
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Improved Convex Decomposition with
Ensembling and Boolean Primitives

Anonymous Authors1

Abstract

Describing a scene in terms of primitives – ge-
ometrically simple shapes that offer a parsimo-
nious but accurate abstraction of structure – is an
established and difficult fitting problem. Differ-
ent scenes require different numbers of primitives,
and these primitives interact strongly. Existing
methods are evaluated by predicting depth, nor-
mals and segmentation from the primitives, then
evaluating the accuracy of those predictions. The
state of the art method involves a learned regres-
sion procedure to predict a start point consisting
of a fixed number of primitives, followed by a de-
scent method to refine the geometry and remove
redundant primitives.

CSG representations are significantly enhanced
by a set-differencing operation. Our representa-
tion incorporates negative primitives, which are
differenced from the positive primitives. These
notably enrich the geometry that the model can
encode, while complicating the fitting problem.
This paper demonstrates a method that can (a) in-
corporate these negative primitives and (b) choose
the overall number of positive and negative prim-
itives by ensembling. Extensive experiments on
the standard NYUv2 dataset confirm that (a) this
approach results in substantial improvements in
depth representation and segmentation over SOTA
and (b) negative primitives make a notable con-
tribution to accuracy. Our method is robustly ap-
plicable across datasets: in a first, we evaluate
primitive prediction for LAION images. Code
will be released upon acceptance of the paper.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction
Geometric representations of scenes and objects as primi-
tives – simple geometries that expose structure while sup-
pressing detail – should allow simpler, more general reason-
ing. It is easier to plan moving a cuboid through stylized
free space than moving a specific chair through a particular
living room. As another example, an effective primitive
representation should simplify selecting and manipulating
objects in scenes as in image-based scene editing (Bhat et al.,
2023; Vavilala et al., 2023). But obtaining primitive rep-
resentations that abstract usefully and accurately has been
hard (review Sec. 2).

Primitive prediction methods for objects are well established
(Sec. 2), but are rarer for scenes. There are two main types
of method. A descent method chooses primitives for a
given geometry by minimizing a cost function. Important
obstacles include: different geometries require different
numbers of primitives; the choice of primitive appears to
be important in ways that are opaque; the fitting problem
has large numbers of local minima; and finding a good start
point is difficult. In particular, incremental fitting procedures
are traditionally defeated by interactions between primitives.
Sec. 3.3 demonstrates an extremely strong and quite simple
descent-based fitting baseline. A regression method uses a
learned predictor to map geometry to primitives and their
parameters. These methods can pool examples to avoid
local minima, but may not get the best prediction for a given
input. The SOTA method (Vavilala & Forsyth, 2023) for
parsing indoor scenes uses a regression method to predict a
start point consisting of a fixed set of primitives; this is then
polished and redundant primitives removed.

For negative primitives, the predicted geometry is the set
difference between the union of positive primitives and the
union of negative primitives. Admitting negative primitives
significantly enriches the range of geometries that can be
encoded (Sec. 3.1). This paper shows two procedures that
yield significant (over 50% relative error) improvements
in accuracy. First, we allow a small number of negative
primitives in the sense of constructive solid geometry (CSG).
Second, we show that selecting the number of primitives
per scene (using an appropriately constructed ensembling
method) produces very strong improvements in accuracy at

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Improved Convex Primitives

RGB 

Klug
er 

Vav
ilal

a 

Ours 
- 

K
tota

l /K
− : 36/0

Ours 
- 

R → S

Norm
als

 - 

R → S

Figure 1. We present a method that advances the SOTA for primitive decomposition of indoor scenes by using ensembling and boolean
primitives. We present qualitative comparison with prior work here. (4th row) We show results from our approach with 36 primitives, none
boolean. Our procedure encodes geometry quite closely. (5th and 6th row) With boolean primitives, we can encode a rich arrangement
of shapes. Here, we ensemble many predictors and show the best one - typically a model with boolean primitives is chosen. The normals
make it clear that boolean primitives are scooping geometry away from positive primitives.

small cost in inference time.

Our contributions are:

1. We believe our method is the only one that can fit CSG
models including a set differencing operator to in-the-
wild images of scenes. We demonstrate qualitative and
quantitative benefits to fitting models with negative
primitives.

2. Primitive decomposition is unusual, in that one can
evaluate a predicted solution at test time without
ground truth primitive data by comparing to a depth
prediction. We show that this property allows us to
search very efficiently for the right number of positive
and negative primitives for each scene. The resulting
estimate is significantly better than any obtained using
a fixed number of positives and negatives.

3. Our method outperforms all available baselines and
SOTA on NYUv2, and we demonstrate that it pro-
duces accurate representations of diverse scenes from
LAION.

2. Related Work
Primitives date to the origins of computer vision. Roberts
worked with blocks (Roberts, 1963); Binford with general-
ized cylinders (Binford, 1971); Biederman with geons (Bie-
derman, 1987). Ideally, complex objects might be han-
dled with simple primitives (Chen et al., 2019) where each
primitive is a semantic part (Biederman, 1987; Binford,
1971; van den Hengel et al., 2015). Primitives can be re-
covered from image data (Nevatia & Binford, 1977; Shafer
& Kanade, 1983), and allow simplified geometric reason-
ing (Ponce & Hebert, 1982).

For individual objects, neural methods could predict the
right set of primitives by predicting solutions for test data
that are “like” those that worked for training data. Tulsiani
et al. parse 3D shapes into cuboids, trained without ground
truth segmentations (Tulsiani et al., 2017). Zou et al. parse
with a recurrent architecture (Zou et al., 2018). Liu et al.
produce detailed reconstructions of objects in indoor scenes,
but do not attempt parsimonious abstraction (Liu et al.,
2022). Worryingly, 3D reconstruction networks might rely

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Improved Convex Primitives

��
�

���

������	

����������

��
�
�
�

�
�
�
�	

���

��
�

����

��
�

���

���������

�����������

��
�

��
�

��
�

�������� ����	

Figure 2. Inference Overview: An RGBD image is input to an en-
semble of independently trained CNNs. Each network predicts the
parameters of a set of convexes Ci. The number of convexes varies
between 12 and 32 in this work, with many of them potentially
being negative. We refine each set of convexes by minimizing the
training loss w.r.t. the input depth map. Our final decomposition
consists of the set of refined convexes Ci which yields the lowest
absolute relative depth error.

on object semantics (Tatarchenko et al., 2019). Deng et al.
(CVXNet) represent objects as a union of convexes, again
training without ground truth segmentations (Deng et al.,
2020). An early variant of CVXNet can recover 3D represen-
tations of poses from single images, with reasonable parses
into parts (Deng et al., 2019). Meshes can be decomposed
into near convex primitives, by a form of search (Wei et al.,
2022). Part decompositions have attractive editability (Hertz
et al., 2022). Regression methods face some difficulty pro-
ducing different numbers of primitives per scene (CVXNet
uses a fixed number; (Tulsiani et al., 2017) predicts the
probability a primitive is present; one also might use Gum-
bel softmax (Jang et al., 2017)). Primitives that have been
explored include: cuboids (Calderon & Boubekeur, 2017;
Gadelha et al., 2020; Mo et al., 2019; Tulsiani et al., 2017;
Roberts et al., 2021a; Smirnov et al., 2019; Sun & Zou,
2019; Kluger et al., 2021); superquadrics (Barr, 1981; Jaklič
et al., 2000; Paschalidou et al., 2019); planes (Chen et al.,
2019; Liu et al., 2018a); and generalized cylinders (Nevatia
& Binford, 1977; Zou et al., 2017a; Li et al., 2018). There
is a recent review in (Fu et al., 2021).

