixels, cropping the image that follows the
mask contours, and resizing the result to the size of the original image. In such a case, we call the
operation “Gray BG + Crop”.

3
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However, a mask method can be any operation involving an image x and a mask m: a(x,m) ∈
[0, 1][3, H, W ]. We additionally show ease-of-use in incorporating the latest masking techniques like
AlphaCLIP, which combines a mask and original image by appending masks as an additional α-
channel to the image tensor, resulting in an RGB-A 4-dimensional tensor. This allows using masks
as a source of focus instead of removing backgrounds entirely, useful for some practical applications.
We call such an operation as “α-channel”.

Encoding applied masks. To get the final object-centric representations we encode applied masks
by an image encoder ψ such as ViT (Dosovitskiy et al., 2021) for example.

3.2 ROBUST CLASSIFIER

We hypothesize that by isolating foreground object representations from the representations of back-
ground and other objects, we eliminate sources of spurious correlations, hence performing more
robust classification. For that reason, we first use the set of object-centric representations obtained
in the previous stage to select the single representation that corresponds to the foreground. Then we
provide the selected foreground representation to the classifier to make the final prediction.

FG detector. After applying masks to the image, we select the mask that corresponds to the fore-
ground object by the following process. At first, we compute the foreground score that reflects how
likely a given applied mask is to correspond to the foreground object. Then we take the mask with
the highest foreground score among all masks for the current image and use it for robust classifica-
tion.

Currently, we use two types of foreground scores, both computed from the classifier’s outputs:

1. Ens. H: gH(x,m) = 1
M

∑M
k=1 H[pk(ψ(a(x,m)))] - ensemble entropy (see details in § B).

Here, M is the ensemble size, and H stands for entropy.
2. Class-Aided: gclass aided(x,m) = py(ψ(a(x,m))) - probability of predicting a ground truth la-

bel. We consider this foreground score to measure the efficacy of the object-centric representation
rather than to suggest it as a final method to use in practice. Although in reality, we do not have
access to ground truth labels, it provides critical signals as to whether the insufficient generaliza-
tion performance is due to object representation or due to foreground selection and the classifier.

For the comparison of different foreground scores, see § B.

Image classification using FG object representations. Finally, once we have identified the mask
that matches the foreground object, we apply it to the original image and classify the result of this
operation. The final output of our method is: OCCAM(x) = p(ψ(a(x,m⋆)), where m⋆ is the mask
selected by the FG detector.

4 EXPERIMENTS

In this section, we first evaluate slot-centric OCL approaches and foundational segmentation models
on unsupervised object discovery tasks. We then evaluate whether OCL methods provide robust
object classification by benchmarking them against a strong baseline that uses mask predictions
from foundational segmentation models, following the OCCAM pipeline (§3).

4.1 ARE WE DONE WITH OBJECT-DISCOVERY?

OCL methods are often evaluated by how well they perform on unsupervised object discovery,
measured via instance segmentation for every object in the scene. We explore whether the emergence
of strong zero-shot segmentation models (class-agnostic) such as HQES (Lu et al., 2023) and SAM
(Kirillov et al., 2023) allows reliable decomposition of the scene into objects. We compare these
foundational segmenters against state-of-the-art OCL approaches (Jiang et al., 2023; Seitzer et al.,
2023; Didolkar et al., 2025).

Setup. We first describe our experimental setup, including datasets, metrics, and compared base-
lines. Following prior work (Kipf et al., 2022; Elsayed et al., 2022; Seitzer et al., 2023; Didolkar

4
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Image DINOSAUR SlotDiffusion FT-DINOSAUR SAM HQES

Figure 3: Qualitative Results on Object Discovery. DINOSAUR, SlotDiffusion, and FT-DINOSAUR are
existing object-centric learning (OCL) approaches. SAM and HQES refer to zero-shot segmentation
methods. Images are from MOVi-E. SAM and HQES masks fit objects much better than the masks
predicted by OCL methods. All columns except for HQES are taken from (Didolkar et al., 2025).

et al., 2025), we use two synthetic image datasets from (Greff et al., 2022): Movi-C and Movi-
E. Both feature around 1,000 realistic 3D-scanned objects placed on high-definition backgrounds.
Movi-C contains 3 – 10 objects per scene, while Movi-E contains 11 – 23. We quantify model
performance using two standard metrics (Table 1): the foreground adjusted Rand index (FG-ARI)
(Rand, 1971; Hubert & Arabie, 1985; Kipf et al., 2022) and mean best overlap (mBO) (Pont-Tuset
et al., 2015; Seitzer et al., 2023), detailed in Section §2. Unlike FG-ARI, mBO also accounts for
background pixels. It also measures how well masks fit objects. We compare HQES and SAM
to state-of-the-art OCL methods with demonstrated real-world applicability: SlotDiffusion (Jiang
et al., 2023), Dinosaur (Seitzer et al., 2023), and FT-Dinosaur (Didolkar et al., 2025), all described
in Section §2.

Results. Table 1 and Figure 3 show quantitative and qualitative results. Across both metrics, FG-
ARI and mBO across out-of-distribution benchmarks like Movi-C and Movi-E, HQES far surpasses
the OCL baselines. This gap is especially notable in mBO on Movi-E, improving 29.9% to 63.8%.
Qualitatively, HQES masks fit objects much better than masks predicted by OCL methods (Figure 3).
HQES also shows it is possible to be sample efficient, only being trained on 151k samples in contrast
to 11M samples for SAM.

Conclusion. Sample-efficient segmentation models, even in a zero-shot setting, excel at object
discovery, surpassing OCL methods by large margins. This suggests that one key aspect of OCL —
decomposing the scene into objects — can be largely solved by powerful pre-trained segmentation
models, effectively replacing the slot-based OCL methods. Given the decomposition, we explore
in the next section downstream applications where OCL methods can contribute a lot of practical
value.

