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Abstract

Autoregressive models have achieved significant success in image generation. How-
ever, unlike the inherent hierarchical structure of image information in the spectral
domain, standard autoregressive methods typically generate pixels sequentially in
a fixed spatial order. To better leverage this spectral hierarchy, we introduce Next-
Frequency Image Generation (NFIG). NFIG is a novel framework that decomposes
the image generation process into multiple frequency-guided stages. NFIG aligns
the generation process with the natural image structure. It does this by first gener-
ating low-frequency components, which efficiently capture global structure with
significantly fewer tokens, and then progressively adding higher-frequency details.
This frequency-aware paradigm offers substantial advantages: it not only improves
the quality of generated images but crucially reduces inference cost by efficiently
establishing global structure early on. Extensive experiments on the ImageNet-256
benchmark validate NFIG’s effectiveness, demonstrating superior performance
(FID: 2.81) and a notable 1.25× speedup compared to the strong baseline VAR-d20.
The source code is available at https://github.com/Pride-Huang/NFIG.

1 Introduction

The synthesis of images has emerged as a fundamental challenge in computer vision [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12]. Rapid progress in this field has been propelled by deep generative models, such
as autoregressive models (AR) [13], Generative Adversarial Networks (GANs), and diffusion models
(SD) [14].

Despite remarkable advances in existing methods, AR models for image generation still face several
fundamental challenges. On the one hand, due to their inherently local and sequential nature, most
current AR models struggle to effectively capture long-range dependencies and global structure [15].
For example, PixelCNN [9] generates an image by predicting each pixel in a raster scanning sequence,
which neglects the global image structure and relationships with distant elements. On the other
hand, the generation process is computationally intensive and time-consuming, as AR models
always generate pixels or patches sequentially in a predetermined order, with each new element
requiring the computation of conditional probabilities based on all previously generated content [16,
17]. For instance, ViTVQ [18] requires more than 6 seconds to generate a 256 × 256 image over
1024 steps, making it impractical for real-time applications. Most importantly, AR models face a
fundamental challenge in defining a meaningful autoregressive sequence. Traditional AR models
using raster scanning or predefined arbitrary orders fail to reflect the natural hierarchical structure and
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Figure 1: Illustration of three autoregressive image generation frameworks. The figure demonstrates
three prediction approaches: Next-Patch Prediction (patch-based progression), Next-Scale Prediction
(coarse-to-fine resolution generation), and Next-Frequency Prediction (NFIG), which performs image
generation by progressively predicting and synthesizing frequency components from low to high,
resulting in a coarse-to-fine spatial reconstruction.

dependencies in images[19]. This improper sequence design makes it difficult for models to capture
the true causal relationships between different image components, ultimately affecting the coherence
and visual quality of generated outputs.

To address these limitations, recent works have explored incorporating various improvements into
the generation process. For example, Taming Transformer [20] partially addresses long-range
dependency challenges through its discrete latent space and transformer architecture, but still suffers
from computational inefficiency. Fast PixelCNN++ [21] speeds up generation in convolutional
autoregressive models by caching hidden states to avoid redundant computation, achieving up to
183× speedups, yet it doesn’t fundamentally change the autoregressive sequence design. VAR [19]
leverages the Laplacian Pyramid as a prior to guide autoregressive image generation across different
resolutions, achieving improved generation quality with reduced computational overhead. However,
these methods do not fully exploit the potential of natural priors inherent in raw images to guide the
generation process and improve the efficiency of AR models.

In fact, the natural structure of images follows a hierarchical frequency distribution—low fre-
quencies encode global structures while high frequencies contain local details. This organization
suggests an efficient autoregressive generation sequence from low to high frequencies, aligning with
visual information’s natural structure. Since low-frequency components require fewer tokens to
represent, this approach enhances computational efficiency. Similar frequency-progressive principles
have proven effective in diffusion models, which build from low-frequency foundations before adding
higher-frequency details [22].

Motivated by this insight, we propose a Next-Frequency Image Generation (NFIG) framework for AR
models that: (1) first generates a low-frequency image with few tokens to capture global structure; (2)
then progressively adds higher-frequency components conditioned on the low-frequency foundation.
This process has been shown in Figure 1. Grounded in information theory, this approach efficiently
represents information across the frequency spectrum using our Frequency-guided Residual-quantized
VAE (FR-VAE).

