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Abstract

Identifying task-relevant latent representations s from observations o = f(s) is
fundamental. Identifiability, the asymptotic guarantee of recovering the ground-
truth representation, is critical because it sets the ultimate limit of any model, even
with infinite data and computation. We study this problem in a completely non-
parametric setting, without relying on interventions, parametric forms, or struc-
tural constraints. We first prove that the structure between time steps and tasks
is identifiable in a fully unsupervised manner, even when sequences lack strict
temporal dependence and may exhibit disconnections, and task assignments can
follow arbitrarily complex and interleaving structures. We then prove that, within
each time step, the task-relevant latent representation can be disentangled from the
irrelevant part under a simple sparsity regularization, without any additional infor-
mation or parametric constraints. Together, these results establish a hierarchical
foundation: task structure is identifiable across time steps, and task-relevant latent
representations are identifiable within each step. To our knowledge, each result
provides a first general nonparametric identifiability guarantee, and together they
mark a step toward provably moving from generalist to specialist models.

1 Introduction

Learning latent representations from high-dimensional observations is central to enabling machines
to understand and act in the world (Bengio et al., 2013; Scholkopf et al., 2021). World models, for
instance, compress raw sensory input into low-dimensional features that capture dynamics (Ha &
Schmidhuber, 2018). Rather than modeling the entire environment, task-relevant representations are
desirable because they retain only the information required for the task, providing both efficiency
and robustness (Tishby & Zaslavsky, 2015; Wong et al., 2025). For instance, in autonomous driving,
planning depends on the positions and velocities of nearby vehicles and pedestrians, not on the color
of the cars or billboards along the road.

Without identifiability, a learned representation cannot be guaranteed to reflect the ground truth,
even with infinite data and computation. This challenge has long been central to latent representa-
tion learning, extending beyond task-relevant settings (Hyvarinen & Pajunen, 1999; Locatello et al.,

2019). Given two observationally equivalent models o = f(s) and o = f(8), an arbitrary transfor-
mation ¢ may exist such that § = ¢(s). In this case, the recovered latents need not correspond in
any meaningful way to the true ones. Task-relevant variables, for example, may remain entangled
with irrelevant factors, making it impossible to isolate what actually matters for the task. Such am-
biguity introduces irreducible uncertainty into a machine’s internal model of the world, constraining
the ceiling of achievable intelligence and creating risks in high-stakes applications.

Existing theory provides conditions for identifiability of latent representations. In classical linear
settings, identifiability can be obtained under additional parametric assumptions, for example in
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Figure 1: An illustration of the generative process. Latent states s; generate observations o; via
nonlinear functions and interact with actions a; under varying temporal connectivity, where consec-
utive steps may be arbitrarily disconnected. Tasks g; are defined as colliders across time steps, and
different tasks can arbitrarily interleave with one another. The zoomed-in view (right) shows how
different components of s; connect to multiple tasks via the intermediate actions.

factor models with constraints on loadings (Anderson et al., 1956; Joreskog, 1969; Shapiro, 1985),
in linear Independent Component Analysis (ICA) via non-Gaussianity (Comon, 1994; Hyvirinen
et al., 2001), and in tensor or multi-view models via Kruskal-type rank conditions (Kruskal, 1977;
Sidiropoulos & Bro, 2000; Allman et al., 2009). More recently, nonlinear theory has advanced
along two routes. In nonlinear ICA, one line leverages auxiliary information across domains or
time (Hyvirinen & Morioka, 2016; Hyvirinen et al., 2019; Yao et al., 2021; Hilvi et al., 2021;
Lachapelle et al., 2022), while another constrains the mixing class (Taleb & Jutten, 1999; Moran
et al., 2021; Kivva et al., 2022; Zheng et al., 2022; Gresele et al., 2021; Buchholz et al., 2022). In
causal representation learning, identifiability is often derived from interventional data (von Kiigelgen
etal., 2023; Jiang & Aragam, 2023; Jin & Syrgkanis, 2023; Zhang et al., 2024; Varici et al., 2025) or
counterfactual views (Von Kiigelgen et al., 2021; Brehmer et al., 2022), which require some control
over the data-generating process. These conditions provide significant insights into recovering the
underlying generative process, but may overly restrict the range of applicable scenarios.

At the same time, most existing theoretical results focus on full identifiability of the latent sys-
tem: either recovering all latent variables component-wisely, or identifying them up to ancestors or
neighborhoods. Yet such comprehensive recovery is often unnecessary. In many applications, tasks
depend only on a subset of latent factors — for instance, in robotic manipulation, success hinges on
object pose and gripper position, while lighting and textures are irrelevant. Shifting the goal from
full-system identifiability to task-relevant identifiability enables weaker assumptions while still di-
rectly supporting planning, transfer, and generalization. Recent works have explored subspace fac-
torization (Von Kiigelgen et al., 2021; Kong et al., 2022; Li et al., 2023; Liu et al., 2023), aiming to
decompose latent factors into interpretable blocks. However, these approaches impose fixed struc-
tures, such as content—style separation, and are not designed to accommodate flexible task settings,
where latent variables may correspond to tasks with unknown number, structure, and assignment,
and where this uncertainty can further vary across time steps. Thus, the question remains:

Is a task-relevant world representation identifiable in the general setting?

Contributions. To answer this, we develop a theoretical framework for identifying task-relevant
representations from the complex dynamics of the observational world. Our first result proves that
task structure across time is identifiable in a fully general setting, without any parametric or struc-
tural assumptions (Section 3). We do not require strict temporal dependence: steps may be discon-
nected or even i.i.d., and thus we cannot leverage the temporal information. In addition, tasks may
appear, disappear, and reappear in arbitrary order, allowing interleaving task-time structures. After
identifying the tasks for each time step, we further ask which latent variables are relevant to those
tasks, and provide the first nonparametric identifiability result for task-relevant latent representa-
tions without relying on interventions or functional constraints (Section 4). Specifically, we show
that fine-tuning a pretrained model with a simple task-latent regularization provably disentangles
task-relevant variables from irrelevant ones. Together, these results mark a step towards establishing
principled pathways from generalist to specialist models that achieve both compression and fidelity.

