Provably Learning Task-Relevant World Representation

Anonymous Author(s)

Affiliation Address email

Abstract

Identifying task-relevant latent representations s from observations o = f(s) is fundamental. Identifiability, the asymptotic guarantee of recovering the groundtruth representation, is critical because it sets the ultimate limit of any model, even with infinite data and computation. We study this problem in a completely nonparametric setting, without relying on interventions, parametric forms, or structural constraints. We first prove that the structure between time steps and tasks is identifiable in a fully unsupervised manner, even when sequences lack strict temporal dependence and may exhibit disconnections, and task assignments can follow arbitrarily complex and interleaving structures. We then prove that, within each time step, the task-relevant latent representation can be disentangled from the irrelevant part under a simple sparsity regularization, without any additional information or parametric constraints. Together, these results establish a hierarchical foundation: task structure is identifiable across time steps, and task-relevant latent representations are identifiable within each step. To our knowledge, each result provides a first general nonparametric identifiability guarantee, and together they mark a step toward provably moving from generalist to specialist models.

1 Introduction

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18 Learning latent representations from high-dimensional observations is central to enabling machines to understand and act in the world (Bengio et al., 2013; Schölkopf et al., 2021). World models, for 19 instance, compress raw sensory input into low-dimensional features that capture dynamics (Ha & 20 Schmidhuber, 2018). Rather than modeling the entire environment, task-relevant representations are 21 desirable because they retain only the information required for the task, providing both efficiency 22 and robustness (Tishby & Zaslavsky, 2015; Wong et al., 2025). For instance, in autonomous driving, 23 planning depends on the positions and velocities of nearby vehicles and pedestrians, not on the color 24 of the cars or billboards along the road. 25

Without identifiability, a learned representation cannot be guaranteed to reflect the ground truth, 26 even with infinite data and computation. This challenge has long been central to latent representa-27 tion learning, extending beyond task-relevant settings (Hyvärinen & Pajunen, 1999; Locatello et al., 28 2019). Given two observationally equivalent models $\mathbf{o} = f(\mathbf{s})$ and $\mathbf{o} = \hat{f}(\hat{\mathbf{s}})$, an arbitrary transfor-29 mation ϕ may exist such that $\hat{\mathbf{s}} = \phi(\mathbf{s})$. In this case, the recovered latents need not correspond in 30 any meaningful way to the true ones. Task-relevant variables, for example, may remain entangled 31 with irrelevant factors, making it impossible to isolate what actually matters for the task. Such am-32 biguity introduces irreducible uncertainty into a machine's internal model of the world, constraining 33 the ceiling of achievable intelligence and creating risks in high-stakes applications.

Existing theory provides conditions for identifiability of latent representations. In classical linear settings, identifiability can be obtained under additional parametric assumptions, for example in

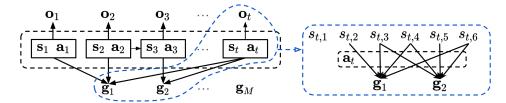


Figure 1: An illustration of the generative process. Latent states \mathbf{s}_t generate observations \mathbf{o}_t via nonlinear functions and interact with actions \mathbf{a}_t under varying temporal connectivity, where consecutive steps may be arbitrarily disconnected. Tasks \mathbf{g}_i are defined as colliders across time steps, and different tasks can arbitrarily interleave with one another. The zoomed-in view (right) shows how different components of \mathbf{s}_t connect to multiple tasks via the intermediate actions.

factor models with constraints on loadings (Anderson et al., 1956; Jöreskog, 1969; Shapiro, 1985), in linear Independent Component Analysis (ICA) via non-Gaussianity (Comon, 1994; Hyvärinen et al., 2001), and in tensor or multi-view models via Kruskal-type rank conditions (Kruskal, 1977; Sidiropoulos & Bro, 2000; Allman et al., 2009). More recently, nonlinear theory has advanced along two routes. In nonlinear ICA, one line leverages auxiliary information across domains or time (Hyvärinen & Morioka, 2016; Hyvärinen et al., 2019; Yao et al., 2021; Hälvä et al., 2021; Lachapelle et al., 2022), while another constrains the mixing class (Taleb & Jutten, 1999; Moran et al., 2021; Kivva et al., 2022; Zheng et al., 2022; Gresele et al., 2021; Buchholz et al., 2022). In causal representation learning, identifiability is often derived from interventional data (von Kügelgen et al., 2023; Jiang & Aragam, 2023; Jin & Syrgkanis, 2023; Zhang et al., 2024; Varici et al., 2025) or counterfactual views (Von Kügelgen et al., 2021; Brehmer et al., 2022), which require some control over the data-generating process. These conditions provide significant insights into recovering the underlying generative process, but may overly restrict the range of applicable scenarios.

At the same time, most existing theoretical results focus on full identifiability of the latent system: either recovering all latent variables component-wisely, or identifying them up to ancestors or neighborhoods. Yet such comprehensive recovery is often unnecessary. In many applications, tasks depend only on a subset of latent factors – for instance, in robotic manipulation, success hinges on object pose and gripper position, while lighting and textures are irrelevant. Shifting the goal from full-system identifiability to task-relevant identifiability enables weaker assumptions while still directly supporting planning, transfer, and generalization. Recent works have explored subspace factorization (Von Kügelgen et al., 2021; Kong et al., 2022; Li et al., 2023; Liu et al., 2023), aiming to decompose latent factors into interpretable blocks. However, these approaches impose fixed structures, such as content–style separation, and are not designed to accommodate flexible task settings, where latent variables may correspond to tasks with unknown number, structure, and assignment, and where this uncertainty can further vary across time steps. Thus, the question remains:

Is a task-relevant world representation identifiable in the general setting?

Contributions. To answer this, we develop a theoretical framework for identifying task-relevant representations from the complex dynamics of the observational world. Our first result proves that task structure across time is identifiable in a fully general setting, without any parametric or structural assumptions (*Section 3*). We do not require strict temporal dependence: steps may be disconnected or even i.i.d., and thus we cannot leverage the temporal information. In addition, tasks may appear, disappear, and reappear in arbitrary order, allowing interleaving task-time structures. After identifying the tasks for each time step, we further ask which latent variables are relevant to those tasks, and provide the first nonparametric identifiability result for task-relevant latent representations without relying on interventions or functional constraints (*Section 4*). Specifically, we show that fine-tuning a pretrained model with a simple task-latent regularization provably disentangles task-relevant variables from irrelevant ones. Together, these results mark a step towards establishing principled pathways from generalist to specialist models that achieve both compression and fidelity.

2 Preliminaries

We assume an observed sequence $\{\mathbf{o}_t\}_{t=1}^T$ generated by latent states $\{\mathbf{s}_t\}_{t=1}^T$, with $\mathbf{o}_t \in \mathbb{R}^{d_o}$, $\mathbf{s}_t \in \mathbb{R}^{d_s}$, and actions $\mathbf{a}_t \in \mathbb{R}^{d_a}$. Observations satisfy $\mathbf{o}_t = f_t(\mathbf{s}_t)$, where f_t is a diffeomorphism onto its image. We allow varying temporal connectivity: $\mathbf{s}_t \to \mathbf{a}_t$ for all t, and $\mathbf{a}_t \to \mathbf{s}_{t+1}$, $\mathbf{s}_t \to \mathbf{s}_{t+1}$

 \mathbf{s}_{t+1} whenever the boundary $t \to t+1$ is connected; both edges into \mathbf{s}_{t+1} are omitted when it is disconnected. A Structural Causal Model (SCM) consistent with these is

$$\mathbf{a}_t = \pi_t(\mathbf{s}_t, \eta_t), \quad \mathbf{s}_{t+1} = \begin{cases} F_t(\mathbf{s}_t, \mathbf{a}_t, \xi_t), & \text{if } t \to t+1 \text{ is connected,} \\ F_t^0(\xi_t), & \text{otherwise,} \end{cases}$$
 (1)

with independent noises η_t, ξ_t . We define tasks $\{\mathbf{g}_i\}_{i=1}^M$ as colliders among different time steps, that is, $\mathbf{s}_t \to \mathbf{a}_t \to \mathbf{g}_i$ if the time step t is relevant to \mathbf{g}_i . The visualization of the process is in Figure 1, and the reasons to define tasks as colliders instead of others are as follows:

Remark 1 (Why are tasks colliders?). Modeling a shared task g_i as a collider is essential for capturing the coordinated nature of actions within a plan.

- Confounder/Mediator: The structures $\mathbf{a}_{t_1} \leftarrow \mathbf{g}_i \rightarrow \mathbf{a}_{t_2}$ or $\mathbf{a}_{t_1} \rightarrow \mathbf{g}_i \rightarrow \mathbf{a}_{t_2}$ would imply conditional independence: $\{\mathbf{s}_{t_1}, \mathbf{a}_{t_1}\} \perp \{\mathbf{s}_{t_2}, \mathbf{a}_{t_2}\} \mid \mathbf{g}_i$. This is an unrealistic assumption, as it treats steps within a task as isolated events rather than parts of a coherent strategy.
- **Collider:** The structure $\mathbf{a}_{t_1} \to \mathbf{g}_i \leftarrow \mathbf{a}_{t_2}$ correctly induces conditional dependence: $\{\mathbf{s}_{t_1}, \mathbf{a}_{t_1}\} \not \perp \{\mathbf{s}_{t_2}, \mathbf{a}_{t_2}\} \mid \mathbf{g}_i$. This captures the intuition that time steps within a task are interdependent, since they all target the same task.

Given the observed variables $\{\mathbf{o}_t\}_{t=1}^T$ and the global set of tasks $\{\mathbf{g}_i\}_{i=1}^M$, our goal is first to identify the structure linking time steps and tasks (Section 3), and then, within each latent state \mathbf{s}_t , to isolate the components relevant to the associated tasks (Section 4). All theoretical guarantees need to be achieved in the general nonparametric setting without additional information.

3 Learning Temporal Task Structure

84

85

86 87 88

89 90

91

96

97

98

99

111

We first establish the identifiability of the time-task structure in the general setting. This structure is essential, as it forms the foundation for recovering task-relevant latent representations within each step. Without knowing which tasks are active at which times, disentangling latent variables at the step level would be ill-posed.