4.2 APPLICATION: CLASSIFICATION WITH SPURIOUS BACKGROUND CORRELATIONS

As foundational segmentation models outperform OCL methods in decomposing the scene into
constituent objects, we take a further step and evaluate OCL methods on a downstream task that

5
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Method Pre-train FT Movi-C Movi-E
Encoder Decoder ARI mBO ARI mBO

Slot Diffusion (Jiang et al., 2023) OpenImg
(1.9M)

COCO (118k) ✗ 66.9 43.6 67.6 26.4

Dinosaur (Seitzer et al., 2023) GLD (1.2M) COCO (118k) ✗ 67.0 34.5 71.1 24.2
FT-Dinosaur (Didolkar et al., 2025) GLD (1.2M) COCO (118k) ✓ 73.3 44.2 71.1 29.9

HQES (Lu et al., 2023) (Ours) COCO (118k) + EntitySeg (33k) ✗ 79.3 65.4 87.2 63.8
SAM (Kirillov et al., 2023) SA-1b (11M) ✗ 79.7 73.5 84.7 69.7

Table 1: Object Discovery Performance. Quantitative results for object discovery on Movi-C and
Movi-E; column “FT” indicates whether the model was fine-tuned on the training split of the cor-
responding dataset (Movi-C or Movi-E). HQES outperforms the OCL baselines like Slot Diffusion
and Dinosaur, despite being sample-efficient (151k training samples).

(a) ImgNet-D (BG)
Method Acc.

(↑)

CLIP ViT-L

CLIP 23.5
O-D (Ours) 57.7
O-H (Ours) 68.0
CLIP-SigLip 59.4
O-D-SigLip (Ours) 71.5
O-H-SigLip (Ours) 78.5

Multi-modal LLMs

MiniGPT-4 71.8
LLaVa 52.9
LLaVa-NeXT 68.8
LLaVa-1.5 73.3⋆

(b) UrbanCars
Method WGA

(↑)

ViT-L-14 CLIP

CLIP 87.2
O-D (Ours) 98.4
O-H (Ours) 100.0

ResNet50 CLIP

CLIP 64.8
O-D (Ours) 98.4
O-H (Ours) 100.0

ResNet50

CoBalT 80.0
LfF 34.0
JTT 55.8
SPARE 76.9
LLE 90.8⋆

(c) ImgNet-9 (MR)
Method Acc.

(↑)

ViT-L-14 CLIP

CLIP 91.9
O-D (Ours) 93.8
O-H (Ours) 95.2

ResNet50 CLIP

CLIP 81.1
O-D (Ours) 80.6
O-H (Ours) 85.6

ResNet50

CoBalT 80.3
SIN 63.7
INSIN 78.5
INCGN 80.1
MaskTune 78.6
CIM 81.1⋆

(d) Waterbirds
Method WGA

(↑)

ViT-L-14 CLIP

CLIP 83.6
O-D (Ours) 92.1
O-H (Ours) 96.0

ResNet50 CLIP

CLIP 72.9
O-D (Ours) 83.3
O-H (Ours) 92.5

ResNet50

CoBalT 90.6
GDRO 89.9
AFR 90.4
SPARE 89.8
MaskTune 86.4
CIM 77.2
DFR 91.8⋆

Table 2: Object-Centric Learning for Spurious Background OOD Generalization. We report
accuracy for each benchmark. “ImgNet-D (BG)” = ImageNet-D “background” subset; “ImgNet-9
(MR)” = ImageNet-9 “mixed rand” subset; “WGA” = worst group accuracy. O-H/O-D = OCCAM
with HQES/FT-Dinosaur masks generator. ⋆ = state-of-the-art. See Table 5 for method citations.

leverages the disentangled representations for distinct objects: robust classification under spurious
background cues. This subsection demonstrates that object masks are a simple but effective strategy
to mitigate the influence of spurious correlations with backgrounds in classification tasks (Table 2).

Setup. We first describe our experimental setup, including datasets, metrics, and compared base-
lines. We use several standard datasets with spurious backgrounds or co-occurring objects — Ur-
banCars (Li et al., 2023), ImageNet-D (background subset) (Zhang et al., 2024), ImageNet-9 (mixed
rand subset) (Xiao et al., 2021), Waterbirds (Sagawa et al., 2020), and CounterAnimals (Wang et al.,
2024) — detailed further in §D. We measure model performance using the standard metric used in
the respective benchmark: accuracy and worst group accuracy (WGA). We provide per-benchmark
comparisons for reference, including results from other relevant methods, citing them alongside
their names in the tables. We use the foundational segmentation model HQES (Lu et al., 2023)
(O-H) and the state-of-the-art OCL method FT-Dinosaur (Didolkar et al., 2025) (O-D) for mask pre-
diction in our training-free probe, OCCAM. We categorize methods with comparable image encoder
backbones for fairness.

Results. Using masks significantly improves performance across all datasets, sometimes reaching
100% accuracy (e.g., on UrbanCars; Table 2(b)) or close to that performance on Waterbirds and
ImageNet-9 (mixed rand) subsets. This shows the potential of simple, training-free object-centric

6
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Name Mask Method Mask
Model