2 Preliminaries

We assume an observed sequence {0, }._; generated by latent states {s;}._;, with o, € R, s, €
R% and actions a; € R% . Observations satisfy o, = fi(s;), where f; is a diffeomorphism onto
its image. We allow varying temporal connectivity: s, — a; for all ¢, and a; — s;41, 8¢ —
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st+1 whenever the boundary ¢ — ¢+1 is connected; both edges into s;;; are omitted when it is
disconnected. A Structural Causal Model (SCM) consistent with these is

Fy(s,ag, &), ift — t+1 is connected,

= - 1
ay = (st Nt St+1 {Fto(&), otherwise, @

with independent noises 7, £;. We define tasks {g; }} as colliders among different time steps, that
is, s; — a; — g; if the time step ¢ is relevant to g;. The visualization of the process is in Figure 1,
and the reasons to define tasks as colliders instead of others are as follows:

Remark 1 (Why are tasks colliders?). Modeling a shared task g; as a collider is essential for
capturing the coordinated nature of actions within a plan.

» Confounder/Mediator: The structures a;, < g; — ay, or a;; — g; — ag, would imply
conditional independence: {s;,,as, } L {st,,as,} | g. This is an unrealistic assumption,
as it treats steps within a task as isolated events rather than parts of a coherent strategy.

» Collider: The structure a;, — g; < a, correctly induces conditional dependence:
{st;yar, } X {st,,ar, } | gi. This captures the intuition that time steps within a task are
interdependent, since they all target the same task.

Given the observed variables {o;}1_; and the global set of tasks {g; }£,, our goal is first to identify
the structure linking time steps and tasks (Section 3), and then, within each latent state s;, to isolate
the components relevant to the associated tasks (Section 4). All theoretical guarantees need to be
achieved in the general nonparametric setting without additional information.

3 Learning Temporal Task Structure

We first establish the identifiability of the time-task structure in the general setting. This structure is
essential, as it forms the foundation for recovering task-relevant latent representations within each
step. Without knowing which tasks are active at which times, disentangling latent variables at the
step level would be ill-posed.

The most relevant prior work is Qiu et al. (2024), which also models tasks as colliders and seeks to
recover their structure in an unsupervised manner. Their method, however, relies on sequential non-
negative matrix factorization, a heuristic decomposition without identifiability guarantees for the
true structure. Our framework provides provable identifiability under a much more general setting:
(i) the data—generating process is fully nonparametric, with no auxiliary information or restrictive
assumptions; (ii) tasks may freely interleave over time, rather than appearing in fixed sequential
order; and (iii) temporal dependence may vanish, allowing the sequence to contain arbitrary discon-
nections. Despite these challenges, we prove that the structure between time steps and tasks is iden-
tifiable under standard conditions. This result forms the first pillar of our framework: a principled
characterization of temporal task structure in the general regime without additional information.

3.1 Characterization of Pair-wise Structure

We assume 7" time steps, partitioned into N contiguous segments of equal length L = T'/N, with
L>2and N |T. Let

S={S:,...,Sn}, Si = {S(i—1)L+1,--+»SiL} 2
All states within a segment share the same set of active tasks, and each task g; must appear in at

least two segments. Segments can be short (as few as two steps), ensuring flexibility in capturing
state changes. To formalize the conditions used in our theory, we introduce the following notion.

Definition 1 (Band conditioning set). For k < v and task g;, define
Zyana(k,v,1) = {SkL—1,SkL+1,8vL—1,SvL+1} N {S1,. .., 87} U{gi},
with out-of-range indices omitted.

Our main result is the following, with the standard Markov and Faithfulness conditions.
Assumption 1 (Markov and Faithfulness (Spirtes et al., 2000)). Let G be a Directed Acyclic Graph
(DAG) and P a distribution over variables V. The Markov property requires that each X € V is
independent of its non-descendants given its parents in G. The Faithfulness requires that P entails
no conditional independence relations beyond those implied by the Markov property of G.
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Figure 2: A quick example for Theorem 1. We test whether Sy, = {s3,s4} and S, = {s7, sg} belong
to task g1 by checking the conditional dependence s4 } sg | Zpana(k, v, 1), where Zpang(k,v,1) =
{ss, s5,87,89,g1}. Since s4 and sg are conditionally dependent given Zy,nq(k, v, 1), g is identi-
fied as (one of) the underlying tasks. Note that our theory accommodates arbitrary disconnections
between time steps (e.g., s; and s3), multiple tasks, and arbitrarily interleaving task structures.

Theorem 1. Assume the Markov property and Faithfulness with respect to the graph above, and
L > 2. Fix k < v and a task g;. Then g, is relevant to segments Sy, and S, if and only if

Sk 7U£S1;L Zband(ka v, Z)

Proof Sketch. The proof (Appendix A.2) relies on characterizing all possible d-connecting paths
between sy, and s, under the band conditioning set. Conditioning on the immediate boundary
states blocks any path that propagates purely through the temporal dynamics, so dependence can
only be transmitted through a shared task. Since tasks have only incoming edges, any task other than
g; appears as a closed collider and blocks the path, which implies that g; must be the unique source
of dependence. Careful consideration of local structures and corner cases then shows that the only
admissible d-connecting paths are those where actions adjacent to s, and s, 1, both feed into g;.

Implication. Theorem 1 provides a provable way to determine whether two segments share the
same task g;, giving an exact characterization of temporal task relevance (visualized in Fig. 2).
This is powerful: once we can identify the corresponding tasks of any pair of segments, the entire
task structure can be discovered. Moreover, the condition is testable directly from observed data,
since conditional independence is preserved under the invertible map o; = f;(s;) and the task
variables g; are observed. Hence the procedure requires no parametric assumptions and is broadly
applicable. Finally, the result does not rely on restrictive structural constraints, allowing tasks to
appear, disappear, and interleave in arbitrary order across time, and sequences can be disconnected.

Since all states within a segment share the same task set, conditional independence (CI) tests in-
volving the boundary states are equivalent to tests involving any other pair of states within the
two segments (provided L > 2). Intuitively, this homogeneity means that the specific choice
of representative states does not matter: any pair of states across two segments encodes the

same task-level dependence. For example, sx;, ¥ s,1 ‘ Zyona(k,v,1) is equivalent to sg—1 Y

Sur—1 | {SkL—2,8kL,SvL—2,Sur,} N{s1,...,s7}U{g;}. This invariance ensures that identifiability
does not hinge on an arbitrary boundary choice, but is intrinsic to the task structure itself.

