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Abstract

Describing a scene in terms of primitives — ge-
ometrically simple shapes that offer a parsimo-
nious but accurate abstraction of structure — is an
established and difficult fitting problem. Differ-
ent scenes require different numbers of primitives,
and these primitives interact strongly. Existing
methods are evaluated by predicting depth, nor-
mals and segmentation from the primitives, then
evaluating the accuracy of those predictions. The
state of the art method involves a learned regres-
sion procedure to predict a start point consisting
of a fixed number of primitives, followed by a de-
scent method to refine the geometry and remove
redundant primitives.

CSG representations are significantly enhanced
by a set-differencing operation. Our representa-
tion incorporates negative primitives, which are
differenced from the positive primitives. These
notably enrich the geometry that the model can
encode, while complicating the fitting problem.
This paper demonstrates a method that can (a) in-
corporate these negative primitives and (b) choose
the overall number of positive and negative prim-
itives by ensembling. Extensive experiments on
the standard NYUv2 dataset confirm that (a) this
approach results in substantial improvements in
depth representation and segmentation over SOTA
and (b) negative primitives make a notable con-
tribution to accuracy. Our method is robustly ap-
plicable across datasets: in a first, we evaluate
primitive prediction for LAION images. Code
will be released upon acceptance of the paper.
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1. Introduction

Geometric representations of scenes and objects as primi-
tives — simple geometries that expose structure while sup-
pressing detail — should allow simpler, more general reason-
ing. It is easier to plan moving a cuboid through stylized
free space than moving a specific chair through a particular
living room. As another example, an effective primitive
representation should simplify selecting and manipulating
objects in scenes as in image-based scene editing (Bhat et al.,
2023; Vavilala et al., 2023). But obtaining primitive rep-
resentations that abstract usefully and accurately has been
hard (review Sec. 2).

Primitive prediction methods for objects are well established
(Sec. 2), but are rarer for scenes. There are two main types
of method. A descent method chooses primitives for a
given geometry by minimizing a cost function. Important
obstacles include: different geometries require different
numbers of primitives; the choice of primitive appears to
be important in ways that are opaque; the fitting problem
has large numbers of local minima; and finding a good start
point is difficult. In particular, incremental fitting procedures
are traditionally defeated by interactions between primitives.
Sec. 3.3 demonstrates an extremely strong and quite simple
descent-based fitting baseline. A regression method uses a
learned predictor to map geometry to primitives and their
parameters. These methods can pool examples to avoid
local minima, but may not get the best prediction for a given
input. The SOTA method (Vavilala & Forsyth, 2023) for
parsing indoor scenes uses a regression method to predict a
start point consisting of a fixed set of primitives; this is then
polished and redundant primitives removed.

For negative primitives, the predicted geometry is the set
difference between the union of positive primitives and the
union of negative primitives. Admitting negative primitives
significantly enriches the range of geometries that can be
encoded (Sec. 3.1). This paper shows two procedures that
yield significant (over 50% relative error) improvements
in accuracy. First, we allow a small number of negative
primitives in the sense of constructive solid geometry (CSG).
Second, we show that selecting the number of primitives
per scene (using an appropriately constructed ensembling
method) produces very strong improvements in accuracy at
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Figure 1. We present a method that advances the SOTA for primitive decomposition of indoor scenes by using ensembling and boolean
primitives. We present qualitative comparison with prior work here. (4th row) We show results from our approach with 36 primitives, none
boolean. Our procedure encodes geometry quite closely. (Sth and 6th row) With boolean primitives, we can encode a rich arrangement
of shapes. Here, we ensemble many predictors and show the best one - typically a model with boolean primitives is chosen. The normals
make it clear that boolean primitives are scooping geometry away from positive primitives.

small cost in inference time.

Our contributions are:

1. We believe our method is the only one that can fit CSG
models including a set differencing operator to in-the-
wild images of scenes. We demonstrate qualitative and
quantitative benefits to fitting models with negative
primitives.

2. Primitive decomposition is unusual, in that one can
evaluate a predicted solution at test time without
ground truth primitive data by comparing to a depth
prediction. We show that this property allows us to
search very efficiently for the right number of positive
and negative primitives for each scene. The resulting
estimate is significantly better than any obtained using
a fixed number of positives and negatives.

3. Our method outperforms all available baselines and
SOTA on NYUvV2, and we demonstrate that it pro-
duces accurate representations of diverse scenes from
LAION.

2. Related Work

Primitives date to the origins of computer vision. Roberts
worked with blocks (Roberts, 1963); Binford with general-
ized cylinders (Binford, 1971); Biederman with geons (Bie-
derman, 1987). Ideally, complex objects might be han-
dled with simple primitives (Chen et al., 2019) where each
primitive is a semantic part (Biederman, 1987; Binford,
1971; van den Hengel et al., 2015). Primitives can be re-
covered from image data (Nevatia & Binford, 1977; Shafer
& Kanade, 1983), and allow simplified geometric reason-
ing (Ponce & Hebert, 1982).

