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Abstract

Identifying task-relevant latent representations s from observations o = f(s) is1

fundamental. Identifiability, the asymptotic guarantee of recovering the ground-2

truth representation, is critical because it sets the ultimate limit of any model, even3

with infinite data and computation. We study this problem in a completely non-4

parametric setting, without relying on interventions, parametric forms, or struc-5

tural constraints. We first prove that the structure between time steps and tasks6

is identifiable in a fully unsupervised manner, even when sequences lack strict7

temporal dependence and may exhibit disconnections, and task assignments can8

follow arbitrarily complex and interleaving structures. We then prove that, within9

each time step, the task-relevant latent representation can be disentangled from the10

irrelevant part under a simple sparsity regularization, without any additional infor-11

mation or parametric constraints. Together, these results establish a hierarchical12

foundation: task structure is identifiable across time steps, and task-relevant latent13

representations are identifiable within each step. To our knowledge, each result14

provides a first general nonparametric identifiability guarantee, and together they15

mark a step toward provably moving from generalist to specialist models.16

1 Introduction17

Learning latent representations from high-dimensional observations is central to enabling machines18

to understand and act in the world (Bengio et al., 2013; Schölkopf et al., 2021). World models, for19

instance, compress raw sensory input into low-dimensional features that capture dynamics (Ha &20

Schmidhuber, 2018). Rather than modeling the entire environment, task-relevant representations are21

desirable because they retain only the information required for the task, providing both efficiency22

and robustness (Tishby & Zaslavsky, 2015; Wong et al., 2025). For instance, in autonomous driving,23

planning depends on the positions and velocities of nearby vehicles and pedestrians, not on the color24

of the cars or billboards along the road.25

Without identifiability, a learned representation cannot be guaranteed to reflect the ground truth,26

even with infinite data and computation. This challenge has long been central to latent representa-27

tion learning, extending beyond task-relevant settings (Hyvärinen & Pajunen, 1999; Locatello et al.,28

2019). Given two observationally equivalent models o = f(s) and o = f̂(ŝ), an arbitrary transfor-29

mation ϕ may exist such that ŝ = ϕ(s). In this case, the recovered latents need not correspond in30

any meaningful way to the true ones. Task-relevant variables, for example, may remain entangled31

with irrelevant factors, making it impossible to isolate what actually matters for the task. Such am-32

biguity introduces irreducible uncertainty into a machine’s internal model of the world, constraining33

the ceiling of achievable intelligence and creating risks in high-stakes applications.34

Existing theory provides conditions for identifiability of latent representations. In classical linear35

settings, identifiability can be obtained under additional parametric assumptions, for example in36
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Figure 1: An illustration of the generative process. Latent states st generate observations ot via
nonlinear functions and interact with actions at under varying temporal connectivity, where consec-
utive steps may be arbitrarily disconnected. Tasks gi are defined as colliders across time steps, and
different tasks can arbitrarily interleave with one another. The zoomed-in view (right) shows how
different components of st connect to multiple tasks via the intermediate actions.

factor models with constraints on loadings (Anderson et al., 1956; Jöreskog, 1969; Shapiro, 1985),37

in linear Independent Component Analysis (ICA) via non-Gaussianity (Comon, 1994; Hyvärinen38

et al., 2001), and in tensor or multi-view models via Kruskal-type rank conditions (Kruskal, 1977;39

Sidiropoulos & Bro, 2000; Allman et al., 2009). More recently, nonlinear theory has advanced40

along two routes. In nonlinear ICA, one line leverages auxiliary information across domains or41

time (Hyvärinen & Morioka, 2016; Hyvärinen et al., 2019; Yao et al., 2021; Hälvä et al., 2021;42

Lachapelle et al., 2022), while another constrains the mixing class (Taleb & Jutten, 1999; Moran43

et al., 2021; Kivva et al., 2022; Zheng et al., 2022; Gresele et al., 2021; Buchholz et al., 2022). In44

causal representation learning, identifiability is often derived from interventional data (von Kügelgen45

et al., 2023; Jiang & Aragam, 2023; Jin & Syrgkanis, 2023; Zhang et al., 2024; Varici et al., 2025) or46

counterfactual views (Von Kügelgen et al., 2021; Brehmer et al., 2022), which require some control47

over the data-generating process. These conditions provide significant insights into recovering the48

underlying generative process, but may overly restrict the range of applicable scenarios.49

At the same time, most existing theoretical results focus on full identifiability of the latent sys-50

tem: either recovering all latent variables component-wisely, or identifying them up to ancestors or51

neighborhoods. Yet such comprehensive recovery is often unnecessary. In many applications, tasks52

depend only on a subset of latent factors – for instance, in robotic manipulation, success hinges on53

object pose and gripper position, while lighting and textures are irrelevant. Shifting the goal from54

full-system identifiability to task-relevant identifiability enables weaker assumptions while still di-55

rectly supporting planning, transfer, and generalization. Recent works have explored subspace fac-56

torization (Von Kügelgen et al., 2021; Kong et al., 2022; Li et al., 2023; Liu et al., 2023), aiming to57

decompose latent factors into interpretable blocks. However, these approaches impose fixed struc-58

tures, such as content–style separation, and are not designed to accommodate flexible task settings,59

where latent variables may correspond to tasks with unknown number, structure, and assignment,60

and where this uncertainty can further vary across time steps. Thus, the question remains:61

Is a task-relevant world representation identifiable in the general setting?62

Contributions. To answer this, we develop a theoretical framework for identifying task-relevant63

representations from the complex dynamics of the observational world. Our first result proves that64

task structure across time is identifiable in a fully general setting, without any parametric or struc-65

tural assumptions (Section 3). We do not require strict temporal dependence: steps may be discon-66

nected or even i.i.d., and thus we cannot leverage the temporal information. In addition, tasks may67

appear, disappear, and reappear in arbitrary order, allowing interleaving task-time structures. After68

identifying the tasks for each time step, we further ask which latent variables are relevant to those69

tasks, and provide the first nonparametric identifiability result for task-relevant latent representa-70

tions without relying on interventions or functional constraints (Section 4). Specifically, we show71

that fine-tuning a pretrained model with a simple task-latent regularization provably disentangles72

task-relevant variables from irrelevant ones. Together, these results mark a step towards establishing73

principled pathways from generalist to specialist models that achieve both compression and fidelity.74

2 Preliminaries75

We assume an observed sequence {ot}Tt=1 generated by latent states {st}Tt=1, with ot ∈ Rdo , st ∈76