Corollary 1. Assume the Markov property and Faithfulness with respect to the graph above, and
L > 2. Fix k < v and a task g;. Then g; is relevant to segments Sy, and S,, if and only if

sjsq | {Sj—1,8j+1,8¢—1,8Sq+1} N {s1,...,sr} U{gi},
foranyje {(k—1)L+1,...,kL}andq € {(v—1)L+1,...,vL}.

This corollary does not impose additional conditions but establishes an equivalent characterization,
guaranteed by the basic coherence of the tasks. It strengthens the applicability of Thm. 1 by showing
that task relevance can be tested using arbitrary representatives within segments, not only their
boundaries. Conceptually, this flexibility highlights that identifiability of the temporal task structure
arises from the global dependency pattern induced by colliders, rather than from local temporal
adjacency. As a consequence, the result is robust to segmentation choices and ensures that the
recovered structure reflects intrinsic properties of the underlying process rather than artifacts.
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3.2 Discovering Global Task Structure

Building on Theorem 1 and Corollary 1, the characterization of task relevance naturally yields an
algorithmic procedure. With the proposed test, one can systematically determine whether two seg-
ments share a common task. Aggregating these pairwise tests across all segment pairs yields the
complete temporal task structure, as detailed in Algorithm 1.

Proposition 1. Assume the conditions of Theorem 1. If the ClI test is an oracle, Algorithm 1 exactly
recovers the temporal task structure.

The procedure is not only theoretically solid but also computationally efficient, which scales with
the temporal horizon rather than the observation dimension. Moreover, because conditional indepen-
dence is preserved under the invertible observation map, the tests can be performed directly in the
observed space, without knowledge of the latent states or parametric assumptions on the dynamics.
This provides an operational bridge from identifiability theory to practice: temporal task structure
can be recovered by a simple, general, and provably correct algorithm, even in environments with
arbitrary interleaving, recurrence, and disconnections across time.

Algorithm 1: Global task structure discovery

Input : Segments Sq.y of length L > 2; tasks G = {g1.a/}
Output: Segment—task sets {7 (Sx)}5_, and step labels {7 (¢)}1,
T(Sun) < [0V P {(kov)|1<k<v< N}
ForEach i € [1..M] Do
ForEach (k,v) € P Do
Ifspr Xsor | Zvana(k, v, i) Then
L | T(Sk) < T(Sk) U{gits T(Sy) < T(Su) U{gi}

ForEach k € [1..N] Do
| ForEacht € S Do T(t) < T(S)

Return: {7 (Sp)}_,, {T(O}L,

4 Learning Task-Relevant Representation

Having established the identifiability of temporal task structure, we now turn to the problem of
learning task-relevant representations within each time step. Identifying which tasks are active at
which times clarifies the dynamics across segments and ensures that temporal dependencies are
properly aligned with task boundaries. This strengthens the focus on the temporal dimension, but it
does not yet resolve the finer question of representation: within a single latent state s;, only a subset
of variables may be relevant to the task, while the rest correspond to nuisance factors. To obtain a
minimal yet sufficient representation, we must therefore dig deeper into the latent space of s; and
disentangle the components that are truly task-relevant from those that are irrelevant.

Identifiability concerns recovering the unique ground truth s, from two observationally equivalent
models 0o, = f,(s;) and 0, = fi(8;). Let g = u(s,0) and & = (8, H), where A an 6 denote
variables other than s and S. These mappings exist due to the dependency structure s; — a; — g;.
With slight abuse of notation, we mostly omit 6 and 6 and write g = u(s) and & = @(8) for brevity.

4.1 Identifiability with a Generalist Model

We begin by asking what can be achieved without imposing any structural constraint beyond obser-
vational equivalence. That is, we consider a generalist model without explicitly being regularized
to focus on the corresponding tasks. While such a model may capture the necessary information for
prediction, its ability to recover the ground-truth task—relevant latent representation is limited.

Additional Notation. For a vector-valued function u : R% — R%, we denote by .J,(s;) the
Jacobian matrix with respect to s, whose (¢, j) entry is Ou;/0s; ;. For a vector or matrix A, we
write Z(A) for the set of indices corresponding to its nonzero entries, and ||Z(A)|| for its cardinality
(the number of nonzeros, i.e., the £y norm). We denote Ij, C [d;] as the set of indices of the latent
variables relevant to task g, and s, j, as the corresponding set of latent variables.
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Proposition 2. Assume that, for each i € [d,), there exists a set N of | Z(J,(s¢)s,.)|| distinct points
such that the corresponding Jacobian row vectors

83,5,1 ’ 68,5’2 E 83t,ds
are linearly independent, andI((Ju(sgl)) M);.) C I((J{ (égl)))i7.), where M is a matrix sharing

the nonzero index set of matrix-valued function M'(s,8) in J,,(s)M'(s,8) = Ju(8). Then, for any
task gy, with latent index set I, the number of estimated task-relevant latent variables is larger than

that of the ground truth, i.e.,
IZ((Ta)i )l = IZ((u)i,) -

Proof Sketch. The argument starts by connecting the support of the Jacobian to the underlying
dependency graph. The span condition ensures that the information is being preserved during es-
timation, and thus no true dependency can be eliminated in the transformation between s and 8.
Equivalently, the nonzero pattern of .J,,(s) must be contained within that of .J;(8). Translated back
to the task—latent structure, this implies that the number of the estimated task-relevant latent vari-
ables, as captured by the support, is always a superset of the true one.

. LeN;,

st:sg)

Implication. This result shows that, without explicit modelling of specific tasks, generalist models
tend to learn a representation that is larger than necessary. The requirement of sufficient nonlinearity
rules out degenerate cases where samples concentrate on an extremely small subset (e.g., as few as
several samples), and is standard in identifiability analyses of nonlinear models (Lachapelle et al.,
2022; Zheng et al., 2022). The conclusion is intuitive: a sufficiently expressive foundation model
can capture a representation that contains all information needed for downstream tasks.

At the same time, the guarantee ||Z(Jg);.|| > [Z(Jyu)i, || remains weak: it ensures only that the
estimated representation is no smaller in size than the true one, not that it matches it or recovers the
correct variables. In practice, this means a generalist model often learns an overcomplete represen-
tation, where task-relevant variables may still be missed or entangled with irrelevant ones. Worse,
the inequality provides no guarantee on recovering variable values since the enlarged representation
may distort or discard essential information. This formalizes the intuition that while frontier gener-
alist models are expressive enough to encode all task information, without additional regularization
they fail to isolate the minimal task-relevant latent representation.