Neural Parts (Paschalidou et al., 2021) decomposes an object
given by an image into a set of non-convex shapes. CAPRI-
Net (Yu et al., 2022) decomposes 3D objects given as point
clouds or voxel grids into assemblies of quadric surfaces.
DeepCAD (Wu et al., 2021) decomposes an object into a se-
quence of commands describing a CAD model, but requires
appropriately annotated data for training. Point2Cyl (Uy
et al., 2022) is similar, but predicts the 2D shapes in form of
an SDF. Notably, (Yu et al., 2022; Wu et al., 2021; Uy et al.,
2022) also utilise CSG with negative primitives or parts but,
unlike our work, focus on CAD models of single objects
instead of complex real-world scenes.

Hoiem et al parse outdoor scenes into vertical and horizontal
surfaces (Hoiem et al., 2005; 2007); Gupta et al demonstrate
a parse into blocks (Gupta et al., 2010). Indoor scenes can

(a) (b) (c)

Figure 3. Boolean primitives are parameter-efficient. Represent-
ing a simple box with a hole punched in it can be challenging
even with several traditional primitives, as shown in (a), where
five primitives get stuck in a local minimum. In contrast, two
primitives - one positive and one negative - can represent the geom-
etry successfully because of the enriched vocabulary of operations.
Two views are shown in (b) and (c).

be parsed into: a cuboid (Hedau et al., 2009; Vavilala &
Forsyth, 2023); beds and some furniture as boxes (Hedau
et al., 2010); free space (Hedau et al., 2012); and plane
layouts (Stekovic et al., 2020; Liu et al., 2018b). If RGBD is
available, one can recover layout in detail (Zou et al., 2017b).
Patch-like primitives can be imputed from data (Fouhey
et al., 2013). Jiang demonstrates parsing RGBD images into
primitives by solving a 0-1 quadratic program (Jiang, 2014).
Like that work, we evaluate segmentation by primitives
(see (Jiang, 2014), p. 12), but we use original NYUv2 labels
instead of the drastically simplified ones in the prior work.
Also, our primitives are truly convex. Monnier et al and
Alaniz et al decompose scenes into sets of superquadrics
using differentiable rendering, which requires calibrated
multi-view images as input (Monnier et al., 2023; Alaniz
et al., 2023). Most similar to our work is that of Kluger et
al, who identify cuboids sequentially with a RANSAC-like
greedy algorithm (Fischler & Bolles, 1981; Kluger et al.,
2020; 2021; 2024; Kluger & Rosenhahn, 2024).

The success of a descent method depends critically on the
start point, typically dealt with using greedy algorithms
(rooted in RANSAC (Fischler & Bolles, 1981); note the
prevalence of RANSAC in a recent review (Kang et al.,
2020)); randomized search (Ramamonjisoa et al., 2022;
Hampali et al., 2021); or multiple starts. Remarkably,
as Sec. 3.3 shows, modern first-order methods (we used
AdamW (Loshchilov & Hutter, 2019)) are capable of pro-
ducing fairly good primitive representations from a random
start point.

3. Method
An important feature of this class of problem is that, at infer-
ence time, one can evaluate a predicted solution efficiently
and accurately by comparing primitive predicted depth with
a depth map predicted from an image. This makes it possi-
ble to polish a representation predicted by a network, and to
choose between representations. Write Ktotal for the total

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Improved Convex Primitives

Figure 4. Visualizations of various primitive predictions for four scenes from NYUv2. We show ground truth (first column in each
block); predictions of (12, 0), (24, 0) and (36, 0) models; the prediction of the model that made the worst prediction for the scene; and
the prediction of the model that made the best prediction. The best choice of primitive numbers varies from scene to scene. Notice
some complex objects made up as composites of positive primitives (black arrow) and negative primitives “carving out” shapes. The
segmentation label is the oracle label described in the text. Best viewed at high resolution in color.

number of primitives and K− for the number of negatives to
be predicted. For each (Ktotal,K−) we wish to investigate,
we train a prediction network. Then, at inference time, we
produce a set of primitives from each network, polish it,
select the primitives with the best loss and report that. This
means that different scenes will have predictions involving
different numbers of primitives. Our approach is a straight-
forward generalization of the architecture of Vavilala &
Forsyth (2023), but produces very significant improvements
in performance (Sec. 4). Negative primitives require some
minor modifications of their procedure (Sec. 3.1) We use
their losses with some omissions (Sec. 3.2). Our polishing
procedure is somewhat different (Sec. 3.3).

Our network requires RGBD input. Our losses require a
point cloud that is extracted from the depth image via the
heuristic described in Vavilala & Forsyth (2023). Our
method works both when GT depth is and is not available,
as we can use pretrained networks (Ranftl et al., 2022; Yang
et al., 2024a) to obtain inferred depth maps. Fig. 2 provides
an overview of our inference pipeline.

3.1. Positive and Negative Primitives

Base primitives: Our primitives are smoothed polytopes
as described in (Deng et al., 2020). For 6-faced paral-

lelepipeds, each primitive is parametrized by a center (3
DOF’s), 3 normals (6 DOF’s), 6 offsets (6 DOFs) and a
blending term (1 DOF). The blended half-plane approach
eases training and also enables fitting curved surfaces. We
fit parallelepipeds/cuboids mainly for fair comparative eval-
uation, but we show that more faces per polytope yields
even better representations (see Table 6 in supplementary).

Negative primitives: Set differencing produces a notably
more complex geometric representation. Assume we have
Ktotal primitives of which K− are negative, each with f
faces. Label an image pixel by the face intersection that
produced that pixel (as in our face segmentation figures, e.g.
Fig. 5). Generic pixels could result from either ray intersec-
tion with a face of a positive primitive or with a face of a neg-
ative primitive inside some positive. This argument means
that there are a maximum of f×(Ktotal−K−)×(1+K−)
pixel labels; note how this number grows very quickly with
an increase in the number of negative primitives, an effect
that can be seen in Fig. 5. Negative primitives are easily
handled with indicator functions. We define the indicator
for a set of primitives O : R3 → [0, 1], with O(x) = 0
indicating free space, and O(x) = 1 indicating a query
point x ∈ R3 is inside the volume. Write O+(x) for the
indicator function for the set of positive primitives, O−(x)

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Improved Convex Primitives

Figure 5. Visualizations of various primitive predictions for four scenes from LAION. We show ground truth (first column in each block);
predictions of (12, 0), (24, 0) and (36, 0) models; the prediction of the model that made the worst prediction for the scene; and the
prediction of the model that made the best prediction. The best choice of primitive numbers varies from scene to scene. Bottom row in
each block shows face labels – no oracle segmentation is available. Note how primitives can follow complex structures; how they tend to
“stick” to object properties (for example, heads in top left; the house in top right); and how the number of face labels grows very quickly
with the number of negative primitives.

for negative primitives. The indicator for our representation
is then O(x) = relu(O+(x)−O−(x))

3.2. Losses

Our modified representation allows re-using the existing
sample loss and auxiliary losses (unique parametrization
loss, overlap loss, guidance loss, localization loss) (Deng
et al., 2020; Vavilala & Forsyth, 2023) for both O+(x) and
O−(x). While a Manhattan World loss was found to be
helpful for NYUv2, it hurt quality on general in-the-wild
LAION images in our testing so we leave out that loss in this
work. We do not consider the volume loss or segmentation
loss from Vavilala & Forsyth (2023) in our experimentation,
as they were shown to have an approximately neutral effect
in the original paper.