FG Detector WB↑ IN-9↑ IN-D↑ UC↑ Cmn-Ctr↓

CLIP

- - - 83.6 91.9 17.6 87.2 15.0

Gray BG + Crop
FT-Dinosaur

Ens. H 83.8 84.0 52.4 95.2 13.1
Class-Aided 92.1 93.8 57.7 98.4 12.7

HQES
Ens. H 86.8 88.6 60.4 95.2 8.8
Class-Aided 96.0 95.2 68.0 100.0 8.5

AlphaCLIP

- (α = 1) - - 79.8 90.2 23.5 87.2 17.0

α-channel
FT-Dinosaur

Ens. H 81.0 90.3 40.7 92.0 17.2
Class-Aided 86.9 93.1 49.1 96.0 15.3

HQES
Ens. H 84.7 91.2 44.7 91.2 16.4
Class-Aided 89.1 93.1 53.9 97.6 15.2

Table 4: Factor Analysis for Spurious Background OOD Generalization. Accuracies on spurious
correlations datasets when varying factors for the ViT-L-14 CLIP architecture. We use AlphaCLIP
for α-channel masking and CLIP for Gray Crop masking. We first report their baseline performances
without masking (where mask method and model are both “-”) and with 2 different mask models
(FT-Dinosaur and HQES) as well as 2 different foreground detectors (Ens. H and Class-Aided).
Results are reported on 5 benchmark datasets, Waterbirds (WB), ImageNet-9 (IN-9), ImageNet-
D (IN-D), UrbanCars (UC), and CounterAnimals (Cmn-Ctr). For the CounterAnimals results, we
report the gap between the common-split (Cmn) and the counter-split (Ctr) accuracies. Unlike other
metrics, a smaller Cmn-Ctr gap is deemed a better generalization.

methods like OCCAM to address otherwise challenging downstream problems, if we can robustly
identify the foreground object of interest. On harder benchmarks like ImageNet-D (background sub-
set), HQES-based masks with SigLip models yield far better performance (78.5%) even compared
to recent models like LLAVA 1.5 (Liu et al., 2023a) (73.3%), and outperform their best slot-based
counterparts (71.5%) using FT-Dinosaur (Table 2(a)). Throughout, HQES consistently provides
more effective masks than FT-Dinosaur.

Conclusion. These experiments show that mask-based, training-free object-centric probes can pro-
vide practical value on challenging robust classification tasks, if the task of foreground detection is
sufficiently addressed (§3.2). It provides substantial gains on all tested benchmarks over the state-
of-the-art methods for tackling spurious correlations. We hope this encourages the community to
develop segmentation-based OCL approaches and demonstrate practical benefits across a variety of
downstream applications. We next perform data-centric analysis leveraging properties of our OCL
pipeline.

4.2.1 COUNTERANIMALS: SPURIOUS OR SIMPLY HARD?
CounterAnimals

Method Cmn/Ctr (↑) Cmn–Ctr (↓)

AlphaCLIP ViT-L

CLIP 79.0/62.0 17.0
O-D (Ours) 85.8/70.5 15.3
O-H (Ours) 84.4/69.2 15.2

Table 3: Data-Centric Understand-
ing using OCL. We report the accura-
cies on the Common and Counter sub-
set of the CounterAnimals dataset. We
see that after eliminating the spurious
background using OCL methods, the
gap (Cmn-Ctr) does not substantially
decrease.

Our object-centric classification pipeline can isolate an
object’s influence apart from its background. This prop-
erty of OCL can be used to analyze the recently proposed
CounterAnimals dataset (Wang et al., 2024).

Setup. CounterAnimals highlights models’ reliance on
spurious backgrounds. It consists of two splits from
iNaturalist,1 each containing animals from 45 classes in
ImageNet-1k (Russakovsky et al., 2015). The Common
split features typical backgrounds (e.g., polar bears on
snow), while the Counter split features less common ones
(e.g., polar bears on dirt). It primarily demonstrates that
models consistently perform better on the Common than
on Counter, due to spurious background cues.

1https://www.inaturalist.org/observations
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What is the Contribution of Spurious Correlations? We perform a simple check using OCCAM
– If the drop from Common to Counter is caused by spurious background correlations, then using
OCCAM we can ablate the contribution of everything except the foreground object. Ideally, ablating
the background should result in roughly equal performance on both Common and Counter sets (the
gap should be 0%). However, we see from Table 3, Table 4 and Figure 5 that even after ablating
the background entirely, there is a substantial gap between the Common and Counter subsets. For
example, when using AlphaCLIP, the gap reduces from 17.0% to 15.2%. Similarly, using HQES
masks and a gray background for both sets, we still observe an 8.5% gap. This provides interesting
evidence that images in the Common subset might be substantially easier than images from the
Counter subset by about 8-10%.

Conclusion. OCL methods allow analyzing datasets, and analyse the contribution of individual
objects. In the case of CounterAnimals, we find that spurious backgrounds might not be the primary
reason the Counter subset is harder, although they are a factor. A significant (10%) gap might be
caused by the Counter subset simply being harder to classify than the Common subset due to a wide
variety of other factors. Overall, we show the potential for OCL methods to help inform data-centric
fields like data attribution.

4.2.2 ABLATIONS: IDENTIFYING BOTTLENECKS IN OCCAM

We now ablate the contributions of different components in the OCCAM pipeline. We first test
two CLIP models (CLIP and AlphaCLIP), to see whether our results generalize beyond simply
removing backgrounds to recent techniques such as AlphaCLIP, which use the α-channel to focus
on the mask instead of eliminating the background. Secondly, we study the effect of the masking
generator, testing HQES along with the current SOTA OCL method, FT-Dinosaur. Lastly, we study
the influence of different FG Detection methods. We showcase our analysis in Table 4.

Effect of mask applying method. Using masks with Class-Aided FG detector improves perfor-
mance on all the datasets for both Gray BG + Crop and α-channel mask methods, but for the former,
accuracy is usually higher. For example, on Waterbirds (Table 4), accuracy for the Gray BG + Crop
mask method and the HQES mask generator is 96.0% while for AlphaCLIP it is 89.1%. This in-
dicates that the backgrounds have strong spurious correlations that still affect α-CLIP to a small
extent.

Effect of mask generator. Comparing the rows from mask models to the original CLIP model, we
see that both FT-Dinosaur and HQES improve performance, across CLIP and AlphaCLIP, given that
we use Class-Aided FG detector. In this scenario, HQES improves accuracy more than FT-Dinosaur.
For example, for the Gray BG + Crop mask method, it leads to 68.0% accuracy on ImageNet-D,
while FT-Dinosaur reaches only 57.7%. This indicates that the segmentation-based OCL performs
better consistently for downstream OCL applications.