4.2 From Generalist to Specialist

The previous result shows that a generalist model often produces an enlarged representation, esti-
mating more task-relevant variables than truly exist. Such oversizing does not guarantee that all
genuine factors are preserved; irrelevant latents may be included, while essential ones can still be
distorted or obscured. To recover the true task-relevant representation, additional inductive bias is
needed. A natural choice is sparsity regularization on the estimated task—latent structure, which
enforces minimality in the recovered structure. Intuitively, sparsity prunes away superfluous di-
mensions and curbs over-expansion, ensuring that the final representation retains only the variables
genuinely required for each task.

Theorem 2. Consider two observationally equivalent generative processes oy = fi(st) and o =
ft(ét), and assume the conditions in Proposition 2. Then, for any task gy, with latent index set I},
with a sparsity regularization

IZ(Ja)ll < [IZ(J)),
under some permutation 7, the estimated task-relevant latent variables 8 (1) are an invertible
Sfunction hy, of only the ground-truth task-relevant latent variables s r,, i.e.,

ét,ﬂ'(Ik) = hk (St,IK )'

Proof Sketch. Under the span and support assumptions from Proposition 2, we first show that ev-
ery nonzero entry of .J,,(s) must correspond to a nonzero entry of J;(S), up to a column permutation
7. Sparsity regularization enforces that no additional entries can remain nonzero, which upgrades
inclusion into exact equivalence of supports. Finally, algebraic analysis helps move from structure
to variables, exploiting the separation between task-relevant and task-irrelevant latents.
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Figure 3: Performance for temporal task structure identification. Top: varying the number of time
steps T' (with T'/5 tasks). Bottom: varying the number of tasks M (with 20 time steps).

Implication. Practically, Theorem 2 establishes the formal guarantees on going from a generalist
to a specialist model. It shows that, based on the general guarantee in Proposition 2, a simple spar-
sity regularization is sufficient to disentangle task-relevant latent variables from the irrelevant ones.
Unlike the generalist guarantee, which recovers a superset of the true support, the sparsity constraint
sharpens recovery to the variable-level and disentangles irrelevant parts. Conceptually, this result
highlights the necessity of moving from generalist to specialist modeling: while a generalist can
cover all possible dependencies, only task-specific modeling with appropriate regularization yields
a representation that is both minimal and faithful. This provides a principled justification for why
specialist models can achieve disentangled task representations where generalist models cannot.

Theoretically, our result suggests a new strategy for provably uncovering the latent variables under-
lying the observational world. Importantly, because we allow arbitrary disconnections between time
steps, Theorem 2 also covers the i.i.d. setting. This is a substantially harder case than prior work
that exploits temporal information or domain shifts, since changes across time or environments in-
herently provide extra signals for identification, whereas identifiability in the absence of changes is
notoriously difficult. Existing i.i.d. results rely either on restrictive functional assumptions (Taleb &
Jutten, 1999; Buchholz et al., 2022) or graphical criteria on the underlying structure (Moran et al.,
2021; Zheng et al., 2022) to achieve full component-wise identifiability. By contrast, our focus is not
on recovering every individual latent, but rather on identifying all task-relevant ones as a subgroup.
This relaxation allows us to bypass such strong assumptions and still establish general identifiability
guarantees. Beyond our setting, this perspective may prove methodologically useful for a wide range
of latent-variable problems, where isolating task-relevant latents is already of central importance.

5 Experiments

In this section, we present comprehensive empirical results supporting our theory on both temporal
task structure learning and task-relevant representation learning across diverse settings. Due to page
limits, some setup details are deferred to Appendix B.

Identifiability of Temporal Task Structure. We evaluate whether the proposed algorithm can
recover temporal task structures under challenging conditions, including disconnected temporal re-
lations and arbitrarily interleaving tasks. Two setups are considered: (1) varying the number of time
steps T' from 8 to 20 with T'/5 tasks, and (2) varying the number of tasks M from 2 to 10 with 20
time steps. To maximize structural complexity, we set the minimum segment length to 2 and ran-
domly generate the task—time step dependencies. Additionally, 20% of the dependencies between
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consecutive segments are randomly removed. Each dataset contains 10, 000 samples generated from
linear Gaussian SCMs. All results are from 10 random runs with Fisher’s z-test (Fisher, 1921).

For both settings, we report accuracy and Matthews correlation coefficient (MCC) of the tasks iden-
tified. For baselines, we consider classical CCA (Anderson, 2003) and Group Lasso (Yuan & Lin,
2006), as well as the most recent SelTask (Qiu et al., 2024). Results are summarized in Fig. 3.
Our method dominates across all 7" and M in both accuracy and MCC. As expected, performance
degrades as the problem becomes harder (larger 1" or M), but the gap to baselines persists.

Real-World Structure. To explore whether we
can identify real-world structures between tasks and
time steps, we further conduct experiments on the 0.3
recent SportsHHI video dataset (Wu et al., 2024).
For each time frame in the video, the objective is <
to discover its corresponding task labels, which in £

this context correspond to the behaviors of humans

captured in the video. Because the dataset involves 0.1

multlpl§ individuals with cqmplex and pverlappmg Ours LEAP Base
interactions, each frame typically contains multiple Method

task labels, resulting in highly intricate task struc-
tures. This makes SportsHHI a challenging and suit- Figure 4: Real-world temporal task structure
able testbed for stress-testing the identification. discovery on SportsHHI.

Following common practice, we use a pretrained CLIP encoder (Radford et al., 2021) to obtain vi-
sual embeddings o and task embeddings g, and employ a variational autoencoder to estimate the
latent state variables s. The latent transition dynamics between consecutive states are parameterized
by an MLP, while conditional mutual information (CMI) is used as a proxy for conditional indepen-
dence to mitigate the curse of dimensionality in statistical testing. We compare our approach against
two baselines: (i) applying Alg. 1 directly to observed variables instead of latent ones (replacing
s with o), and (ii)) LEAP (Yao et al., 2021), a representative method for learning latent temporal
representations with identifiability guarantees. Following prior work, we evaluate using mean av-
erage precision (mAP). The results in Fig. 4 demonstrate that modeling the complexity of general
temporal task structures is essential for accurate discovery in complex real-world scenarios.