Rds , and actions at ∈ Rda . Observations satisfy ot = ft(st), where ft is a diffeomorphism onto77

its image. We allow varying temporal connectivity: st → at for all t, and at → st+1, st →78
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st+1 whenever the boundary t → t+1 is connected; both edges into st+1 are omitted when it is79

disconnected. A Structural Causal Model (SCM) consistent with these is80

at = πt(st, ηt), st+1 =

{
Ft(st,at, ξt), if t→ t+1 is connected,
F 0
t (ξt), otherwise,

(1)

with independent noises ηt, ξt. We define tasks {gi}Mi=1 as colliders among different time steps, that81

is, st → at → gi if the time step t is relevant to gi. The visualization of the process is in Figure 1,82

and the reasons to define tasks as colliders instead of others are as follows:83

Remark 1 (Why are tasks colliders?). Modeling a shared task gi as a collider is essential for84

capturing the coordinated nature of actions within a plan.85

• Confounder/Mediator: The structures at1 ← gi → at2 or at1 → gi → at2 would imply86

conditional independence: {st1 ,at1} ⊥⊥ {st2 ,at2} | gi. This is an unrealistic assumption,87

as it treats steps within a task as isolated events rather than parts of a coherent strategy.88

• Collider: The structure at1 → gi ← at2 correctly induces conditional dependence:89

{st1 ,at1} ⊥̸⊥ {st2 ,at2} | gi. This captures the intuition that time steps within a task are90

interdependent, since they all target the same task.91

Given the observed variables {ot}Tt=1 and the global set of tasks {gi}Mi=1, our goal is first to identify92

the structure linking time steps and tasks (Section 3), and then, within each latent state st, to isolate93

the components relevant to the associated tasks (Section 4). All theoretical guarantees need to be94

achieved in the general nonparametric setting without additional information.95

3 Learning Temporal Task Structure96

We first establish the identifiability of the time-task structure in the general setting. This structure is97

essential, as it forms the foundation for recovering task-relevant latent representations within each98

step. Without knowing which tasks are active at which times, disentangling latent variables at the99

step level would be ill-posed.100

The most relevant prior work is Qiu et al. (2024), which also models tasks as colliders and seeks to101

recover their structure in an unsupervised manner. Their method, however, relies on sequential non-102

negative matrix factorization, a heuristic decomposition without identifiability guarantees for the103

true structure. Our framework provides provable identifiability under a much more general setting:104

(i) the data–generating process is fully nonparametric, with no auxiliary information or restrictive105

assumptions; (ii) tasks may freely interleave over time, rather than appearing in fixed sequential106

order; and (iii) temporal dependence may vanish, allowing the sequence to contain arbitrary discon-107

nections. Despite these challenges, we prove that the structure between time steps and tasks is iden-108

tifiable under standard conditions. This result forms the first pillar of our framework: a principled109

characterization of temporal task structure in the general regime without additional information.110

3.1 Characterization of Pair-wise Structure111

We assume T time steps, partitioned into N contiguous segments of equal length L = T/N , with112

L ≥ 2 and N | T . Let113

S = {S1, . . . ,SN}, Si = {s(i−1)L+1, . . . , siL}. (2)
All states within a segment share the same set of active tasks, and each task gi must appear in at114

least two segments. Segments can be short (as few as two steps), ensuring flexibility in capturing115

state changes. To formalize the conditions used in our theory, we introduce the following notion.116

Definition 1 (Band conditioning set). For k < v and task gi, define117

Zband(k, v, i) = {skL−1, skL+1, svL−1, svL+1} ∩ {s1, . . . , sT } ∪ {gi},
with out-of-range indices omitted.118

Our main result is the following, with the standard Markov and Faithfulness conditions.119

Assumption 1 (Markov and Faithfulness (Spirtes et al., 2000)). Let G be a Directed Acyclic Graph120

(DAG) and P a distribution over variables V . The Markov property requires that each X ∈ V is121

independent of its non-descendants given its parents in G. The Faithfulness requires that P entails122

no conditional independence relations beyond those implied by the Markov property of G.123
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Figure 2: A quick example for Theorem 1. We test whether Sk = {s3, s4} and Sv = {s7, s8} belong
to task g1 by checking the conditional dependence s4 ⊥̸⊥s8 | Zband(k, v, 1), where Zband(k, v, 1) =
{s3, s5, s7, s9,g1}. Since s4 and s8 are conditionally dependent given Zband(k, v, 1), g1 is identi-
fied as (one of) the underlying tasks. Note that our theory accommodates arbitrary disconnections
between time steps (e.g., s1 and s2), multiple tasks, and arbitrarily interleaving task structures.

Theorem 1. Assume the Markov property and Faithfulness with respect to the graph above, and124

L ≥ 2. Fix k < v and a task gi. Then gi is relevant to segments Sk and Sv if and only if125

skL ⊥̸⊥svL

∣∣∣ Zband(k, v, i).

Proof Sketch. The proof (Appendix A.2) relies on characterizing all possible d-connecting paths126

between skL and svL under the band conditioning set. Conditioning on the immediate boundary127

states blocks any path that propagates purely through the temporal dynamics, so dependence can128

only be transmitted through a shared task. Since tasks have only incoming edges, any task other than129

gi appears as a closed collider and blocks the path, which implies that gi must be the unique source130

of dependence. Careful consideration of local structures and corner cases then shows that the only131

admissible d-connecting paths are those where actions adjacent to skL and svL both feed into gi.132

Implication. Theorem 1 provides a provable way to determine whether two segments share the133

same task gi, giving an exact characterization of temporal task relevance (visualized in Fig. 2).134

This is powerful: once we can identify the corresponding tasks of any pair of segments, the entire135

task structure can be discovered. Moreover, the condition is testable directly from observed data,136

since conditional independence is preserved under the invertible map ot = ft(st) and the task137

variables gi are observed. Hence the procedure requires no parametric assumptions and is broadly138

applicable. Finally, the result does not rely on restrictive structural constraints, allowing tasks to139

appear, disappear, and interleave in arbitrary order across time, and sequences can be disconnected.140

Since all states within a segment share the same task set, conditional independence (CI) tests in-141

volving the boundary states are equivalent to tests involving any other pair of states within the142

two segments (provided L > 2). Intuitively, this homogeneity means that the specific choice143

of representative states does not matter: any pair of states across two segments encodes the144

same task-level dependence. For example, skL ⊥̸⊥ svL

∣∣∣ Zband(k, v, i) is equivalent to skL−1 ⊥̸⊥145

svL−1

∣∣∣ {skL−2, skL, svL−2, svL}∩{s1, . . . , sT }∪{gi}. This invariance ensures that identifiability146

does not hinge on an arbitrary boundary choice, but is intrinsic to the task structure itself.147

Corollary 1. Assume the Markov property and Faithfulness with respect to the graph above, and148