3.3. Polishing and Descent

Test-time finetuning is possible because we can evaluate the
primitive prediction against the predicted depth map, then
use the training losses at test-time. The fit is improved by
using more 3D samples in these losses per image at test-
time. Our polishing procedure has been heavily optimized
(Supplementary).

Our polishing procedure is effective enough that we can fit a
primitive representation using only a random start (details in
Supplementary). We are aware of no other primitive fitting
procedure that can operate with pure descent and no random
restart or incremental process. This supplies an interesting
baseline; Sec. 4 demonstrates that this baseline is highly
inefficient compared to polishing a network prediction, and
is not competitive in accuracy.

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Improved Convex Primitives

Method Ktotal K− time (sec) Memory (GB) AbsRel ↓ Normals Mean ↓ Normals Median ↓ SegAcc ↑
12/0 12 0 0.84 3.53 0.072 36.6 30.7 0.633
24/0 24 0 1.46 5.57 0.059 35.9 29.9 0.690
36/0 36 0 2.06 7.61 0.049 34.9 29.0 0.729
best - 36/8 36 8 2.06 7.61 0.049 36.9 30.8 0.742
pos S → R 26.42 0.0 2.08 7.61 0.057 35.6 29.6 0.697
pos+neg S → R 28.44 13.5 2.13 7.61 0.055 37.0 31.0 0.713
pos R → S 34.95 0.0 6.21 7.61 0.049 35.0 29.0 0.726
pos+neg R → S 34.73 11.6 29.9 7.61 0.044 36.19 30.2 0.742
(Vavilala & Forsyth, 2023) 13.9 0 40.0 6.77 0.098 37.4 32.4 0.618

Table 1. Comparison to SOTA (last row) on NYUv2. Our best approach (second last row) polishes then chooses from 18 different models
with different numbers of primitives. Other rows show variants of our model. First three rows: we train a primitive generation model
according to the procedure laid out in Sec 3, without boolean primitives. Next row: 36 total primitives with 8 negative was our best
network as measured by AbsRel. Final four rows Ensembling strongly improves error metrics, particularly AbsRel. Pos+neg refers to all
18 models available for ensembling, whereas Pos refers to only 3 models without boolean primitives available. S → R refers to only
refining the output of the model with the best sample classification; R → S means we finetune all models and pick the best one. In this
table, we finetune assuming GT depth is available at test time, though our method still works even when depth is inferred by a pretrained
depth estimator. The fact that substantial gains can be achieved from R → S implies that the best start point may not yield the best end
point – meaning the fitting problem is hard. Time and memory estimates are presented as well. Last row: we compare our methods
against existing work. Any individual model we train obtains better error metrics with less compute. Timings for ensembling shows
estimated total cost of running all the methods and selecting the best one; memory refers to peak GPU memory usage.

3.4. Choosing the Number of Primitives

Much of the literature on primitive decomposition fits a
fixed number of primitives (Deng et al., 2020). In contrast,
we investigate 18 cases for (Ktotal,K−). These are (12, 0);
(12, 4); (12, 8); (24, 0); (24, 4); (24, 8); (24, 12); (36, 0);
(36, 4); (36, 8); (36, 12);(36, 16); (36, 20); (36, 24);
(36, 28); and (36, 32). We investigate two strategies for
choosing the best prediction (and so the best set of primi-
tives) for a given test image: S → R, where we select the
best neural prediction then refine it; and R → S, where we
refine all predictions then select the best.

3.5. Implementation Details

Our neural architecture is a ResNet-18 encoder (accepting
RGBD input), followed by a decoder consisting of three
linear layers of sizes [1048, 1048, 2048] and LeakyRelu ac-
tivations. We do not freeze any layers during training. The
dimensionality of the final output varies based on the num-
ber of primitives the model is trained to produce (as we train
different models for different numbers of primitives in this
work). We implement our procedure in PyTorch and train
all networks with AdamW optimizer, learning rate 2×10−4,
batch size 96, mixed-precision training, for 20000 iterations,
on a single A40 GPU. Each image is resized to 240× 320
resolution. Although we train at fixed resolution, our model
can run inference at variable aspect ratio, as would be ex-
pected from CNNs like ResNet. It takes 39 mins to train a
12 primitive model and 62 mins to train a 32 primitive model.
On LAION, we train at 256× 256 resolution, resizing the
smallest edge to 256 and doing a center crop. We increase
the training steps to 30000 here, which was sufficient to get

good results despite the larger dataset.

4. Results
Qualitative results appear in Fig 4 and Fig 5. Note how
primitives can combine to form complex structures; how
negative primitives “carve out” complex shapes; how primi-
tives tend to “stick” to object properties (for example, heads;
a house); and how the number of face labels grows very
quickly with the number of negative primitives.

4.1. Evaluating a Primitive Representation

While producing a primitive representation has a long his-
tory (Marr & Nishihara (1978), Sec. 2), not much is known
about how one is to be used apart from the original recogni-
tion argument, now clearly an anachronism. Recent work
in conditioned image synthesis (Vavilala et al. (2023); Bhat
et al. (2023)) suggests that applications might need (a) a
relatively compact representation (so that users can, say,
move primitives around) and (b) one that accurately reflects
depth, normals and (ideally) segmentation.

We compare primitive methods against one another using
standard metrics for depth, normal and segmentation. Spe-
cialized predictors of depth, normal and segmentation out-
perform primitive methods on these metrics. But we would
not use a primitive predictor to actually predict depth, nor-
mal or segmentation – instead, we are using the metrics to
determine whether very highly simplified representations
achieve reasonable accuracy. Our procedure uses the stan-
dard 795/654 train/test NYUv2 split Nathan Silberman &
Fergus (2012). We hold out 5% of training images for vali-

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Improved Convex Primitives

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 12/0

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 12/4

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 12/8

Network

N (0, 1)

Figure 6. Network start is beneficial. Initializing our finetuning process with primitives predicted by our network (blue line) yields
better primitives after finetuning than random start (red line). Inference from our network is around 0.0006 seconds per image, whereas
200 iterations of finetuning takes nearly .7 seconds when Ktotal = 12. In practice, network start saves around 900 FT steps and can
achieve a better quality than random start. It also appears to be harder to fit negative primitives than positives (there is a greater gap in the
final AbsRel between the two curves when there are negative primitives). Based on these results, we use 200 finetuning steps to balance
compute and quality when reporting error metrics in this paper. Further, the fact that it is even possible to generate high-quality primitives
via pure optimization, without a neural network, is new in the context of recent primitive-generation literature. Results shown on 100
random test images from LAION.

dation. We use this dataset primarily to maintain consistency
in evaluating against prior art.

For NYUv2, we compare the depth map predicted by prim-
itives to ground truth using a variety of metrics; normals
predicted by primitives to ground truth; and an oracle seg-
mentation derived from primitives to ground truth segmen-
tation. Depth metrics are: the (standard) AbsRel (eg (Ran-
ftl et al., 2020)); AUCn, which evaluates the fraction of
points within n cm of the correct location (after Vavilala
& Forsyth (2023); Kluger et al. (2021)); mean and median
of the occlusion-aware distance of (Kluger et al., 2021).
Normal metrics are after (Wang et al., 2015) and are mean
and median of angle to true normal, in degrees. The oracle
segmentation metric uses an oracle to predict the best label
for each image region, where regions consist of pixels with
the same face intersection label (of Sec. 3.1), then compares
this to ground truth. For LAION, we compute depth and
normal metrics comparing to depth and normal predicted
from the image.