Identifiability of Task-Relevant Representation. 1.0

After establishing identifiability of the temporal task 0.8 — Irrelevant
structure, we zoom in on a single step and evalu- ©| ——————" " — Relevant
ate recovery of the task-relevant latent representation . 06

conditioned on the corresponding tasks. The data- o
generating process follows the theoretical setup, 0.4
with an MLP using Leaky ReLU as the nonlinear 0.2

function. For estimation, we employ a VAE with —_—
¢y regularization on the task-latent structure. As the 0.0 20 40 60 80 100
evaluation metric, we report the R? between the es- Number of Latent Variables

timated and ground-truth latent components: higher
values indicate accurate recovery of relevant parts,
while lower values indicate effective separation from
irrelevant parts. Figure 5 shows a clear gap: (1) task-relevant representations are successfully dis-
entangled from irrelevant ones (low R? for irrelevant parts), and (2) the estimated task-relevant part
captures most of the information in the ground-truth one (high R? for relevant parts). These provide
rigorous validation of the identifiability theory, confirming that task-relevant latent variables can be
uncovered as a group with both information preservation and irrelevance disentanglement.

Figure 5: R? scores for relevant and irrele-
vant parts under varying dimensions.

Task-Relevant Latents in Realistic Vision. We next investigate the recovery of task-relevant
latent representations in realistic scenarios. Since ground-truth latents are usually unavailable in
practice, direct comparison with the truth is infeasible. Evaluation therefore turns to human inter-
pretability, where visualizing the identified latents provides key evidence. We construct a dataset
of cat images using Flux, with tasks such as “wearing eyeglasses,” “wearing a hat,” and “wearing
a tie,” explicitly considering realistic images to align with real-world vision. For estimation, we
adopt a GAN-based generator where each task is associated with a learned transformation of the
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Figure 6: Qualitative comparison of identified task-relevant latents. Tasks include “wearing glasses,”
“wearing a hat,” and “wearing a tie.” Left: with sparsity, the model isolates a minimal but sufficient
subset of latents aligned with each task. Right: without sparsity, irrelevant factors (e.g., color)
become entangled with the task-relevant ones.

latents. Concretely, given s, a task-specific operator modifies only a sparse subset of coordinates
by an /¢;-regularized mask, producing masked latents that are then passed to the generator. Figure 6
compares results with and without sparsity. With sparsity, the recovered latents correspond closely
to the intended task attributes, while without sparsity, irrelevant factors such as color are entangled
with the target tasks. This further supports the task-relevant identifiability and the role of sparsity.

Downstream Benefit. Finally, we show that accounting  Tuple 1: Generalization on new task.
for complex task structure and identifying task-relevant

latent representations also benefits downstream perfor- Method Success Rate
mance. We evaluate our method on the Meta-World Ours 075
benchmark (Yu et al., 2020) by constructing an inter- :

. ; ) AMF 0.72
leaved offline dataset from multiple tasks. Each task in- CCA 0.50
volves a 7-DoF robotic arm manipulating the same ob- Group Lasso 0' 46
ject but with opposite goals, providing an ideal testbed SelTaI;k 0'70

for multi-task interference. We collect expert trajectories
with Soft Actor Critic (SAC) (Haarnoja et al., 2018) and construct interleaved data by segmenting
skills and splicing across tasks with transition phases. We extend the Active Fine-Tuning (AMF)
framework (Bagatella et al., 2025) with our task discovery algorithm and task-latent sparsity reg-
ularization. Following other experiments, we also compare with CCA and Group Lasso, as well
as the most relevant work SelTask (Qiu et al., 2024). We train on interleaved tasks (door-open,
door-close, and drawer-open) and test generalization to the new task (drawer-close) with only 10*
samples. Table 1 reports average success rates over 10 seeds, showing that our theory enables the
model to learn and generalize more efficiently from past experience.

6 Conclusion and Discussion

In this paper, we initiated the theoretical investigation of learning task-relevant world representa-
tions, aiming to move from generalist to specialist. The main challenges lie in the level of general-
ity, which requires handling both complex structures, such as disconnected sequences, interleaving
tasks, and frequent switches, and general processes, including nonlinear functions, arbitrary distri-
butions, and the absence of auxiliary information. While we have addressed these, several related
questions remain open. First, although identifiability is defined asymptotically and frontier models
are often trained on web-scale data, it is still important to understand the finite-sample regime, and
the lack of related analysis is a limitation in data-sparse scenarios. Second, our present way of lever-
aging identifiability is relatively simple, essentially a standard estimator with sparsity regulariza-
tion. While such simplicity and universality are often advantageous, it is also intriguing to consider
identifiability-inspired architectures that depart more radically from existing patterns. A stronger
focus on identifiability within the community may reveal barrier-breaking insights that have been
overshadowed by the pursuit of purely empirical gains, and we aim to contribute toward this shift.
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A Proofs

A.1 Notation

We first provide a summary of notation in Table 2.

Symbol | Meaning

oy € R Observation at time ¢
s; € R Latent state at time ¢
ar € Ra Action at time ¢
gi Task variable ¢, defined as collider across time steps
M Total number of tasks
T Total number of time steps
Sk Segment k, a block of consecutive latent steps
T(t) Set of tasks relevant to time step ¢
T(Sk) Set of tasks relevant to segment Sy,
ft Observation function s; — o0y, diffeomorphism onto image
Tt Action policy s; — a; with noise 7;
F Transition function for connected boundaries
F/ Transition function for disconnected boundaries
Ju(st) Jacobian of mapping u w.r.t. latent state s;
I(A) Index set of nonzero entries of matrix/vector A
I1(A)]| Cardinality of index set I(A) (i.e., £o norm)
I, C[ds] | Index set of latents relevant to task g
S¢,1,, Latent variables in s; relevant to g

Table 2: Summary of notation.

A.2 Proof of Theorem 1

Theorem 1. Assume the Markov property and Faithfulness with respect to the graph above, and
L > 2. Fix k < v and a task g;. Then g; is relevant to segments Sy, and S,, if and only if

SkI _,MSvL Zband(kv v, 'L)

Notation and Blocking Rules. A path is a sequence of distinct nodes (vy, . . . , v,.) with each con-
secutive pair adjacent. Along a path, a node is a collider if both incident path edges have arrowheads
into the node, and a non-collider otherwise. A path is blocked by a conditioning set Z if it contains a
non-collider in Z or a collider that is neither in Z nor has a descendant in Z (i.e., d-separation (Pearl,
1988)). In our graph, tasks have only incoming edges, and tasks have no descendants.