L > 2. Fix k < v and a task gi. Then gi is relevant to segments Sk and Sv if and only if149

sj ⊥̸⊥sq

∣∣∣ {sj−1, sj+1, sq−1, sq+1} ∩ {s1, . . . , sT } ∪ {gi},

for any j ∈ {(k − 1)L+ 1, . . . , kL} and q ∈ {(v − 1)L+ 1, . . . , vL}.150

This corollary does not impose additional conditions but establishes an equivalent characterization,151

guaranteed by the basic coherence of the tasks. It strengthens the applicability of Thm. 1 by showing152

that task relevance can be tested using arbitrary representatives within segments, not only their153

boundaries. Conceptually, this flexibility highlights that identifiability of the temporal task structure154

arises from the global dependency pattern induced by colliders, rather than from local temporal155

adjacency. As a consequence, the result is robust to segmentation choices and ensures that the156

recovered structure reflects intrinsic properties of the underlying process rather than artifacts.157
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3.2 Discovering Global Task Structure158

Building on Theorem 1 and Corollary 1, the characterization of task relevance naturally yields an159

algorithmic procedure. With the proposed test, one can systematically determine whether two seg-160

ments share a common task. Aggregating these pairwise tests across all segment pairs yields the161

complete temporal task structure, as detailed in Algorithm 1.162

Proposition 1. Assume the conditions of Theorem 1. If the CI test is an oracle, Algorithm 1 exactly163

recovers the temporal task structure.164

The procedure is not only theoretically solid but also computationally efficient, which scales with165

the temporal horizon rather than the observation dimension. Moreover, because conditional indepen-166

dence is preserved under the invertible observation map, the tests can be performed directly in the167

observed space, without knowledge of the latent states or parametric assumptions on the dynamics.168

This provides an operational bridge from identifiability theory to practice: temporal task structure169

can be recovered by a simple, general, and provably correct algorithm, even in environments with170

arbitrary interleaving, recurrence, and disconnections across time.171

Algorithm 1: Global task structure discovery
Input : Segments S1:N of length L ≥ 2; tasks G = {g1:M}
Output: Segment–task sets {T (Sk)}Nk=1 and step labels {T (t)}Tt=1

T (S1:N )← [∅]N ; P ← {(k, v) | 1 ≤ k < v ≤ N}
ForEach i ∈ [1..M ] Do

ForEach (k, v) ∈ P Do
If skL ⊥̸⊥svL | Zband(k, v, i) Then
T (Sk)← T (Sk) ∪ {gi}; T (Sv)← T (Sv) ∪ {gi}

ForEach k ∈ [1..N ] Do
ForEach t ∈ Sk Do T (t)← T (Sk)

Return: {T (Sk)}Nk=1, {T (t)}Tt=1

172

4 Learning Task-Relevant Representation173

Having established the identifiability of temporal task structure, we now turn to the problem of174

learning task-relevant representations within each time step. Identifying which tasks are active at175

which times clarifies the dynamics across segments and ensures that temporal dependencies are176

properly aligned with task boundaries. This strengthens the focus on the temporal dimension, but it177

does not yet resolve the finer question of representation: within a single latent state st, only a subset178

of variables may be relevant to the task, while the rest correspond to nuisance factors. To obtain a179

minimal yet sufficient representation, we must therefore dig deeper into the latent space of st and180

disentangle the components that are truly task-relevant from those that are irrelevant.181

Identifiability concerns recovering the unique ground truth st from two observationally equivalent182

models ot = ft(st) and ot = f̂t(ŝt). Let g = u(s, θ) and ĝ = û(ŝ, θ̂), where θ an θ̂ denote183

variables other than s and ŝ. These mappings exist due to the dependency structure st → at → gi.184

With slight abuse of notation, we mostly omit θ and θ̂ and write g = u(s) and ĝ = û(ŝ) for brevity.185

4.1 Identifiability with a Generalist Model186

We begin by asking what can be achieved without imposing any structural constraint beyond obser-187

vational equivalence. That is, we consider a generalist model without explicitly being regularized188

to focus on the corresponding tasks. While such a model may capture the necessary information for189

prediction, its ability to recover the ground-truth task–relevant latent representation is limited.190

Additional Notation. For a vector-valued function u : Rds → Rdg , we denote by Ju(st) the191

Jacobian matrix with respect to st, whose (i, j) entry is ∂ui/∂st,j . For a vector or matrix A, we192

write I(A) for the set of indices corresponding to its nonzero entries, and ∥I(A)∥ for its cardinality193

(the number of nonzeros, i.e., the ℓ0 norm). We denote Ik ⊆ [ds] as the set of indices of the latent194

variables relevant to task gk, and st,Ik as the corresponding set of latent variables.195
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Proposition 2. Assume that, for each i ∈ [dg], there exists a setNi of ∥I(Ju(st)i,·)∥ distinct points196

such that the corresponding Jacobian row vectors197 (
∂ui

∂st,1
,
∂ui

∂st,2
, . . . ,

∂ui

∂st,ds

) ∣∣∣∣
st=s

(l)
t

, l ∈ Ni,

are linearly independent, and I
(
(Ju(s

(l)
t )M)i,·

)
⊆ I

(
(Jû(ŝ

(l)
t ))i,·

)
, where M is a matrix sharing198

the nonzero index set of matrix-valued function M ′(s, ŝ) in Ju(s)M
′(s, ŝ) = Jû(ŝ). Then, for any199

task gk with latent index set Ik, the number of estimated task-relevant latent variables is larger than200

that of the ground truth, i.e.,201

∥I
(
(Jû)i,·

)
∥ ≥ ∥I

(
(Ju)i,·

)
∥.

Proof Sketch. The argument starts by connecting the support of the Jacobian to the underlying202

dependency graph. The span condition ensures that the information is being preserved during es-203

timation, and thus no true dependency can be eliminated in the transformation between s and ŝ.204

Equivalently, the nonzero pattern of Ju(s) must be contained within that of Jû(ŝ). Translated back205

to the task–latent structure, this implies that the number of the estimated task-relevant latent vari-206

ables, as captured by the support, is always a superset of the true one.207

Implication. This result shows that, without explicit modelling of specific tasks, generalist models208

tend to learn a representation that is larger than necessary. The requirement of sufficient nonlinearity209

rules out degenerate cases where samples concentrate on an extremely small subset (e.g., as few as210

several samples), and is standard in identifiability analyses of nonlinear models (Lachapelle et al.,211

2022; Zheng et al., 2022). The conclusion is intuitive: a sufficiently expressive foundation model212

can capture a representation that contains all information needed for downstream tasks.213