Key contributions of the NFIG framework include:

• We introduce a Next-Frequency Image Generation (NFIG) framework that incorporates frequency
analysis into AR image generation. To our knowledge, this work is the first to guide autoregres-
sive generation using the image’s frequency spectrum, associating low frequencies with lower
resolutions and high frequencies with higher resolutions;

• To demonstrate the feasibility of the NFIG paradigm, we design a Frequency-guided Residual-
quantized VAE as our image tokenizer. FR-VAE separates low and high-frequency components
in the representation learning process, with low frequencies encoding global structure and high
frequencies preserving local details. Experiments show FR-VAE achieves a reconstruction FID of
0.85, validating its image content preservation capability;
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• Through extensive experimentation, we show that our approach achieves state-of-the-art image
generation quality, evidenced by an FID of 2.81 from a relatively small model. This improvement
paves the way for more effective and efficient AR image generation models, making them more
practical for real-world applications.

Table 1: Main Notation Table
Symbol Meaning Dimension

x Input image H ×W × 3
x̂ Reconstructed image H ×W × 3
f Feature map from VAE encoder H ′ ×W ′ × C
Mi The i-th frequency selection mask H ′ ×W ′ × C

f̂i Set of i-th frequency component feature maps H ′ ×W ′ × C
vi Scaled feature map for i-th frequency component hi × wi × C
vqi Quantized representation for i-th frequency component hi × wi × C
Ri Cumulative signal residual through level i H ′ ×W ′ × C
Z The learnable codebook of FR-VAE K × C
Fi The i-th frequency band N/A

2 Related Work

Autoregressive Image Generation Autoregressive image generation has demonstrated remarkable
capabilities in producing high-quality images by modeling the joint distribution of image tokens as
a product of conditionals[23]. PixelCNN [9] generates images sequentially, processing pixels one
by one (typically top-left to bottom-right). It employs masked convolutions so that the generation
of each pixel depends solely on the pixels already generated. Taming Transformer [20] introduces
an autoregressive approach that generates high-resolution images by predicting the next latent patch
token in a discrete compressed space learned through vector quantization. Emu3 [24] patchifies an
image into a series of tokens and generates images by predicting tokens in a raster-scan manner.
VAR [19] incorporates the prior knowledge of Laplacian Pyramid into transformer architecture and
generates images in a next-resolution manner. MAR [25] improves the quality of generated images by
replacing discrete tokens with continuous features, recognizing that autoregressive models primarily
need per-token probability distributions. FAR [26] attempts to enhance MAR performance through
frequency-based approaches, yet lacks critical insights into the distinctive information characteristics
across different frequency bands. Infinity [25] combines autoregressive modeling with Bit-wise
Modeling to enhance visual details in high-resolution image synthesis. ImageFolder [27] utilizes
folded image tokens to generate high-quality images in a next-scale prediction manner, achieving
superior performance. These approaches collectively demonstrate the evolution of autoregressive
image generation techniques, progressing from pixel-level prediction to more sophisticated methods
involving latent spaces, hierarchical structures, and physical priors. Despite their differences in
implementation, all these methods share the fundamental autoregressive principle of sequentially
generating image elements conditioned on previously generated content.

Image Tokenizer Image tokenizers, which transform continuous image data into discrete repre-
sentations, have become a critical component in modern image generation systems. VQ-VAE [28]
introduces vector quantization into VAE, reducing the pressure on the downstream generative model
by transforming the continuous latent space into a discrete one. VQ-VAE-2 [29] extends this idea with
a hierarchical framework and multi-scale codebooks, where top-level codes capture global structure,
and bottom-level codes model local details, enabling higher-quality reconstruction and generation at
increased resolutions. However, VQ-VAE-based methods often suffer from codebook collapse, where
only a few codebook entries are effectively used. FSQ [30] attempts to address this issue by utilizing
finite scalar quantization to learn the codebook, but it does not learn a meaningful feature of images.
RQ-VAE [31] employs residual quantization with a shared codebook to enhance reconstructed image
quality. XQGAN [32] introduces feature product decomposition and a residual quantizer to enhance
VQ-VAE’s performance, leading to improved image generation results. While these approaches have
made significant progress in image tokenization, they often neglect the inherent multi-scale structure
of natural images, which is crucial for efficient and effective representation learning.
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Figure 2: Overview of the Next-Frequency Image Generation (NFIG) Framework: (a) The Frequency-
guided Residual-Quantization VAE encodes images into and decodes from frequency-guided residual
quantized representations; (b) The image is decomposed into frequency components (low to high)
and reconstructed progressively by merging these components for a coarse-to-fine process; (c) Next-
Frequency Prediction model employs a frequency-aware Transformer to auto-regressively generate
token sequences, with each block with same color representing a specific frequency band, enabling
sequential image synthesis from low to high frequencies. N tok

i = hiwi is the number of image
tokens used for the ith frequency band.