Selecting foreground mask. Accuracy gains with Ens. H are always smaller than for Class-Aided
FG detector and sometimes can be negative (Table 4). For example, for Gray BG + Crop mask
method and HQES mask generator accuracy on ImageNet-9 drops from 91.9% to 88.6% when
using Ens. H FG detector, while jumping to 95.2% with Class-Aided FG detector. Such results
are not surprising at all, given that HQES with Class-Aided foreground detector is a very close
approximation to classifying ground truth foreground objects (see § E for details). At the same
time, this reveals a weakness in other baseline foreground detection methods and leaves room for
improvement and future research.

Conclusion. The empirical results show that segmentation models outperform current OCL methods
in obtaining object-centric representations that result in better classification. The simple Gray BG +
Crop mask method generally performs better than the more advanced α-channel mask method. At
the same time, identifying foreground masks among many candidates remains a challenge.

5 DISCUSSION

In defense of current OCL benchmarks. One important aspect to clarify is the rationale behind the
OCL researchers’ choice to evaluate their models using object discovery benchmarks, as this may
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not have been clearly articulated. Conventionally, OCL works have relied on constructing synthetic
scenarios, where one has knowledge of the ground truth object-centric latent variables, e.g., object
position, object color, etc, and can thus directly evaluate whether the learned representation encodes
each object separately in its representation (Brady et al., 2023; Kori et al., 2023; Brady et al., 2024).
One core aspect is scaling it to real-world scenarios, where we do not have knowledge of the data-
generating process. Hence, traditional literature resorts to (a) probing the representation for object
properties, such as object position, object color, etc (Arefin et al., 2024; Liu et al., 2023b), and (b)
decoding slot representations to observe if they do indeed only possess a given object (Locatello
et al., 2020; Jiang et al., 2023; Seitzer et al., 2023; Didolkar et al., 2025; Kipf et al., 2022; Elsayed
et al., 2022; Greff et al., 2019).

Should OCL be strictly unsupervised? Traditionally, it was assumed that without access to auxil-
iary information or data-generating processes, there could be no ground-truth supervision for object-
centric representations. Consequently, unsupervised learning — requiring no labels — became the
standard approach for OCL. However, the advent of robust foundation models — that can leverage
segmentation masks or text alongside images and generalize zero-shot across a wide range of inputs
— now challenges the need for strict unsupervised constraints (Mamaghan et al., 2025). We believe
OCL can greatly benefit from using all available data.

Why not incorporate developmentally plausible multimodal cues in OCL? When modeling
human-like object perception, we should focus on developmentally plausible supervision. However,
we note that the assumption of visual learning in infants being unsupervised also warrants reconsid-
eration. Infants do not learn solely from static images; rather, they integrate a wealth of sensory cues
(see Ayzenberg & Behrmann (2024) for a detailed review). For example, Spelke’s seminal review
(Spelke, 1990b) highlights the importance of dynamic information, such as motion and depth cues,
for effective object segmentation in early development. Some object-centric works (e.g. Didolkar
et al. (2023)) argue against this primarily based on the feasibility, citing the unavailability of mul-
timodal data. However, there are several computational studies with models incorporating motion
or depth (e.g. Karazija et al. (2022); Elsayed et al. (2022)), which also demonstrate that these addi-
tional cues can, in fact, be leveraged effectively. Thus, there is no inherent reason to confine OCL
to strictly unsupervised, image-only paradigms when richer, multimodal data is often accessible in
practice.

6 CONCLUSION AND OPEN PROBLEMS

Object-centric learning (OCL) is motivated by goals such as OOD generalization, sample-efficient
composition, and cognitive insights. Yet progress is still measured mainly by object-discovery
benchmarks. With strong segmentation methods like High-Quality Entity Segmentation (HQES)
(Lu et al., 2023), class-agnostic models now surpass slot-based OCL in isolating objects, effectively
achieving OCL’s original aim.

However, its relevance extends beyond object discovery. We advocate for shifting OCL evaluation
towards more realistic downstream tasks that leverage object-centric representations, such as miti-
gating spurious background correlations. We design a simple training-free probe, OCCAM, to show
the efficacy of object-centric approaches to help classifiers generalise even in the presence of spu-
rious correlations (§4.2), achieving near-perfect accuracies across many benchmarks (Table 2). By
separating object-wise representation (well-addressed by HQES) from object selection (still a key
challenge), OCCAM sheds light on where further improvements are needed.

We envision new OCL benchmarks advancing visual understanding via scene graphs, interpretable
representations, and human-in-the-loop feedback. Diverse applications and benchmarks can drive
progress, while OCL may also inform cognitive questions on how objects and causal structures
emerge without supervision (Spelke, 1990a; Téglás et al., 2011).

DISCLAIMER FOR USE OF LLMS
LLMs supported coding (experimentation, plotting) and writing refinement. The final version was
carefully reviewed and finalized by the authors. LLMs were not used for ideation or experimental
design.
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Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel
Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation
learning with iterative variational inference. In International Conference on Machine Learning,
pp. 2424–2433. PMLR, 2019.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial
neural networks. arXiv preprint arXiv:2012.05208, 2020.

Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J
Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Abhijit Kundu,
Dmitry Lagun, Issam Laradji, Hsueh-Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek
Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain, Sara Sabour, Mehdi
S. M. Sajjadi, Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun, Suhani Vora, Ziyu Wang,
Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, and Andrea Tagliasacchi. Kubric: a scalable
dataset generator. In Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Sebastian Gruber and Florian Buettner. Uncertainty estimates of predictions via a general bias-
variance decomposition. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations, 2017.

Lawrence J. Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 1985.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip. In GitHub. Zenodo, July 2021. doi: 10.5281/zenodo.
5143773. If you use this software, please cite it as below.

Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn. Object-centric slot diffusion. In Confer-
ence on Neural Information Processing Systems (NeurIPS), 2023.