At the same time, the guarantee ∥I(Jû)i,·∥ ≥ ∥I(Ju)i,·∥ remains weak: it ensures only that the214

estimated representation is no smaller in size than the true one, not that it matches it or recovers the215

correct variables. In practice, this means a generalist model often learns an overcomplete represen-216

tation, where task-relevant variables may still be missed or entangled with irrelevant ones. Worse,217

the inequality provides no guarantee on recovering variable values since the enlarged representation218

may distort or discard essential information. This formalizes the intuition that while frontier gener-219

alist models are expressive enough to encode all task information, without additional regularization220

they fail to isolate the minimal task-relevant latent representation.221

4.2 From Generalist to Specialist222

The previous result shows that a generalist model often produces an enlarged representation, esti-223

mating more task-relevant variables than truly exist. Such oversizing does not guarantee that all224

genuine factors are preserved; irrelevant latents may be included, while essential ones can still be225

distorted or obscured. To recover the true task-relevant representation, additional inductive bias is226

needed. A natural choice is sparsity regularization on the estimated task–latent structure, which227

enforces minimality in the recovered structure. Intuitively, sparsity prunes away superfluous di-228

mensions and curbs over-expansion, ensuring that the final representation retains only the variables229

genuinely required for each task.230

Theorem 2. Consider two observationally equivalent generative processes ot = ft(st) and ot =231

f̂t(ŝt), and assume the conditions in Proposition 2. Then, for any task gk with latent index set Ik,232

with a sparsity regularization233

∥I(Jû)∥ ≤ ∥I(Ju)∥,
under some permutation π, the estimated task-relevant latent variables ŝt,π(Ik) are an invertible234

function hk of only the ground-truth task-relevant latent variables st,IK , i.e.,235

ŝt,π(Ik) = hk(st,IK ).

Proof Sketch. Under the span and support assumptions from Proposition 2, we first show that ev-236

ery nonzero entry of Ju(s) must correspond to a nonzero entry of Jû(ŝ), up to a column permutation237

π. Sparsity regularization enforces that no additional entries can remain nonzero, which upgrades238

inclusion into exact equivalence of supports. Finally, algebraic analysis helps move from structure239

to variables, exploiting the separation between task-relevant and task-irrelevant latents.240
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Figure 3: Performance for temporal task structure identification. Top: varying the number of time
steps T (with T/5 tasks). Bottom: varying the number of tasks M (with 20 time steps).

Implication. Practically, Theorem 2 establishes the formal guarantees on going from a generalist241

to a specialist model. It shows that, based on the general guarantee in Proposition 2, a simple spar-242

sity regularization is sufficient to disentangle task-relevant latent variables from the irrelevant ones.243

Unlike the generalist guarantee, which recovers a superset of the true support, the sparsity constraint244

sharpens recovery to the variable-level and disentangles irrelevant parts. Conceptually, this result245

highlights the necessity of moving from generalist to specialist modeling: while a generalist can246

cover all possible dependencies, only task-specific modeling with appropriate regularization yields247

a representation that is both minimal and faithful. This provides a principled justification for why248

specialist models can achieve disentangled task representations where generalist models cannot.249

Theoretically, our result suggests a new strategy for provably uncovering the latent variables under-250

lying the observational world. Importantly, because we allow arbitrary disconnections between time251

steps, Theorem 2 also covers the i.i.d. setting. This is a substantially harder case than prior work252

that exploits temporal information or domain shifts, since changes across time or environments in-253

herently provide extra signals for identification, whereas identifiability in the absence of changes is254

notoriously difficult. Existing i.i.d. results rely either on restrictive functional assumptions (Taleb &255

Jutten, 1999; Buchholz et al., 2022) or graphical criteria on the underlying structure (Moran et al.,256

2021; Zheng et al., 2022) to achieve full component-wise identifiability. By contrast, our focus is not257

on recovering every individual latent, but rather on identifying all task-relevant ones as a subgroup.258

This relaxation allows us to bypass such strong assumptions and still establish general identifiability259

guarantees. Beyond our setting, this perspective may prove methodologically useful for a wide range260

of latent-variable problems, where isolating task-relevant latents is already of central importance.261

5 Experiments262

In this section, we present comprehensive empirical results supporting our theory on both temporal263

task structure learning and task-relevant representation learning across diverse settings. Due to page264

limits, some setup details are deferred to Appendix B.265

Identifiability of Temporal Task Structure. We evaluate whether the proposed algorithm can266

recover temporal task structures under challenging conditions, including disconnected temporal re-267

lations and arbitrarily interleaving tasks. Two setups are considered: (1) varying the number of time268

steps T from 8 to 20 with T/5 tasks, and (2) varying the number of tasks M from 2 to 10 with 20269

time steps. To maximize structural complexity, we set the minimum segment length to 2 and ran-270

domly generate the task–time step dependencies. Additionally, 20% of the dependencies between271
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consecutive segments are randomly removed. Each dataset contains 10, 000 samples generated from272

linear Gaussian SCMs. All results are from 10 random runs with Fisher’s z-test (Fisher, 1921).273

For both settings, we report accuracy and Matthews correlation coefficient (MCC) of the tasks iden-274

tified. For baselines, we consider classical CCA (Anderson, 2003) and Group Lasso (Yuan & Lin,275

2006), as well as the most recent SelTask (Qiu et al., 2024). Results are summarized in Fig. 3.276

Our method dominates across all T and M in both accuracy and MCC. As expected, performance277

degrades as the problem becomes harder (larger T or M ), but the gap to baselines persists.278

Figure 4: Real-world temporal task structure
discovery on SportsHHI.

Real-World Structure. To explore whether we279

can identify real-world structures between tasks and280

time steps, we further conduct experiments on the281

recent SportsHHI video dataset (Wu et al., 2024).282

For each time frame in the video, the objective is283

to discover its corresponding task labels, which in284

this context correspond to the behaviors of humans285

captured in the video. Because the dataset involves286

multiple individuals with complex and overlapping287

interactions, each frame typically contains multiple288

task labels, resulting in highly intricate task struc-289

tures. This makes SportsHHI a challenging and suit-290

able testbed for stress-testing the identification.291

Following common practice, we use a pretrained CLIP encoder (Radford et al., 2021) to obtain vi-292

sual embeddings o and task embeddings g, and employ a variational autoencoder to estimate the293

latent state variables s. The latent transition dynamics between consecutive states are parameterized294

by an MLP, while conditional mutual information (CMI) is used as a proxy for conditional indepen-295

dence to mitigate the curse of dimensionality in statistical testing. We compare our approach against296

two baselines: (i) applying Alg. 1 directly to observed variables instead of latent ones (replacing297

s with o), and (ii) LEAP (Yao et al., 2021), a representative method for learning latent temporal298

representations with identifiability guarantees. Following prior work, we evaluate using mean av-299

erage precision (mAP). The results in Fig. 4 demonstrate that modeling the complexity of general300

temporal task structures is essential for accurate discovery in complex real-world scenarios.301

Figure 5: R2 scores for relevant and irrele-
vant parts under varying dimensions.