3 Next-Frequency Image Generation

To provide a comprehensive understanding of our NFIG methodology, this section delves into
its intricate architectural structure. The essential operational sequence, illustrating the flow and
interaction of the system’s key components, is clearly visualized in Figure 2. The details of loss
function have been listed in Appendix B.1.

3.1 Frequency-guided Residual-quantized VAE

The workflow of Frequency-guided Residual-quantized VAE has been shown in Figure 2 (a). To
generate images in a frequency-aware manner, we propose a Frequency-guided Residual-quantized
VAE (FR-VAE) with VQ-GAN framework. The key idea is to represent lower-frequency signals with
fewer tokens and higher-frequency components with more tokens.

3.1.1 Frequency-guided Reconstruction

As illustrated in Figure 2 (b), raw images can be decomposed into components across different
frequency bands: low frequencies encode the global structure, while high frequencies retain fine
details. Utilizing the Frequency-guided Decomposer and Composer, these components can be
recombined without loss, ensuring a complete and accurate visual representation.

Frequency-guided Decomposer. Given a image x ∈ RH×W×3 and a encoder E(·), there is image
latent feature f = E(x) and f ∈ RH′×W ′×C . FR-VAE decomposes f into several component with
different frequency by Frequency-guided Decomposer via Fast Fourier Transform (FFT):

f̂i = F−1(F(f)⊙Mi),∀i ∈ {1, · · · , n}. (1)
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Here, ⊙ represents the element-wise product, F signifies the FFT operation, F−1 indicates the
inverse FFT, and Mi is the i-th frequency mask used to select the desired frequency range, n is the
total number of frequency masks, f̂i is the component corresponding to Mi.

Frequency-guided Composer. Frequency-guided Composer reconstructs the raw image by inter-
polating different frequency components to a uniform size and merging them into a single image, as
illustrated in Figure 2 (b).

f̃ =

n∑
i=1

I(f̂i, H ′,W ′), (2)

where I(·, H ′,W ′) is the interpolation function, which enables the Frequency-guided Composer to
process images of different frequencies at varying resolutions.

3.1.2 Frequency-guided Residual-quantization

To efficiently represent images with minimal tokens, we implement a frequency-guided residual quan-
tization approach that addresses information loss during downsampling. Our method progressively
captures different frequency components of an image through a residual learning scheme.

Residual Token Extraction. Given a sequence of feature maps with different dimensions
{(h1, w1), · · · , (hn, wn)}, where hi ≥ hj and wi ≥ wj if i ≥ j, and hn = H ′ and wn = W ′, we
supervise the learning process using accumulated signals from the lowest frequency to the current
frequency band.

The residual Ri ∈ RH′×W ′×C and representation vi ∈ Rhi×wi×C of the i-th frequency component
can be computed as follows:

Ri =

{
f̂i − I(vi, H ′,W ′)), i = 0

Ri−1 + (f̂i − I(vi, H ′,W ′))), i ≥ 1
, (3)

vi =

{
argminvi ∥f̂i − I(vi, H ′,W ′)∥2, i = 0

argminvi ∥(Ri−1 + f̂i)− I(vi, H ′,W ′)∥2, i ≥ 1
, (4)

where I(vi, H ′,W ′) is the interpolation function that upsamples vi to the original feature map size,
and Ri represents the difference between the accumulated frequency components up to the i-th level
and the learnable features.

Vector Quantization. In general, autoregressive models utilize the discrete tokens to generate a
image. To achieve this goal, we take a simple vector quantization to transform the continuous token
into discrete tokens.

We define a quantizer Q with a learnable codebook Z ∈ RK×C containing K code vectors. Using
this codebook, the quantizer Q transforms a continuous feature map vi ∈ Rhi×wi×C into a set of
discrete tokens {t(1,1)i , t

(1,2)
i , · · · , t(hi,wi)

i }, where each token t
(j,k)
i has the corresponds to a vector

z
(j,k)
i ∈ RC . The process of finding the optimal code representation involves:

t(j,k) = lookup(Z, argmin
z
(j,k)
i ∈Z

∥z(j,k)i − v
(j,k)
i ∥2). (5)

From vi, the quantized feature map vqi ∈ Rhi×wi×C and a set of discrete tokens {t(j,k)i } are obtained
through quantization using the codebook Z. Here, lookup(Z, x) is a function that finds the index of
the closest entry to x in codebook Z.