For individual objects, neural methods could predict the
right set of primitives by predicting solutions for test data
that are “like” those that worked for training data. Tulsiani
et al. parse 3D shapes into cuboids, trained without ground
truth segmentations (Tulsiani et al., 2017). Zou et al. parse
with a recurrent architecture (Zou et al., 2018). Liu et al.
produce detailed reconstructions of objects in indoor scenes,
but do not attempt parsimonious abstraction (Liu et al.,
2022). Worryingly, 3D reconstruction networks might rely
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Figure 2. Inference Overview: An RGBD image is input to an en-
semble of independently trained CNNs. Each network predicts the
parameters of a set of convexes C;. The number of convexes varies
between 12 and 32 in this work, with many of them potentially
being negative. We refine each set of convexes by minimizing the
training loss w.r.t. the input depth map. Our final decomposition
consists of the set of refined convexes C; which yields the lowest
absolute relative depth error.
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on object semantics (Tatarchenko et al., 2019). Deng et al.
(CVXNet) represent objects as a union of convexes, again
training without ground truth segmentations (Deng et al.,
2020). An early variant of CVXNet can recover 3D represen-
tations of poses from single images, with reasonable parses
into parts (Deng et al., 2019). Meshes can be decomposed
into near convex primitives, by a form of search (Wei et al.,
2022). Part decompositions have attractive editability (Hertz
et al., 2022). Regression methods face some difficulty pro-
ducing different numbers of primitives per scene (CVXNet
uses a fixed number; (Tulsiani et al., 2017) predicts the
probability a primitive is present; one also might use Gum-
bel softmax (Jang et al., 2017)). Primitives that have been
explored include: cuboids (Calderon & Boubekeur, 2017;
Gadelha et al., 2020; Mo et al., 2019; Tulsiani et al., 2017;
Roberts et al., 2021a; Smirnov et al., 2019; Sun & Zou,
2019; Kluger et al., 2021); superquadrics (Barr, 1981; Jakli¢
et al., 2000; Paschalidou et al., 2019); planes (Chen et al.,
2019; Liu et al., 2018a); and generalized cylinders (Nevatia
& Binford, 1977; Zou et al., 2017a; Li et al., 2018). There
is a recent review in (Fu et al., 2021).

Neural Parts (Paschalidou et al., 2021) decomposes an object
given by an image into a set of non-convex shapes. CAPRI-
Net (Yu et al., 2022) decomposes 3D objects given as point
clouds or voxel grids into assemblies of quadric surfaces.
DeepCAD (Wu et al., 2021) decomposes an object into a se-
quence of commands describing a CAD model, but requires
appropriately annotated data for training. Point2Cyl (Uy
et al., 2022) is similar, but predicts the 2D shapes in form of
an SDF. Notably, (Yu et al., 2022; Wu et al., 2021; Uy et al.,
2022) also utilise CSG with negative primitives or parts but,
unlike our work, focus on CAD models of single objects
instead of complex real-world scenes.

Hoiem et al parse outdoor scenes into vertical and horizontal
surfaces (Hoiem et al., 2005; 2007); Gupta et al demonstrate
a parse into blocks (Gupta et al., 2010). Indoor scenes can
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Figure 3. Boolean primitives are parameter-efficient. Represent-
ing a simple box with a hole punched in it can be challenging
even with several traditional primitives, as shown in (a), where
five primitives get stuck in a local minimum. In contrast, two
primitives - one positive and one negative - can represent the geom-
etry successfully because of the enriched vocabulary of operations.
Two views are shown in (b) and (c).

be parsed into: a cuboid (Hedau et al., 2009; Vavilala &
Forsyth, 2023); beds and some furniture as boxes (Hedau
et al., 2010); free space (Hedau et al., 2012); and plane
layouts (Stekovic et al., 2020; Liu et al., 2018b). If RGBD is
available, one can recover layout in detail (Zou et al., 2017b).
Patch-like primitives can be imputed from data (Fouhey
et al., 2013). Jiang demonstrates parsing RGBD images into
primitives by solving a 0-1 quadratic program (Jiang, 2014).
Like that work, we evaluate segmentation by primitives
(see (Jiang, 2014), p. 12), but we use original NYUv2 labels
instead of the drastically simplified ones in the prior work.
Also, our primitives are truly convex. Monnier et al and
Alaniz et al decompose scenes into sets of superquadrics
using differentiable rendering, which requires calibrated
multi-view images as input (Monnier et al., 2023; Alaniz
et al., 2023). Most similar to our work is that of Kluger et
al, who identify cuboids sequentially with a RANSAC-like
greedy algorithm (Fischler & Bolles, 1981; Kluger et al.,
2020; 2021; 2024; Kluger & Rosenhahn, 2024).

The success of a descent method depends critically on the
start point, typically dealt with using greedy algorithms
(rooted in RANSAC (Fischler & Bolles, 1981); note the
prevalence of RANSAC in a recent review (Kang et al.,
2020)); randomized search (Ramamonjisoa et al., 2022;
Hampali et al., 2021); or multiple starts. Remarkably,
as Sec. 3.3 shows, modern first-order methods (we used
AdamW (Loshchilov & Hutter, 2019)) are capable of pro-
ducing fairly good primitive representations from a random
start point.