Identifiability of Task-Relevant Representation.302

After establishing identifiability of the temporal task303

structure, we zoom in on a single step and evalu-304

ate recovery of the task-relevant latent representation305

conditioned on the corresponding tasks. The data-306

generating process follows the theoretical setup,307

with an MLP using Leaky ReLU as the nonlinear308

function. For estimation, we employ a VAE with309

ℓ1 regularization on the task-latent structure. As the310

evaluation metric, we report the R2 between the es-311

timated and ground-truth latent components: higher312

values indicate accurate recovery of relevant parts,313

while lower values indicate effective separation from314

irrelevant parts. Figure 5 shows a clear gap: (1) task-relevant representations are successfully dis-315

entangled from irrelevant ones (low R2 for irrelevant parts), and (2) the estimated task-relevant part316

captures most of the information in the ground-truth one (high R2 for relevant parts). These provide317

rigorous validation of the identifiability theory, confirming that task-relevant latent variables can be318

uncovered as a group with both information preservation and irrelevance disentanglement.319

Task-Relevant Latents in Realistic Vision. We next investigate the recovery of task-relevant320

latent representations in realistic scenarios. Since ground-truth latents are usually unavailable in321

practice, direct comparison with the truth is infeasible. Evaluation therefore turns to human inter-322

pretability, where visualizing the identified latents provides key evidence. We construct a dataset323

of cat images using Flux, with tasks such as “wearing eyeglasses,” “wearing a hat,” and “wearing324

a tie,” explicitly considering realistic images to align with real-world vision. For estimation, we325

adopt a GAN-based generator where each task is associated with a learned transformation of the326
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With sparsity Without sparsity

Figure 6: Qualitative comparison of identified task-relevant latents. Tasks include “wearing glasses,”
“wearing a hat,” and “wearing a tie.” Left: with sparsity, the model isolates a minimal but sufficient
subset of latents aligned with each task. Right: without sparsity, irrelevant factors (e.g., color)
become entangled with the task-relevant ones.

latents. Concretely, given s, a task-specific operator modifies only a sparse subset of coordinates327

by an ℓ1-regularized mask, producing masked latents that are then passed to the generator. Figure 6328

compares results with and without sparsity. With sparsity, the recovered latents correspond closely329

to the intended task attributes, while without sparsity, irrelevant factors such as color are entangled330

with the target tasks. This further supports the task-relevant identifiability and the role of sparsity.331

Table 1: Generalization on new task.

Method Success Rate

Ours 0.75
AMF 0.72
CCA 0.50
Group Lasso 0.46
SelTask 0.70

Downstream Benefit. Finally, we show that accounting332

for complex task structure and identifying task-relevant333

latent representations also benefits downstream perfor-334

mance. We evaluate our method on the Meta-World335

benchmark (Yu et al., 2020) by constructing an inter-336

leaved offline dataset from multiple tasks. Each task in-337

volves a 7-DoF robotic arm manipulating the same ob-338

ject but with opposite goals, providing an ideal testbed339

for multi-task interference. We collect expert trajectories340

with Soft Actor Critic (SAC) (Haarnoja et al., 2018) and construct interleaved data by segmenting341

skills and splicing across tasks with transition phases. We extend the Active Fine-Tuning (AMF)342

framework (Bagatella et al., 2025) with our task discovery algorithm and task-latent sparsity reg-343

ularization. Following other experiments, we also compare with CCA and Group Lasso, as well344

as the most relevant work SelTask (Qiu et al., 2024). We train on interleaved tasks (door-open,345

door-close, and drawer-open) and test generalization to the new task (drawer-close) with only 104346

samples. Table 1 reports average success rates over 10 seeds, showing that our theory enables the347

model to learn and generalize more efficiently from past experience.348

6 Conclusion and Discussion349

In this paper, we initiated the theoretical investigation of learning task-relevant world representa-350

tions, aiming to move from generalist to specialist. The main challenges lie in the level of general-351

ity, which requires handling both complex structures, such as disconnected sequences, interleaving352

tasks, and frequent switches, and general processes, including nonlinear functions, arbitrary distri-353

butions, and the absence of auxiliary information. While we have addressed these, several related354

questions remain open. First, although identifiability is defined asymptotically and frontier models355

are often trained on web-scale data, it is still important to understand the finite-sample regime, and356

the lack of related analysis is a limitation in data-sparse scenarios. Second, our present way of lever-357

aging identifiability is relatively simple, essentially a standard estimator with sparsity regulariza-358

tion. While such simplicity and universality are often advantageous, it is also intriguing to consider359

identifiability-inspired architectures that depart more radically from existing patterns. A stronger360

focus on identifiability within the community may reveal barrier-breaking insights that have been361

overshadowed by the pursuit of purely empirical gains, and we aim to contribute toward this shift.362
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A Proofs500

A.1 Notation501

We first provide a summary of notation in Table 2.502

Symbol Meaning

ot ∈ Rdo Observation at time t

st ∈ Rds Latent state at time t

at ∈ Rda Action at time t
gi Task variable i, defined as collider across time steps
M Total number of tasks
T Total number of time steps
Sk Segment k, a block of consecutive latent steps
T (t) Set of tasks relevant to time step t
T (Sk) Set of tasks relevant to segment Sk

ft Observation function st 7→ ot, diffeomorphism onto image
πt Action policy st 7→ at with noise ηt
Ft Transition function for connected boundaries
F ′
t Transition function for disconnected boundaries

Ju(st) Jacobian of mapping u w.r.t. latent state st
I(A) Index set of nonzero entries of matrix/vector A

∥I(A)∥ Cardinality of index set I(A) (i.e., ℓ0 norm)
Ik ⊆ [ds] Index set of latents relevant to task gk
st,Ik Latent variables in st relevant to gk

Table 2: Summary of notation.

A.2 Proof of Theorem 1503

Theorem 1. Assume the Markov property and Faithfulness with respect to the graph above, and504

L ≥ 2. Fix k < v and a task gi. Then gi is relevant to segments Sk and Sv if and only if505

skL ⊥̸⊥svL

∣∣∣ Zband(k, v, i).

Notation and Blocking Rules. A path is a sequence of distinct nodes (v0, . . . , vr) with each con-506

secutive pair adjacent. Along a path, a node is a collider if both incident path edges have arrowheads507

into the node, and a non-collider otherwise. A path is blocked by a conditioning set Z if it contains a508

non-collider in Z or a collider that is neither in Z nor has a descendant in Z (i.e., d-separation (Pearl,509

1988)). In our graph, tasks have only incoming edges, and tasks have no descendants.510

Band Conditioning Set. Throughout this subsection the conditioning set is511

Zband(k, v, i) = {skL−1, skL+1, svL−1, svL+1} ∩ {s1, . . . , sT } ∪ {gi}, (3)

with out-of-range indices omitted. Thus only the two immediate inner neighbors skL+1, svL−1 and512

the two immediate outer neighbors skL−1, svL+1 (when they exist) are conditioned; among tasks513

only gi is conditioned.514

Lemma 1 (A d-connecting path uses exactly one task, equal to gi). Every path from skL to svL that515

is d-connecting given Zband(k, v, i) contains exactly one task node, and that task is gi.516