4.2. NYUv2 Results

Our method beats SOTA on depth, normal, and segmenta-
tion (Tab. 1). Despite the ensembling process, our method
is faster than SOTA. Notice in Tab. 1 methods with no neg-
ative primitives show some improvement in normal, but are
much worse in depth. We speculate that this is caused by a
tendency for real objects to bulge out rather more than to be
pressed in. An improvement in depth prediction combined
with a weakening of normal prediction is not paradoxical
(one can be better at predicting a function and worse at pre-

dicting its derivatives). Qualitative results in Fig. 4. More
extensive detailed comparison in Supplementary.

12
/0

12
/4

12
/8

24
/0

24
/4

24
/8

24
/1

2

24
/1

6

24
/2

0
36
/0

36
/4

36
/8

36
/1

2

36
/1

6

36
/2

0

36
/2

4

36
/2

8

36
/3

2

Ktotal/K −

0

20

40

60

80

100

C
o
u

n
t

o
f

te
st

im
a
g
e
s

Model frequency, R→S (NYUv2)

Figure 7. The number of times each primitive model is selected
for test images strongly suggests that (a) negative primitives are
helpful and (b) bias is not the reason a model is chosen. This figure
is for the R → S strategy, which is best; others in suppplementary.

Negative primitives make an important contribution, as
indicated by Fig. 7. This figure shows the histogram of the
number of times a particular (Ktotal,K−) combination was
selected. Note that there is a strong tendency to use more
primitives (Ktotal = 36 is much more popular than other
options, though K− = 24 is quite popular), and the number
of negatives used for the best fit is quite variable.

Improvements are not just from improved bias, as Fig. 7
indicates. Generally, a representation with more primitives
will have lower bias (one could use one primitive per pixel,

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Improved Convex Primitives

Dataset faces AUC@50↑ AUC@20↑ AUC@10↑ AUC@5↑ meancm↓ mediancm↓

NYUv2 6 0.9391 0.8847 0.8137 0.6902 0.128 0.03117
LAION 6 0.9097 0.838 0.7498 0.63 0.2522 0.06239
LAION 12 0.9158 0.8502 0.7679 0.6535 0.2366 0.05706

Table 2. Depth metrics for NYUv2 data and LAION data compared. LAION is harder than NYUv2, but more faces yield better fits.

and get very good depth measurements). But the representa-
tions used are quite well spread across different cases in this
figure, suggesting that bias is not the issue here (if it were,
all representations would be (36, 24)).

K total Encode Loss Finetune Render
12 0.0006 0.0015 0.68 0.15
24 0.0006 0.0025 1.23 0.22
36 0.0006 0.0036 1.79 0.26

Table 3. Estimated inference breakdown times, all times in sec-
onds, 256-res images. Encoding is very fast, in which the network
predicts parameters of the primitives given an RGBD image. Com-
puting loss, required for getting the fraction of samples classified
correctly when ensembling with S → R, is also fast. However,
finetuning (we show 200 steps here) is often the bottleneck since
we must compute the loss and optimize the parameters of the
primitives. Since our primitives are the blended union of half-
spaces (Deng et al., 2020), they cannot be rasterized easily and
raymarching the SDF is required. We use torch.jit, batching, and
pure BFloat16 for all stages of inference except rendering to maxi-
mize throughput. We find that rendering must be done in FP32 to
avoid unwanted artifacts.

Our method is efficient, as Tab. 3 shows. The vast majority
of time is spent in polishing the representation.

4.3. LAION Results

Scaling is an important concept in computer vision, but we
have not seen this concept applied to 3D primitive genera-
tion. To that end, we collect approx. 1.8M natural images
from LAION-Aesthetic. We use a recent SOTA depth esti-
mation network (Yang et al., 2024b) to obtain depth maps,
and make reasonable camera calibration assumptions to lift
a 3D point cloud from the depth map. In particular, we use
the Hypersim (Roberts et al., 2021b) module that predicts
metric depth and use its camera parameters to get the point
cloud for each image, which is required for training our
convex decomposition model. GT normals can be obtained
using the image gradient method described in (Vavilala &
Forsyth, 2023), which requires point cloud input. LAION
is harder than NYUv2 as Tab. 2 shows conclusively.

Our network start is much better than pure descent, as
Fig. 6 shows. The randomly started pure descent procedure
of Section 3.3 produces surprisingly strong fits, but requires
a large number of iterations to do so. Typically, 100 itera-

Figure 8. Using primitives to control image synthesis. We show
results from an in-submission follow-up work. Our primitive
representation allows us to remove and add objects to a scene.
Bottom row We generate an image conditioned on primitives (here,
primitives extracted from a real image); we then manipulate the
primitives and the camera to obtain conditioning for the diffusion
model. Depth and primitives shown in top row, generated images
in second row. Texture is preserved by caching keys and values
from a reference style image, and querying those keys and values
when generating new images in the same style.

tions of polishing a network start point is much better than
1000 iterations of pure descent. The descent procedure is a
first order method, so we expect AbsRel to improve no faster
than 1/iterations, suggesting that this figure understates the
advantage of the network start point.

5. Discussion
Primitives are an old obsession in computer vision. Their
original purpose (object recognition) now appears to be
much better handled in other ways. Mostly, using primi-
tives was never really an issue, because there weren’t viable
fitting procedures. But what are primitives for? Likely an-
swers come from robotics – where one might benefit from
simplified representations of geometry that are still accurate
– and image editing – where a user might edit a scene by
moving primitives (Fig. 8).

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Improved Convex Primitives

Impact Statement
Our work could be useful for high-level scene analysis and
understanding. There are many potential societal conse-
quences of our work, none which we feel must be specifi-
cally highlighted here.

References
Alaniz, S., Mancini, M., and Akata, Z. Iterative su-

perquadric recomposition of 3d objects from multiple
views. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 18013–18023, 2023.

Barr. Superquadrics and angle-preserving transformations.
IEEE Computer Graphics and Applications, 1:11–23,
1981.

Bhat, S. F., Mitra, N. J., and Wonka, P. Loosecontrol: Lifting
controlnet for generalized depth conditioning, 2023.

Biederman, I. Recognition by components : A theory of
human image understanding. Psychological Review, (94):
115–147, 1987.

Binford, T. Visual perception by computer. In IEEE Conf.
on Systems and Controls, 1971.

Calderon, S. and Boubekeur, T. Bounding proxies for shape
approximation. ACM Transactions on Graphics (TOG),
36:1 – 13, 2017.

Chen, Z., Tagliasacchi, A., and Zhang, H. Bsp-net: Generat-
ing compact meshes via binary space partitioning. 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 42–51, 2019.

Deng, B., Kornblith, S., and Hinton, G. Cerberus: A multi-
headed derenderer. In Workshop on 3D Scene Under-
standing, 2019.

Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G.,
and Tagliasacchi, A. Cvxnet: Learnable convex decom-
position. June 2020.

Fischler, M. A. and Bolles, R. C. Random sample consensus:
A paradigm for model fitting with applications to image
analysis and automated cartography. Comm. ACM., 24
(6):381–395, 1981.

Fouhey, D. F., Gupta, A., and Hebert, M. Data-driven
3D primitives for single image understanding. In ICCV,
2013.

Fu, K., Peng, J., and et al, Q. H. Single image 3d object re-
construction based on deep learning: A review. Multimed
Tools Appl, 80:463–498, 2021.

Gadelha, M., Gori, G., Ceylan, D., Mech, R., Carr, N. A.,
Boubekeur, T., Wang, R., and Maji, S. Learning gener-
ative models of shape handles. 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pp. 399–408, 2020.