3.2 Autoregressive Image Generation

To generate images progressively from low to high frequency components, we implement a decoder-
only transformer framework and block-wise causal attention [19].
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Next-Frequency Image Prediction Unlike conventional autoregressive image generation models
that employ a "token-by-token prediction" strategy, which often neglects spatial relationships and
inherent image structure. NFIG adopts a “Coarse-to-Fine Generation" approach, first synthesizes
the low-frequency components of an image, then iteratively incorporates higher-frequency details,
progressively refining the generated output at each step, as shown in Figure 2 (c). The generation
process for next-frequency prediction is given by the autoregressive factorization:

p(T1, T2, · · · , Tn) =

n∏
i=1

p(Ti|T1, T2, · · · , Ti−1) (6)

where Ti ∈ [K]hi×wi is the matrix of code indices for the i-th frequency component, and the set
[K] = {1, 2, . . . ,K} represents all available index values.

Frequency Band Division Strategy We treat the lower frequency components as the foundation
for generating Ti, represented by {T1, T2, · · · , Ti−1}. According to information theory principles,
lower-frequency signals contain less information and require fewer tokens, while higher-frequency
components carry more detailed information and need more tokens for accurate representation.

Consequently, we establish an increasing scale sequence {(h1, w1), (h2, w2), · · · , (hn, wn)} for com-
ponents with increasing frequency bands {F1, F2, · · · , Fn} = {[0, σ1), [σ1, σ2), · · · , [σn−1, σn]}.
Here, σmax denotes the maximum frequency of the entire image feature map f , with σn = σmax.
We divide the frequency bands based on their corresponding resolution as:

σi = σi−1 +
hi · wi∑n

j=1 hj · wj
× σmax. (7)

This frequency-guided progressive approach allows our model to capture and prioritize salient
components at each stage. The method improves both computational efficiency and image quality by
explicitly modeling the multi-scale frequency structure inherent in natural images.

4 Experiment

This section details our experimental methodology, covering datasets, evaluation metrics, comparison
baselines, and implementation specifics. We then evaluate NFIG against state-of-the-art approaches on
image generation benchmarks. Subsequently, ablation studies and motivation verification experiments
are conducted to analyze the impact of different components and validate design decisions.

4.1 Experimental Settings

Dataset. For the purpose of our experiments, we use the ILSVRC 2012 subset of ImageNet [33],
which comprises a total of 1.2 million training images, 50k validation images, and 100k test images.
This subset focuses on 1k object categories, with each category having approximately 1.2k training
images, 50 validation images, and 100 test images.

Evaluation Metrics. We adopt four metrics for quantitative evaluation: Fréchet Inception Distance
(FID) which measures distribution similarity between generated and real images, Inception Score (IS)
which assesses quality and diversity, and Precision (Pre) and Recall (Rec) which evaluate sample
fidelity and diversity coverage respectively.

Baselines. Our method is benchmarked against several leading image generation techniques, includ-
ing generative adversarial networks (GAN), diffusion models (Diff.), mask diffusion (Mask.), and
autoregressive models (AR). These approaches have demonstrated strong performance on various
image synthesis tasks and serve as robust comparators.

Implementation Details. Our model was implemented using the PyTorch framework [44] and
trained on NVIDIA H100 graphics cards. To ensure the reproducibility of our experiments, our
implementation is built upon open-source research code, while incorporating improvements specific
to this study. For the image tokenizer, the FR-VAE incorporates a VQGAN architecture with a DINO
discriminator. The image encoder is initialized with pretrained weights from DINOv2-base. Since
VAR’s image tokenizer training code is not open-source, we adopted XQGAN’s implementation strat-
egy. The frequency residual quantizer employs multiple scaling factors [1, 2, 3, 4, 5, 6, 8, 10, 13, 16]
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Table 2: Performance on class-conditional ImageNet 256×256 for image generative model. rFID
represents reconstruction FID , while gFID indicates generation FID. “↓” or “↑” indicate lower or
higher values are better. “#Step”: the number of model runs needed to generate an image. Wall-clock
inference time relative to NFIG is reported. Models with the suffix “-re” used rejection sampling.
†: taken from MaskGIT [34]. For comprehensive evaluation, we separately compare autoregressive
(AR) and non-autoregressive (non-AR) models, with the best metrics highlighted in bold.