3. Method

An important feature of this class of problem is that, at infer-
ence time, one can evaluate a predicted solution efficiently
and accurately by comparing primitive predicted depth with
a depth map predicted from an image. This makes it possi-
ble to polish a representation predicted by a network, and to
choose between representations. Write I *°*% for the total
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Figure 4. Visualizations of various primitive predictions for four scenes from NYUv2. We show ground truth (first column in each
block); predictions of (12, 0), (24,0) and (36, 0) models; the prediction of the model that made the worst prediction for the scene; and
the prediction of the model that made the best prediction. The best choice of primitive numbers varies from scene to scene. Notice
some complex objects made up as composites of positive primitives (black arrow) and negative primitives “carving out” shapes. The
segmentation label is the oracle label described in the text. Best viewed at high resolution in color.
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number of primitives and K~ for the number of negatives to lelepipeds, each primitive is parametrized by a center (3
be predicted. For each (K t"t‘”, K ) we wish to investigate, DOF’s), 3 normals (6 DOF’s), 6 offsets (6 DOFs) and a
we train a prediction network. Then, at inference time, we  blending term (1 DOF). The blended half-plane approach
produce a set of primitives from each network, polish it,  eases training and also enables fitting curved surfaces. We
select the primitives with the best loss and report that. This fit parallelepipeds/cuboids mainly for fair comparative eval-
means that different scenes will have predictions involving uation, but we show that more faces per polytope yields
different numbers of primitives. Our approach is a straight-  even better representations (see Table 6 in supplementary).
forward generalization of the architecture of Vavilala &
Forsyth (2023), but produces very significant improvements
in performance (Sec. 4). Negative primitives require some
minor modifications of their procedure (Sec. 3.1) We use
their losses with some omissions (Sec. 3.2). Our polishing
procedure is somewhat different (Sec. 3.3).

Negative primitives: Set differencing produces a notably
more complex geometric representation. Assume we have
K*otl primitives of which K~ are negative, each with f
faces. Label an image pixel by the face intersection that
produced that pixel (as in our face segmentation figures, e.g.
Fig. 5). Generic pixels could result from either ray intersec-
Our network requires RGBD input. Our losses require a  tion with a face of a positive primitive or with a face of a neg-
point cloud that is extracted from the depth image via the ative primitive inside some positive. This argument means
heuristic described in Vavilala & Forsyth (2023). Our that there are a maximum of f x (K% — K~)x (1+K~)
method works both when GT depth is and is not available,  pixel labels; note how this number grows very quickly with
as we can use pretrained networks (Ranftl et al., 2022; Yang an increase in the number of negative primitives, an effect
et al., 2024a) to obtain inferred depth maps. Fig. 2 provides that can be seen in Fig. 5. Negative primitives are easily

an overview of our inference pipeline. handled with indicator functions. We define the indicator
for a set of primitives O : R® — [0, 1], with O(x) = 0
3.1. Positive and Negative Primitives indicating free space, and O(x) = 1 indicating a query

point # € R? is inside the volume. Write O () for the

Base primitives: Our primitives are smoothed polytopes iy, jicator function for the set of positive primitives, O~ (z)

as described in (Deng et al., 2020). For 6-faced paral-
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Figure 5. Visualizations of various primitive predictions for four scenes from LAION. We show ground truth (first column in each block);
predictions of (12,0), (24, 0) and (36, 0) models; the prediction of the model that made the worst prediction for the scene; and the
prediction of the model that made the best prediction. The best choice of primitive numbers varies from scene to scene. Bottom row in
each block shows face labels — no oracle segmentation is available. Note how primitives can follow complex structures; how they tend to
“stick” to object properties (for example, heads in top left; the house in top right); and how the number of face labels grows very quickly

with the number of negative primitives.

for negative primitives. The indicator for our representation
is then O(x) = relu(O" (z) — O~ (z))

3.2. Losses

Our modified representation allows re-using the existing
sample loss and auxiliary losses (unique parametrization
loss, overlap loss, guidance loss, localization loss) (Deng
et al., 2020; Vavilala & Forsyth, 2023) for both O () and
O~ (x). While a Manhattan World loss was found to be
helpful for NYUv2, it hurt quality on general in-the-wild
LAION images in our testing so we leave out that loss in this
work. We do not consider the volume loss or segmentation

loss from Vavilala & Forsyth (2023) in our experimentation,

as they were shown to have an approximately neutral effect
in the original paper.

3.3. Polishing and Descent

Test-time finetuning is possible because we can evaluate the
primitive prediction against the predicted depth map, then
use the training losses at test-time. The fit is improved by
using more 3D samples in these losses per image at test-
time. Our polishing procedure has been heavily optimized
(Supplementary).

Our polishing procedure is effective enough that we can fit a
primitive representation using only a random start (details in
Supplementary). We are aware of no other primitive fitting
procedure that can operate with pure descent and no random
restart or incremental process. This supplies an interesting
baseline; Sec. 4 demonstrates that this baseline is highly
inefficient compared to polishing a network prediction, and
is not competitive in accuracy.
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Method Itotal ‘ K~ ‘ time (sec) ‘ Memory (GB) ‘ AbsRel | Normals Mean | Normals Median |  SegAcc 1
12/0 12 0 0.84 3.53 0.072 36.6 30.7 0.633
24/0 24 0 1.46 5.57 0.059 35.9 29.9 0.690
36/0 36 0 2.06 7.61 0.049 34.9 29.0 0.729
best - 36/8 36 8 2.06 7.61 0.049 36.9 30.8 0.742
pos S — R 2642 | 0.0 2.08 7.61 0.057 35.6 29.6 0.697
pos+neg S — R 28.44 | 13.5 2.13 7.61 0.055 37.0 31.0 0.713
pos R — S 3495 | 0.0 6.21 7.61 0.049 35.0 29.0 0.726
pos+neg R — S 3473 | 11.6 29.9 7.61 0.044 36.19 30.2 0.742
(Vavilala & Forsyth, 2023) 13.9 0 40.0 6.77 0.098 374 324 0.618