Ferdinand Kapl, Amir Mohammad Karimi Mamaghan, Max Horn, Carsten Marr, Stefan Bauer, and
Andrea Dittadi. Object-centric representations generalize better compositionally with less com-
pute. In Workshop on Spurious Correlation and Shortcut Learning: Foundations and Solutions,
2025.

Laurynas Karazija, Subhabrata Choudhury, Iro Laina, Christian Rupprecht, and Andrea Vedaldi.
Unsupervised multi-object segmentation by predicting probable motion patterns. Advances in
Neural Information Processing Systems, 35:2128–2141, 2022.

Thomas Kipf, Gamaleldin F. Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour, Georg
Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional Object-Centric
Learning from Video. In International Conference on Learning Representations (ICLR), 2022.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient
for robustness to spurious correlations. In International Conference on Learning Representations
(ICLR), 2023.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/57fabaa549352c52d5d312171b16970e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/57fabaa549352c52d5d312171b16970e-Paper-Conference.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross Girshick.
Segment anything. In International Conference on Computer Vision (ICCV), 2023.

Avinash Kori, Francesco Locatello, Fabio De Sousa Ribeiro, Francesca Toni, and Ben Glocker.
Grounded object centric learning. arXiv preprint arXiv:2307.09437, 2023.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. 2013 IEEE International Conference on Computer Vision Workshops, pp. 554–
561, 2013.

Tejas D. Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm Reynolds, An-
drew Zisserman, and Volodymyr Mnih. Unsupervised learning of object keypoints for perception
and control. In Neural Information Processing Systems, 2019.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Zhiheng Li, Ivan Evtimov, Albert Gordo, Caner Hazirbas, Tal Hassner, Cristian Canton Ferrer,
Chenliang Xu, and Mark Ibrahim. A whac-a-mole dilemma: Shortcuts come in multiples where
mitigating one amplifies others. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
6781–6792. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
liu21f.html.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Confer-
ence on Neural Information Processing Systems (NeurIPS), 2023a.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 26296–26306, June 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b.

Yuejiang Liu, Alexandre Alahi, Chris Russell, Max Horn, Dominik Zietlow, Bernhard Schölkopf,
and Francesco Locatello. Causal triplet: An open challenge for intervention-centric causal rep-
resentation learning. In Conference on Causal Learning and Reasoning, pp. 553–573. PMLR,
2023b.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
tion. In Conference on Neural Information Processing Systems (NeurIPS), 2020.

Qi Lu, Jason Kuen, Shen Tiancheng, Gu Jiuxiang, Guo Weidong, Jia Jiaya, Lin Zhe, and Yang
Ming-Hsuan. High-quality entity segmentation. In International Conference on Computer Vision
(ICCV), 2023.

Amir Mohammad Karimi Mamaghan, Samuele Papa, Karl Henrik Johansson, Stefan Bauer, and
Andrea Dittadi. Exploring the effectiveness of object-centric representations in visual question
answering: Comparative insights with foundation models. In International Conference on Learn-
ing Representations (ICLR), 2025.

Shoya Matsumori, Kosuke Shingyouchi, Yukikoko Abe, Yosuke Fukuchi, Komei Sugiura, and Mi-
chita Imai. Unified questioner transformer for descriptive question generation in goal-oriented
visual dialogue. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
1878–1887, 2021.

12

https://proceedings.mlr.press/v139/liu21f.html
https://proceedings.mlr.press/v139/liu21f.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Toki Migimatsu and Jeannette Bohg. Object-centric task and motion planning in dynamic environ-
ments. IEEE Robotics and Automation Letters, 5(2):844–851, 2020. doi: 10.1109/LRA.2020.
2965875.
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A EXTENDED RELATED WORK

We extend § 2 with a detailed review of object-centric learning (OCL) from three perspectives:
motivation, evaluation, and methodologies.

Motivation for OCL. The OCL community has inspired research from different perspectives. From
one perspective, learning object-centric representations can help discover latent variables of the
data-generating process, such as object position and color (Fumero et al., 2023), or even identify
its causal mechanisms (Liu et al., 2023b; Schölkopf et al., 2021) by encoding structural knowledge
that allows interventions and changes. From another perspective, OCL aims to simulate human
cognition (Spelke, 1990a; Téglás et al., 2011; Wagemans, 2015) in neural networks. For example,
infants intuitively understand physics by tracking objects with consistent behavior over time (Dittadi
et al., 2022). They later reuse this knowledge to learn new tasks quickly. Advances in OCL can help
neural networks develop this ability as well. In addition to that, some studies focus on understanding
the compositional nature of scenes (Greff et al., 2020) by providing separate representations for
different elements (e.g., human, hat, bed, table) and their interactions (a cat wearing a hat or a bear
guiding cubs). Several papers claim that there is a potential to improve sample efficiency (Kapl et al.,
2025) and generalization (Locatello et al., 2020; Kipf et al., 2022; Seitzer et al., 2023; Wiedemer
et al., 2024; Mamaghan et al., 2025; Kapl et al., 2025) or object-centric methods can be more robust
(Seitzer et al., 2023; Arefin et al., 2024). Others refer to the structure of the world, saying that the
fundamental structure of the physical world is compositional and modular (Jiang et al., 2023) or that
humans understand the world in terms of separate objects (Kipf et al., 2022; Didolkar et al., 2025).
However, we have observed a consistent lack of empirical evidence demonstrating that object-centric
approaches improve sample efficiency or aid in identifying causal mechanisms. To address this gap,
we believe more empirical research is needed. As a first step, we show that robust classification is
achievable even in the presence of explicitly distracting backgrounds and other object interference.