Band Conditioning Set. Throughout this subsection the conditioning set is

Zyand (k,v,1) = {Sgr—1,SkL+1,Svn—1,Svr+1} N {s1,...,sr} U {gi}, 3)

with out-of-range indices omitted. Thus only the two immediate inner neighbors sxy,4+1,8,7,—1 and
the two immediate outer neighbors si,_1,S,r+1 (When they exist) are conditioned; among tasks
only g; is conditioned.

Lemma 1 (A d-connecting path uses exactly one task, equal to g;). Every path from sy, to s, 1, that
is d-connecting given Zyana(k, v, 1) contains exactly one task node, and that task is ;.

Proof. Consider any path with no task nodes. Such a path alternates among states and actions and
moves in time via s; — Syy1, S¢ — a; Or a; — S¢y1. Any forward traversal from sy, toward s, 1,
must pass through the cut state s 1; symmetrically, any approach into s, 1, from the left must pass
through s, ;1. All these cut states are in Zy,,,q and are non-colliders on such chain paths, so the
path is blocked. Hence, any d-connected path must include at least one task.

14
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If a path contains a task g; # g;, then at g; both incident edges point into g;, so g; is a collider.
Since g; ¢ Zyana and tasks have no descendants, this collider is closed and the path is blocked.
Therefore no d-connecting path can contain any task other than g;.

If a path contains two or more tasks, at least one of them is not g;, which blocks the path by the
previous argument. Thus every d-connecting path contains exactly one task and that task is g;. [

Lemma 2 (Local structure of d-connecting paths). Under the graph and conditioning in Equation 3,
every d-connecting path between sy, and s, 1, has one of the four forms

(I) spr —akrL — & < Ayl < SyL, (II) spL — agp — & < ayL—1 — SyL,
(Ill) spp < agp—1 — i < Ayl < Sy, (IV) skL < @gp—1 — & < ayL—1 — SyL,
4

with out-of-range indices omitted.

Proof. By Lemma 1, any d-connecting path contains exactly the single task g;.

Left boundary. The first neighbor of si;, on any d-connecting path cannot be a state, because the
only state neighbors are sy 1 and sir+1, both in Zy,,q and both non-colliders on chain moves,
which would block the path. Hence the neighbor must be an adjacent action, ag;,_1 (if kL > 1) or
ay . From that action, any continuation to a state would encounter one of the conditioned cut states
as a non-collider, so the next node must be g; via an edge a — g;. This yields the two left fragments
SkL < akr—1 — g; and spp —> agy — ;.

Right boundary. Symmetrically, the predecessor of s, 7, on the path cannot be a state, since the only
state neighbors are s, ;1 and s,r+1, which are in Zy,,,q and would block as non-colliders in the
potential additional paths. Specifically, s,z —; is a non-collider in paths involving s,r,—1 — Syr,
and s, 4+ is a non-collider in paths involving S,r4+1 — @,r+1 Of Sy+1 — SyL4+2. Thus the
predecessor must be a, ;1 or a,r,, linked to g; by an edge a — g; traversed in reverse on the path.
This yields the two right fragments g; <— a,r—1 — S,z and g; <— a, < SyL.

Combining the two left with the two right fragments gives exactly the four forms in Equation 4. On
each such path, g; is the unique collider and is in Zy,,,4, while all other nodes are non-colliders that
are not in Zpang, o these paths are d-connecting. O

Now we are ready to prove the theorem.

Theorem 1. Assume the Markov property and Faithfulness with respect to the graph above, and
L > 2. Fix k < v and a task g;. Then g; is relevant to segments Sy, and S,, if and only if

SkL lSvL Zband<ka v, Z)

Proof. (=) Suppose sz, and s, 1, are conditionally dependent given Zyanq(k,v,4). By Lemma 2,
there exists a d-connecting path of one of the four forms in Equation 4. In each form, the actions
adjacent to sz, and s, , that appear on the path are parents of g;. Hence g; is relevant to segments
S, and S,.

(<) Conversely, suppose both intersections are nonempty. Choose p € {kL — 1,kL} and q €
{vL — 1,vL} such that a, — g; and a, — g;. Then one of the four forms in Equation 4 exists.
Along that path, g; is the unique collider and is conditioned, while all other nodes are non-colliders
not in Zpana(k, v, 7). Therefore the path is not blocked and

skL ESoL | Zbana(k,v,1). ®)
This proves the equivalence stated in Theorem 1. O
A.3 Proof of Corollary 1

Corollary 1. Assume the Markov property and Faithfulness with respect to the graph above, and
L > 2. Fix k < v and a task g;. Then g; is relevant to segments Sy, and S,, if and only if

Sj K 8q | {8j-1,841:8¢-1,8¢41} N {s1,.. .87} U{gi},
foranyje{(k—1)L+1,...,kL}andqe {(v—1)L+1,...,0L}.
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Proof. Fix k < v, pickany j € {(k—1)L+1,...,kL}andq € {(v—1)L+1,...,vL}, and
define the local band set

Zioc(7,4,1) = {Sj—1,5j4+1,8¢—1,8¢+1} N {s1,...,s7} U g;. (6)

By the same blocking argument as in Lemma 1, any d-connecting path between s; and s, given
Zioc(j, g, 1) must contain exactly one task node and it must be g;. The neighbor of s; on any such
path cannot be a state, since s;_; and s;11 are in Zj,. and are non-colliders on chain moves, hence
they would block. Therefore the path must leave s; through an adjacent action a;_; or a;, and
from there enter g; via an edge a — g;. A symmetric argument holds at the right end near s,.
Consequently every d-connecting path between s; and s, given Zi..(j, ¢,%) has one of the four
forms

I s; = a; — g; < a, < sq, (D) s; — a; — g; < ag—1 — Sq,

() s; «<—a;_1 — g; < aq < Sq, (IV)s; <—aj_1 — g; < ag_1 — Sq, @)
with out-of-range indices omitted. On each such path g; is the unique collider and is conditioned,
while all other nodes are non-colliders that are not conditioned, so the path is d-connecting.

Note that states inside the same segment share the same task set, and task nodes have only incoming
edges from actions. It follows that, if g; is relevant to Sg and S, then there exist p € j — 1,7 and
r € ¢ — 1,q such that a, — g; and a, — g;.

Then we prove the equivalence as follows.