Gupta, A., Efros, A. A., and Hebert, M. Blocks world re-
visited: Image understanding using qualitative geometry
and mechanics. In ECCV, 2010.

Hampali, S., Stekovic, S., Sarkar, S. D., Kumar, C. S., Fraun-
dorfer, F., and Lepetit, V. Monte carlo scene search for
3d scene understanding. 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
13799–13808, 2021.

Hedau, V., Hoiem, D., and Forsyth, D. Recovering the
Spatial Layout of Cluttered Rooms. In Proc. ICCV, 2009.

Hedau, V., Hoiem, D., and Forsyth, D. Thinking Inside the
Box: Using Appearance Models and Context Based on
Room Geometry. In Proc. ECCV, 2010.

Hedau, V., Hoiem, D., and Forsyth, D. Recovering Free
Space of Indoor Scenes from a Single Image. In Proc.
CVPR, 2012.

Hertz, A., Perel, O., Sorkine-Hornung, O., and Cohen-Or,
D. Spaghetti: editing implicit shapes through part aware
generation. ACM Transactions on Graphics, 41(4):1–20,
2022.

Hoiem, D., Efros, A. A., and Hebert, M. Automatic photo
pop-up. ACM Transactions on Graphics / SIGGRAPH,
24(3), August 2005.

Hoiem, D., Efros, A. A., and Hebert, M. Recovering surface
layout from an image. IJCV, 2007.

Jaklič, A., Leonardis, A., and Solina, F. Segmentation and
recovery of superquadrics. In Computational Imaging
and Vision, 2000.

Jang, E., Gu, S., and Poole, B. Categorical reparameter-
ization with gumbel-softmax. In International Confer-
ence on Learning Representations, 2017. URL https:
//openreview.net/forum?id=rkE3y85ee.

Jiang, H. Finding approximate convex shapes in rgbd im-
ages. In European Conference on Computer Vision, pp.
582–596. Springer, 2014.

Kang, Z., Yang, J., Yang, Z., and Cheng, S. A review of
techniques for 3d reconstruction of indoor environments.
ISPRS Int. J. Geo Inf., 9:330, 2020.

Khachatryan, L., Movsisyan, A., Tadevosyan, V., Henschel,
R., Wang, Z., Navasardyan, S., and Shi, H. Text2video-
zero: Text-to-image diffusion models are zero-shot video

9

https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Improved Convex Primitives

generators, 2023. URL https://arxiv.org/abs/
2303.13439.

Kluger, F. and Rosenhahn, B. PARSAC: Accelerating Ro-
bust Multi-Model Fitting with Parallel Sample Consensus.
In AAAI, 2024.

Kluger, F., Brachmann, E., Ackermann, H., Rother, C.,
Yang, M. Y., and Rosenhahn, B. CONSAC: Robust Multi-
Model Fitting by Conditional Sample Consensus. In
CVPR, 2020.

Kluger, F., Ackermann, H., Brachmann, E., Yang, M. Y.,
and Rosenhahn, B. Cuboids revisited: Learning robust
3d shape fitting to single rgb images. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

Kluger, F., Brachmann, E., Yang, M. Y., and Rosenhahn,
B. Robust shape fitting for 3d scene abstraction. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 2024.

Li, L., Sung, M., Dubrovina, A., Yi, L., and Guibas, L. J.
Supervised fitting of geometric primitives to 3d point
clouds. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2647–2655, 2018.

Liu, C., Kim, K., Gu, J., Furukawa, Y., and Kautz, J. Planer-
cnn: 3d plane detection and reconstruction from a single
image. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4445–4454, 2018a.

Liu, C., Yang, J., Ceylan, D., Yumer, E., and Furukawa,
Y. Planenet: Piece-wise planar reconstruction from a
single rgb image. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2579–
2588, 2018b.

Liu, H., Zheng, Y., Chen, G., Cui, S., and Han, X. Towards
high-fidelity single-view holistic reconstruction of indoor
scenes. In European Conference on Computer Vision, pp.
429–446. Springer, 2022.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization, 2019. URL https://arxiv.org/abs/
1711.05101.

Marr, D. and Nishihara, H. K. Representation and recog-
nition of the spatial organization of three-dimensional
shapes. Proceedings of the Royal Society of Lon-
don. Series B. Biological Sciences, 200(1140):269–294,
1978. ISSN 0080-4649. doi: 10.1098/rspb.1978.0020.
URL https://doi.org/10.1098/rspb.1978.
0020.

Mo, K., Guerrero, P., Yi, L., Su, H., Wonka, P., Mitra,
N. J., and Guibas, L. J. Structurenet: Hierarchical graph

networks for 3d shape generation. ACM Trans. Graph.,
38:242:1–242:19, 2019.

Monnier, T., Austin, J., Kanazawa, A., Efros, A., and Aubry,
M. Differentiable blocks world: Qualitative 3d decom-
position by rendering primitives. Advances in Neural
Information Processing Systems, 36:5791–5807, 2023.

Nathan Silberman, Derek Hoiem, P. K. and Fergus, R. In-
door segmentation and support inference from rgbd im-
ages. In ECCV, 2012.

Nevatia, R. and Binford, T. Description and recognition of
complex curved objects. Artificial Intelligence, 1977.

Paschalidou, D., Ulusoy, A. O., and Geiger, A. Su-
perquadrics revisited: Learning 3d shape parsing beyond
cuboids. 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 10336–10345,
2019.

Paschalidou, D., Katharopoulos, A., Geiger, A., and Fidler,
S. Neural parts: Learning expressive 3d shape abstrac-
tions with invertible neural networks. In CVPR, 2021.

Ponce, J. and Hebert, M. A new method for segmenting 3-d
scenes into primitives. In Proc. 6 ICPR, 1982.

Ramamonjisoa, M., Stekovic, S., and Lepetit, V. Monte-
boxfinder: Detecting and filtering primitives to fit a noisy
point cloud. ArXiv, abs/2207.14268, 2022.

Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., and
Koltun, V. Towards robust monocular depth estimation:
Mixing datasets for zero-shot cross-dataset transfer. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 2020.

Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., and
Koltun, V. Towards robust monocular depth estimation:
Mixing datasets for zero-shot cross-dataset transfer. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 44(3), 2022.

Roberts, D., Danielyan, A., Chu, H., Fard, M. G., and
Forsyth, D. A. Lsd-structurenet: Modeling levels of
structural detail in 3d part hierarchies. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pp.
5816–5825, 2021a.

Roberts, L. G. Machine Perception of Three-Dimensional
Solids. PhD thesis, MIT, 1963.

Roberts, M., Ramapuram, J., Ranjan, A., Kumar, A.,
Bautista, M. A., Paczan, N., Webb, R., and Susskind,
J. M. Hypersim: A photorealistic synthetic dataset
for holistic indoor scene understanding, 2021b. URL
https://arxiv.org/abs/2011.02523.

10

https://arxiv.org/abs/2303.13439
https://arxiv.org/abs/2303.13439
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://doi.org/10.1098/rspb.1978.0020
https://doi.org/10.1098/rspb.1978.0020
https://arxiv.org/abs/2011.02523


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Improved Convex Primitives

Shafer, S. and Kanade, T. The theory of straight homoge-
neous generalized cylinders. In Technical Report CS-083-
105, Carnegie Mellon University, 1983.

Smirnov, D., Fisher, M., Kim, V. G., Zhang, R., and
Solomon, J. M. Deep parametric shape predictions using
distance fields. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 558–567,
2019.