100 The most relevant prior work is Qiu et al. (2024), which also models tasks as colliders and seeks to recover their structure in an unsupervised manner. Their method, however, relies on sequential non-102 negative matrix factorization, a heuristic decomposition without identifiability guarantees for the 103 true structure. Our framework provides provable identifiability under a much more general setting: 104 (i) the data–generating process is fully nonparametric, with no auxiliary information or restrictive 105 assumptions; (ii) tasks may freely interleave over time, rather than appearing in fixed sequential 106 order; and (iii) temporal dependence may vanish, allowing the sequence to contain arbitrary discon-107 nections. Despite these challenges, we prove that the structure between time steps and tasks is iden-108 tifiable under standard conditions. This result forms the first pillar of our framework: a principled 109 characterization of temporal task structure in the general regime without additional information. 110

3.1 Characterization of Pair-wise Structure

We assume T time steps, partitioned into N contiguous segments of equal length L=T/N, with $L\geq 2$ and $N\mid T$. Let

$$S = \{S_1, ..., S_N\}, \qquad S_i = \{s_{(i-1)L+1}, ..., s_{iL}\}.$$
 (2)

All states within a segment share the same set of active tasks, and each task g_i must appear in at least two segments. Segments can be short (as few as two steps), ensuring flexibility in capturing state changes. To formalize the conditions used in our theory, we introduce the following notion.

117 **Definition 1** (Band conditioning set). For k < v and task \mathbf{g}_i , define

$$\mathbf{Z}_{\text{band}}(k, v, i) = \{\mathbf{s}_{kL-1}, \mathbf{s}_{kL+1}, \mathbf{s}_{vL-1}, \mathbf{s}_{vL+1}\} \cap \{\mathbf{s}_1, \dots, \mathbf{s}_T\} \cup \{\mathbf{g}_i\},\$$

with out-of-range indices omitted.

Our main result is the following, with the standard Markov and Faithfulness conditions.

Assumption 1 (Markov and Faithfulness (Spirtes et al., 2000)). Let G be a Directed Acyclic Graph (DAG) and P a distribution over variables V. The Markov property requires that each $X \in V$ is independent of its non-descendants given its parents in G. The Faithfulness requires that P entails no conditional independence relations beyond those implied by the Markov property of G.

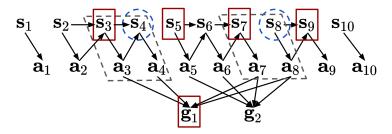


Figure 2: A quick example for Theorem 1. We test whether $S_k = \{s_3, s_4\}$ and $S_v = \{s_7, s_8\}$ belong to task g_1 by checking the conditional dependence $s_4 \not \perp s_8 \mid \mathbf{Z}_{band}(k, v, 1)$, where $\mathbf{Z}_{band}(k, v, 1) = \{s_3, s_5, s_7, s_9, g_1\}$. Since s_4 and s_8 are conditionally dependent given $\mathbf{Z}_{band}(k, v, 1)$, \mathbf{g}_1 is identified as (one of) the underlying tasks. Note that our theory accommodates arbitrary disconnections between time steps (e.g., s_1 and s_2), multiple tasks, and arbitrarily interleaving task structures.

Theorem 1. Assume the Markov property and Faithfulness with respect to the graph above, and $L \geq 2$. Fix k < v and a task \mathbf{g}_i . Then \mathbf{g}_i is relevant to segments \mathbf{S}_k and \mathbf{S}_v if and only if

$$\mathbf{s}_{kL} \not\perp \mathbf{s}_{vL} \mid \mathbf{Z}_{\mathrm{band}}(k, v, i).$$

Proof Sketch. The proof (Appendix A.2) relies on characterizing all possible d-connecting paths between \mathbf{s}_{kL} and \mathbf{s}_{vL} under the band conditioning set. Conditioning on the immediate boundary states blocks any path that propagates purely through the temporal dynamics, so dependence can only be transmitted through a shared task. Since tasks have only incoming edges, any task other than \mathbf{g}_i appears as a closed collider and blocks the path, which implies that \mathbf{g}_i must be the unique source of dependence. Careful consideration of local structures and corner cases then shows that the only admissible d-connecting paths are those where actions adjacent to \mathbf{s}_{kL} and \mathbf{s}_{vL} both feed into \mathbf{g}_i .

Implication. Theorem 1 provides a provable way to determine whether two segments share the 133 same task \mathbf{g}_i , giving an exact characterization of temporal task relevance (visualized in Fig. 2). 134 This is powerful: once we can identify the corresponding tasks of any pair of segments, the entire 135 task structure can be discovered. Moreover, the condition is testable directly from observed data, 136 since conditional independence is preserved under the invertible map $\mathbf{o}_t = f_t(\mathbf{s}_t)$ and the task 137 variables \mathbf{g}_i are observed. Hence the procedure requires no parametric assumptions and is broadly 138 applicable. Finally, the result does not rely on restrictive structural constraints, allowing tasks to 139 appear, disappear, and interleave in arbitrary order across time, and sequences can be disconnected. 140 Since all states within a segment share the same task set, conditional independence (CI) tests in-141 volving the boundary states are equivalent to tests involving any other pair of states within the two segments (provided L > 2). Intuitively, this homogeneity means that the specific choice 143 of representative states does not matter: any pair of states across two segments encodes the 144 same task-level dependence. For example, $\mathbf{s}_{kL} \not\perp \mathbf{s}_{vL} \mid \mathbf{Z}_{\mathrm{band}}(k, v, i)$ is equivalent to $\mathbf{s}_{kL-1} \not\perp$ $\mathbf{s}_{vL-1} \mid \{\mathbf{s}_{kL-2}, \mathbf{s}_{kL}, \mathbf{s}_{vL-2}, \mathbf{s}_{vL}\} \cap \{\mathbf{s}_1, \dots, \mathbf{s}_T\} \cup \{\mathbf{g}_i\}$. This invariance ensures that identifiability does not hinge on an arbitrary boundary choice, but is intrinsic to the task structure itself. 147

L > 2. Fix k < v and a task \mathbf{g}_i . Then \mathbf{g}_i is relevant to segments \mathbf{S}_k and \mathbf{S}_v if and only if

Corollary 1. Assume the Markov property and Faithfulness with respect to the graph above, and

150 for any $j \in \{(k-1)L+1, \dots, kL\}$ and $q \in \{(v-1)L+1, \dots, vL\}$.

126

127

128

129

130

131

132

148

149

This corollary does not impose additional conditions but establishes an equivalent characterization, guaranteed by the basic coherence of the tasks. It strengthens the applicability of Thm. 1 by showing that task relevance can be tested using arbitrary representatives within segments, not only their boundaries. Conceptually, this flexibility highlights that identifiability of the temporal task structure arises from the global dependency pattern induced by colliders, rather than from local temporal adjacency. As a consequence, the result is robust to segmentation choices and ensures that the recovered structure reflects intrinsic properties of the underlying process rather than artifacts.

3.2 Discovering Global Task Structure

158

173

186

Building on Theorem 1 and Corollary 1, the characterization of task relevance naturally yields an algorithmic procedure. With the proposed test, one can systematically determine whether two segments share a common task. Aggregating these pairwise tests across all segment pairs yields the complete temporal task structure, as detailed in Algorithm 1.

Proposition 1. Assume the conditions of Theorem 1. If the CI test is an oracle, Algorithm 1 exactly recovers the temporal task structure.

The procedure is not only theoretically solid but also computationally efficient, which scales with the temporal horizon rather than the observation dimension. Moreover, because conditional independence is preserved under the invertible observation map, the tests can be performed directly in the observed space, without knowledge of the latent states or parametric assumptions on the dynamics. This provides an operational bridge from identifiability theory to practice: temporal task structure can be recovered by a simple, general, and provably correct algorithm, even in environments with arbitrary interleaving, recurrence, and disconnections across time.

Algorithm 1: Global task structure discovery

```
Input: Segments \mathbf{S}_{1:N} of length L \geq 2; tasks \mathbf{G} = \{\mathbf{g}_{1:M}\}
Output: Segment–task sets \{\mathcal{T}(\mathbf{S}_k)\}_{k=1}^N and step labels \{\mathcal{T}(t)\}_{t=1}^T
\mathcal{T}(\mathbf{S}_{1:N}) \leftarrow [\emptyset]^N; \quad \mathcal{P} \leftarrow \{(k,v) \mid 1 \leq k < v \leq N\}
ForEach i \in [1..M] Do

ForEach (k,v) \in \mathcal{P} Do

If \mathbf{s}_{kL} \not \sqsubseteq \mathbf{s}_{vL} \mid \mathbf{Z}_{\mathrm{band}}(k,v,i) Then

\mathcal{T}(\mathbf{S}_k) \leftarrow \mathcal{T}(\mathbf{S}_k) \cup \{\mathbf{g}_i\}; \quad \mathcal{T}(\mathbf{S}_v) \leftarrow \mathcal{T}(\mathbf{S}_v) \cup \{\mathbf{g}_i\}
ForEach k \in [1..N] Do

ForEach k \in [1..N] Do

ForEach k \in [1..N] Do

Return: \{\mathcal{T}(\mathbf{S}_k)\}_{k=1}^N, \quad \{\mathcal{T}(t)\}_{t=1}^T
```

4 Learning Task-Relevant Representation

Having established the identifiability of temporal task structure, we now turn to the problem of 174 learning task-relevant representations within each time step. Identifying which tasks are active at 175 which times clarifies the dynamics across segments and ensures that temporal dependencies are 176 177 properly aligned with task boundaries. This strengthens the focus on the temporal dimension, but it does not yet resolve the finer question of representation: within a single latent state s_t , only a subset 178 179 of variables may be relevant to the task, while the rest correspond to nuisance factors. To obtain a minimal yet sufficient representation, we must therefore dig deeper into the latent space of s_t and 180 disentangle the components that are truly task-relevant from those that are irrelevant. 181 Identifiability concerns recovering the unique ground truth s_t from two observationally equivalent 182 models $\mathbf{o}_t = f_t(\mathbf{s}_t)$ and $\mathbf{o}_t = \hat{f}_t(\hat{\mathbf{s}}_t)$. Let $\mathbf{g} = u(\mathbf{s}, \theta)$ and $\hat{\mathbf{g}} = \hat{u}(\hat{\mathbf{s}}, \hat{\theta})$, where θ an $\hat{\theta}$ denote 183 variables other than s and $\hat{\mathbf{s}}$. These mappings exist due to the dependency structure $\mathbf{s}_t \to \mathbf{a}_t \to \mathbf{g}_i$. 184 With slight abuse of notation, we mostly omit θ and $\hat{\theta}$ and write $\mathbf{g} = u(\mathbf{s})$ and $\hat{\mathbf{g}} = \hat{u}(\hat{\mathbf{s}})$ for brevity. 185

4.1 Identifiability with a Generalist Model

We begin by asking what can be achieved without imposing any structural constraint beyond observational equivalence. That is, we consider a *generalist model* without explicitly being regularized to focus on the corresponding tasks. While such a model may capture the necessary information for prediction, its ability to recover the ground-truth task—relevant latent representation is limited.