Table 1. Comparison to SOTA (last row) on NYUv2. Our best approach (second last row) polishes then chooses from 18 different models
with different numbers of primitives. Other rows show variants of our model. First three rows: we train a primitive generation model
according to the procedure laid out in Sec 3, without boolean primitives. Next row: 36 total primitives with 8 negative was our best
network as measured by AbsRel. Final four rows Ensembling strongly improves error metrics, particularly AbsRel. Pos+neg refers to all
18 models available for ensembling, whereas Pos refers to only 3 models without boolean primitives available. S — R refers to only
refining the output of the model with the best sample classification; R — S means we finetune all models and pick the best one. In this
table, we finetune assuming GT depth is available at test time, though our method still works even when depth is inferred by a pretrained
depth estimator. The fact that substantial gains can be achieved from R — S implies that the best start point may not yield the best end
point — meaning the fitting problem is hard. Time and memory estimates are presented as well. Last row: we compare our methods
against existing work. Any individual model we train obtains better error metrics with less compute. Timings for ensembling shows

estimated total cost of running all the methods and selecting the best one; memory refers to peak GPU memory usage.

3.4. Choosing the Number of Primitives

Much of the literature on primitive decomposition fits a
fixed number of primitives (Deng et al., 2020). In contrast,
we investigate 18 cases for (Kt K ~). These are (12,0);
(12,4); (12,8); (24,0); (24,4); (24,8); (24,12); (36,0);
(36,4); (36,8); (36,12);(36,16); (36,20); (36,24);
(36,28); and (36,32). We investigate two strategies for
choosing the best prediction (and so the best set of primi-
tives) for a given test image: S — R, where we select the
best neural prediction then refine it; and R — S, where we
refine all predictions then select the best.

3.5. Implementation Details

Our neural architecture is a ResNet-18 encoder (accepting
RGBD input), followed by a decoder consisting of three
linear layers of sizes [1048, 1048, 2048] and LeakyRelu ac-
tivations. We do not freeze any layers during training. The
dimensionality of the final output varies based on the num-
ber of primitives the model is trained to produce (as we train
different models for different numbers of primitives in this
work). We implement our procedure in PyTorch and train
all networks with AdamW optimizer, learning rate 2 x 10~4,
batch size 96, mixed-precision training, for 20000 iterations,
on a single A40 GPU. Each image is resized to 240 x 320
resolution. Although we train at fixed resolution, our model
can run inference at variable aspect ratio, as would be ex-
pected from CNNs like ResNet. It takes 39 mins to train a
12 primitive model and 62 mins to train a 32 primitive model.
On LAION, we train at 256 x 256 resolution, resizing the
smallest edge to 256 and doing a center crop. We increase
the training steps to 30000 here, which was sufficient to get

good results despite the larger dataset.

4. Results

Qualitative results appear in Fig 4 and Fig 5. Note how
primitives can combine to form complex structures; how
negative primitives “carve out” complex shapes; how primi-
tives tend to “stick” to object properties (for example, heads;
a house); and how the number of face labels grows very
quickly with the number of negative primitives.

4.1. Evaluating a Primitive Representation

While producing a primitive representation has a long his-
tory (Marr & Nishihara (1978), Sec. 2), not much is known
about how one is to be used apart from the original recogni-
tion argument, now clearly an anachronism. Recent work
in conditioned image synthesis (Vavilala et al. (2023); Bhat
et al. (2023)) suggests that applications might need (a) a
relatively compact representation (so that users can, say,
move primitives around) and (b) one that accurately reflects
depth, normals and (ideally) segmentation.

We compare primitive methods against one another using
standard metrics for depth, normal and segmentation. Spe-
cialized predictors of depth, normal and segmentation out-
perform primitive methods on these metrics. But we would
not use a primitive predictor to actually predict depth, nor-
mal or segmentation — instead, we are using the metrics to
determine whether very highly simplified representations
achieve reasonable accuracy. Our procedure uses the stan-
dard 795/654 train/test NYUv2 split Nathan Silberman &
Fergus (2012). We hold out 5% of training images for vali-
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Figure 6. Network start is beneficial. Initializing our finetuning process with primitives predicted by our network (blue line) yields
better primitives after finetuning than random start (red line). Inference from our network is around 0.0006 seconds per image, whereas

200 iterations of finetuning takes nearly .7 seconds when K *°**! =

12. In practice, network start saves around 900 FT steps and can

achieve a better quality than random start. It also appears to be harder to fit negative primitives than positives (there is a greater gap in the
final AbsRel between the two curves when there are negative primitives). Based on these results, we use 200 finetuning steps to balance
compute and quality when reporting error metrics in this paper. Further, the fact that it is even possible to generate high-quality primitives
via pure optimization, without a neural network, is new in the context of recent primitive-generation literature. Results shown on 100

random test images from LAION.

dation. We use this dataset primarily to maintain consistency
in evaluating against prior art.

For NYUv2, we compare the depth map predicted by prim-
itives to ground truth using a variety of metrics; normals
predicted by primitives to ground truth; and an oracle seg-
mentation derived from primitives to ground truth segmen-
tation. Depth metrics are: the (standard) AbsRel (eg (Ran-
ftl et al., 2020)); AUC,,, which evaluates the fraction of
points within n cm of the correct location (after Vavilala
& Forsyth (2023); Kluger et al. (2021)); mean and median
of the occlusion-aware distance of (Kluger et al., 2021).
Normal metrics are after (Wang et al., 2015) and are mean
and median of angle to true normal, in degrees. The oracle
segmentation metric uses an oracle to predict the best label
for each image region, where regions consist of pixels with
the same face intersection label (of Sec. 3.1), then compares
this to ground truth. For LAION, we compute depth and
normal metrics comparing to depth and normal predicted
from the image.