Stekovic, S., Hampali, S., Rad, M., Sarkar, S. D., Fraundor-
fer, F., and Lepetit, V. General 3d room layout from a
single view by render-and-compare. In European Confer-
ence on Computer Vision, pp. 187–203. Springer, 2020.

Sun, C.-Y. and Zou, Q.-F. Learning adaptive hierarchical
cuboid abstractions of 3d shape collections. ACM Trans-
actions on Graphics (TOG), 38:1 – 13, 2019.

Tatarchenko, M., Richter, S. R., Ranftl, R., Li, Z., Koltun, V.,
and Brox, T. What do single-view 3d reconstruction net-
works learn? 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3400–3409,
2019.

Tulsiani, S., Su, H., Guibas, L. J., Efros, A. A., and Malik,
J. Learning shape abstractions by assembling volumetric
primitives. In Computer Vision and Pattern Regognition
(CVPR), 2017.

Uy, M. A., Chang, Y.-Y., Sung, M., Goel, P., Lambourne,
J. G., Birdal, T., and Guibas, L. J. Point2cyl: Reverse
engineering 3d objects from point clouds to extrusion
cylinders. In CVPR, 2022.

van den Hengel, A., Russell, C., Dick, A., Bastian, J.,
D. Poo-ley, L. F., and Agapito, L. Part-based modelling
of compound scenes from images. In CVPR, 2015.

Vavilala, V. and Forsyth, D. Convex decomposition of
indoor scenes. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 9176–
9186, October 2023.

Vavilala, V., Jain, S., Vasanth, R., Bhattad, A., and Forsyth,
D. Blocks2world: Controlling realistic scenes with ed-
itable primitives, 2023.

Wang, X., Fouhey, D., and Gupta, A. Designing deep net-
works for surface normal estimation. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 539–547, 2015.

Wei, X., Liu, M., Ling, Z., and Su, H. Approximate convex
decomposition for 3d meshes with collision-aware con-
cavity and tree search. ACM Transactions on Graphics,
41(4), 2022.

Wu, R., Xiao, C., and Zheng, C. Deepcad: A deep genera-
tive network for computer-aided design models. In ICCV,
2021.

Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., and Zhao,
H. Depth anything: Unleashing the power of large-scale
unlabeled data. In CVPR, 2024a.

Yang, L., Kang, B., Huang, Z., Zhao, Z., Xu, X., Feng, J.,
and Zhao, H. Depth anything v2. arXiv:2406.09414,
2024b.

Yu, F., Chen, Z., Li, M., Sanghi, A., Shayani, H., Mahdavi-
Amiri, A., and Zhang, H. Capri-net: Learning compact
cad shapes with adaptive primitive assembly. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11768–11778, 2022.

Zou, C., Yumer, E., Yang, J., Ceylan, D., and Hoiem, D.
3d-prnn: Generating shape primitives with recurrent neu-
ral networks. 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 900–909, 2017a.

Zou, C., Yumer, E., Yang, J., Ceylan, D., and Hoiem, D.
3d-prnn: Generating shape primitives with recurrent neu-
ral networks. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017b.

Zou, C., Colburn, A., Shan, Q., and Hoiem, D. Layoutnet:
Reconstructing the 3d room layout from a single rgb im-
age. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Improved Convex Primitives

A. Optimizing the Inference Pipeline
Given the expense of ensembling, we seek to maximize throughput of our inference pipeline. We use torch.jit and pure
BFloat16 for encoding the RGBD image and finetuning. We also get speedups from batching the test images instead of one
at a time. Combined with our subsampling strategy, these improvements yield over an order of magnitude faster inference
than prior work, making ensembling more practical (see Table 1).

We note that rendering the primitives still requires FP32 precision to avoid unwanted artifacts. We accelerate our raymarcher
by advancing the step size by 0.8*SDF if it is greater than the step size (we use 0.004 for large-scale metrics gathering,
0.0001 for beauty renders). We cannot accelerate by the full SDF because it is an approximation of how far the smoothed
primitive boundary is.

B. Primitives by Descent Alone
We generate a large reservoir of 1M free-space (a.k.a. bbx samples) for each test image. We still generate H ×W “inside”
surface samples and “outside” surface samples near the depth boundary respectively, with ϵ = 0.02 units separating these
surface samples. We remind the reader that our point clouds are renormalized to approx. the unit cube during training
to avoid scale issues. Then during finetuning, we subsample from all available samples at each step, providing a rich
gradient analogous to the network training process (though here, we’re optimizing the parameters of primitives). We found
subsampling 10% of available samples sufficient at each step.

Second, we find that vanilla SGD does not produce usable results; instead AdamW (Loshchilov & Hutter, 2019) was
required. We set the initial LR to 0.01, and linearly warm up to it over the first 25% of iterations. We then halve the learning
rate once at 50% of the steps and again at 75%.

C. Additional Evaluation

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Improved Convex Primitives

12
/0

12
/4

12
/8

24
/0

24
/4

24
/8

24
/1

2

24
/1

6

24
/2

0
36
/0

36
/4

36
/8

36
/1

2

36
/1

6

36
/2

0

36
/2

4

36
/2

8

36
/3

2

Ktotal/K −

0

10

20

30

40

50

C
o
u

n
t

o
f

te
st

im
a
g
e
s

Model frequency, S→R (NYUv2)

(a) Select then refine ensembling on NYUv2.

12
/0

12
/4

12
/8

24
/0

24
/4

24
/8

24
/1

2

24
/1

6

24
/2

0
36
/0

36
/4

36
/8

36
/1

2

36
/1

6

36
/2

0

36
/2

4

36
/2

8

36
/3

2

Ktotal/K −

0

20

40

60

80

100

C
o
u

n
t

o
f

te
st

im
a
g
e
s

Model frequency, R→S (NYUv2)

(b) Refine then select ensembling on NYUv2

Figure 9. Boolean primitives are often selected from the ensemble. Top When we ensemble with S → R, all models across all primitive
counts are well-represented. This indicates that our network prediction may slightly struggle to manage larger numbers of primitives,
hence the relative success of fewer primitives. In this setting, selecting a prediction for finetuning is based on fraction of 3D samples
classified incorrectly, which is fast as we don’t need to finetune and render the outputs of all the networks to decide which model. Bottom
When we refine then choose R → S, our finetuning procedure polishes each network start point and chooses the best one based on
AbsRel, requiring a render for each model. When doing so, the best model (measured by AbsRel of rendered depth against GT depth) is
strongly concentrated among higher primitive counts, Ktotal = 36, though fewer primitives are still represented in the ensemble at times.
Notice how the ensemble strongly favors representations with boolean primitives available, indicating they are useful in practice.