Additional Notation. For a vector-valued function $u: \mathbb{R}^{d_s} \to \mathbb{R}^{d_g}$, we denote by $J_u(\mathbf{s}_t)$ the Jacobian matrix with respect to \mathbf{s}_t , whose (i,j) entry is $\partial u_i/\partial s_{t,j}$. For a vector or matrix A, we write $\mathcal{I}(A)$ for the set of indices corresponding to its nonzero entries, and $\|\mathcal{I}(A)\|$ for its cardinality (the number of nonzeros, i.e., the ℓ_0 norm). We denote $I_k \subseteq [d_s]$ as the set of indices of the latent variables relevant to task g_k , and \mathbf{s}_{t,I_k} as the corresponding set of latent variables.

Proposition 2. Assume that, for each $i \in [d_g]$, there exists a set \mathcal{N}_i of $\|\mathcal{I}(J_u(\mathbf{s}_t)_{i,\cdot})\|$ distinct points such that the corresponding Jacobian row vectors

$$\left(\frac{\partial u_i}{\partial s_{t,1}}, \frac{\partial u_i}{\partial s_{t,2}}, \dots, \frac{\partial u_i}{\partial s_{t,d_s}}\right)\Big|_{\mathbf{s_t}=\mathbf{s}_t^{(l)}}, \quad l \in \mathcal{N}_i,$$

are linearly independent, and $\mathcal{I}\left(\left(J_u(\mathbf{s}_t^{(l)})M\right)_{i,\cdot}\right)\subseteq\mathcal{I}\left(\left(J_{\hat{u}}(\hat{\mathbf{s}}_t^{(l)})\right)_{i,\cdot}\right)$, where M is a matrix sharing the nonzero index set of matrix-valued function $M'(\mathbf{s},\hat{\mathbf{s}})$ in $J_u(\mathbf{s})M'(\mathbf{s},\hat{\mathbf{s}})=J_{\hat{u}}(\hat{\mathbf{s}})$. Then, for any task \mathbf{g}_k with latent index set I_k , the number of estimated task-relevant latent variables is larger than that of the ground truth, i.e.,

 $\|\mathcal{I}((J_{\hat{u}})_{i,\cdot})\| \geq \|\mathcal{I}((J_u)_{i,\cdot})\|.$

Proof Sketch. The argument starts by connecting the support of the Jacobian to the underlying dependency graph. The span condition ensures that the information is being preserved during estimation, and thus no true dependency can be eliminated in the transformation between s and $\hat{\mathbf{s}}$. Equivalently, the nonzero pattern of $J_u(\mathbf{s})$ must be contained within that of $J_{\hat{u}}(\hat{\mathbf{s}})$. Translated back to the task-latent structure, this implies that the number of the estimated task-relevant latent variables, as captured by the support, is always a superset of the true one.

Implication. This result shows that, without explicit modelling of specific tasks, generalist models tend to learn a representation that is larger than necessary. The requirement of sufficient nonlinearity rules out degenerate cases where samples concentrate on an extremely small subset (e.g., as few as several samples), and is standard in identifiability analyses of nonlinear models (Lachapelle et al., 2022; Zheng et al., 2022). The conclusion is intuitive: a sufficiently expressive foundation model can capture a representation that contains all information needed for downstream tasks.

At the same time, the guarantee $\|\mathcal{I}(J_{\hat{u}})_{i,\cdot}\| \geq \|\mathcal{I}(J_u)_{i,\cdot}\|$ remains weak: it ensures only that the estimated representation is no smaller in *size* than the true one, not that it matches it or recovers the correct variables. In practice, this means a generalist model often learns an overcomplete representation, where task-relevant variables may still be missed or entangled with irrelevant ones. Worse, the inequality provides no guarantee on recovering variable values since the enlarged representation may distort or discard essential information. This formalizes the intuition that while frontier generalist models are expressive enough to encode all task information, without additional regularization they fail to isolate the minimal task-relevant latent representation.

4.2 From Generalist to Specialist

222

223

225

226

227

228

229

The previous result shows that a generalist model often produces an enlarged representation, estimating more task-relevant variables than truly exist. Such oversizing does not guarantee that all genuine factors are preserved; irrelevant latents may be included, while essential ones can still be distorted or obscured. To recover the *true* task-relevant representation, additional inductive bias is needed. A natural choice is sparsity regularization on the estimated task-latent structure, which enforces minimality in the recovered structure. Intuitively, sparsity prunes away superfluous dimensions and curbs over-expansion, ensuring that the final representation retains only the variables genuinely required for each task.

Theorem 2. Consider two observationally equivalent generative processes $\mathbf{o}_t = f_t(\mathbf{s}_t)$ and $\mathbf{o}_t = \hat{f}_t(\hat{\mathbf{s}}_t)$, and assume the conditions in Proposition 2. Then, for any task \mathbf{g}_k with latent index set I_k , with a sparsity regularization

$$\|\mathcal{I}(J_{\hat{u}})\| \leq \|\mathcal{I}(J_u)\|,$$

under some permutation π , the estimated task-relevant latent variables $\hat{\mathbf{s}}_{t,\pi(I_k)}$ are an invertible function h_k of only the ground-truth task-relevant latent variables \mathbf{s}_{t,I_K} , i.e.,

$$\hat{\mathbf{s}}_{t,\pi(I_k)} = h_k(\mathbf{s}_{t,I_K}).$$

Proof Sketch. Under the span and support assumptions from Proposition 2, we first show that every nonzero entry of $J_u(\hat{\mathbf{s}})$ must correspond to a nonzero entry of $J_{\hat{u}}(\hat{\mathbf{s}})$, up to a column permutation π . Sparsity regularization enforces that no additional entries can remain nonzero, which upgrades inclusion into exact equivalence of supports. Finally, algebraic analysis helps move from structure to variables, exploiting the separation between task-relevant and task-irrelevant latents.

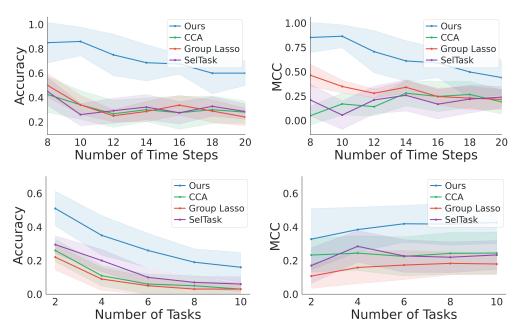


Figure 3: Performance for temporal task structure identification. Top: varying the number of time steps T (with T/5 tasks). Bottom: varying the number of tasks M (with 20 time steps).

Implication. *Practically*, Theorem 2 establishes the formal guarantees on going from a generalist to a specialist model. It shows that, based on the general guarantee in Proposition 2, a simple sparsity regularization is sufficient to disentangle task-relevant latent variables from the irrelevant ones. Unlike the generalist guarantee, which recovers a superset of the true support, the sparsity constraint sharpens recovery to the variable-level and disentangles irrelevant parts. Conceptually, this result highlights the necessity of moving from generalist to specialist modeling: while a generalist can cover all possible dependencies, only task-specific modeling with appropriate regularization yields a representation that is both minimal and faithful. This provides a principled justification for why specialist models can achieve disentangled task representations where generalist models cannot.

Theoretically, our result suggests a new strategy for provably uncovering the latent variables underlying the observational world. Importantly, because we allow arbitrary disconnections between time steps, Theorem 2 also covers the i.i.d. setting. This is a substantially harder case than prior work that exploits temporal information or domain shifts, since changes across time or environments inherently provide extra signals for identification, whereas identifiability in the absence of changes is notoriously difficult. Existing i.i.d. results rely either on restrictive functional assumptions (Taleb & Jutten, 1999; Buchholz et al., 2022) or graphical criteria on the underlying structure (Moran et al., 2021; Zheng et al., 2022) to achieve full component-wise identifiability. By contrast, our focus is not on recovering every individual latent, but rather on identifying all task-relevant ones as a subgroup. This relaxation allows us to bypass such strong assumptions and still establish general identifiability guarantees. Beyond our setting, this perspective may prove methodologically useful for a wide range of latent-variable problems, where isolating task-relevant latents is already of central importance.

5 Experiments

In this section, we present comprehensive empirical results supporting our theory on both temporal task structure learning and task-relevant representation learning across diverse settings. Due to page limits, some setup details are deferred to Appendix B.

Identifiability of Temporal Task Structure. We evaluate whether the proposed algorithm can recover temporal task structures under challenging conditions, including disconnected temporal relations and arbitrarily interleaving tasks. Two setups are considered: (1) varying the number of time steps T from 8 to 20 with T/5 tasks, and (2) varying the number of tasks M from 2 to 10 with 20 time steps. To maximize structural complexity, we set the minimum segment length to 2 and randomly generate the task–time step dependencies. Additionally, 20% of the dependencies between

consecutive segments are randomly removed. Each dataset contains 10,000 samples generated from linear Gaussian SCMs. All results are from 10 random runs with Fisher's z-test (Fisher, 1921).

For both settings, we report accuracy and Matthews correlation coefficient (MCC) of the tasks identified. For baselines, we consider classical CCA (Anderson, 2003) and Group Lasso (Yuan & Lin, 2006), as well as the most recent SelTask (Qiu et al., 2024). Results are summarized in Fig. 3. Our method dominates across all T and M in both accuracy and MCC. As expected, performance degrades as the problem becomes harder (larger T or M), but the gap to baselines persists.