OCL evaluation. Measuring progress on the primary motivations of object-centric learning is a
hard problem and suffers from a chronic lack of scalable benchmarks. Hence, empirical support
for the commonly claimed benefits, such as parameter/learning efficiency (Kipf et al., 2022; Kapl
et al., 2025) and improved generalization (Dittadi et al., 2022; Arefin et al., 2024; Wiedemer et al.,
2024; Mamaghan et al., 2025; Kapl et al., 2025) or better understanding of representations, remains
limited. Some papers study the link between object-centric learning and downstream applications.
These include reinforcement learning (Watters et al., 2019; Kulkarni et al., 2019; Berner et al.,
2019; Sun et al., 2019; Yoon et al., 2023), scene representation and generation (Kulkarni et al.,
2019; El-Nouby et al., 2018; Matsumori et al., 2021; Burgess et al., 2019), reasoning (Webb et al.,
2023; Yang et al., 2020), and planning (Migimatsu & Bohg, 2020). We highlight that these papers
provide a valuable contribution to benchmarking progress in the OCL field. However, most research
does not focus on these tasks. Much of the progress is tracked by unsupervised object discovery
benchmarks, essentially entity segmentation (Locatello et al., 2020; Jiang et al., 2023; Seitzer et al.,
2023; Didolkar et al., 2025; Kipf et al., 2022; Elsayed et al., 2022; Greff et al., 2019). Model
performance is usually quantified with foreground adjusted random index (FG-ARI) (Rand, 1971;
Hubert & Arabie, 1985; Kipf et al., 2022), which is a permutation-invariant clustering metric or
mean best overlap (mBO) (Pont-Tuset et al., 2015; Seitzer et al., 2023). These evaluations primarily
assess whether slots reliably isolate individual objects — a criterion we argue is overly restrictive
in the broader context of object-centric learning. In our paper, we urge more work to additionally
evaluate downstream applications, particularly given the emergence of foundational segmentation
models that significantly outperform object-centric methods on standard object discovery tasks (see
Table 1 and Figure 3).

OCL methodologies. OCL captured widespread attention with the introduction of SlotAttention
(Locatello et al., 2020), which enabled iterative learning of separate latent representations for each
object in an image. These latent “slots” can then be decoded back to the pixel space. Extensions
have included SlotAttention paired with diffusion decoders (Jiang et al., 2023) and SlotAttention
architectures built on top of DINO (Seitzer et al., 2023; Didolkar et al., 2025) features. Dinosaur
(Seitzer et al., 2023) uses pre-trained self-supervised DINO (Caron et al., 2021) features as a target
for reconstruction loss. This loss is used to train a decoder with Slot Attention (Locatello et al.,
2020) on top of the ResNet (He et al., 2016) encoder. FT-Dinosaur (Didolkar et al., 2025) improves
Dinosaur by replacing the ResNet encoder with a DINO-ViT (Dosovitskiy et al., 2021) encoder sep-
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arate from the one used to compute target features. It jointly fine-tunes the encoder with the decoder.
SlotDiffusion (Jiang et al., 2023) uses pre-trained features from the Stable Diffusion Encoder (Rom-
bach et al., 2022) and trains a diffusion-based decoder with Slot Attention (Locatello et al., 2020) on
top of them. In video contexts, sequential adaptations leverage temporal dependencies (Kipf et al.,
2022) and depth information (Elsayed et al., 2022). Some studies also propose theoretical founda-
tions for OCL (Wiedemer et al., 2024; Brady et al., 2023). There is also a line of work that studies
object-centric representation in the context of out-of-distribution (OOD) generalization in segmen-
tation (Dittadi et al., 2022), compositional generalization (Wiedemer et al., 2024; Mamaghan et al.,
2025; Kapl et al., 2025), and classification, e.g., CoBalT (Arefin et al., 2024) that employs model
distillation and slots clustering into concepts to refine feature quality. In our experiments, we com-
pare with the latest methods – SlotDiffusion (Jiang et al., 2023) and (FT-)Dinosaur (Seitzer et al.,
2023; Didolkar et al., 2025) for object discovery and CoBalT (Arefin et al., 2024) across robust
classification benchmarks.

Method Citation

ImgNet-D (BG) (Zhang et al., 2024)
ImgNet-9 (MR) (Xiao et al., 2021)
UrbanCars (Li et al., 2023)
Waterbirds (Sagawa et al., 2020)
CLIP (Radford et al., 2021)
CLIP-SigLip (Zhai et al., 2023)
MiniGPT-4 (Zhu et al., 2024)
LLaVa (Liu et al., 2023a)
LLaVa-NeXT (Liu et al., 2024b)
LLaVa-1.5 (Liu et al., 2024a)
CoBalT (Arefin et al., 2024)
LfF (Nam et al., 2020)
JTT (Liu et al., 2021)
SPARE (Yang et al., 2023)
LLE (Li et al., 2023)
SIN / INSIN / INCGN (Sauer & Geiger, 2021)
MaskTune (Asgari et al., 2022)
CIM (Taghanaki et al., 2021)
GDRO (Sagawa et al., 2020)
AFR (Qiu et al., 2023)
DFR (Kirichenko et al., 2023)

Table 5: Mapping from methods to their original citations.
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B FOREGROUND DETECTORS COMPARISON

To justify the choice of gclass aided and gH in § 3.2, we compare several foreground detection methods.
One can notice that foreground detection is an application of an out-of-distribution (OOD) detection,
a well-studied problem (Mukhoti et al., 2021; Tran et al., 2022; Gruber & Buettner, 2022) — with
foreground objects treated as in-distribution (ID) samples and background objects as OOD samples.
Hence, we evaluate OOD detection methods for this task in Figure 4.