Type Model rFID↓ gFID↓ IS↑ Pre↑ Rec↑ #Para #Step Time
GAN BigGAN [35] - 6.95 224.5 0.89 0.38 112M 1 –
GAN GigaGAN [36] - 3.45 225.5 0.84 0.61 569M 1 –
GAN StyleGan-XL [3] - 2.30 265.1 0.78 0.53 166M 1 0.75
Diff. ADM [37] - 10.94 101.0 0.69 0.63 554M 250 420
Diff. CDM [38] - 4.88 158.7 – – – 8100 –
Diff. LDM-4-G [39] - 3.60 247.7 – – 400M 250 –
Diff. DiT-L/2 [40] 0.9 5.02 167.2 0.75 0.57 458M 250 77.5
Diff. DiT-XL/2 [40] 0.9 2.27 278.2 0.83 0.57 675M 250 112.5
Diff. L-DiT-3B [41] 0.9 2.10 304.4 0.82 0.60 3.0B 250 >112.5
Diff. L-DiT-7B [41] 0.9 2.28 316.2 0.83 0.58 7.0B 250 >112.5
Mask. MaskGIT [34] 2.28 6.18 182.1 0.80 0.51 227M 8 1.25
Mask. RCG [42] - 3.49 215.5 – – 502M 20 4.75
AR VQVAE-2† [34] 2.0 31.11 45.0 0.36 0.57 13.5B 5120 –
AR VQGAN† [20] 7.94 18.65 80.4 0.78 0.26 227M 256 47.5
AR VQGAN [20] 7.94 15.78 74.3 – – 1.4B 256 60
AR ViTVQ [18] 1.28 4.17 175.1 – – 1.7B 1024 >60
AR ViTVQ-re [18] 1.28 3.04 227.4 – – 1.7B 1024 >60
AR RQTran. [43] 1.83 7.55 134.0 – – 3.8B 68 52.5
AR RQTran.-re [43] 1.83 3.80 323.7 – – 3.8B 68 52.5
AR FAR-B [26] - 4.26 248.9 0.79 0.51 208M 10 -
AR FAR-B [26] - 3.45 282.2 0.80 0.54 427M 10 -
AR FAR-H [26] - 3.21 300.6 0.81 0.55 812M 10 -
AR XQGAN-310M [32] 0.78 2.96 - - - 310M 10 1
AR VAR-d16 [19] 0.9 3.55 274.4 0.84 0.51 310M 10 1
AR VAR-d20 [19] 0.9 2.95 302.6 0.83 0.56 600M 10 1.25
AR NFIG(Ours) 0.85 2.81 332.42 0.77 0.59 310M 10 1

across different frequency bands, resulting in a vocabulary size of 680 tokens. The FR-VAE codebook
size of 4096 was utilized. The image generator employs a VAR Transformer backbone with a depth
of 16, enabling multi-scale image prediction. Optimization was performed using the Adam optimizer,
setting the learning rate to 8 × 10−5 and the batch size to 768. Training of the model ran for 350
epochs on the ImageNet dataset. For inference, we configured CFG to 4.5 and top_k to 990.

4.2 Main Results

Table 2 provides a detailed comparison of our approach against leading image generative models
evaluated on ImageNet 256× 256. The findings indicate that NFIG achieves superior performance
within the AR model family while establishing itself as a formidable competitor among diverse
generative methods across different paradigms.

AR Model Comparison. NFIG achieves the best gFID (2.81) and IS (332.42) scores, significantly
outperforming other AR models. Compared to VAR-16 (gFID: 3.55, IS: 274.4), our approach reduces
FID by 0.74 and improves IS by more than 21%. XQGAN-310M has a better image tokenizer with
rFID 0.78 with gFID 2.96. This indicates that NFIG’s performance improvement is not solely due to a
good image tokenizer, but more importantly, to the injection of image frequency priors. Additionally,
the proposed approach outperforms VAR-d20, a relatively larger model, while delivering 25% faster
inference speed.

Cross-family Comparison. NFIG achieves competitive performance with the best models from other
families. NFIG outperforms the best mask diffusion model RCG, which has a gFID score of 3.49
and IS score of 215.5. While some GANs like StyleGAN-XL have lower gFID scores (2.30) with
moderate IS (265.1), and diffusion models like DiT-L/2 show excellent gFID (2.27) and strong IS
(278.2), NFIG uniquely balances both metrics at high levels (gFID: 2.81, IS: 332.42). This establishes
NFIG as not only the leading AR model but also a strong competitor across all model types.
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Qualitative Results. Figure 3 qualitatively shows NFIG’s impressive ability to generate diverse
ImageNet 256× 256 images across a wide variety of categories. Appendix B.5 show the Failure case
of NFIG.