Real-World Structure. To explore whether we can identify real-world structures between tasks and time steps, we further conduct experiments on the recent SportsHHI video dataset (Wu et al., 2024). For each time frame in the video, the objective is to discover its corresponding task labels, which in this context correspond to the behaviors of humans captured in the video. Because the dataset involves multiple individuals with complex and overlapping interactions, each frame typically contains multiple task labels, resulting in highly intricate task structures. This makes SportsHHI a challenging and suitable testbed for stress-testing the identification.

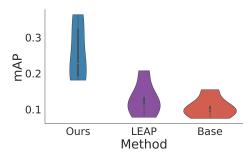


Figure 4: Real-world temporal task structure discovery on SportsHHI.

Following common practice, we use a pretrained CLIP encoder (Radford et al., 2021) to obtain visual embeddings o and task embeddings g, and employ a variational autoencoder to estimate the latent state variables s. The latent transition dynamics between consecutive states are parameterized by an MLP, while conditional mutual information (CMI) is used as a proxy for conditional independence to mitigate the curse of dimensionality in statistical testing. We compare our approach against two baselines: (i) applying Alg. 1 directly to observed variables instead of latent ones (replacing s with o), and (ii) LEAP (Yao et al., 2021), a representative method for learning latent temporal representations with identifiability guarantees. Following prior work, we evaluate using mean average precision (mAP). The results in Fig. 4 demonstrate that modeling the complexity of general temporal task structures is essential for accurate discovery in complex real-world scenarios.

Identifiability of Task-Relevant Representation.

After establishing identifiability of the temporal task structure, we zoom in on a single step and evaluate recovery of the task-relevant latent representation conditioned on the corresponding tasks. The datagenerating process follows the theoretical setup, with an MLP using Leaky ReLU as the nonlinear function. For estimation, we employ a VAE with ℓ_1 regularization on the task-latent structure. As the evaluation metric, we report the R^2 between the estimated and ground-truth latent components: higher values indicate accurate recovery of relevant parts, while lower values indicate effective separation from

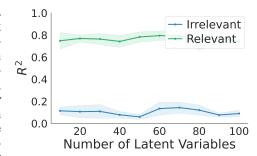


Figure 5: R^2 scores for relevant and irrelevant parts under varying dimensions.

irrelevant parts. Figure 5 shows a clear gap: (1) task-relevant representations are successfully disentangled from irrelevant ones (low \mathbb{R}^2 for irrelevant parts), and (2) the estimated task-relevant part captures most of the information in the ground-truth one (high \mathbb{R}^2 for relevant parts). These provide rigorous validation of the identifiability theory, confirming that task-relevant latent variables can be uncovered as a group with both information preservation and irrelevance disentanglement.

Task-Relevant Latents in Realistic Vision. We next investigate the recovery of task-relevant latent representations in realistic scenarios. Since ground-truth latents are usually unavailable in practice, direct comparison with the truth is infeasible. Evaluation therefore turns to human interpretability, where visualizing the identified latents provides key evidence. We construct a dataset of cat images using Flux, with tasks such as "wearing eyeglasses," "wearing a hat," and "wearing a tie," explicitly considering realistic images to align with real-world vision. For estimation, we adopt a GAN-based generator where each task is associated with a learned transformation of the

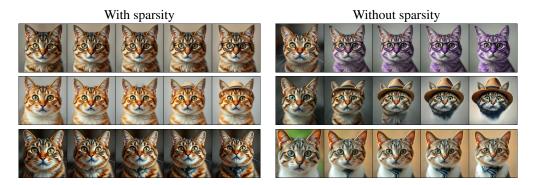


Figure 6: Qualitative comparison of identified task-relevant latents. Tasks include "wearing glasses," "wearing a hat," and "wearing a tie." Left: with sparsity, the model isolates a minimal but sufficient subset of latents aligned with each task. Right: without sparsity, irrelevant factors (e.g., color) become entangled with the task-relevant ones.

latents. Concretely, given s, a task-specific operator modifies only a sparse subset of coordinates by an ℓ_1 -regularized mask, producing masked latents that are then passed to the generator. Figure 6 compares results with and without sparsity. With sparsity, the recovered latents correspond closely to the intended task attributes, while without sparsity, irrelevant factors such as color are entangled with the target tasks. This further supports the task-relevant identifiability and the role of sparsity.

Downstream Benefit. Finally, we show that accounting for complex task structure and identifying task-relevant latent representations also benefits downstream performance. We evaluate our method on the Meta-World benchmark (Yu et al., 2020) by constructing an interleaved offline dataset from multiple tasks. Each task involves a 7-DoF robotic arm manipulating the same object but with opposite goals, providing an ideal testbed for multi-task interference. We collect expert trajectories

Table 1: Generalization on new task.

Method	Success Rate
Ours	0.75
AMF	0.72
CCA	0.50
Group Lasso	0.46
SelTask	0.70

with Soft Actor Critic (SAC) (Haarnoja et al., 2018) and construct interleaved data by segmenting skills and splicing across tasks with transition phases. We extend the Active Fine-Tuning (AMF) framework (Bagatella et al., 2025) with our task discovery algorithm and task-latent sparsity regularization. Following other experiments, we also compare with CCA and Group Lasso, as well as the most relevant work SelTask (Qiu et al., 2024). We train on interleaved tasks (*door-open*, *door-close*, and *drawer-open*) and test generalization to the new task (*drawer-close*) with only 10⁴ samples. Table 1 reports average success rates over 10 seeds, showing that our theory enables the model to learn and generalize more efficiently from past experience.

6 Conclusion and Discussion

In this paper, we initiated the theoretical investigation of learning task-relevant world representations, aiming to move from generalist to specialist. The main challenges lie in the level of generality, which requires handling both complex structures, such as disconnected sequences, interleaving tasks, and frequent switches, and general processes, including nonlinear functions, arbitrary distributions, and the absence of auxiliary information. While we have addressed these, several related questions remain open. First, although identifiability is defined asymptotically and frontier models are often trained on web-scale data, it is still important to understand the finite-sample regime, and the lack of related analysis is a limitation in data-sparse scenarios. Second, our present way of leveraging identifiability is relatively simple, essentially a standard estimator with sparsity regularization. While such simplicity and universality are often advantageous, it is also intriguing to consider identifiability-inspired architectures that depart more radically from existing patterns. A stronger focus on identifiability within the community may reveal barrier-breaking insights that have been overshadowed by the pursuit of purely empirical gains, and we aim to contribute toward this shift.

3 References

- Elizabeth S Allman, Catherine Matias, and John A Rhodes. Identifiability of parameters in latent structure models with many observed variables. *The Annals of Statistics*, 37(6A):3099, 2009.
- Theodore W Anderson, Herman Rubin, et al. Statistical inference in factor analysis. In *Proceedings*of the third Berkeley symposium on mathematical statistics and probability, volume 5, pp. 111–
 150, 1956.
- TW Anderson. An introduction to multivariate statistical analysis. 2003.
- Marco Bagatella, Jonas Hübotter, Georg Martius, and Andreas Krause. Active fine-tuning of multitask policies. In *Forty-second International Conference on Machine Learning*, 2025.
- Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives. *IEEE transactions on pattern analysis and machine intelligence*, 35(8):1798–1828, 2013.
- Johann Brehmer, Pim De Haan, Phillip Lippe, and Taco S Cohen. Weakly supervised causal representation learning. *Advances in Neural Information Processing Systems*, 35:38319–38331, 2022.
- Simon Buchholz, Michel Besserve, and Bernhard Schölkopf. Function classes for identifiable nonlinear independent component analysis. *arXiv* preprint arXiv:2208.06406, 2022.
- Pierre Comon. Independent component analysis, a new concept? *Signal processing*, 36(3):287–314, 1994.
- Ronald A Fisher. On the "probable error" of a coefficient of correlation deduced from a small sample. *Metron*, 1:3–32, 1921.
- Luigi Gresele, Julius von Kügelgen, Vincent Stimper, Bernhard Schölkopf, and Michel Besserve.

 Independent mechanism analysis, a new concept? Advances in Neural Information Processing
 Systems, 2021.
- David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.
- Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *International conference on machine learning*, pp. 1861–1870. Pmlr, 2018.
- Hermanni Hälvä, Sylvain Le Corff, Luc Lehéricy, Jonathan So, Yongjie Zhu, Elisabeth Gassiat, and
 Aapo Hyvärinen. Disentangling identifiable features from noisy data with structured nonlinear
 ICA. Advances in Neural Information Processing Systems, 34, 2021.
- Aapo Hyvärinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning and nonlinear ICA. *Advances in Neural Information Processing Systems*, 29:3765–3773, 2016.
- Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis: Existence and uniqueness results. *Neural networks*, 12(3):429–439, 1999.
- Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent component analysis. *John Wiley & Sons, Inc*, 2001.
- Aapo Hyvärinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ICA using auxiliary variables
 and generalized contrastive learning. In *International Conference on Artificial Intelligence and Statistics*, pp. 859–868. PMLR, 2019.
- Yibo Jiang and Bryon Aragam. Learning nonparametric latent causal graphs with unknown interventions. *Advances in Neural Information Processing Systems*, 36:60468–60513, 2023.
- Jikai Jin and Vasilis Syrgkanis. Learning causal representations from general environments: Identifiability and intrinsic ambiguity. *arXiv preprint arXiv:2311.12267*, 2023.
- Karl G Jöreskog. A general approach to confirmatory maximum likelihood factor analysis. *Psychometrika*, 34(2):183–202, 1969.

- Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam. Identifiability of deep
 generative models without auxiliary information. Advances in Neural Information Processing
 Systems, 35:15687–15701, 2022.
- Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor Akinwande, and Kun Zhang. Partial identifiability for domain adaptation. In *International Conference on Machine Learning*, pp. 11455–11472. PMLR, 2022.
- Joseph B Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. *Linear algebra and its applications*, 18(2):95–138, 1977.
- Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma, Katie Everett, Rémi Le Priol, Alexandre Lacoste, and Simon Lacoste-Julien. Disentanglement via mechanism sparsity regularization: A new principle for nonlinear ICA. *Conference on Causal Learning and Reasoning*, 2022.
- Zijian Li, Ruichu Cai, Guangyi Chen, Boyang Sun, Zhifeng Hao, and Kun Zhang. Subspace identification for multi-source domain adaptation. *Advances in Neural Information Processing Systems*, 36:34504–34518, 2023.
- Yuren Liu, Biwei Huang, Zhengmao Zhu, Honglong Tian, Mingming Gong, Yang Yu, and Kun
 Zhang. Learning world models with identifiable factorization. Advances in Neural Information
 Processing Systems, 36:31831–31864, 2023.
- Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentangled representations. In *international conference on machine learning*, pp. 4114–4124. PMLR, 2019.
- Gemma E Moran, Dhanya Sridhar, Yixin Wang, and David M Blei. Identifiable variational autoencoders via sparse decoding. *arXiv preprint arXiv:2110.10804*, 2021.
- 432 Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference, 1988.
- Yiwen Qiu, Yujia Zheng, and Kun Zhang. Identifying selections for unsupervised subtask discovery.
 Advances in Neural Information Processing Systems, 37:11966–11996, 2024.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 models from natural language supervision. In *International conference on machine learning*, pp.
 8748–8763. PmLR, 2021.
- Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
 Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of the IEEE*, 109(5):612–634, 2021.
- Alexander Shapiro. Identifiability of factor analysis: Some results and open problems. *Linear Algebra and its Applications*, 70:1–7, 1985.
- Nicholas D Sidiropoulos and Rasmus Bro. On the uniqueness of multilinear decomposition of n way arrays. *Journal of Chemometrics: A Journal of the Chemometrics Society*, 14(3):229–239,
 2000.
- Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. *Causation, prediction,* and search. MIT press, 2000.
- Anisse Taleb and Christian Jutten. Source separation in post-nonlinear mixtures. *IEEE Transactions* on signal Processing, 47(10):2807–2820, 1999.
- Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015 IEEE Information Theory Workshop, ITW 2015, pp. 7133169. Institute of Electrical and Electronics Engineers Inc., 2015.

- Burak Varici, Emre Acartürk, Karthikeyan Shanmugam, Abhishek Kumar, and Ali Tajer. Scorebased causal representation learning: Linear and general transformations. *Journal of Machine Learning Research*, 26(112):1–90, 2025.
- Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
 Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
 isolates content from style. Advances in neural information processing systems, 34:16451–16467,
 2021.
- Julius von Kügelgen, Michel Besserve, Liang Wendong, Luigi Gresele, Armin Kekić, Elias Barein boim, David Blei, and Bernhard Schölkopf. Nonparametric identifiability of causal representations from unknown interventions. Advances in Neural Information Processing Systems, 36:
 48603–48638, 2023.
- Lionel Wong, Katherine M Collins, Lance Ying, Cedegao E Zhang, Adrian Weller, Tobias Gerstenberg, Timothy O'Donnell, Alexander K Lew, Jacob D Andreas, Joshua B Tenenbaum, et al.
 Modeling open-world cognition as on-demand synthesis of probabilistic models. arXiv preprint arXiv:2507.12547, 2025.
- Tao Wu, Runyu He, Gangshan Wu, and Limin Wang. SportsHHI: A dataset for human-human interaction detection in sports videos. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 18537–18546, 2024.
- Weiran Yao, Yuewen Sun, Alex Ho, Changyin Sun, and Kun Zhang. Learning temporally causal latent processes from general temporal data. *arXiv preprint arXiv:2110.05428*, 2021.
- Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
 Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
 In *Conference on robot learning*, pp. 1094–1100. PMLR, 2020.
- Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. *Journal* of the Royal Statistical Society Series B: Statistical Methodology, 68(1):49–67, 2006.
- Kun Zhang, Shaoan Xie, Ignavier Ng, and Yujia Zheng. Causal representation learning from multiple distributions: A general setting. In *Forty-first International Conference on Machine Learning*, 2024.
- Yujia Zheng, Ignavier Ng, and Kun Zhang. On the identifiability of nonlinear ICA: Sparsity and beyond. In *Advances in Neural Information Processing Systems*, 2022.

Appendices

6			~		
7	Tab	le of	Con	tent	•

	IUDIO	, OI	Contents	
	A	Proc	ofs	14
		A.1	Notation	14
		A.2	Proof of Theorem 1	14
		A.3	Proof of Corollary 1	15
		A.4	Proof of Proposition 1	16
		A.5	Proof of Proposition 2	16
		A.6	Proof of Theorem 2	17
	В	Sup	plementary Experimental Setups	19
		-		
	C	Stat	ement	20
7				

500 A Proofs

501 A.1 Notation

We first provide a summary of notation in Table 2.

Symbol	Meaning
$o_t \in \mathbb{R}^{d_o}$	Observation at time t
$s_t \in \mathbb{R}^{d_s}$	Latent state at time t
$a_t \in \mathbb{R}^{d_a}$	Action at time t
g_{i}	Task variable i , defined as collider across time steps
M	Total number of tasks
T	Total number of time steps
S_k	Segment k , a block of consecutive latent steps
T(t)	Set of tasks relevant to time step t
$T(S_k)$	Set of tasks relevant to segment S_k
f_t	Observation function $s_t \mapsto o_t$, diffeomorphism onto image
π_t	Action policy $s_t \mapsto a_t$ with noise η_t
F_t	Transition function for connected boundaries
F_t'	Transition function for disconnected boundaries
$J_u(s_t)$	Jacobian of mapping u w.r.t. latent state s_t
I(A)	Index set of nonzero entries of matrix/vector A
I(A)	Cardinality of index set $I(A)$ (i.e., ℓ_0 norm)
$I_k \subseteq [d_s]$	Index set of latents relevant to task g_k
s_{t,I_k}	Latent variables in s_t relevant to g_k

Table 2: Summary of notation.

503 A.2 Proof of Theorem 1

Theorem 1. Assume the Markov property and Faithfulness with respect to the graph above, and $L \ge 2$. Fix k < v and a task \mathbf{g}_i . Then \mathbf{g}_i is relevant to segments \mathbf{S}_k and \mathbf{S}_v if and only if

$$\mathbf{s}_{kL} \not\perp \mathbf{s}_{vL} \mid \mathbf{Z}_{\mathrm{band}}(k, v, i).$$

Notation and Blocking Rules. A path is a sequence of distinct nodes (v_0, \ldots, v_r) with each consecutive pair adjacent. Along a path, a node is a collider if both incident path edges have arrowheads into the node, and a non-collider otherwise. A path is blocked by a conditioning set \mathbf{Z} if it contains a non-collider in \mathbf{Z} or a collider that is neither in \mathbf{Z} nor has a descendant in \mathbf{Z} (i.e., d-separation (Pearl, 1988)). In our graph, tasks have only incoming edges, and tasks have no descendants.

Band Conditioning Set. Throughout this subsection the conditioning set is

$$\mathbf{Z}_{\text{band}}(k, v, i) = \{\mathbf{s}_{kL-1}, \mathbf{s}_{kL+1}, \mathbf{s}_{vL-1}, \mathbf{s}_{vL+1}\} \cap \{\mathbf{s}_1, \dots, \mathbf{s}_T\} \cup \{\mathbf{g}_i\},$$
(3)

with out-of-range indices omitted. Thus only the two immediate inner neighbors $\mathbf{s}_{kL+1}, \mathbf{s}_{vL-1}$ and the two immediate outer neighbors $\mathbf{s}_{kL-1}, \mathbf{s}_{vL+1}$ (when they exist) are conditioned; among tasks only \mathbf{g}_i is conditioned.

Lemma 1 (A d-connecting path uses exactly one task, equal to \mathbf{g}_i). Every path from \mathbf{s}_{kL} to \mathbf{s}_{vL} that is d-connecting given $\mathbf{Z}_{\mathrm{band}}(k,v,i)$ contains exactly one task node, and that task is \mathbf{g}_i .

Proof. Consider any path with no task nodes. Such a path alternates among states and actions and moves in time via $\mathbf{s}_t \to s_{t+1}$, $\mathbf{s}_t \to a_t$ or $a_t \to s_{t+1}$. Any forward traversal from \mathbf{s}_{kL} toward \mathbf{s}_{vL} must pass through the cut state \mathbf{s}_{kL+1} ; symmetrically, any approach into \mathbf{s}_{vL} from the left must pass through \mathbf{s}_{vL-1} . All these cut states are in \mathbf{Z}_{band} and are non-colliders on such chain paths, so the path is blocked. Hence, any d-connected path must include at least one task.

- If a path contains a task $g_j \neq \mathbf{g}_i$, then at g_j both incident edges point into g_j , so g_j is a collider. 522
- Since $g_i \notin \mathbf{Z}_{\text{band}}$ and tasks have no descendants, this collider is closed and the path is blocked. 523
- Therefore no d-connecting path can contain any task other than g_i . 524
- If a path contains two or more tasks, at least one of them is not g_i , which blocks the path by the 525
- previous argument. Thus every d-connecting path contains exactly one task and that task is g_i . 526
- Lemma 2 (Local structure of d-connecting paths). Under the graph and conditioning in Equation 3, 527 every d-connecting path between \mathbf{s}_{kL} and \mathbf{s}_{vL} has one of the four forms 528
 - $\begin{array}{ll} \textit{(I)} & \mathbf{s}_{kL} \rightarrow \mathbf{a}_{kL} \rightarrow \mathbf{g}_i \leftarrow \mathbf{a}_{vL} \leftarrow \mathbf{s}_{vL}, \\ \textit{(III)} & \mathbf{s}_{kL} \leftarrow \mathbf{a}_{kL-1} \rightarrow \mathbf{g}_i \leftarrow \mathbf{a}_{vL} \leftarrow \mathbf{s}_{vL}, \\ \textit{(IV)} & \mathbf{s}_{kL} \leftarrow \mathbf{a}_{kL-1} \rightarrow \mathbf{g}_i \leftarrow \mathbf{a}_{vL-1} \rightarrow \mathbf{s}_{vL}, \\ \end{array}$

(III)
$$\mathbf{s}_{kL} \leftarrow \mathbf{a}_{kL-1} \rightarrow \mathbf{g}_i \leftarrow \mathbf{a}_{vL} \leftarrow \mathbf{s}_{vL}, \quad (IV) \quad \mathbf{s}_{kL} \leftarrow \mathbf{a}_{kL-1} \rightarrow \mathbf{g}_i \leftarrow \mathbf{a}_{vL-1} \rightarrow \mathbf{s}_{vL},$$
 (4)