Proof. Consider any path with no task nodes. Such a path alternates among states and actions and517

moves in time via st → st+1, st → at or at → st+1. Any forward traversal from skL toward svL518

must pass through the cut state skL+1; symmetrically, any approach into svL from the left must pass519

through svL−1. All these cut states are in Zband and are non-colliders on such chain paths, so the520

path is blocked. Hence, any d-connected path must include at least one task.521
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If a path contains a task gj ̸= gi, then at gj both incident edges point into gj , so gj is a collider.522

Since gj /∈ Zband and tasks have no descendants, this collider is closed and the path is blocked.523

Therefore no d-connecting path can contain any task other than gi.524

If a path contains two or more tasks, at least one of them is not gi, which blocks the path by the525

previous argument. Thus every d-connecting path contains exactly one task and that task is gi.526

Lemma 2 (Local structure of d-connecting paths). Under the graph and conditioning in Equation 3,527

every d-connecting path between skL and svL has one of the four forms528

(I) skL → akL → gi ← avL ← svL, (II) skL → akL → gi ← avL−1 → svL,

(III) skL ← akL−1 → gi ← avL ← svL, (IV) skL ← akL−1 → gi ← avL−1 → svL,
(4)

with out-of-range indices omitted.529

Proof. By Lemma 1, any d-connecting path contains exactly the single task gi.530

Left boundary. The first neighbor of skL on any d-connecting path cannot be a state, because the531

only state neighbors are skL−1 and skL+1, both in Zband and both non-colliders on chain moves,532

which would block the path. Hence the neighbor must be an adjacent action, akL−1 (if kL > 1) or533

akL. From that action, any continuation to a state would encounter one of the conditioned cut states534

as a non-collider, so the next node must be gi via an edge a→ gi. This yields the two left fragments535

skL ← akL−1 → gi and skL → akL → gi.536

Right boundary. Symmetrically, the predecessor of svL on the path cannot be a state, since the only537

state neighbors are svL−1 and svL+1, which are in Zband and would block as non-colliders in the538

potential additional paths. Specifically, svL−1 is a non-collider in paths involving svL−1 → svL,539

and svL+1 is a non-collider in paths involving svL+1 → avL+1 or svL+1 → svL+2. Thus the540

predecessor must be avL−1 or avL, linked to gi by an edge a→ gi traversed in reverse on the path.541

This yields the two right fragments gi ← avL−1 → svL and gi ← avL ← svL.542

Combining the two left with the two right fragments gives exactly the four forms in Equation 4. On543

each such path, gi is the unique collider and is in Zband, while all other nodes are non-colliders that544

are not in Zband, so these paths are d-connecting.545

Now we are ready to prove the theorem.546

Theorem 1. Assume the Markov property and Faithfulness with respect to the graph above, and547

L ≥ 2. Fix k < v and a task gi. Then gi is relevant to segments Sk and Sv if and only if548

skL ⊥̸⊥svL

∣∣∣ Zband(k, v, i).

Proof. (⇒) Suppose skL and svL are conditionally dependent given Zband(k, v, i). By Lemma 2,549

there exists a d-connecting path of one of the four forms in Equation 4. In each form, the actions550

adjacent to skL and svL that appear on the path are parents of gi. Hence gi is relevant to segments551

Sk and Sv .552

(⇐) Conversely, suppose both intersections are nonempty. Choose p ∈ {kL − 1, kL} and q ∈553

{vL − 1, vL} such that ap → gi and aq → gi. Then one of the four forms in Equation 4 exists.554

Along that path, gi is the unique collider and is conditioned, while all other nodes are non-colliders555

not in Zband(k, v, i). Therefore the path is not blocked and556

skL ⊥̸⊥svL

∣∣∣ Zband(k, v, i). (5)

This proves the equivalence stated in Theorem 1.557

A.3 Proof of Corollary 1558

Corollary 1. Assume the Markov property and Faithfulness with respect to the graph above, and559

L > 2. Fix k < v and a task gi. Then gi is relevant to segments Sk and Sv if and only if560

sj ⊥̸⊥sq

∣∣∣ {sj−1, sj+1, sq−1, sq+1} ∩ {s1, . . . , sT } ∪ {gi},

for any j ∈ {(k − 1)L+ 1, . . . , kL} and q ∈ {(v − 1)L+ 1, . . . , vL}.561
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Proof. Fix k < v, pick any j ∈ {(k − 1)L + 1, . . . , kL} and q ∈ {(v − 1)L + 1, . . . , vL}, and562

define the local band set563

Zloc(j, q, i) = {sj−1, sj+1, sq−1, sq+1} ∩ {s1, . . . , sT } ∪ gi. (6)

By the same blocking argument as in Lemma 1, any d-connecting path between sj and sq given564

Zloc(j, q, i) must contain exactly one task node and it must be gi. The neighbor of sj on any such565

path cannot be a state, since sj−1 and sj+1 are in Zloc and are non-colliders on chain moves, hence566

they would block. Therefore the path must leave sj through an adjacent action aj−1 or aj , and567

from there enter gi via an edge a → gi. A symmetric argument holds at the right end near sq .568

Consequently every d-connecting path between sj and sq given Zloc(j, q, i) has one of the four569

forms570

(I) sj → aj → gi ← aq ← sq, (II) sj → aj → gi ← aq−1 → sq,

(III) sj ← aj−1 → gi ← aq ← sq, (IV) sj ← aj−1 → gi ← aq−1 → sq, (7)

with out-of-range indices omitted. On each such path gi is the unique collider and is conditioned,571

while all other nodes are non-colliders that are not conditioned, so the path is d-connecting.572

Note that states inside the same segment share the same task set, and task nodes have only incoming573

edges from actions. It follows that, if gi is relevant to Sk and Sv then there exist p ∈ j − 1, j and574

r ∈ q − 1, q such that ap → gi and ar → gi.575

Then we prove the equivalence as follows.576

(⇒) If gi is relevant to Sk and Sv , pick p ∈ j − 1, j and r ∈ q − 1, q with ap → gi and ar → gi as577

above. Then one of the four local forms in Equation 7 exists and is d-connecting given Zloc(j, q, i),578

hence579

sj ⊥̸⊥sq

∣∣∣ Zloc(j, q, i). (8)

(⇐) Conversely, if sj and sq are conditionally dependent given Zloc(j, q, i), then by Equation 7 the580

actions adjacent to sj and sq that lie on a d-connecting path are parents of gi. Together with the581

segment homogeneity, gi is relevant to Sk and Sv .582

This proves the stated equivalence for arbitrary j ∈ Sk and q ∈ Sv with L > 2.583

A.4 Proof of Proposition 1584

Proposition 1. Assume the conditions of Theorem 1. If the CI test is an oracle, Algorithm 1 exactly585

recovers the temporal task structure.586

Proof. Fix a task gi and a segment Sk. If Sk truly contains gi, then for Sv with v ̸= k that also587

contains gi, by Theorem 1, there must be588

skL ⊥̸⊥svL

∣∣∣ Zband(k, v, i). (9)