(=) Ifg; isrelevant to Sy, and S, pickp € j —1,jandr € ¢ — 1,¢g witha, — g; and a,, — g; as
above. Then one of the four local forms in Equation 7 exists and is d-connecting given Zo (7, ¢, %),
hence

sjEsq | Zioc(d: g, %) ®)

(<) Conversely, if s; and s, are conditionally dependent given Zio. (7, g, ), then by Equation 7 the
actions adjacent to s; and s, that lie on a d-connecting path are parents of g;. Together with the
segment homogeneity, g; is relevant to S and S,,.

This proves the stated equivalence for arbitrary j € S;, and ¢ € S, with L > 2. O

A4 Proof of Proposition 1

Proposition 1. Assume the conditions of Theorem 1. If the ClI test is an oracle, Algorithm 1 exactly
recovers the temporal task structure.

Proof. Fix a task g; and a segment Sy. If Sy truly contains g;, then for S, with v # k that also
contains g;, by Theorem 1, there must be

skr, Lsor | Zvand(k,v,1). )

The oracle CI test returns dependence, so Algorithm 1 adds g; to both 7(Sy) and 7(S,,).

Conversely, if 7(Sy) does not contain g;, then Theorem 1 implies conditional independence for
all pairs involving Sy, hence the algorithm never adds g; to 7 (Sy). Therefore the recovered seg-
ment-task incidence is exact. Per-step labels are correct by assignment. O

A.5 Proof of Proposition 2

Proposition 2. Assume that, for each i € [d,), there exists a set N of |Z(J,(st):,.)|| distinct points
such that the corresponding Jacobian row vectors

0sin’ 0seo’ 08y,

are linearly independent, andI((Ju (sgl)) M);.) C I((Jﬁ(égl)))i_,.), where M is a matrix sharing
the nonzero index set of matrix-valued function M'(s,8) in J,,(s)M'(s,8) = Ju(8). Then, for any

, LeN;,

st:sg’)
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task gy, with latent index set I, the number of estimated task-relevant latent variables is larger than
that of the ground truth, i.e.,

IZ((Ja)i ) = IZ((Tu)i )l

Proof. Since o; = fi(s;) and 0 = ft(ét) are observationally equivalent, there exists an invertible
mapping ¢ such that

Sc=fi "o fi(se) = o(sy), (10)
with inverse ¢ 1. By the chain rule,
Jo = JuJy1. (11)

Fix i € [dy]. Consider the set \V; of ||Z((.J,,);,.)|| distinct points and the corresponding Jacobian row

vectors
8st71 L ast,ds

which are linearly independent by assumption.

le N, (12)

7
stzsg )

Now construct a matrix M with Z(M) = Z(J,-1(8)). By the index-set inclusion assumption, for
each [ € N; we have

Z((u(s”)M)s.) S Z((Jasi))i). (13)
Thus,
(Ju(sgl)))i,.M € span{e; : j € Z((Ja)i,.)}- (14)
Taking linear combinations across [ € N; preserves this property, so in particular,
M;. espanfer : k€ Z((Ja)i)} V5 € Z((Ju)i,.)- (15)

Since J,-1(8;) is invertible, there exists a permutation 7 such that

(Jo-1(8:))jn(jy 70, V5 €{L,....ds}. (16)
Because Z(M) = Z(Jy-1(8¢)), we obtain
Mgy # 0, V5 € Z((Ju)s..)- a7

Combining this with Equation 15, we conclude
m(j) € Z((Ja)i.), Vi € Z((Ju)i,.)- (18)

Equation 18 shows that each ground-truth relevant index j € Z((Jy);,.) is mapped to a distinct
estimated relevant index 7(j) € Z((J3);,.). Therefore, the estimated index set must contain at least
as many elements as the ground-truth one:

IZ((Ja) ) = IZ((Ju)i)]- (19)

This completes the proof. O

A.6 Proof of Theorem 2

Theorem 2. Consider two observationally equivalent generative processes oy = fi(st) and o =

ft(ét), and assume the conditions in Proposition 2. Then, for any task gy, with latent index set I},
with a sparsity regularization

IZ(Ta)ll < IZ(J)I,

under some permutation , the estimated task-relevant latent variables 8, 1,y are an invertible
Sfunction hy, of only the ground-truth task-relevant latent variables s i, i.e.,

Sta(ry) = he(stre)-

17



623

624
625

626

627

628

629
630
631

632
633

634

635

636

637

638

639
640

641

642

643

644

Proof. The first part of the proof follows the similar strategy as Proposition 2, and we provide the
full details for completeness. Since o; = fi(s;) and o = f:(S:) are observationally equivalent,
there exists an invertible mapping ¢ such that

e = fi o fulse) = d(se), (20)

with inverse ¢ ~!. By the chain rule,
Ja = JuJp-1. 21

For each i € [dg], consider a set \; of || Z((J,,);,.)]|| distinct points and the corresponding Jacobians

3u,~ 8u7; 8uL
8St’1 ’ aSt’g B 8St’d5

By assumption, the vectors in Equation 22 are linearly independent.

, LeN. (22)

s:sil)

We now construct a matrix M. Because the row vectors in Equation 22 are linearly independent,
any row M; . with j € Z((Jy);,.) can be expressed as a linear combination of them. That is, there
exist coefficients {/3; } e, such that

Mj. =" Bi(Jul(s"))i. M. 23)
leN;

We require M to satisfy two conditions: (i) for each i € [d,], the linear combination in Equation 23
must lie in the span of the canonical basis vectors indexed by Z((J3);..), i.e.,

> Bi(Ju(sy)i M € spanfe; : j € Z((Ja)s.)}, (24)
lENi
and (ii) its index set matches that of Js—1(8;):
Z(M) =Z(J-1(8¢))- (25)

By the index-set inclusion assumption, for all [ € N; we have

I A
T((Ju(s) M):) € T((Ja(6))s ). 26)
This guarantees
(Ju(sgl)))i,. M € span{e; : j € Z((Ja)i,.)}- 27)
Taking linear combinations with the coefficients {3; }, we conclude
S” Bi(Ju(s))i M € spanfe; < j € T((Ja)i)}- (28)

lE./\fi
Equivalently, for every j € Z((Jy)s,.),
M;.. € spanfey : k € Z((Ja)i,.)}- (29)

Since J-1(8;) is invertible, its determinant is nonzero. Expanding the determinant as a sum over
permutations, there must exist a permutation 7 such that

(J¢—1(§t))j7ﬂ(j) 7507 Vi e {1,...,d5}. (30)
This establishes a one-to-one correspondence between the indices of s; and §; through 7.