4.2. NYUv2 Results

Our method beats SOTA on depth, normal, and segmenta-
tion (Tab. 1). Despite the ensembling process, our method
is faster than SOTA. Notice in Tab. 1 methods with no neg-
ative primitives show some improvement in normal, but are
much worse in depth. We speculate that this is caused by a
tendency for real objects to bulge out rather more than to be
pressed in. An improvement in depth prediction combined
with a weakening of normal prediction is not paradoxical
(one can be better at predicting a function and worse at pre-

dicting its derivatives). Qualitative results in Fig. 4. More
extensive detailed comparison in Supplementary.

Model frequency, R—S (NYUv2)

100
80 1
60
40 4

20 1

Count of test images

DA KA b 40 oD gk g o
B e\ e\ AN AN A\ BNAQP Y
O\ o0

B R G

Ktotal/K—

DN\ D (h® W
P PP PP PP

Figure 7. The number of times each primitive model is selected
for test images strongly suggests that (a) negative primitives are
helpful and (b) bias is not the reason a model is chosen. This figure
is for the R — S strategy, which is best; others in suppplementary.

Negative primitives make an important contribution, as
indicated by Fig. 7. This figure shows the histogram of the
number of times a particular (K*°*® K'~) combination was
selected. Note that there is a strong tendency to use more
primitives (K*** = 36 is much more popular than other
options, though K~ = 24 is quite popular), and the number
of negatives used for the best fit is quite variable.

Improvements are not just from improved bias, as Fig. 7
indicates. Generally, a representation with more primitives
will have lower bias (one could use one primitive per pixel,
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Dataset | faces | AUCas0T | AUCa20? | AUCa10? | AUCasT | meancy,| | mediang,

NYUv2 6 0.9391 0.8847
LAION 6 0.9097 0.838
LAION 12 0.9158 0.8502

0.8137 0.6902 0.128 0.03117
0.7498 0.63 0.2522 0.06239
0.7679 0.6535 0.2366 0.05706

Table 2. Depth metrics for NYUv2 data and LAION data compared. LAION is harder than NYUv2, but more faces yield better fits.

and get very good depth measurements). But the representa-
tions used are quite well spread across different cases in this
figure, suggesting that bias is not the issue here (if it were,
all representations would be (36, 24)).

K™ T Encode | Loss | Finetune | Render
12 0.0006 | 0.0015 0.68 0.15
24 0.0006 | 0.0025 1.23 0.22
36 0.0006 | 0.0036 1.79 0.26

Table 3. Estimated inference breakdown times, all times in sec-
onds, 256-res images. Encoding is very fast, in which the network
predicts parameters of the primitives given an RGBD image. Com-
puting loss, required for getting the fraction of samples classified
correctly when ensembling with S — R, is also fast. However,
finetuning (we show 200 steps here) is often the bottleneck since
we must compute the loss and optimize the parameters of the
primitives. Since our primitives are the blended union of half-
spaces (Deng et al., 2020), they cannot be rasterized easily and
raymarching the SDF is required. We use torch.jit, batching, and
pure BFloat16 for all stages of inference except rendering to maxi-
mize throughput. We find that rendering must be done in FP32 to
avoid unwanted artifacts.

Our method is efficient, as Tab. 3 shows. The vast majority
of time is spent in polishing the representation.

4.3. LAION Results

Scaling is an important concept in computer vision, but we
have not seen this concept applied to 3D primitive genera-
tion. To that end, we collect approx. 1.8M natural images
from LAION-Aesthetic. We use a recent SOTA depth esti-
mation network (Yang et al., 2024b) to obtain depth maps,
and make reasonable camera calibration assumptions to lift
a 3D point cloud from the depth map. In particular, we use
the Hypersim (Roberts et al., 2021b) module that predicts
metric depth and use its camera parameters to get the point
cloud for each image, which is required for training our
convex decomposition model. GT normals can be obtained
using the image gradient method described in (Vavilala &
Forsyth, 2023), which requires point cloud input. LAION
is harder than NYUv2 as Tab. 2 shows conclusively.

Our network start is much better than pure descent, as
Fig. 6 shows. The randomly started pure descent procedure
of Section 3.3 produces surprisingly strong fits, but requires
a large number of iterations to do so. Typically, 100 itera-

Figure 8. Using primitives to control image synthesis. We show
results from an in-submission follow-up work. Our primitive
representation allows us to remove and add objects to a scene.
Bottom row We generate an image conditioned on primitives (here,
primitives extracted from a real image); we then manipulate the
primitives and the camera to obtain conditioning for the diffusion
model. Depth and primitives shown in top row, generated images
in second row. Texture is preserved by caching keys and values
from a reference style image, and querying those keys and values
when generating new images in the same style.

tions of polishing a network start point is much better than
1000 iterations of pure descent. The descent procedure is a
first order method, so we expect AbsRel to improve no faster
than 1/iterations, suggesting that this figure understates the
advantage of the network start point.