The oracle CI test returns dependence, so Algorithm 1 adds gi to both T (Sk) and T (Sv).589

Conversely, if T (Sk) does not contain gi, then Theorem 1 implies conditional independence for590

all pairs involving Sk, hence the algorithm never adds gi to T (Sk). Therefore the recovered seg-591

ment–task incidence is exact. Per-step labels are correct by assignment.592

A.5 Proof of Proposition 2593

Proposition 2. Assume that, for each i ∈ [dg], there exists a setNi of ∥I(Ju(st)i,·)∥ distinct points594

such that the corresponding Jacobian row vectors595 (
∂ui

∂st,1
,
∂ui

∂st,2
, . . . ,

∂ui

∂st,ds

) ∣∣∣∣
st=s

(l)
t

, l ∈ Ni,

are linearly independent, and I
(
(Ju(s

(l)
t )M)i,·

)
⊆ I

(
(Jû(ŝ

(l)
t ))i,·

)
, where M is a matrix sharing596

the nonzero index set of matrix-valued function M ′(s, ŝ) in Ju(s)M
′(s, ŝ) = Jû(ŝ). Then, for any597
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task gk with latent index set Ik, the number of estimated task-relevant latent variables is larger than598

that of the ground truth, i.e.,599

∥I
(
(Jû)i,·

)
∥ ≥ ∥I

(
(Ju)i,·

)
∥.

Proof. Since ot = ft(st) and o = f̂t(ŝt) are observationally equivalent, there exists an invertible600

mapping ϕ such that601

ŝt = f̂−1
t ◦ ft(st) = ϕ(st), (10)

with inverse ϕ−1. By the chain rule,602

Jû = Ju Jϕ−1 . (11)

Fix i ∈ [dg]. Consider the setNi of ∥I((Ju)i,·)∥ distinct points and the corresponding Jacobian row603

vectors604 (
∂ui

∂st,1
, . . . ,

∂ui

∂st,ds

) ∣∣∣
st=s

(l)
t

, l ∈ Ni, (12)

which are linearly independent by assumption.605

Now construct a matrix M with I(M) = I(Jϕ−1(ŝ)). By the index-set inclusion assumption, for606

each l ∈ Ni we have607

I
(
(Ju(s

(l)
t )M)i,·

)
⊆ I

(
(Jû(ŝ

(l)
t ))i,·

)
. (13)

Thus,608

(Ju(s
(l)
t ))i,·M ∈ span{ej : j ∈ I((Jû)i,·)}. (14)

Taking linear combinations across l ∈ Ni preserves this property, so in particular,609

Mj,· ∈ span{ek : k ∈ I((Jû)i,·)}, ∀j ∈ I((Ju)i,·). (15)

Since Jϕ−1(ŝt) is invertible, there exists a permutation π such that610

(Jϕ−1(ŝt))j,π(j) ̸= 0, ∀j ∈ {1, . . . , ds}. (16)

Because I(M) = I(Jϕ−1(ŝt)), we obtain611

Mj,π(j) ̸= 0, ∀j ∈ I((Ju)i,·). (17)

Combining this with Equation 15, we conclude612

π(j) ∈ I((Jû)i,·), ∀j ∈ I((Ju)i,·). (18)

Equation 18 shows that each ground-truth relevant index j ∈ I((Ju)i,·) is mapped to a distinct613

estimated relevant index π(j) ∈ I((Jû)i,·). Therefore, the estimated index set must contain at least614

as many elements as the ground-truth one:615

∥I((Jû)i,·)∥ ≥ ∥I((Ju)i,·)∥. (19)

This completes the proof.616

A.6 Proof of Theorem 2617

Theorem 2. Consider two observationally equivalent generative processes ot = ft(st) and ot =618

f̂t(ŝt), and assume the conditions in Proposition 2. Then, for any task gk with latent index set Ik,619

with a sparsity regularization620

∥I(Jû)∥ ≤ ∥I(Ju)∥,

under some permutation π, the estimated task-relevant latent variables ŝt,π(Ik) are an invertible621

function hk of only the ground-truth task-relevant latent variables st,IK , i.e.,622

ŝt,π(Ik) = hk(st,IK ).
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Proof. The first part of the proof follows the similar strategy as Proposition 2, and we provide the623

full details for completeness. Since ot = ft(st) and ot = f̂t(ŝt) are observationally equivalent,624

there exists an invertible mapping ϕ such that625

ŝt = f̂−1
t ◦ ft(st) = ϕ(st), (20)

with inverse ϕ−1. By the chain rule,626

Jû = Ju Jϕ−1 . (21)

For each i ∈ [dg], consider a set Ni of ∥I((Ju)i,·)∥ distinct points and the corresponding Jacobians627 (
∂ui

∂st,1
,
∂ui

∂st,2
, . . . ,

∂ui

∂st,ds

) ∣∣∣∣
s=s

(l)
t

, l ∈ Ni. (22)

By assumption, the vectors in Equation 22 are linearly independent.628

We now construct a matrix M . Because the row vectors in Equation 22 are linearly independent,629

any row Mj,· with j ∈ I((Ju)i,·) can be expressed as a linear combination of them. That is, there630

exist coefficients {βl}l∈Ni
such that631

Mj,· =
∑
l∈Ni

βl (Ju(s
(l)
t ))i,· M. (23)

We require M to satisfy two conditions: (i) for each i ∈ [dg], the linear combination in Equation 23632

must lie in the span of the canonical basis vectors indexed by I((Jû)i,·), i.e.,633 ∑
l∈Ni

βl (Ju(s
(l)
t ))i,· M ∈ span{ej : j ∈ I((Jû)i,·)}, (24)

and (ii) its index set matches that of Jϕ−1(ŝt):634

I(M) = I(Jϕ−1(ŝt)). (25)

By the index-set inclusion assumption, for all l ∈ Ni we have635

I
(
(Ju(s

(l)
t )M)i,·

)
⊆ I

(
(Jû(ŝ

(l)
t ))i,·

)
. (26)

This guarantees636

(Ju(s
(l)
t ))i,· M ∈ span{ej : j ∈ I((Jû)i,·)}. (27)

Taking linear combinations with the coefficients {βl}, we conclude637 ∑
l∈Ni

βl (Ju(s
(l)
t ))i,· M ∈ span{ej : j ∈ I((Jû)i,·)}. (28)

Equivalently, for every j ∈ I((Ju)i,·),638

Mj,· ∈ span{ek : k ∈ I((Jû)i,·)}. (29)

Since Jϕ−1(ŝt) is invertible, its determinant is nonzero. Expanding the determinant as a sum over639

permutations, there must exist a permutation π such that640

(Jϕ−1(ŝt))j,π(j) ̸= 0, ∀j ∈ {1, . . . , ds}. (30)

This establishes a one-to-one correspondence between the indices of st and ŝt through π.641