- with out-of-range indices omitted. 529
- *Proof.* By Lemma 1, any d-connecting path contains exactly the single task g_i .
- Left boundary. The first neighbor of \mathbf{s}_{kL} on any d-connecting path cannot be a state, because the 531
- 532 only state neighbors are s_{kL-1} and s_{kL+1} , both in \mathbf{Z}_{band} and both non-colliders on chain moves,
- which would block the path. Hence the neighbor must be an adjacent action, a_{kL-1} (if kL > 1) or 533
- \mathbf{a}_{kL} . From that action, any continuation to a state would encounter one of the conditioned cut states 534
- as a non-collider, so the next node must be \mathbf{g}_i via an edge $a \to \mathbf{g}_i$. This yields the two left fragments 535
- $\mathbf{s}_{kL} \leftarrow \mathbf{a}_{kL-1} \rightarrow \mathbf{g}_i$ and $\mathbf{s}_{kL} \rightarrow \mathbf{a}_{kL} \rightarrow \mathbf{g}_i$. 536
- Right boundary. Symmetrically, the predecessor of s_{vL} on the path cannot be a state, since the only 537
- state neighbors are s_{vL-1} and s_{vL+1} , which are in \mathbf{Z}_{band} and would block as non-colliders in the 538
- potential additional paths. Specifically, \mathbf{s}_{vL-1} is a non-collider in paths involving $\mathbf{s}_{vL-1} \to \mathbf{s}_{vL}$, 539
- and \mathbf{s}_{vL+1} is a non-collider in paths involving $\mathbf{s}_{vL+1} \to \mathbf{a}_{vL+1}$ or $\mathbf{s}_{vL+1} \to \mathbf{s}_{vL+2}$. Thus the 540
- predecessor must be \mathbf{a}_{vL-1} or \mathbf{a}_{vL} , linked to \mathbf{g}_i by an edge $\mathbf{a} \to \mathbf{g}_i$ traversed in reverse on the path. 541
- This yields the two right fragments $\mathbf{g}_i \leftarrow \mathbf{a}_{vL-1} \rightarrow \mathbf{s}_{vL}$ and $\mathbf{g}_i \leftarrow \mathbf{a}_{vL} \leftarrow \mathbf{s}_{vL}$. 542
- Combining the two left with the two right fragments gives exactly the four forms in Equation 4. On 543
- each such path, \mathbf{g}_i is the unique collider and is in \mathbf{Z}_{band} , while all other nodes are non-colliders that 544
- are not in \mathbf{Z}_{band} , so these paths are d-connecting. 545
- Now we are ready to prove the theorem. 546
- **Theorem 1.** Assume the Markov property and Faithfulness with respect to the graph above, and
- $L \geq 2$. Fix k < v and a task \mathbf{g}_i . Then \mathbf{g}_i is relevant to segments \mathbf{S}_k and \mathbf{S}_v if and only if

$$\mathbf{s}_{kL} \not\perp \mathbf{s}_{vL} \mid \mathbf{Z}_{\mathrm{band}}(k, v, i).$$

- *Proof.* (\Rightarrow) Suppose \mathbf{s}_{kL} and \mathbf{s}_{vL} are conditionally dependent given $\mathbf{Z}_{\text{band}}(k, v, i)$. By Lemma 2, 549
- there exists a d-connecting path of one of the four forms in Equation 4. In each form, the actions 550
- adjacent to \mathbf{s}_{kL} and \mathbf{s}_{vL} that appear on the path are parents of \mathbf{g}_i . Hence \mathbf{g}_i is relevant to segments 551
- S_k and S_v . 552
- (\Leftarrow) Conversely, suppose both intersections are nonempty. Choose $p \in \{kL-1, kL\}$ and $q \in \{kL-1, kL\}$ 553
- $\{vL-1, vL\}$ such that $\mathbf{a}_v \to \mathbf{g}_i$ and $\mathbf{a}_q \to \mathbf{g}_i$. Then one of the four forms in Equation 4 exists. 554
- Along that path, \mathbf{g}_i is the unique collider and is conditioned, while all other nodes are non-colliders 555
- not in $\mathbf{Z}_{\mathrm{band}}(k, v, i)$. Therefore the path is not blocked and 556

$$\mathbf{s}_{kL} \not\perp \mathbf{s}_{vL} \mid \mathbf{Z}_{\text{band}}(k, v, i). \tag{5}$$

This proves the equivalence stated in Theorem 1. 557

A.3 Proof of Corollary 1 558

Corollary 1. Assume the Markov property and Faithfulness with respect to the graph above, and 559 L>2. Fix k< v and a task \mathbf{g}_i . Then \mathbf{g}_i is relevant to segments \mathbf{S}_k and \mathbf{S}_v if and only if

$$\mathbf{s}_j \not \!\! \perp \mathbf{s}_q \ \Big| \ \{\mathbf{s}_{j-1}, \mathbf{s}_{j+1}, \mathbf{s}_{q-1}, \mathbf{s}_{q+1}\} \cap \{\mathbf{s}_1, \dots, \mathbf{s}_T\} \cup \{\mathbf{g}_i\},$$

for any $j \in \{(k-1)L+1, \dots, kL\}$ and $q \in \{(v-1)L+1, \dots, vL\}$.

Proof. Fix k < v, pick any $j \in \{(k-1)L+1, \ldots, kL\}$ and $q \in \{(v-1)L+1, \ldots, vL\}$, and define the local band set

$$\mathbf{Z}_{loc}(j,q,i) = \{\mathbf{s}_{j-1}, \mathbf{s}_{j+1}, \mathbf{s}_{q-1}, \mathbf{s}_{q+1}\} \cap \{\mathbf{s}_1, \dots, \mathbf{s}_T\} \cup \mathbf{g}_i.$$
 (6)

By the same blocking argument as in Lemma 1, any d-connecting path between \mathbf{s}_j and \mathbf{s}_q given $\mathbf{Z}_{\mathrm{loc}}(j,q,i)$ must contain exactly one task node and it must be \mathbf{g}_i . The neighbor of \mathbf{s}_j on any such path cannot be a state, since \mathbf{s}_{j-1} and \mathbf{s}_{j+1} are in $\mathbf{Z}_{\mathrm{loc}}$ and are non-colliders on chain moves, hence they would block. Therefore the path must leave \mathbf{s}_j through an adjacent action \mathbf{a}_{j-1} or \mathbf{a}_j , and from there enter \mathbf{g}_i via an edge $\mathbf{a} \to \mathbf{g}_i$. A symmetric argument holds at the right end near \mathbf{s}_q . Consequently every d-connecting path between \mathbf{s}_j and \mathbf{s}_q given $\mathbf{Z}_{\mathrm{loc}}(j,q,i)$ has one of the four forms

(I)
$$\mathbf{s}_{j} \to \mathbf{a}_{j} \to \mathbf{g}_{i} \leftarrow \mathbf{a}_{q} \leftarrow \mathbf{s}_{q}$$
, (II) $\mathbf{s}_{j} \to \mathbf{a}_{j} \to \mathbf{g}_{i} \leftarrow \mathbf{a}_{q-1} \to \mathbf{s}_{q}$, (III) $\mathbf{s}_{j} \leftarrow \mathbf{a}_{j-1} \to \mathbf{g}_{i} \leftarrow \mathbf{a}_{q} \leftarrow \mathbf{s}_{q}$, (IV) $\mathbf{s}_{j} \leftarrow \mathbf{a}_{j-1} \to \mathbf{g}_{i} \leftarrow \mathbf{a}_{q-1} \to \mathbf{s}_{q}$, (7)

- with out-of-range indices omitted. On each such path g_i is the unique collider and is conditioned, while all other nodes are non-colliders that are not conditioned, so the path is d-connecting.
- Note that states inside the same segment share the same task set, and task nodes have only incoming
- edges from actions. It follows that, if \mathbf{g}_i is relevant to \mathbf{S}_k and \mathbf{S}_v then there exist $p \in j-1, j$ and
- 575 $r \in q-1, q \text{ such that } \mathbf{a}_p \to \mathbf{g}_i \text{ and } \mathbf{a}_r \to \mathbf{g}_i.$
- Then we prove the equivalence as follows.
- 577 (\Rightarrow) If \mathbf{g}_i is relevant to \mathbf{S}_k and \mathbf{S}_v , pick $p \in j-1, j$ and $r \in q-1, q$ with $\mathbf{a}_p \to \mathbf{g}_i$ and $\mathbf{a}_r \to \mathbf{g}_i$ as
- above. Then one of the four local forms in Equation 7 exists and is d-connecting given $\mathbf{Z}_{loc}(j,q,i)$,
- 579 hence

$$\mathbf{s}_{j} \not \perp \mathbf{s}_{q} \mid \mathbf{Z}_{loc}(j,q,i).$$
 (8)

- Conversely, if \mathbf{s}_j and \mathbf{s}_q are conditionally dependent given $\mathbf{Z}_{loc}(j,q,i)$, then by Equation 7 the actions adjacent to \mathbf{s}_j and \mathbf{s}_q that lie on a d-connecting path are parents of \mathbf{g}_i . Together with the segment homogeneity, \mathbf{g}_i is relevant to \mathbf{S}_k and \mathbf{S}_v .
- This proves the stated equivalence for arbitrary $j \in \mathbf{S}_k$ and $q \in \mathbf{S}_v$ with L > 2.

584 A.4 Proof of Proposition 1

- Proposition 1. Assume the conditions of Theorem 1. If the CI test is an oracle, Algorithm 1 exactly recovers the temporal task structure.
- Proof. Fix a task \mathbf{g}_i and a segment \mathbf{S}_k . If \mathbf{S}_k truly contains \mathbf{g}_i , then for \mathbf{S}_v with $v \neq k$ that also contains \mathbf{g}_i , by Theorem 1, there must be

$$\mathbf{s}_{kL} \not\perp \mathbf{s}_{vL} \mid \mathbf{Z}_{\text{band}}(k, v, i).$$
 (9)

- The oracle CI test returns dependence, so Algorithm 1 adds \mathbf{g}_i to both $\mathcal{T}(\mathbf{S}_k)$ and $\mathcal{T}(\mathbf{S}_v)$.
- Conversely, if $\mathcal{T}(\mathbf{S}_k)$ does not contain \mathbf{g}_i , then Theorem 1 implies conditional independence for
- all pairs involving S_k , hence the algorithm never adds g_i to $\mathcal{T}(S_k)$. Therefore the recovered seg-
- ment-task incidence is exact. Per-step labels are correct by assignment.