Setup. We construct an OOD detection dataset using the ImageNet-1k (Russakovsky et al., 2015)
validation set by leveraging ground truth bounding boxes2 to derive accurate foreground masks (see
details in § G). Performance is measured via the area under the ROC curve (AUROC), in line with
standard OOD detection frameworks (Mukhoti et al., 2021; Tran et al., 2022; Gruber & Buettner,
2022; Mucsányi et al., 2024; Rubinstein et al., 2024). We use the following strong baselines:

• Class-Aided (single model) (Hendrycks & Gimpel, 2017): py(x)

• Ensemble entropy (Ovadia et al., 2019): 1
M

∑M
k=1 H[pk(x)]

• Ensemble confidence (Lakshminarayanan et al., 2017): maxc
1
M

∑M
k=1 p

c
k(x)

• Confidence (single model) (Hendrycks & Gimpel, 2017): maxc p
c(x)

• Entropy (single model) (Depeweg et al., 2017): H[p(x)]

Here, y is ground truth label, p(x) denotes the model’s probability vector prediction for the corre-
sponding sample x, M is the ensemble size, and H represents entropy. We use the ViT-L-14 CLIP
model pre-trained by OpenAI (Radford et al., 2021) as the single model, and 5 CLIP models with
ViT-L-14 (Dosovitskiy et al., 2021) vision encoders pre-trained on different datasets as the ensem-
ble. Note that OpenAI ViT-L-14 was the strongest model by AUROC among the ensemble, hence it
was used as the single model. Further details are provided in § G.
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Figure 4: Foreground Object Detection. ROC-curves for
foreground detection methods. For each scoring scheme,
we measure how well the true foreground objects in the
ImageNet-validation dataset are detected. More details in
§ G.

Results. As shown in Figure 4,
Class-Aided achieves the highest
AUROC of 90.1% whereas the en-
semble entropy method yields 89.6%.
Other methods perform significantly
worse. Nevertheless, all methods
score more than 80% AUROC.

Conclusion. The AUROC perfor-
mance of Class-Aided and Ens. H
foreground detectors showed only
minor differences from each other,
both scoring around 90% and be-
ing the best among the compared
methods; however, substantial per-
formance gaps remain when compar-
ing the Class-Aided results with the
Ens. H foreground detector in spuri-
ous correlation tasks (Table 4), a pos-
sible reason for this is discussed in
§ E. This disparity highlights two key
implications. Current evaluation met-
rics may have a large research gap to
better reflect real-world applications.
Conversely, spurious correlation foreground detection might be a promising proxy task for identify-
ing better OOD detection models.

2https://academictorrents.com/details/dfa9ab25
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C COUNTERANIMALS: GAPS BETWEEN “COMMON” AND “COUNTER”
SUBSETS
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Figure 5: Gaps in accuracies [Common - Counter] for Common and Counter subsets of Coun-
terAnimals (Wang et al., 2024) dataset correspondingly for different CLIP models and pre-training
datasets. “Gap” results are computed for CLIP (Radford et al., 2021) zero-shot performance without
using any masks; “Gap-FG” results are computed when using OCCAM with HQES (Lu et al., 2023)
masks, Class-Aided foreground selection method, and “Gray BG + Crop” mask applying operation.

In addition to the results in Table 2 (e), we present the complete performance results for all CLIP
models from the original CounterAnimals dataset (Wang et al., 2024) in Figure 5. This figure illus-
trates the performance gaps between the Common and Counter subsets, as discussed in § 4.2.1.

We observe that the performance gaps are consistently greater than 5%, as all points lie above the
red dashed line. For some models, such as ViT-L-14-datacomp and ViT-H-14-quickgelu-dfn5b, the
gaps remain nearly unchanged with or without using OCCAM — around 10% and 6%, respectively.

We argue that for these models, the original gaps reported in the CounterAnimals paper (Wang et al.,
2024) (referred to as “Gap” in our notation) cannot be attributed solely to the models’ reliance on
spurious background cues. This is because the gap remains even after background removal using
the “Gray BG + crop” masking operation (referred to as “Gap-FG” in our notation).
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D DETAILS ON SPURIOUS BACKGROUNDS DATASETS

Below we provide details on the datasets used in our study (for more information on the CounterAn-
imals dataset, see § C):

The core of our dataset collection includes several widely-used benchmarks for evaluating robust
image classification models: UrbanCars (Li et al., 2023), Waterbirds (Sagawa et al., 2020), and
ImageNet-9 (Xiao et al., 2021). We also include the ImageNet-D dataset (Zhang et al., 2024), which
we consider to offer more realistic visual compositions, as it uses a diffusion model (Rombach et al.,
2022) to blend objects with backgrounds, rather than relying on manual cut-and-paste techniques
as in the previous datasets. Finally, we use the CounterAnimals dataset (Wang et al., 2024), a
recently introduced benchmark consisting of natural images with spurious background correlations,
specifically designed to challenge even CLIP models.

1. UrbanCars (Li et al., 2023): A binary classification dataset that categorizes cars as ei-
ther “urban” or “country.” Each image contains a car paired with a contextually related
secondary object (e.g., a fire hydrant for urban or a cow for country) and is placed on ei-
ther an urban or rural background. All elements are synthetically combined from cut-out
components.

2. ImageNet-D (Zhang et al., 2024): A synthetic dataset generated using diffusion models
for 113 ImageNet-based classes (a subset of ImageNet-1k (Russakovsky et al., 2015)). We
focus on the “background” subset, where objects appear in unexpected contexts (e.g., plates
in a swimming pool), to test robustness to spurious background cues.

3. ImageNet-9 (Xiao et al., 2021): A synthetic dataset with 9 broad object categories (e.g.,
dog, bird), each corresponding to supersets of ImageNet classes. We use the “mixed ran-
dom” subset, where objects are placed on backgrounds from different, unrelated classes.

4. Waterbirds (Sagawa et al., 2020): A binary classification dataset where bird species are
labeled as either “land” or “sea” birds. Each image features a bird placed on either a land
or sea background. Like UrbanCars, this dataset is synthetically constructed using cut-out
birds and backgrounds.
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E CLASS-AIDED FOREGROUND DETECTOR YIELDS THE CLOSEST
APPROXIMATION TO GROUND TRUTH FOREGROUND MASKS

FG Detector WGA (↑)

- 83.6
Max Prob 78.6

Ens. H 86.8
Class-Aided 96.0

Ground Truth 96.7

Table 6: Different foreground detectors on Waterbirds We report the worst-group accuracies
on the Waterbirds dataset for different foreground detectors. Masks are generated by HQES and
applied via “Gray BG + Crop” (see § 3.1). The classification model is CLIP ViT-L-14 (Radford
et al., 2021). “-” stands for classification of original images without using any masks. Max Prob
stands for foreground detector that uses the following score (in terms of § 3.2): gmax prob(x,m) =
maxc p

c(ψ(a(x,m))) - maximum probability across all possible classes (its computation is equiva-
lent to confidence in § B). Class-Aided and Ens. H are described in § 3.2. Ground Truth stands for
ground truth foreground masks that are taken from (Kirichenko et al., 2023).