Scaling Up. To validate NFIG’s scaling behavior, we train 310M and 600M parameter models for 55
epochs under computational constraints. The results are shown in Table 3.

Performance of Different Epochs. VAR sets different training epochs for models of different
sizes: 200 epochs for 310M, 250 epochs for 600M, 300 epochs for 1B, and 350 epochs for 2B.
Limited by computational resources, we focus on training our 310M model. As Table 4 shows,
NFIG outperforms VAR at matched epochs and demonstrates superior parameter efficiency. At 200
epochs, NFIG already outperforms VAR-d16 of the same size. With extended training, NFIG-310M
achieves performance comparable to or better than VAR-d20-600M (twice the parameters) while
using significantly fewer resources.

Table 3: Performance of NFIG with different parameters at 55 epochs.

Model FID↓ IS↑ Precision↑ Recall↑ Epoch Para steps Time

NFIG-310M 5.47 224.20 0.7569 0.4914 55 310M 10 1
NFIG-600M 5.07 225.16 0.7184 0.5546 55 600M 10 1.25

Figure 3: Generated 256× 256 examples by NFIG trained on Imagenet.

Table 4: The performance of NFIG and VAR at different epochs.

Model Epochs FID↓ IS↑ Pre↑ Rec↑ Params Steps Time

VAR-d16 200 3.55 274.4 0.84 0.51 310M 10 1
VAR-d20 250 2.95 302.6 0.83 0.56 600M 10 1.25

NFIG(ours) 200 3.35 309.2 0.79 0.55 310M 10 1
NFIG(ours) 250 3.16 311.9 0.78 0.56 310M 10 1
NFIG(ours) 300 2.93 325.9 0.79 0.56 310M 10 1
NFIG(ours) 350 2.81 332.4 0.77 0.59 310M 10 1

4.3 Ablation Study

To evaluate the contribution of various components within our proposed NFIG model, we perform a
comprehensive ablation analysis on the ImageNet validation set. Table 5 summarizes the results of
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this study, with performance evaluated using rFID and gFID. We start with the baseline AR model
with a sequence length of 256, which achieves an rFID of 1.62 and a gFID of 18.65.

Image Tokenizer. We incrementally add components to progressively improve the model’s per-
formance. First, incorporating frequency-guided residual quantization into the VAR framework
reduces the rFID to 1.40. Next, we integrate the DINO discriminator from VAR’s tokenizer, which
substantially improves the rFID from 1.40 to 0.85.

Transformer. We then utilize the image tokenizer (FR-VAE) to train the transformer model. Without
Top_k and Classifier Free Guidance (CFG), NFIG achieves a gFID of 9.7. The addition of Top_k
sampling strategy further reduces the gFID to 6.83. Finally, incorporating CFG yields the best overall
performance, maintaining the rFID at 0.85 while dramatically improving the gFID to 2.81.

Our experimental results demonstrate that the combination of FR-VAE with CFG provides optimal
generation quality. Moreover, we observe that both DINO discriminator and FR-VAE contributes
significantly to improving rFID for the image tokenizer. Additionally, Top_k sampling and CFG
prove essential for reducing gFID. These results underscore the significance of discriminator guidance
and conditional generation strategies for improving image generation quality.

4.4 Motivation Verification

Frequency Distribution Analysis. The experimental results in Figure 4 demonstrate the progressive
refinement of generated images and the effective capture and synthesis of multi-scale visual features
by FR-VAE. The frequency spectrum visualizations reveal the model’s ability to hierarchically
incorporate information from low to high frequencies, resulting in generated images with rich details
and natural appearance. Appendix B.2 compares the frequency keep ability of NFIG and VAR. These

Step 2

Spectrum

Step 4 Step 6 Step 8 Step 10

Spectrum Spectrum Spectrum Spectrum

Figure 4: Generated images at different steps 2, 4, 6, 8, 10 of a 10-step process by FR-VAE, with
corresponding frequency spectrum. In these spectrograms, brightness (red/yellow) indicates higher
frequency energy while darker colors (blue) represent lower energy components. The center of each
plot shows low-frequency information, with frequencies increasing radially outward, revealing the
evolving distribution during the generation process.

results demonstrate that NFIG’s frequency-guided approach enables more effective feature learning,
particularly at lower resolutions, by maintaining balanced loss values throughout the hierarchical
generation process.