593 A.5 Proof of Proposition 2

Proposition 2. Assume that, for each $i \in [d_g]$, there exists a set \mathcal{N}_i of $\|\mathcal{I}(J_u(\mathbf{s}_t)_{i,\cdot})\|$ distinct points such that the corresponding Jacobian row vectors

$$\left(\frac{\partial u_i}{\partial s_{t,1}}, \frac{\partial u_i}{\partial s_{t,2}}, \dots, \frac{\partial u_i}{\partial s_{t,d_s}}\right)\Big|_{\mathbf{s}_t = \mathbf{s}_t^{(l)}}, \quad l \in \mathcal{N}_i,$$

are linearly independent, and $\mathcal{I}\left((J_u(\mathbf{s}_t^{(l)})M)_{i,\cdot}\right)\subseteq\mathcal{I}\left((J_{\hat{u}}(\hat{\mathbf{s}}_t^{(l)}))_{i,\cdot}\right)$, where M is a matrix sharing the nonzero index set of matrix-valued function $M'(\mathbf{s},\hat{\mathbf{s}})$ in $J_u(\mathbf{s})M'(\mathbf{s},\hat{\mathbf{s}})=J_{\hat{u}}(\hat{\mathbf{s}})$. Then, for any

task \mathbf{g}_k with latent index set I_k , the number of estimated task-relevant latent variables is larger than that of the ground truth, i.e.,

$$\|\mathcal{I}((J_{\hat{u}})_{i,\cdot})\| \geq \|\mathcal{I}((J_u)_{i,\cdot})\|.$$

600 *Proof.* Since $\mathbf{o}_t = f_t(\mathbf{s}_t)$ and $o = \hat{f}_t(\hat{\mathbf{s}}_t)$ are observationally equivalent, there exists an invertible 601 mapping ϕ such that

$$\hat{\mathbf{s}}_t = \hat{f}_t^{-1} \circ f_t(\mathbf{s}_t) = \phi(\mathbf{s}_t), \tag{10}$$

with inverse ϕ^{-1} . By the chain rule,

$$J_{\hat{u}} = J_u J_{\phi^{-1}}. {11}$$

Fix $i \in [d_g]$. Consider the set \mathcal{N}_i of $\|\mathcal{I}((J_u)_{i,\cdot})\|$ distinct points and the corresponding Jacobian row vectors

$$\left(\frac{\partial u_i}{\partial \mathbf{s}_{t,1}}, \dots, \frac{\partial u_i}{\partial s_{t,d_s}}\right)\Big|_{\mathbf{s}_t = \mathbf{s}_t^{(l)}}, \quad l \in \mathcal{N}_i,$$
(12)

which are linearly independent by assumption.

Now construct a matrix M with $\mathcal{I}(M)=\mathcal{I}(J_{\phi^{-1}}(\hat{\mathbf{s}}))$. By the index-set inclusion assumption, for each $l\in\mathcal{N}_i$ we have

$$\mathcal{I}((J_u(\mathbf{s}_t^{(l)})M)_{i,\cdot}) \subseteq \mathcal{I}((J_{\hat{u}}(\hat{\mathbf{s}}_t^{(l)}))_{i,\cdot}). \tag{13}$$

608 Thus,

$$(J_u(\mathbf{s}_t^{(l)}))_{i,\cdot}M \in \operatorname{span}\{e_j : j \in \mathcal{I}((J_{\hat{u}})_{i,\cdot})\}. \tag{14}$$

Taking linear combinations across $l \in \mathcal{N}_i$ preserves this property, so in particular,

$$M_{j,\cdot} \in \operatorname{span}\{e_k : k \in \mathcal{I}((J_{\hat{u}})_{i,\cdot})\}, \quad \forall j \in \mathcal{I}((J_u)_{i,\cdot}).$$
 (15)

Since $J_{\phi^{-1}}(\hat{\mathbf{s}}_t)$ is invertible, there exists a permutation π such that

$$(J_{\phi^{-1}}(\hat{\mathbf{s}}_t))_{i,\pi(i)} \neq 0, \quad \forall j \in \{1,\dots,d_s\}.$$
 (16)

Because $\mathcal{I}(M) = \mathcal{I}(J_{\phi^{-1}}(\hat{\mathbf{s}}_t))$, we obtain

$$M_{i,\pi(i)} \neq 0, \quad \forall j \in \mathcal{I}((J_u)_{i,\cdot}).$$
 (17)

612 Combining this with Equation 15, we conclude

$$\pi(j) \in \mathcal{I}((J_{\hat{u}})_{i,\cdot}), \quad \forall j \in \mathcal{I}((J_u)_{i,\cdot}).$$
 (18)

- Equation 18 shows that each ground-truth relevant index $j \in \mathcal{I}((J_u)_{i,\cdot})$ is mapped to a distinct
- estimated relevant index $\pi(j) \in \mathcal{I}((J_{\hat{u}})_{i,\cdot})$. Therefore, the estimated index set must contain at least
- as many elements as the ground-truth one:

$$\|\mathcal{I}((J_{\hat{u}})_{i,\cdot})\| \ge \|\mathcal{I}((J_{u})_{i,\cdot})\|.$$
 (19)

616 This completes the proof.

617 A.6 Proof of Theorem 2

- Theorem 2. Consider two observationally equivalent generative processes $\mathbf{o}_t = f_t(\mathbf{s}_t)$ and $\mathbf{o}_t = f_t(\mathbf{s}_t)$
- 619 $\hat{f}_t(\hat{\mathbf{s}}_t)$, and assume the conditions in Proposition 2. Then, for any task \mathbf{g}_k with latent index set I_k ,
- 620 with a sparsity regularization

$$\|\mathcal{I}(J_{\hat{u}})\| \leq \|\mathcal{I}(J_u)\|,$$

under some permutation π , the estimated task-relevant latent variables $\hat{\mathbf{s}}_{t,\pi(I_k)}$ are an invertible function h_k of only the ground-truth task-relevant latent variables \mathbf{s}_{t,I_K} , i.e.,

$$\hat{\mathbf{s}}_{t,\pi(I_k)} = h_k(\mathbf{s}_{t,I_K}).$$

- 623 *Proof.* The first part of the proof follows the similar strategy as Proposition 2, and we provide the
- full details for completeness. Since $\mathbf{o}_t = f_t(\mathbf{s}_t)$ and $\mathbf{o}_t = \hat{f}_t(\hat{\mathbf{s}}_t)$ are observationally equivalent,
- there exists an invertible mapping ϕ such that

$$\hat{\mathbf{s}}_t = \hat{f}_t^{-1} \circ f_t(\mathbf{s}_t) = \phi(\mathbf{s}_t), \tag{20}$$

with inverse ϕ^{-1} . By the chain rule,

$$J_{\hat{u}} = J_u J_{\phi^{-1}}. (21)$$

For each $i \in [d_g]$, consider a set \mathcal{N}_i of $\|\mathcal{I}((J_u)_{i,\cdot})\|$ distinct points and the corresponding Jacobians

$$\left(\frac{\partial u_i}{\partial \mathbf{s}_{t,1}}, \frac{\partial u_i}{\partial \mathbf{s}_{t,2}}, \dots, \frac{\partial u_i}{\partial \mathbf{s}_{t,d_s}} \right) \bigg|_{\mathbf{s}=\mathbf{s}^{(l)}}, \quad l \in \mathcal{N}_i.$$
 (22)

- By assumption, the vectors in Equation 22 are linearly independent.
- We now construct a matrix M. Because the row vectors in Equation 22 are linearly independent,
- any row $M_{j,\cdot}$ with $j \in \mathcal{I}((J_u)_{i,\cdot})$ can be expressed as a linear combination of them. That is, there
- exist coefficients $\{\beta_l\}_{l\in\mathcal{N}_i}$ such that

$$M_{j,\cdot} = \sum_{l \in \mathcal{N}_i} \beta_l \left(J_u(\mathbf{s}_t^{(l)}) \right)_{i,\cdot} M. \tag{23}$$

- We require M to satisfy two conditions: (i) for each $i \in [d_g]$, the linear combination in Equation 23 must lie in the span of the canonical basis vectors indexed by $\mathcal{I}((J_{\hat{u}})_{i,\cdot})$, i.e.,
 - $\sum_{l \in \mathcal{N}_i} \beta_l \left(J_u(\mathbf{s}_t^{(l)}) \right)_{i,\cdot} M \in \operatorname{span} \{ e_j : j \in \mathcal{I}((J_{\hat{u}})_{i,\cdot}) \}, \tag{24}$

and (ii) its index set matches that of $J_{\phi^{-1}}(\hat{\mathbf{s}}_t)$:

$$\mathcal{I}(M) = \mathcal{I}(J_{\phi^{-1}}(\hat{\mathbf{s}}_t)). \tag{25}$$

By the index-set inclusion assumption, for all $l \in \mathcal{N}_i$ we have

$$\mathcal{I}((J_u(\mathbf{s}_t^{(l)})M)_{i,\cdot}) \subseteq \mathcal{I}((J_{\hat{u}}(\hat{\mathbf{s}}_t^{(l)}))_{i,\cdot}). \tag{26}$$

636 This guarantees

$$(J_u(\mathbf{s}_t^{(l)}))_{i,\cdot} M \in \operatorname{span}\{e_j : j \in \mathcal{I}((J_{\hat{u}})_{i,\cdot})\}. \tag{27}$$

Taking linear combinations with the coefficients $\{\beta_l\}$, we conclude

$$\sum_{l \in \mathcal{N}} \beta_l \left(J_u(\mathbf{s}_t^{(l)}) \right)_{i,\cdot} M \in \operatorname{span} \{ e_j : j \in \mathcal{I}((J_{\hat{u}})_{i,\cdot}) \}. \tag{28}$$

Equivalently, for every $j \in \mathcal{I}((J_u)_{i,\cdot})$,

$$M_{i,\cdot} \in \operatorname{span}\{e_k : k \in \mathcal{I}((J_{\hat{u}})_{i,\cdot})\}. \tag{29}$$

Since $J_{\phi^{-1}}(\hat{\mathbf{s}}_t)$ is invertible, its determinant is nonzero. Expanding the determinant as a sum over permutations, there must exist a permutation π such that

$$(J_{\phi^{-1}}(\hat{\mathbf{s}}_t))_{i,\pi(j)} \neq 0, \quad \forall j \in \{1,\dots,d_s\}.$$
 (30)