The Class-Aided foreground detector selects masks based on the highest ground truth class proba-
bility (§ 3.2).

Such a strategy may introduce a selection bias towards non-foreground masks that boost the overall
classification accuracy of OCCAM, but are unrelated to the actual objects of interest — for example,
masks highlighting spurious background regions that correlate with the ground truth label. For this
reason, we were initially cautious about treating it as a reliable foreground detector.

However, on the Waterbirds dataset (Sagawa et al., 2020), for which ground truth foreground masks
are available (Kirichenko et al., 2023), we find that this bias is infrequent. In a random sample of 100
images, Class-Aided selected a non-foreground mask in only 5 cases. Despite this, the classification
accuracy using Class-Aided masks is 96.0%, only slightly lower than the 96.7% achieved with
ground truth masks (see Table 6).

Based on this, we do not observe strong evidence that the Class-Aided detector frequently selects
non-foreground masks, whereas we find that the selected masks perform comparably to ground
truth in the context of classification under spurious correlations. Therefore, we consider the masks
chosen by the Class-Aided foreground detector to be the closest available approximation to ground
truth foreground masks in the absence of mask supervision.
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F EXTENDED IMPLEMENTATION DETAILS

Classes for zero-shot classification Following the original CLIP (Radford et al., 2021) work, we
compute the classifier’s pre-softmax logits f(ψ(x)) using dot products between image embeddings
and text embeddings of class name prompts. Each prompt follows the format: “A photo of X”,
where X is a class name from the corresponding dataset.

For Waterbirds (Sagawa et al., 2020) and UrbanCars (Li et al., 2023), we first compute dot prod-
ucts using prompts based on fine-grained class names from the Caltech Birds (CUB) dataset (Wah
et al., 2011) and the Stanford Cars dataset (Krause et al., 2013), respectively. This is because the
foreground objects in these datasets were originally cropped from the corresponding source datasets.

All fine-grained classes are then grouped into two broader categories. For Waterbirds, the classes are
divided into “land” and “sea” birds. For UrbanCars, they are grouped into “urban” and “country”
cars. The final prediction corresponds to the group containing the fine-grained class with the highest
dot product.

How resize is done for “Gray BG + Crop” We apply the following steps to perform the “Gray
BG + Crop” operation: (1) Find the smallest rectangle that fully contains the foreground object.
(2) Expand the shorter side of this rectangle to match the longer side, ensuring that the center of
the new square matches the original rectangle’s center. (3) Resize the resulting square to the target
resolution.

Fixed number of slots in OCL method When using FT-Dinosaur (Didolkar et al., 2025) as a mask
generator in the OCL method, we fix the number of slots to 5, following the recommendation from
the original implementation.

Foundational segmentation model choice While HQES and SAM generally perform similarly on
segmentation tasks, SAM shows significantly better performance on the mBO metric. Despite this,
we use HQES in all of our main experiments, as we have full knowledge of its training data and can
confirm that it was not trained on any of the datasets containing spurious correlations used in our
evaluation.

Mask-free AlphaCLIP AlphaCLIP (Sun et al., 2023) requires a foreground mask as input. To
simulate a mask-free setting, we use a mask that covers the entire image, effectively setting α = 1.
Although a mask is technically provided, it does not contain any useful localization information, so
we treat this setup as mask-free performance.

Masks filtering Before using masks in our experiments, we apply the following filtering rules:

1. Size: Remove masks that cover less than 0.001 of the image pixels.
2. Connected components: Remove masks that contain more than 30 connected compo-

nents.
3. Background heuristic: Remove masks that cover at least 6 of the 8 key points (the 4

corners and the 4 side centers of the image).
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G ADDITIONAL DETAILS ON FG DETECTORS COMPARISON

In this section, we give additional details on comparing different candidates for FG detector methods
apart from gclass aided and gH (see § 3.2 for details).

Dataset construction details. We construct a binary classification dataset using the ImageNet val-
idation set (Russakovsky et al., 2015), considering only images that have ground truth bounding
boxes for the main object (i.e., the one corresponding to the ground truth label). For each such im-
age, we predict masks for all objects it contains, as described in the “Generating masks” paragraph
in §3.1. We then apply each mask using the “Gray BG + Crop” operation, following the “Applying
masks” paragraph in §3.1. Each resulting masked image is assigned a label as follows:

• Class 1 (foreground) if its corresponding mask has the highest Intersection over Union (IoU;
(Rezatofighi et al., 2019)) with the ground truth bounding box.

• Class 0 (non-foreground) otherwise.

How are OOD detectors used? OOD detectors are used in the following way: First, we compute
an uncertainty score for each sample using formulas from § B based on the ensemble’s outputs
(for single model entropy and Ens. H we additionally multiply this score by −1 so that it is lower
for OOD samples than for ID samples). Then, we treat this uncertainty score as the probability of
predicting class 1 in our binary classification setting.

Note: Ens. H corresponds to gH and Class-Aided corresponds to gclass aided, as described in the
“Foreground detector” paragraph in § 3.2.

Ensemble members. All model checkpoints are sourced from the “openclip” library (Ilharco et al.,
2021), using the following pre-training dataset identifiers: “openai”, “datacomp xl s13b b90k”,
“dfn2b”, “laion400m e31”, and “laion400m e32”.

We focus on ensemble-based baselines for OOD detection, as they are among the most competitive
approaches for this task (Mukhoti et al., 2021; Ovadia et al., 2019).
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