Frequency Guidance. Similar to NFIG, VAR follows a "coarse-to-fine" approach but differs
significantly in loss computation across resolutions. VAR computes loss between different resolutions
and the raw image, causing disproportionately large loss values at lower resolutions. In contrast,
NFIG utilizes frequency components to guide feature learning, providing more balanced loss values
throughout generation. As Figure 5 shows, this leads to dramatic variations in vector quantization
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Figure 5: Vector quantization loss comparison
between NFIG and VAR across image scales.

Table 5: Ablation study on the improvement of
NFIG. We evaluate rFID and gFID on the Ima-
geNet validation set. “FR-Quantizer” is the quan-
tizer of FR-VAE. “DINO-Disc” means “DINO Dis-
criminator”, which denotes the discriminator used
in VAR’s ([19]) tokenizer.

Type Method Length Metric
rFID↓ gFID↓

1 AR 256 1.62 18.65
Image Tokenizer

2 + FR-Quantizer 680 1.40 –
3 + DINO-Disc 680 0.85 –

Generation Transformer
4 + AdaLN 680 0.85 9.7
5 + Top_k 680 0.85 6.83
6 + CFG 680 0.85 2.81

loss—VAR exhibits substantially higher values across all scale factors, while NFIG maintains
considerably lower loss values across all resolutions.

5 Conclusion

This paper introduces Next-Frequency Image Generation, a novel autoregressive framework that
decomposes image generation into frequency-guided stages. Our key insight leverages the hierarchical
spectral distribution of natural images: low-frequency components encode global structures and
long-range dependencies, while high-frequency components contain local details requiring greater
information entropy. By progressively generating from low to high frequencies, the proposed method
significantly outperforms existing models with comparable parameter counts, demonstrating superior
quality metrics while maintaining computational efficiency. Experiments confirm that our frequency-
guided approach represents an important advancement in autoregressive image synthesis.

6 Limitation and Future Work

Our frequency-guided autoregressive image generation approach shows promise, but has limitations.
Improving frequency decomposition. A primary issue is the simplistic frequency band division by
scale, which inadequately captures information in the first band. Implementing a more rigorous
division based on statistical analysis and physical principles would likely enhance NFIG’s perfor-
mance. Recent advances in beneficial noise theory [45, 46] suggest that properly designed noise can
reduce task complexity, which could inform better frequency decomposition and data augmentation
strategies [47, 48]. Extension to other modalities. Beyond 2D spatial frequency, future work could
extend to video generation by incorporating temporal frequency decomposition, or to 3D object
generation where frequency analysis is vital for accurate light field representation. For multi-modal
generation, techniques that enhance cross-modal alignment through learnable noise [49] may offer
insights for frequency-based fusion strategies. Privacy-preserving generation. Adversarial noise
techniques [50] could be integrated with our framework to ensure privacy protection in generated
content. Due to computational constraints and time limitations, these promising directions remain
unexplored and are left for future investigation.
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Appendix A: Fourier Analysis in Natural Images

This appendix provides essential mathematical formulations and conceptual insights into the Fourier
analysis of natural images, building upon the concepts discussed in the main text. We focus on the
Discrete Fourier Transform (DFT) and its implications for image representation and the characteristics
of natural scenes.

A.1 2D Discrete Fourier Transform (2D DFT)

The 2D DFT transforms an M × N digital image f(x, y) from the spatial domain (where x ∈
{0, . . . ,M − 1} and y ∈ {0, . . . , N − 1} are spatial coordinates) to the frequency domain, yielding
an M×N representation F (u, v) (where u ∈ {0, . . . ,M−1} and v ∈ {0, . . . , N−1} are frequency
coordinates). The formula is given by:

F (u, v) =

M−1∑
x=0

N−1∑
y=0

f(x, y)e−j2π(ux
M + vy

N ) (8)

Here, j is the imaginary unit (j2 = −1), and the exponential term represents the basis functions
(complex sinusoids) at different frequencies (u, v).

A.2 Inverse 2D Discrete Fourier Transform (2D IDFT)

The 2D IDFT allows us to reconstruct the original spatial domain image f(x, y) from its frequency
domain representation F (u, v). The formula is:

f(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

F (u, v)ej2π(
ux
M + vy

N ) (9)

Note the scaling factor 1
MN and the positive sign in the exponent compared to the forward transform.