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Improved Convex Primitives

Ensemble Refine Ktotal K− AUC@50↑ AUC@20↑ AUC@10↑ AUC@5↑ meancm↓ mediancm↓

No (Vavilala 2023) Yes 13.9 0 0.869 0.725 0.565 0.382 0.266 0.101
No (Kluger 2021) N/A - 0 0.772 0.627 0.491 0.343 0.208 -

no yes 12 0 0.8967 0.8052 0.6954 0.5411 0.2075 0.0563
no yes 12 4 0.9102 0.8277 0.7245 0.5737 0.1859 0.04996
no yes 12 8 0.9044 0.8218 0.7202 0.5712 0.194 0.04953
no yes 24 0 0.9168 0.8485 0.7628 0.6243 0.1697 0.04069
no yes 24 4 0.9283 0.8685 0.7912 0.6609 0.1479 0.03506
no yes 24 8 0.9278 0.8667 0.7878 0.6565 0.1497 0.03546
no yes 24 12 0.9268 0.8652 0.7861 0.6555 0.1519 0.03745
no yes 24 16 0.9252 0.8601 0.7782 0.6441 0.1552 0.0371
no yes 24 20 0.9184 0.8445 0.7513 0.6082 0.1713 0.04531
no yes 36 0 0.9314 0.8751 0.8035 0.6779 0.1408 0.03286
no yes 36 4 0.9314 0.8755 0.8058 0.6833 0.1395 0.032
no yes 36 8 0.9314 0.8759 0.8073 0.6865 0.1389 0.03134
no yes 36 12 0.9306 0.8747 0.8061 0.6869 0.1419 0.03391
no yes 36 16 0.9314 0.8743 0.8037 0.6815 0.1419 0.03184
no yes 36 20 0.9291 0.8709 0.7974 0.6728 0.1479 0.0373
no yes 36 24 0.9307 0.8717 0.7947 0.6663 0.1448 0.03595
no yes 36 28 0.9274 0.8616 0.7791 0.644 0.1531 0.03733
no yes 36 32 0.9244 0.8565 0.7703 0.6321 0.1585 0.03854
pos S → R 26.42 0 0.9188 0.851 0.7672 0.6319 0.1652 0.04028

pos+neg S → R 28.44 13.54 0.9236 0.858 0.7765 0.6445 0.1572 0.03789
pos R → S 34.95 0 0.9316 0.8748 0.802 0.675 0.1408 0.03344

pos+neg R → S 34.73 11.63 0.9391 0.8847 0.8137 0.6902 0.128 0.03117

Table 4. Baseline comparisons: Ensembling strongly outperforms two recent SOTA methods, using the metrics reported by Kluger et al.
(2021), and using negative primitives in the ensemble produces further improvements. We show results with only positive primitives
present Ours (pos), three networks, Ktotal ∈ [12, 24, 36], as well as with positive and negative primitives Ours (pos+neg), 18 networks,
K− ∈ [0, 4, 8, ...,Ktotal − 4]. Our ensembles significantly outperform existing work. Further, we present results on the 18 methods we
trained, where Ktotal/K− is shown. Even without ensembling, any individual method we trained performs better than the baselines.
Notice that boolean primitives are helpful on average.

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Improved Convex Primitives

Figure 10. Visualizations of various primitive predictions for four scenes from NYUv2, omitting arrows. We show ground truth (first
column in each block); predictions of (12, 0), (24, 0) and (36, 0) models; the prediction of the model that made the worst prediction for
the scene; and the prediction of the model that made the best prediction. The best choice of primitive numbers varies from scene to scene.

Ensemble Refine Ktotal K− AbsRel↓ AUC@50↑ AUC@20↑ AUC@10↑ AUC@5↑ meancm↓ mediancm↓ Neg per Pos

no yes 12 0 0.09231 0.8698 0.7702 0.6579 0.5197 0.3676 0.09723 0
no yes 12 4 0.09381 0.8713 0.7727 0.6619 0.5245 0.3581 0.09603 1.735
no yes 12 8 0.09188 0.8707 0.7715 0.6612 0.5248 0.3586 0.1021 4.097
no yes 24 0 0.08226 0.8836 0.798 0.6977 0.5693 0.3321 0.07976 0
no yes 24 4 0.07832 0.8914 0.8116 0.717 0.5917 0.3056 0.07286 1.26
no yes 24 8 0.07802 0.8934 0.8152 0.7217 0.5971 0.3024 0.07177 2.163
no yes 24 12 0.0785 0.8927 0.8133 0.7192 0.5943 0.2994 0.07261 3.241
no yes 24 16 0.07812 0.8897 0.807 0.7108 0.5852 0.3042 0.08184 4.656
no yes 24 20 0.08493 0.8819 0.7961 0.6967 0.5686 0.3289 0.09769 8.119
no yes 36 0 0.0771 0.8899 0.8103 0.7149 0.5901 0.3173 0.07352 0
no yes 36 4 0.07642 0.8963 0.8226 0.7336 0.6135 0.294 0.06607 1.072
no yes 36 8 0.07392 0.8994 0.8281 0.7413 0.6233 0.2852 0.06513 1.688
no yes 36 12 0.07576 0.8989 0.8274 0.7406 0.6225 0.2854 0.06642 2.251
no yes 36 16 0.07193 0.8997 0.8268 0.7392 0.6209 0.2802 0.06528 2.947
no yes 36 20 0.07346 0.8998 0.826 0.7367 0.6168 0.279 0.06617 3.723
no yes 36 24 0.0766 0.8952 0.8189 0.7282 0.6069 0.2946 0.07524 4.729
no yes 36 28 0.07655 0.8922 0.8116 0.717 0.593 0.3002 0.08088 6.373
no yes 36 32 0.08094 0.8872 0.8032 0.7058 0.5797 0.3205 0.0942 9.969
yes yes 24.21 0 0.08427 0.8807 0.7927 0.6902 0.5594 0.3406 0.08586 0
yes yes 27.87 13.8 0.07993 0.8889 0.8069 0.7098 0.5837 0.3097 0.07555 3.862
yes yes 30.76 0 0.07285 0.8936 0.8119 0.7144 0.5884 0.3029 0.07412 0
yes yes 34.28 13.26 0.06025 0.9097 0.838 0.7498 0.63 0.2522 0.06239 2.882

Table 5. Quantitative evaluation on LAION 6 face polytopes: We train and ensemble models on a subset of LAION, with approx.
1.8M images in the training set and 2500 in the test set. We report error metrics defined in by Kluger et al. (2021). Negative primitives
remain useful, noting the italiciced error metrics in each block of Ktotal always has boolean primitives. Ensembling produces further
improvements similar to NYUv2. Overall, the metrics are worse on LAION, indicating it is a harder dataset. The final column,
Neg per pos, evaluates the average number of negative primitives touching each positive primitive, quantitatively showing negative
primitives active in the geometric abstraction.

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Improved Convex Primitives

12
/0

12
/4

12
/8

24
/0

24
/4

24
/8

24
/1

2

24
/1

6

24
/2

0
36
/0

36
/4

36
/8

36
/1

2

36
/1

6

36
/2

0

36
/2

4

36
/2

8

36
/3

2

Ktotal/K −

0

50

100

150

200

C
o
u

n
t

o
f

te
st

im
a
g
e
s

Model frequency, S→R (LAION - 6 Faces)

(a) Select then refine ensembling on LAION 6 faces.

12
/0

12
/4

12
/8

24
/0

24
/4

24
/8

24
/1

2

24
/1

6

24
/2

0
36
/0

36
/4

36
/8

36
/1

2

36
/1

6

36
/2

0

36
/2

4

36
/2

8

36
/3

2

Ktotal/K −

0

100

200

300

400

C
o
u

n
t

o
f

te
st

im
a
g
e
s

Model frequency, R→S (LAION - 6 Faces)

(b) Refine then select ensembling on LAION 6 faces

Figure 11. Distribution of models chosen on LAION (6 faces), 2500 image test set. Models with boolean primitives are often chosen,
especially after finetuning.