5. Discussion

Primitives are an old obsession in computer vision. Their
original purpose (object recognition) now appears to be
much better handled in other ways. Mostly, using primi-
tives was never really an issue, because there weren’t viable
fitting procedures. But what are primitives for? Likely an-
swers come from robotics — where one might benefit from
simplified representations of geometry that are still accurate
— and image editing — where a user might edit a scene by
moving primitives (Fig. 8).
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Impact Statement

Our work could be useful for high-level scene analysis and
understanding. There are many potential societal conse-
quences of our work, none which we feel must be specifi-
cally highlighted here.
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A. Optimizing the Inference Pipeline

Given the expense of ensembling, we seek to maximize throughput of our inference pipeline. We use torch.jit and pure
BFloat16 for encoding the RGBD image and finetuning. We also get speedups from batching the test images instead of one
at a time. Combined with our subsampling strategy, these improvements yield over an order of magnitude faster inference
than prior work, making ensembling more practical (see Table 1).

We note that rendering the primitives still requires FP32 precision to avoid unwanted artifacts. We accelerate our raymarcher
by advancing the step size by 0.8*SDF if it is greater than the step size (we use 0.004 for large-scale metrics gathering,
0.0001 for beauty renders). We cannot accelerate by the full SDF because it is an approximation of how far the smoothed
primitive boundary is.

B. Primitives by Descent Alone

We generate a large reservoir of 1M free-space (a.k.a. bbx samples) for each test image. We still generate H x W “inside”
surface samples and “outside” surface samples near the depth boundary respectively, with e = 0.02 units separating these
surface samples. We remind the reader that our point clouds are renormalized to approx. the unit cube during training
to avoid scale issues. Then during finetuning, we subsample from all available samples at each step, providing a rich
gradient analogous to the network training process (though here, we’re optimizing the parameters of primitives). We found
subsampling 10% of available samples sufficient at each step.

Second, we find that vanilla SGD does not produce usable results; instead AdamW (Loshchilov & Hutter, 2019) was
required. We set the initial LR to 0.01, and linearly warm up to it over the first 25% of iterations. We then halve the learning
rate once at 50% of the steps and again at 75%.

C. Additional Evaluation
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Figure 9. Boolean primitives are often selected from the ensemble. Top When we ensemble with S — R, all models across all primitive
counts are well-represented. This indicates that our network prediction may slightly struggle to manage larger numbers of primitives,
hence the relative success of fewer primitives. In this setting, selecting a prediction for finetuning is based on fraction of 3D samples
classified incorrectly, which is fast as we don’t need to finetune and render the outputs of all the networks to decide which model. Bottom
When we refine then choose R — S, our finetuning procedure polishes each network start point and chooses the best one based on
AbsRel, requiring a render for each model. When doing so, the best model (measured by AbsRel of rendered depth against GT depth) is
strongly concentrated among higher primitive counts, K*°*® = 36, though fewer primitives are still represented in the ensemble at times.
Notice how the ensemble strongly favors representations with boolean primitives available, indicating they are useful in practice.
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Ensemble | Refine | K™ | K~ | AUCas0? | AUCaz0? | AUCa10T | AUCas? | meanc,,| | mediang,,|

No (Vavilala 2023) [ Yes 13.9 0] 0.869 0.725 0.565 0.382 0.266 0.101
No (Kluger 2021) | N/A - 0] 0.772 0.627 0.491 0.343 0.208 -

no yes 12 0] 08967 [ 08052 [ 0.6954 | 05411 | 0.2075 0.0563
no yes 12 41 09102 | 08277 | 0.7245 | 05737 | 0.1859 | 0.04996
no yes 12 8| 09044 | 0.8218 | 07202 | 05712 | 0.194 0.04953
no yes 24 0] 09168 | 0.8485 0.7628 | 0.6243 | 0.1697 | 0.04069
no yes 24 41 09283 0.8685 07912 | 0.6609 | 0.1479 | 0.03506
no yes 24 8] 09278 | 08667 | 0.7878 | 0.6565 | 0.1497 | 0.03546
no yes 24 12| 09268 | 08652 | 0.7861 | 0.6555 | 0.1519 | 0.03745
no yes 24 16 | 09252 | 0.8601 0.7782 | 0.6441 | 0.1552 0.0371
no yes 24| 20| 09184 | 0.8445 07513 | 0.6082 | 0.1713 | 0.04531
no yes 36 0] 09314 [ 08751 0.8035 | 0.6779 | 0.1408 | 0.03286
no yes 36 41 09314 | 0.8755 0.8058 | 0.6833 | 0.1395 0.032
no yes 36 8| 09314 | 08759 | 0.8073 | 0.6865 | 0.1389 | 0.03134
no yes 36 12| 09306 | 08747 | 08061 | 0.6869 | 0.1419 | 0.03391
no yes 36 16 | 09314 | 0.8743 0.8037 | 0.6815 | 0.1419 | 0.03184
no yes 36 20| 09291 0.8709 | 0.7974 | 0.6728 | 0.1479 0.0373
no yes 36 | 24| 09307 | 08717 | 07947 | 0.6663 | 0.1448 | 0.03595
no yes 36 | 28| 09274 | 08616 | 0.7791 0.644 | 0.1531 | 0.03733
no yes 36 | 32| 09244 | 0.8565 07703 | 0.6321 | 0.1585 | 0.03854
pos S—R| 2642 0] 09188 0.851 0.7672 | 0.6319 | 0.1652 | 0.04028
pos-+neg S— R | 2844|1354 | 09236 0.858 0.7765 | 0.6445 | 0.1572 | 0.03789
pos R— S| 3495 0| 09316 | 0.8748 0.802 0.675 | 0.1408 | 0.03344
pos-+neg R— S| 3473 | 11.63 | 0.9391 0.8847 | 0.8137 | 0.6902 | 0.128 0.03117