A.3 Magnitude Spectrum and Power Spectrum

The frequency domain representation F (u, v) obtained from the DFT is generally a complex number.
Its magnitude, |F (u, v)|, is known as the Magnitude Spectrum, which quantifies the amplitude of
each frequency component present in the image.

|F (u, v)| =
√

Re(F (u, v))2 + Im(F (u, v))2

Closely related is the Power Spectrum (or Power Spectral Density), defined as the square of the
magnitude spectrum. It represents how the total signal energy is distributed across the different
frequencies:

P (u, v) = |F (u, v)|2

A key characteristic of natural images is that their power spectrum typically exhibits a rapid decay as
frequency increases. Specifically, the power P (u, v) tends to fall off with increasing radial frequency
fr =

√
u2 + v2, often approximated by a 1/fα

r law, where α is a constant typically around 2. This
1/f property implies that low spatial frequencies (corresponding to coarse structures and overall
variations) contain significantly more energy than high spatial frequencies (corresponding to fine
details and sharp transitions). This fundamental statistical feature of natural images is widely utilized
and modeled in various image processing and computer vision tasks.

Appendix B: Addition Experiments

VAR sets different training epochs for models of different sizes: 200 epochs for 310M, 250 epochs for
600M, 300 epochs for 1B, and 350 epochs for 2B. Limited by computational resources, we focus on
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training our 310M model. As the table above shows, NFIG outperforms VAR at matched epochs
and demonstrates superior parameter efficiency. At 200 epochs, NFIG already outperforms
VAR-d16 of the same size. With extended training, NFIG-310M achieves performance comparable
to or better than VAR-d20-600M (twice the parameters) while using significantly fewer resources.

B.1 Details of Loss function

We will provide detailed mathematical formulations of our loss function components and their
respective roles in the training process. The total loss function for the FR-VAE (image tokenizer for
NFIG) is defined as:

L = ||I − Î||22 + ||f̂ − f̂ ||22 + Lp(I) + 0.5Lg(I). (10)

Here, the first two terms represent the reconstruction loss for the image (I vs Î) and and its frequency-
guided quantized loss (f̂ vs f̂ ), respectively, ensuring fidelity in both pixel and feature. Lp is LPIPS
perceptual loss and Lg is gan loss.

For the NFIG Transformer, which predicts the frequency tokens, we utilize a standard cross-entropy
loss:

L(T, T̃ ) = −
n∑

i=1

ti log(t̃i) (11)

This loss is computed between the predicted tokens T̃ and FR-VAE ground truth tokens T , ensuring
accurate prediction of the quantized frequency representations across all scales.

B.2 Frequency Keep Ability

We are grateful for your encouragement to discuss both successes and challenges. Your suggestion for
a frequency analysis was particularly insightful. As you requested, we conducted a frequency-domain
comparison between our model (NFIG) and VAR-16.

As requested, we provide frequency-domain comparisons between VAR-16 and NFIG: (1) Power
Spectral Density (PSD): Overall frequency fidelity; (2) Frequency Keep Score (FKS): Weighted
similarity across High/Mid/Low frequency bands (weights: 0.15, 0.28, 0.57, emphasizing structural
low-frequency information).

Our analysis revealed that while both models effectively preserve low-frequency information, and
NFIG preserves middle and high frequency information with higher fidelity.

Model PSD↓ FKS↑ Low↑ Middle↑ High↑
VAR-16 0.87 79.5% 98.3% 57.6% 48.2%
NFIG(ours) 0.47 87.6% 98.9% 75.3% 66.7%

B.4 Diverse Image Types

To demonstrate broader applicability, we conducted preliminary reconstruction evaluations (FID) of
FR-VAE across diverse image types.

Model DTD QRCODE Diagrams Chest-X CelebA-HQ COCO LSUN-Bedroom

FR-VAE 6.86 11.01 21 0.74 3.51 7.51 6.12

B.5 Failure Case

Despite strong overall performance, NFIG occasionally produces visual artifacts. As shown in Figure
6, these include anatomical errors (extra bird leg), texture abnormalities (goldfish patterns), and fine
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detail loss (bird claws). Red boxes highlight the anomalies. These failures reflect challenges in
maintaining semantic consistency across frequency bands. The issues are particularly pronounced
for complex structures and fine details. Such limitations are common to frequency-based generation
approaches and present opportunities for future improvement.

Figure 6: Failure case for NFIG.
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