In particular, for every j € Z((J,);,.), we have

(Jp=1(8¢))j,m(j) # O 31)
Because Z(M) = Z(J4-1(8¢)), this implies
Mjriy #0, Vi € Z((Ju)i,)- (32)
Combining this with Equation 29, it follows that
m(j) € Z((Ja)i,), Vi € Z((Ju)i,.)- (33)
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Therefore, every nonzero entry of J, has a corresponding nonzero entry of J; at the permuted
column index:

(Ju)ij #0 = (Ja)ix() # 0. (34)

Finally, with the sparsity regularization ||Jg|lo < ||Ju||0, this implication strengthens to an equiva-
lence:

(Ju)iy #0 = (Ja)ix() # 0. (35)
For ¢ € I, we have ¢ € Z((J,),.). Hence, by Equation 29,
MC7. S span{ek/ ke I((J@)k,)} (36)

Suppose, for contradiction, that M, () # 0 for some r € I \ I. Then 7(r) belongs to the index
set on the right-hand side of Equation 36.

By Equation 35, this implies that r € Z((J,,)x,.), i.e. 7 € I, contradicting € I \ Ij. Therefore,
M. () = 0, which together with Z(M) = Z(.J,-1(8;)) yields

8St,C

Bte _0, Veely, rell\ . (37)
08¢ x(r)

Since ¢ is invertible, there exists an invertible mapping between s; . and étm(c), and s; . depends
only on ém(c). Moreover, because € I \ I and ¢ € I, s, is independent of s; .. Hence, s,
does not depend on 8, (), in the sense that their mutual information is zero. Thus, we further have

Ost
L:o, Ve € Iy, r eI\ I. (38)
08¢ x(c)

Given the invertibility of the mapping between s; and S, the inverse of both Equations 37 and 38
also holds. Thus, the only dependencies remain within the estimated and ground-truth task-relevant
parts, completing the proof. O

B Supplementary Experimental Setups

In this section, we include further details of the experimental setups not fully elaborated in the main
text because of space constraints.

CMI Surrogate for the CI Test. In high-dimensional settings, when direct conditional indepen-
dence (CI) testing is computationally infeasible, it is standard to use approximations such as condi-
tional mutual information (CMI). Below we provide additional details on this surrogate.

For each pair (S, S,,) and task g;, we replace the CI test
Ho : skr L sor | Zoana(k, v, 1), (39)
with an estimate of the conditional mutual information

P(SkL, SuL | Zbana)

I(s Sy Z bit k7U7i =E|lo
( kL SoL | Zband( )) gp(skL | Zvand) P(Svr | Zband)

(40)

Direct estimation with Zy,,,4 can be high dimensional. We therefore learn a task-conditioned rep-
resentation ¢; = hy(Zvana(k,v,7)) and instead test with I(spz;s,r | ¢;). If hy is conditionally
sufficient for Zyanq with respect to {sxr, Sy }, then

I(skr;Sor | Zbana) = I(SkL;sor | €i).

We estimate a variational lower bound on I(skr; S, | ¢;) using a conditional InfoNCE objective.

K

Let fo(skL,SuL,C;) be a critic. For each positive pair (sgr, S, 1, ¢;), draw K negatives {éE)]L) =1

by shuffling s, ;, within mini-batches that share c; (or within nearest neighbors of c;). Optimize
exp fo(SkL,SvL; Ci)

Lence(8,¢) =E |log G
exp fo(skr,svr, i) + Z]K:l exp fo(skr, Sq(JJL)y ci)

; (41)
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which lower bounds I(sy1; S, 1, | ¢;) up to a constant. After training a single task-conditioned critic
across all (k, v, 1), define

5 . €Xp fo(SkL,SvL,Ci
ICNCE(kaU’Z) =K IOg 1 K f ( ~(]))
% D=1 XD fo(SkL, 8,1, Ci)

(42)

We reject Hy for (k,v,14) if fCNCE(k, v, 1) exceeds a permutation threshold obtained by re-sampling
{év(j]L)} within ¢; buckets.

Additional Details of SportsHHI. SportsHHI contains 11, 398 video sequences, partitioned into
short clips of 5 frames each, with 55,631 annotated pairwise interaction instances. The HHID task
labels the interaction for each pair of human actors in a video; interactions often occupy short tempo-
ral windows embedded in long sequences, so a single sequence typically contains multiple, possibly
overlapping interactions. This results in complex temporal patterns, with flexible interactions across
multiple actors.

In our implementation of Algorithm 1 on SportsHHI, we set the number fo latent state variables
to be the same as the number of humans at frame ¢. For all baselines, we use a pretrained CLIP
encoder (Radford et al., 2021) with a ResNet-50 backbone to get the observed RGB features o. To
handle temporal dynamics, an MLP parameterizes transitions s;—; — s;, while conditional mutual
information (CMI) is estimated on latent trajectories as a surrogate for conditional independence
testing. To ensure fairness, all baselines employ a ResNet-50 backbone for RGB feature extraction,
consistent with prior work.

Downstream Benefit. We evaluate our method on the Meta-World benchmark (Yu et al., 2020) by
constructing an interleaved offline dataset from the door-open/close; drawer-open tasks. Both tasks
involve a 7-DoF robotic arm manipulating the same door but with opposite goals, making them an
ideal testbed for multi-task interference. We first train task-specific expert policies using SAC until
reaching 60% success rate, then collect ~300 successful and ~300 mixed-quality trajectories for
each task. To create interleaved data, we segment trajectories into 30-60 step skill chunks (e.g.,
reaching, grasping, rotating). With probability p = 0.8, we randomly splice open- and close-task
segments into a single trajectory, inserting short transition phases to ensure physical continuity.
This results in ~2.4k interleaved trajectories, with on average 2.1 task switches per trajectory. We
provide only weak or noisy task labels derived from the door angle change, simulating realistic
partially labeled data. We build upon the Active Fine-Tuning (AMF) framework (Bagatella et al.,
2025). Specifically, the agent learns a policy over identified tasks using their representation g, which
replaces the task embedding u. in AMF. This enables the agent to actively select tasks that improve
generalization. To evaluate this, we train on three tasks—door-open, door-close, and drawer-open,
and test generalization to the new task drawer-close with only 10* samples.

C Statement

LLMs were used for grammar checking. No substantive edits requiring disclosure.
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