Table 4. Baseline comparisons: Ensembling strongly outperforms two recent SOTA methods, using the metrics reported by Kluger et al.
(2021), and using negative primitives in the ensemble produces further improvements. We show results with only positive primitives
present Ours (pos), three networks, Kt ¢ [12, 24, 36], as well as with positive and negative primitives Ours (pos+neg), 18 networks,
K~ €10,4,8, ..., K*'" — 4]. Our ensembles significantly outperform existing work. Further, we present results on the 18 methods we
trained, where Ktt% /K™ is shown. Even without ensembling, any individual method we trained performs better than the baselines.
Notice that boolean primitives are helpful on average.
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Figure 10. Visualizations of various primitive predictions for four scenes from NYUv2, omitting arrows. We show ground truth (first
column in each block); predictions of (12, 0), (24, 0) and (36, 0) models; the prediction of the model that made the worst prediction for
the scene; and the prediction of the model that made the best prediction. The best choice of primitive numbers varies from scene to scene.
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Ensemble [ Refine [ K total [ K- [ AbsRel] [ AUCas0? [ AUCas20? [ AUCaq1ot [ AUCqs? [ meang,, . [ median,,, | [ Neg_per_Pos

no yes 12 0| 0.09231 0.8698 0.7702 0.6579 0.5197 0.3676 0.09723 0

no yes 12 4 | 0.09381 0.8713 0.7727 0.6619 0.5245 0.3581 0.09603 1.735
no yes 12 8 | 0.09188 0.8707 0.7715 0.6612 0.5248 0.3586 0.1021 4.097
no yes 24 0| 0.08226 0.8836 0.798 0.6977 0.5693 0.3321 0.07976 0

no yes 24 4| 0.07832 0.8914 0.8116 0.717 0.5917 0.3056 0.07286 1.26
no yes 24 8 | 0.07802 0.8934 0.8152 0.7217 0.5971 0.3024 0.07177 2.163
no yes 24 12 | 0.0785 0.8927 0.8133 0.7192 0.5943 0.2994 0.07261 3.241
no yes 24 16 | 0.07812 0.8897 0.807 0.7108 0.5852 0.3042 0.08184 4.656
no yes 24 20 | 0.08493 0.8819 0.7961 0.6967 0.5686 0.3289 0.09769 8.119
no yes 36 0| 0.0771 0.8899 0.8103 0.7149 0.5901 0.3173 0.07352 0

no yes 36 4| 0.07642 0.8963 0.8226 0.7336 0.6135 0.294 0.06607 1.072
no yes 36 8 | 0.07392 0.8994 0.8281 0.7413 0.6233 0.2852 0.06513 1.688
no yes 36 12 | 0.07576 0.8989 0.8274 0.7406 0.6225 0.2854 0.06642 2.251
no yes 36 16 | 0.07193 0.8997 0.8268 0.7392 0.6209 0.2802 0.06528 2.947
no yes 36 20 | 0.07346 0.8998 0.826 0.7367 0.6168 0.279 0.06617 3.723
no yes 36 24 | 0.0766 0.8952 0.8189 0.7282 0.6069 0.2946 0.07524 4.729
no yes 36 28 | 0.07655 0.8922 0.8116 0.717 0.593 0.3002 0.08088 6.373
no yes 36 32 | 0.08094 0.8872 0.8032 0.7058 0.5797 0.3205 0.0942 9.969
yes yes 24.21 0| 0.08427 0.8807 0.7927 0.6902 0.5594 0.3406 0.08586 0

yes yes 27.87 | 13.8 | 0.07993 0.8889 0.8069 0.7098 0.5837 0.3097 0.07555 3.862
yes yes 30.76 0| 0.07285 0.8936 0.8119 0.7144 0.5884 0.3029 0.07412 0

yes yes 34.28 | 13.26 | 0.06025 0.9097 0.838 0.7498 0.63 0.2522 0.06239 2.882

Table 5. Quantitative evaluation on LAION 6 face polytopes: We train and ensemble models on a subset of LAION, with approx.
1.8M images in the training set and 2500 in the test set. We report error metrics defined in by Kluger et al. (2021). Negative primitives
remain useful, noting the italiciced error metrics in each block of K°** always has boolean primitives. Ensembling produces further
improvements similar to NYUv2. Overall, the metrics are worse on LAION, indicating it is a harder dataset. The final column,
Neg_per_pos, evaluates the average number of negative primitives touching each positive primitive, quantitatively showing negative
primitives active in the geometric abstraction.
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Figure 11. Distribution of models chosen on LAION (6 faces), 2500 image test set. Models with boolean primitives are often chosen,
especially after finetuning.