Ensemble Refine Ktotal K− AbsRel↓ AUC@50↑ AUC@20↑ AUC@10↑ AUC@5↑ meancm↓ mediancm↓ Neg per Pos

no yes 12 0 0.08453 0.8804 0.7854 0.6775 0.5419 0.3331 0.09617 0
no yes 12 4 0.08138 0.89 0.8046 0.7046 0.5753 0.3058 0.07838 1.875
no yes 12 8 0.07951 0.8905 0.8059 0.7063 0.5771 0.3062 0.07857 4.149
no yes 24 0 0.07068 0.8983 0.8206 0.7258 0.6024 0.287 0.07173 0
no yes 24 4 0.07199 0.9025 0.8286 0.7392 0.6185 0.2728 0.06691 1.34
no yes 24 8 0.06978 0.9042 0.8328 0.745 0.6259 0.2679 0.06231 2.208
no yes 24 12 0.07175 0.9031 0.8311 0.7438 0.6255 0.2696 0.06407 3.333
no yes 24 16 0.07279 0.9005 0.8264 0.737 0.6166 0.2765 0.06635 4.725
no yes 24 20 0.07331 0.8994 0.8244 0.7337 0.6132 0.2822 0.06863 8.627
no yes 36 0 0.06937 0.9023 0.8297 0.7398 0.6208 0.2768 0.06693 0
no yes 36 4 0.06873 0.9066 0.8384 0.7542 0.6386 0.2628 0.05955 1.108
no yes 36 8 0.06587 0.9091 0.842 0.7593 0.6451 0.2536 0.05777 1.724
no yes 36 12 0.06555 0.9091 0.8433 0.7624 0.6494 0.2559 0.05711 2.332
no yes 36 16 0.06708 0.9073 0.8398 0.7574 0.6445 0.2603 0.05879 3.023
no yes 36 20 0.0667 0.9066 0.8387 0.7557 0.642 0.261 0.05907 3.807
no yes 36 24 0.06928 0.9047 0.8356 0.7509 0.6357 0.2673 0.0621 4.952
no yes 36 28 0.06776 0.9049 0.8339 0.7474 0.6308 0.2655 0.06252 6.713
no yes 36 32 0.07276 0.9007 0.8264 0.7368 0.6174 0.2752 0.06432 10.93
yes yes 23.64 0 0.07552 0.8934 0.8107 0.7127 0.5866 0.3001 0.07877 0
yes yes 27.2 13.23 0.07115 0.9011 0.827 0.7373 0.6171 0.2768 0.06681 4.096
yes yes 31.18 0 0.06514 0.9047 0.8308 0.7395 0.6196 0.2685 0.06761 0
yes yes 34.08 12.94 0.05647 0.9158 0.8502 0.7679 0.6535 0.2366 0.05706 2.981

Table 6. Quantitative evaluation on LAION 12 face polytopes: Most recent literature on primitive-fitting focuses on cuboids or
parallelepipeds, but our model is capable of fitting polytopes of variable face count. All error metrics get better with more faces, which is
helpful to know.

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Improved Convex Primitives

12
/0

12
/4

12
/8

24
/0

24
/4

24
/8

24
/1

2

24
/1

6

24
/2

0
36
/0

36
/4

36
/8

36
/1

2

36
/1

6

36
/2

0

36
/2

4

36
/2

8

36
/3

2

Ktotal/K −

0

50

100

150

200

C
o
u

n
t

o
f

te
st

im
a
g
e
s

Model frequency, S→R (LAION - 12 Faces)

(a) Select then refine ensembling on LAION 12 faces.

12
/0

12
/4

12
/8

24
/0

24
/4

24
/8

24
/1

2

24
/1

6

24
/2

0
36
/0

36
/4

36
/8

36
/1

2

36
/1

6

36
/2

0

36
/2

4

36
/2

8

36
/3

2

Ktotal/K −

0

100

200

300

400

500

C
o
u

n
t

o
f

te
st

im
a
g
e
s

Model frequency, R→S (LAION - 12 Faces)

(b) Refine then select ensembling on LAION 12 faces

Figure 12. Distribution of models chosen on LAION (12 faces), 2500 image test set. Models with boolean primitives are often chosen,
especially after finetuning.

17



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Improved Convex Primitives

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 24/0

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 24/4

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 24/8

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 24/12

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 24/16

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 24/20

Network

N (0, 1)

Figure 13. Additional examples on the value of network start, on 100 LAION test images.

18



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Improved Convex Primitives

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 36/0

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 36/4

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 36/8

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 36/12

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 36/16

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 36/20

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 36/24

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 36/28

Network

N (0, 1)

0 200 400 600 800 1000
Finetuning Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
b

sR
el
↓

Ktotal/K − : 36/32

Network

N (0, 1)

Figure 14. Additional examples on the value of network start, on 100 LAION test images.

19



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Improved Convex Primitives

Method NParts Neg AbsRel↓ Normals Mean↓ Normals Median↓ SegAcc↑
Single 12-0 12 0 0.0719 36.6 30.7 0.633
Single 12-4 12 4 0.0659 38.2 32.1 0.656
Single 12-8 12 8 0.0669 38.8 32.8 0.656
Single 24-0 24 0 0.0590 35.9 29.9 0.690
Single 24-4 24 4 0.0525 36.3 30.4 0.719
Single 24-8 24 8 0.0525 37.4 31.3 0.722
Single 24-12 24 12 0.0529 37.1 31.3 0.720
Single 24-16 24 16 0.0538 37.7 31.6 0.714
Single 24-20 24 20 0.0586 38.4 32.3 0.693
Single 36-0 36 0 0.0489 34.9 29.0 0.729
Single 36-4 36 4 0.0496 36.4 30.4 0.737
Single 36-8 36 8 0.0489 36.9 30.8 0.742
Single 36-12 36 12 0.0500 36.9 31.0 0.743
Single 36-16 36 16 0.0497 36.6 30.5 0.740
Single 36-20 36 20 0.0509 37.0 31.0 0.733
Single 36-24 36 24 0.0508 37.2 31.3 0.735
Single 36-28 36 28 0.0528 37.3 31.2 0.720
Single 36-32 36 32 0.0544 37.7 31.7 0.707
pos S → R 26.4 0.0 0.0571 35.6 29.6 0.697
pos+neg S → R 28.4 13.5 0.0546 37.0 31.0 0.713
pos R → S 35.0 0.0 0.0486 35.0 29.0 0.726
pos+neg R → S 34.7 11.6 0.0438 36.2 30.3 0.742

Table 7. Detailed error metrics on NYUv2.

(a) Source Image

(b
) E

xt
ra

ct
 P

rim
iti

ve
s

“Stack of gifts” “Lego pieces”

“Cinematic Trophy” “Doll, red dress”

(c) Same primitives, different label (e) Move primitives(d) Camera move

Figure 15. Our method can decompose natural images into primitives, and be used to condition controlled image synthesis tasks.
We show results from an in-submission follow-up work, which uses a convex decomposition method similar to the one described here. (a)
We use a convex decomposition method to extract convex polytopes from any image. (b) We then ray-march the primitives from the
original camera viewpoint to obtain a depth map. (c) This depth map serves as conditioning to a ControlNet diffusion model, which is
finetuned to handle the unique statistics of our block arrangements. Different scenes can be created from the same high-level geometry.
(d) We can select one of the images and perform camera moves in 3D space, obtaining images that roughly respect both the requested
geometric layout and source texture. We maintain a key-value cache to transfer texture (Khachatryan et al., 2023). (e) We can also move
primitives freely in 3D space, adjusting the high-level shape of the doll’s dress.

20



1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Improved Convex Primitives

“L
ux

ur
y 

ya
ch

t”
Pr

im
iti
ve

s

Figure 16. Our method can decompose natural images into primitives, and be used to condition controlled image synthesis tasks.
We show results from an in-submission follow-up work. Rotating the primitives associated with the yacht rotates the yacht in view.

21