In particular, for every j ∈ I((Ju)i,·), we have642

(Jϕ−1(ŝt))j,π(j) ̸= 0. (31)

Because I(M) = I(Jϕ−1(ŝt)), this implies643

Mj,π(j) ̸= 0, ∀j ∈ I((Ju)i,·). (32)

Combining this with Equation 29, it follows that644

π(j) ∈ I((Jû)i,·), ∀j ∈ I((Ju)i,·). (33)
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Therefore, every nonzero entry of Ju has a corresponding nonzero entry of Jû at the permuted645

column index:646

(Ju)i,j ̸= 0 =⇒ (Jû)i,π(j) ̸= 0. (34)

Finally, with the sparsity regularization ∥Jû∥0 ≤ ∥Ju∥0, this implication strengthens to an equiva-647

lence:648

(Ju)i,j ̸= 0 ⇐⇒ (Jû)i,π(j) ̸= 0. (35)

For c ∈ Ik, we have c ∈ I((Ju)k,·). Hence, by Equation 29,649

Mc,· ∈ span{ek′ : k′ ∈ I((Jû)k,·)}. (36)

Suppose, for contradiction, that Mc,π(r) ̸= 0 for some r ∈ I \ Ik. Then π(r) belongs to the index650

set on the right-hand side of Equation 36.651

By Equation 35, this implies that r ∈ I((Ju)k,·), i.e. r ∈ Ik, contradicting r ∈ I \ Ik. Therefore,652

Mc,π(r) = 0, which together with I(M) = I(Jϕ−1(ŝt)) yields653

∂st,c
∂ŝt,π(r)

= 0, ∀c ∈ Ik, r ∈ I \ Ik. (37)

Since ϕ is invertible, there exists an invertible mapping between st,c and ŝt,π(c), and st,c depends654

only on ŝt,π(c). Moreover, because r ∈ I \ Ik and c ∈ Ik, st,r is independent of st,c. Hence, st,r655

does not depend on ŝt,π(c), in the sense that their mutual information is zero. Thus, we further have656

∂st,r
∂ŝt,π(c)

= 0, ∀c ∈ Ik, r ∈ I \ Ik. (38)

Given the invertibility of the mapping between st and ŝt, the inverse of both Equations 37 and 38657

also holds. Thus, the only dependencies remain within the estimated and ground-truth task-relevant658

parts, completing the proof.659

B Supplementary Experimental Setups660

In this section, we include further details of the experimental setups not fully elaborated in the main661

text because of space constraints.662

CMI Surrogate for the CI Test. In high-dimensional settings, when direct conditional indepen-663

dence (CI) testing is computationally infeasible, it is standard to use approximations such as condi-664

tional mutual information (CMI). Below we provide additional details on this surrogate.665

For each pair (Sk,Sv) and task gi, we replace the CI test666

H0 : skL ⊥ svL
∣∣ Zband(k, v, i), (39)

with an estimate of the conditional mutual information667

I
(
skL; svL | Zband(k, v, i)

)
= E

[
log

p(skL, svL | Zband)

p(skL | Zband) p(svL | Zband)

]
. (40)

Direct estimation with Zband can be high dimensional. We therefore learn a task-conditioned rep-668

resentation ci = hϕ

(
Zband(k, v, i)

)
and instead test with I(skL; svL | ci). If hϕ is conditionally669

sufficient for Zband with respect to {skL, svL}, then670

I(skL; svL | Zband) = I(skL; svL | ci).

We estimate a variational lower bound on I(skL; svL | ci) using a conditional InfoNCE objective.671

Let fθ(skL, svL, ci) be a critic. For each positive pair (skL, svL, ci), draw K negatives {s̃(j)vL}Kj=1672

by shuffling svL within mini-batches that share ci (or within nearest neighbors of ci). Optimize673

LcNCE(θ, ϕ) = E

[
log

exp fθ(skL, svL, ci)

exp fθ(skL, svL, ci) +
∑K

j=1 exp fθ(skL, s̃
(j)
vL, ci)

]
, (41)

19



which lower bounds I(skL; svL | ci) up to a constant. After training a single task-conditioned critic674

across all (k, v, i), define675

ÎcNCE(k, v, i) = E

[
log

exp fθ(skL, svL, ci)
1
K

∑K
j=1 exp fθ(skL, s̃

(j)
vL, ci)

]
. (42)

We reject H0 for (k, v, i) if ÎcNCE(k, v, i) exceeds a permutation threshold obtained by re-sampling676

{s̃(j)vL} within ci buckets.677

Additional Details of SportsHHI. SportsHHI contains 11, 398 video sequences, partitioned into678

short clips of 5 frames each, with 55, 631 annotated pairwise interaction instances. The HHID task679

labels the interaction for each pair of human actors in a video; interactions often occupy short tempo-680

ral windows embedded in long sequences, so a single sequence typically contains multiple, possibly681

overlapping interactions. This results in complex temporal patterns, with flexible interactions across682

multiple actors.683

In our implementation of Algorithm 1 on SportsHHI, we set the number fo latent state variables684

to be the same as the number of humans at frame t. For all baselines, we use a pretrained CLIP685

encoder (Radford et al., 2021) with a ResNet-50 backbone to get the observed RGB features o. To686

handle temporal dynamics, an MLP parameterizes transitions st−1 → st, while conditional mutual687

information (CMI) is estimated on latent trajectories as a surrogate for conditional independence688

testing. To ensure fairness, all baselines employ a ResNet-50 backbone for RGB feature extraction,689

consistent with prior work.690

Downstream Benefit. We evaluate our method on the Meta-World benchmark (Yu et al., 2020) by691

constructing an interleaved offline dataset from the door-open/close; drawer-open tasks. Both tasks692

involve a 7-DoF robotic arm manipulating the same door but with opposite goals, making them an693

ideal testbed for multi-task interference. We first train task-specific expert policies using SAC until694

reaching 60% success rate, then collect ∼300 successful and ∼300 mixed-quality trajectories for695

each task. To create interleaved data, we segment trajectories into 30–60 step skill chunks (e.g.,696

reaching, grasping, rotating). With probability p = 0.8, we randomly splice open- and close-task697

segments into a single trajectory, inserting short transition phases to ensure physical continuity.698

This results in ∼2.4k interleaved trajectories, with on average 2.1 task switches per trajectory. We699

provide only weak or noisy task labels derived from the door angle change, simulating realistic700

partially labeled data. We build upon the Active Fine-Tuning (AMF) framework (Bagatella et al.,701

2025). Specifically, the agent learns a policy over identified tasks using their representation g, which702

replaces the task embedding µc in AMF. This enables the agent to actively select tasks that improve703

generalization. To evaluate this, we train on three tasks—door-open, door-close, and drawer-open,704

and test generalization to the new task drawer-close with only 104 samples.705

C Statement706

LLMs were used for grammar checking. No substantive edits requiring disclosure.707
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