Ensemble ‘ Refine | J(total | K~ | AbsRel] | AUCas0T | AUCa20T | AUCa10T | AUCasT | meang,, | median,, | ‘ Neg_per_Pos

no yes 12 0| 0.08453 0.8804 0.7854 0.6775 0.5419 0.3331 0.09617 0

no yes 12 4| 0.08138 0.89 0.8046 0.7046 0.5753 0.3058 0.07838 1.875
no yes 12 8 | 0.07951 0.8905 0.8059 0.7063 0.5771 0.3062 0.07857 4.149
no yes 24 0 | 0.07068 0.8983 0.8206 0.7258 0.6024 0.287 0.07173 0

no yes 24 4| 0.07199 0.9025 0.8286 0.7392 0.6185 0.2728 0.06691 1.34
no yes 24 8 | 0.06978 0.9042 0.8328 0.745 0.6259 0.2679 0.06231 2.208
no yes 24 12 | 0.07175 0.9031 0.8311 0.7438 0.6255 0.2696 0.06407 3.333
no yes 24 16 | 0.07279 0.9005 0.8264 0.737 0.6166 0.2765 0.06635 4.725
no yes 24 20 | 0.07331 0.8994 0.8244 0.7337 0.6132 0.2822 0.06863 8.627
no yes 36 0| 0.06937 0.9023 0.8297 0.7398 0.6208 0.2768 0.06693 0

no yes 36 4| 0.06873 0.9066 0.8384 0.7542 0.6386 0.2628 0.05955 1.108
no yes 36 8 | 0.06587 0.9091 0.842 0.7593 0.6451 0.2536 0.05777 1.724
no yes 36 12 | 0.06555 0.9091 0.8433 0.7624 0.6494 0.2559 0.05711 2.332
no yes 36 16 | 0.06708 0.9073 0.8398 0.7574 0.6445 0.2603 0.05879 3.023
no yes 36 20 | 0.0667 0.9066 0.8387 0.7557 0.642 0.261 0.05907 3.807
no yes 36 24 | 0.06928 0.9047 0.8356 0.7509 0.6357 0.2673 0.0621 4.952
no yes 36 28 | 0.06776 0.9049 0.8339 0.7474 0.6308 0.2655 0.06252 6.713
no yes 36 32 | 0.07276 0.9007 0.8264 0.7368 0.6174 0.2752 0.06432 10.93
yes yes 23.64 0| 0.07552 0.8934 0.8107 0.7127 0.5866 0.3001 0.07877 0

yes yes 27.2 | 13.23 | 0.07115 0.9011 0.827 0.7373 0.6171 0.2768 0.06681 4.096
yes yes 31.18 0| 0.06514 0.9047 0.8308 0.7395 0.6196 0.2685 0.06761 0

yes yes 34.08 | 12.94 | 0.05647 0.9158 0.8502 0.7679 0.6535 0.2366 0.05706 2.981

Table 6. Quantitative evaluation on LAION 12 face polytopes: Most recent literature on primitive-fitting focuses on cuboids or
parallelepipeds, but our model is capable of fitting polytopes of variable face count. All error metrics get better with more faces, which is
helpful to know.
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Figure 12. Distribution of models chosen on LAION (12 faces), 2500 image test set. Models with boolean primitives are often chosen,
especially after finetuning.
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Figure 13. Additional examples on the value of network start, on 100 LAION test images.
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Figure 14. Additional examples on the value of network start, on 100 LAION test images.
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Method NParts Neg AbsRel| Normals Mean| Normals Median| SegAcct
Single 12-0 12 0 0.0719 36.6 30.7 0.633
Single 12-4 12 4 0.0659 38.2 32.1 0.656
Single 12-8 12 8 0.0669 38.8 32.8 0.656
Single 24-0 24 0 0.0590 35.9 29.9 0.690
Single 24-4 24 4 0.0525 36.3 30.4 0.719
Single 24-8 24 8 0.0525 374 31.3 0.722
Single 24-12 24 12 0.0529 37.1 31.3 0.720
Single 24-16 24 16 0.0538 37.7 31.6 0.714
Single 24-20 24 20 0.0586 38.4 32.3 0.693
Single 36-0 36 0 0.0489 34.9 29.0 0.729
Single 36-4 36 4 0.0496 36.4 30.4 0.737
Single 36-8 36 8 0.0489 36.9 30.8 0.742
Single 36-12 36 12 0.0500 36.9 31.0 0.743
Single 36-16 36 16 0.0497 36.6 30.5 0.740
Single 36-20 36 20 0.0509 37.0 31.0 0.733
Single 36-24 36 24 0.0508 37.2 31.3 0.735
Single 36-28 36 28 0.0528 37.3 31.2 0.720
Single 36-32 36 32 0.0544 37.7 31.7 0.707
pos S — R 26.4 0.0  0.0571 35.6 29.6 0.697
pos+neg S — R 284 13,5 0.0546 37.0 31.0 0.713
pos R — S 35.0 0.0  0.0486 35.0 29.0 0.726
pos+tneg R — S 347 11.6  0.0438 36.2 30.3 0.742

Table 7. Detailed error metrics on NYUv2.

(a) Source Image (c) Same primitives, different label (d) Camera move (e) Move primitives
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Figure 15. Our method can decompose natural images into primitives, and be used to condition controlled image synthesis tasks.
We show results from an in-submission follow-up work, which uses a convex decomposition method similar to the one described here. (a)
We use a convex decomposition method to extract convex polytopes from any image. (b) We then ray-march the primitives from the
original camera viewpoint to obtain a depth map. (c) This depth map serves as conditioning to a ControlNet diffusion model, which is
finetuned to handle the unique statistics of our block arrangements. Different scenes can be created from the same high-level geometry.
(d) We can select one of the images and perform camera moves in 3D space, obtaining images that roughly respect both the requested
geometric layout and source texture. We maintain a key-value cache to transfer texture (Khachatryan et al., 2023). (e) We can also move
primitives freely in 3D space, adjusting the high-level shape of the doll’s dress.
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Primitives

“Luxury yacht”

Figure 16. Our method can decompose natural images into primitives, and be used to condition controlled image synthesis tasks.
‘We show results from an in-submission follow-up work. Rotating the primitives associated with the yacht rotates the yacht in view.
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