- This establishes a one-to-one correspondence between the indices of \mathbf{s}_t and $\hat{\mathbf{s}}_t$ through π .
- In particular, for every $j \in \mathcal{I}((J_u)_{i,\cdot})$, we have

$$(J_{\phi^{-1}}(\hat{\mathbf{s}}_t))_{j,\pi(j)} \neq 0.$$
 (31)

Because $\mathcal{I}(M) = \mathcal{I}(J_{\phi^{-1}}(\hat{\mathbf{s}}_t))$, this implies

$$M_{i,\pi(j)} \neq 0, \quad \forall j \in \mathcal{I}((J_u)_{i,\cdot}).$$
 (32)

644 Combining this with Equation 29, it follows that

$$\pi(j) \in \mathcal{I}((J_{\hat{u}})_{i,\cdot}), \quad \forall j \in \mathcal{I}((J_u)_{i,\cdot}).$$
 (33)

Therefore, every nonzero entry of J_u has a corresponding nonzero entry of $J_{\hat{u}}$ at the permuted column index:

$$(J_u)_{i,j} \neq 0 \implies (J_{\hat{u}})_{i,\pi(j)} \neq 0.$$
 (34)

Finally, with the sparsity regularization $||J_{\hat{u}}||_0 \le ||J_u||_0$, this implication strengthens to an equivalence:

$$(J_u)_{i,j} \neq 0 \iff (J_{\hat{u}})_{i,\pi(j)} \neq 0. \tag{35}$$

For $c \in I_k$, we have $c \in \mathcal{I}((J_u)_{k,\cdot})$. Hence, by Equation 29,

$$M_{c,\cdot} \in \text{span}\{e_{k'} : k' \in \mathcal{I}((J_{\hat{u}})_{k,\cdot})\}.$$
 (36)

- Suppose, for contradiction, that $M_{c,\pi(r)} \neq 0$ for some $r \in I \setminus I_k$. Then $\pi(r)$ belongs to the index set on the right hand side of Equation 3.6
- set on the right-hand side of Equation 36.
- By Equation 35, this implies that $r \in \mathcal{I}((J_u)_{k,\cdot})$, i.e. $r \in I_k$, contradicting $r \in I \setminus I_k$. Therefore,
- 653 $M_{c,\pi(r)}=0$, which together with $\mathcal{I}(M)=\mathcal{I}(J_{\phi^{-1}}(\hat{\mathbf{s}}_t))$ yields

$$\frac{\partial \mathbf{s}_{t,c}}{\partial \hat{\mathbf{s}}_{t,\pi(r)}} = 0, \quad \forall c \in I_k, \ r \in I \setminus I_k.$$
(37)

- Since ϕ is invertible, there exists an invertible mapping between $\mathbf{s}_{t,c}$ and $\hat{\mathbf{s}}_{t,\pi(c)}$, and $\mathbf{s}_{t,c}$ depends
- only on $\hat{\mathbf{s}}_{t,\pi(c)}$. Moreover, because $r \in I \setminus I_k$ and $c \in I_k$, $\mathbf{s}_{t,r}$ is independent of $\mathbf{s}_{t,c}$. Hence, $\mathbf{s}_{t,r}$
- does not depend on $\hat{\mathbf{s}}_{t,\pi(c)}$, in the sense that their mutual information is zero. Thus, we further have

$$\frac{\partial \mathbf{s}_{t,r}}{\partial \hat{\mathbf{s}}_{t,\pi(c)}} = 0, \quad \forall c \in I_k, \ r \in I \setminus I_k.$$
(38)

- Given the invertibility of the mapping between s_t and \hat{s}_t , the inverse of both Equations 37 and 38
- also holds. Thus, the only dependencies remain within the estimated and ground-truth task-relevant
- parts, completing the proof.

660 B Supplementary Experimental Setups

- In this section, we include further details of the experimental setups not fully elaborated in the main text because of space constraints.
- 663 CMI Surrogate for the CI Test. In high-dimensional settings, when direct conditional indepen-
- dence (CI) testing is computationally infeasible, it is standard to use approximations such as condi-
- tional mutual information (CMI). Below we provide additional details on this surrogate.
- For each pair $(\mathbf{S}_k, \mathbf{S}_v)$ and task \mathbf{g}_i , we replace the CI test

$$H_0: \mathbf{s}_{kL} \perp \mathbf{s}_{vL} \mid \mathbf{Z}_{\text{band}}(k, v, i),$$
 (39)

with an estimate of the conditional mutual information

$$I(\mathbf{s}_{kL}; \mathbf{s}_{vL} \mid \mathbf{Z}_{\text{band}}(k, v, i)) = \mathbb{E}\left[\log \frac{p(\mathbf{s}_{kL}, \mathbf{s}_{vL} \mid \mathbf{Z}_{\text{band}})}{p(\mathbf{s}_{kL} \mid \mathbf{Z}_{\text{band}}) p(\mathbf{s}_{vL} \mid \mathbf{Z}_{\text{band}})}\right]. \tag{40}$$

- Direct estimation with $\mathbf{Z}_{\mathrm{band}}$ can be high dimensional. We therefore learn a task-conditioned rep-
- resentation $\mathbf{c}_i = h_{\phi}(\mathbf{Z}_{\text{band}}(k, v, i))$ and instead test with $I(\mathbf{s}_{kL}; \mathbf{s}_{vL} \mid \mathbf{c}_i)$. If h_{ϕ} is conditionally
- sufficient for $\mathbf{Z}_{\mathrm{band}}$ with respect to $\{\mathbf{s}_{kL},\mathbf{s}_{vL}\}$, then

$$I(\mathbf{s}_{kL}; \mathbf{s}_{vL} \mid \mathbf{Z}_{\text{band}}) = I(\mathbf{s}_{kL}; \mathbf{s}_{vL} \mid \mathbf{c}_i).$$

- We estimate a variational lower bound on $I(\mathbf{s}_{kL}; \mathbf{s}_{vL} \mid \mathbf{c}_i)$ using a conditional InfoNCE objective.
- Let $f_{\theta}(\mathbf{s}_{kL}, \mathbf{s}_{vL}, \mathbf{c}_i)$ be a critic. For each positive pair $(\mathbf{s}_{kL}, \mathbf{s}_{vL}, \mathbf{c}_i)$, draw K negatives $\{\tilde{\mathbf{s}}_{vL}^{(j)}\}_{j=1}^K$
- by shuffling \mathbf{s}_{vL} within mini-batches that share \mathbf{c}_i (or within nearest neighbors of \mathbf{c}_i). Optimize

$$\mathcal{L}_{\text{cNCE}}(\theta, \phi) = \mathbb{E}\left[\log \frac{\exp f_{\theta}(\mathbf{s}_{kL}, \mathbf{s}_{vL}, \mathbf{c}_{i})}{\exp f_{\theta}(\mathbf{s}_{kL}, \mathbf{s}_{vL}, \mathbf{c}_{i}) + \sum_{j=1}^{K} \exp f_{\theta}(\mathbf{s}_{kL}, \tilde{\mathbf{s}}_{vL}^{(j)}, \mathbf{c}_{i})}\right],\tag{41}$$

which lower bounds $I(\mathbf{s}_{kL}; \mathbf{s}_{vL} \mid \mathbf{c}_i)$ up to a constant. After training a single task-conditioned critic across all (k, v, i), define

$$\widehat{I}_{\text{cNCE}}(k, v, i) = \mathbb{E}\left[\log \frac{\exp f_{\theta}(\mathbf{s}_{kL}, \mathbf{s}_{vL}, \mathbf{c}_{i})}{\frac{1}{K} \sum_{j=1}^{K} \exp f_{\theta}(\mathbf{s}_{kL}, \tilde{\mathbf{s}}_{vL}^{(j)}, \mathbf{c}_{i})}\right].$$
(42)

We reject H_0 for (k, v, i) if $\widehat{I}_{\text{cNCE}}(k, v, i)$ exceeds a permutation threshold obtained by re-sampling $\{\widetilde{\mathbf{s}}_{vL}^{(j)}\}$ within \mathbf{c}_i buckets.

Additional Details of SportsHHI. SportsHHI contains 11, 398 video sequences, partitioned into short clips of 5 frames each, with 55, 631 annotated pairwise interaction instances. The HHID task labels the interaction for each pair of human actors in a video; interactions often occupy short temporal windows embedded in long sequences, so a single sequence typically contains multiple, possibly overlapping interactions. This results in complex temporal patterns, with flexible interactions across multiple actors.

In our implementation of Algorithm 1 on SportsHHI, we set the number fo latent state variables to be the same as the number of humans at frame t. For all baselines, we use a pretrained CLIP encoder (Radford et al., 2021) with a ResNet-50 backbone to get the observed RGB features \mathbf{o} . To handle temporal dynamics, an MLP parameterizes transitions $\mathbf{s}_{t-1} \to \mathbf{s}_t$, while conditional mutual information (CMI) is estimated on latent trajectories as a surrogate for conditional independence testing. To ensure fairness, all baselines employ a ResNet-50 backbone for RGB feature extraction, consistent with prior work.

Downstream Benefit. We evaluate our method on the Meta-World benchmark (Yu et al., 2020) by constructing an interleaved offline dataset from the *door-open/close; drawer-open* tasks. Both tasks involve a 7-DoF robotic arm manipulating the same door but with opposite goals, making them an ideal testbed for multi-task interference. We first train task-specific expert policies using SAC until reaching 60% success rate, then collect ~ 300 successful and ~ 300 mixed-quality trajectories for each task. To create interleaved data, we segment trajectories into 30–60 step skill chunks (e.g., reaching, grasping, rotating). With probability p=0.8, we randomly splice open- and close-task segments into a single trajectory, inserting short transition phases to ensure physical continuity. This results in ~ 2.4 k interleaved trajectories, with on average 2.1 task switches per trajectory. We provide only weak or noisy task labels derived from the door angle change, simulating realistic partially labeled data. We build upon the Active Fine-Tuning (AMF) framework (Bagatella et al., 2025). Specifically, the agent learns a policy over identified tasks using their representation g, which replaces the task embedding μ_c in AMF. This enables the agent to actively select tasks that improve generalization. To evaluate this, we train on three tasks—door-open, door-close, and drawer-open, and test generalization to the new task drawer-close with only 10^4 samples.

C Statement

LLMs were used for grammar checking. No substantive edits requiring disclosure.