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Abstract

In this work, we study offline reinforcement learning (RL) with zero-shot general-
ization property (ZSG), where the agent has access to an offline dataset including
experiences from different environments, and the goal of the agent is to train a
policy over the training environments which performs well on test environments
without further interaction. Existing work showed that classical offline RL fails to
generalize to new, unseen environments. To address such an issue, we propose new
offline RL frameworks with ZSG, based on empirical risk minimization or proximal
policy optimization. We prove that our frameworks find the near-optimal policy
with ZSG both theoretically and empirically, from general environments to specific
settings such as linear Markov decision processes (MDPs). Our result serves as
a first step in understanding the foundation of the generalization phenomenon in
offline reinforcement learning.

1 Introduction

Offline reinforcement learning (RL) has become increasingly significant in modern RL because it
eliminates the need for direct interaction between the agent and the environment; instead, it relies
solely on learning from an offline training dataset. However, in practical applications, the offline
training dataset often originates from a different environment than the one of interest. This discrepancy
necessitates evaluating RL agents in a generalization setting, where the training involves a finite
number of environments drawn from a specific distribution, and the testing is conducted on a distinct
set of environments from the same or different distribution. This scenario is commonly referred to as
the zero-shot generalization (ZSG) challenge which has been studied in online RL[Rajeswaran et al.,
2017, Machado et al., 2018, Justesen et al., 2018, Packer et al., 2019, Zhang et al., 2018a,b], as the
agent receives no training data from the environments it is tested on.

A number of recent empirical studies [Mediratta et al., 2023, Yang et al., 2023, Mazoure et al., 2022]
have recognized this challenge and introduced various offline RL methodologies that are capable of
ZSG. Notwithstanding the lack of theoretical backing, these methods are somewhat restrictive; for
instance, some are only effective for environments that vary solely in observations[Mazoure et al.,
2022], while others are confined to the realm of imitation learning[Yang et al., 2023], thus limiting
their applicability to a comprehensive framework of offline RL with ZSG capabilities. Concurrently,
theoretical advancements [Bose et al., 2024, Ishfaq et al., 2024] in this domain have explored multi-
task offline RL by focusing on representation learning. These approaches endeavor to derive a
low-rank representation of states and actions, which inherently requires additional interactions with
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the downstream tasks to effectively formulate policies based on these representations. Therefore, we
raise a natural question:

Can we design provable offline RL with zero-shot generalization ability?

We propose novel offline RL frameworks that achieve ZSG to address this question affirmatively. Our
contributions are listed as follows.

• We propose two meta-algorithms called pessimistic empirical risk minimization (PERM) and
pessimistic proximal policy optimization (PPPO) that enable ZSG for offline RL. In detail, both
of our algorithms take a pessimistic policy evaluation (PPE) oracle as its component and output
policies based on offline datasets from multiple environments. Our result shows that the sub-
optimalities of the output policies are bounded by both the supervised learning error, which is
controlled by the number of different environments, and the reinforcement learning error, which is
controlled by the coverage of the offline dataset to the optimal policy. Please refer to Table 1 for a
summary of our results. To the best of our knowledge, our proposed algorithms are the first offline
RL methods that provably enjoy the ZSG property.

• Based on the proposed meta-algorithms, we further specify our analysis to a more concrete setting
called linear MDPs [Yang and Wang, 2019, Jin et al., 2019]. We show that under the proper
coverage assumptions made on the offline dataset distribution, both of our algorithms enjoy the
suboptimality gapO(n−1/2+K−1/2 ·C∗

n), where n is the number of environments in offline dataset,
K is the number of trajectories for each environment and C∗

n is a mixed coverage parameter over n
environments. 1. Our result generalizes the convergence result for offline RL in single-environment
[Jin et al., 2021].

• We also analyze when existing offline RL approaches like pessimistic-type algorithms [Jin et al.,
2021] fail without further algorithm modifications. Such an analysis verifies the necessity of our
proposed methods for ZSG property. We also propose numerical results to back up our theoretical
claim.

Algorithm Suboptimality Gap
PERM (our Algo.2)

√
log(N )/n+ n−1

∑n
i=1

∑H
h=1 Ei,π∗ [Γi,h(sh, ah)|s1 = x1]

PPPO (our Algo.3)
√
log |A|H2/n+ n−1

∑n
i=1

∑H
h=1 Ei,π∗ [Γi,h(sh, ah)|s1 = x1]

Table 1: Summary of our algorithms and their suboptimality gaps, where A is the action space, H
is the length of episode, n is the number of environments in the offline dataset. Note that in the
multi-environment setting, π∗ is the near-optimal policy w.r.t. expectation (defined in Section 3). N
is the covering number of the policy space Π w.r.t. distance d(π1, π2) = maxs∈S,h∈[H] ∥π1

h(·|s)−
π2
h(·|s)∥1. The uncertainty quantifier Γi,h are tailored with the oracle return in the corresponding

algorithms (details are in Section 4).

Notation We use lower case letters to denote scalars, and use lower and upper case bold face letters to
denote vectors and matrices respectively. We denote by [n] the set {1, . . . , n}. For a vector x ∈ Rd
and a positive semi-definite matrix Σ ∈ Rd×d, we denote by ∥x∥2 the vector’s Euclidean norm
and define ∥x∥Σ =

√
x⊤Σx. For two positive sequences {an} and {bn} with n = 1, 2, . . . , we

write an = O(bn) if there exists an absolute constant C > 0 such that an ≤ Cbn holds for all
n ≥ 1 and write an = Ω(bn) if there exists an absolute constant C > 0 such that an ≥ Cbn holds
for all n ≥ 1. We use Õ(·) to further hide the polylogarithmic factors. We use (xi)

n
i=1 to denote

sequence (x1, ..., xn), and we use {xi}ni=1 to denote the set {x1, ..., xn}. We use KL(p∥q) to denote
the KL distance between distributions p and q, defined as

∫
p log(p/q). We use E[x],V[x] to denote

expectation and variance of a random variable x.

The remaining parts are organized as follows. In Section 3, we introduce the setting of our work.
In Section 4, we introduce our proposed meta-algorithms and provide their theoretical guarantees.
Then, in Section 5, we specify our meta-algorithms and analysis to a more concrete linear MDP
setting. Finally, in Section 6, we conclude our work and propose some future directions. Due to
space constraints, we analyze when existing offline RL approaches [Jin et al., 2021] fail to generalize
without further algorithm modifications in Appendix A. We place the experimental results on synthetic
and real data in Appendix B, and the analysis of PEVI in Appendix E.2.

1Here we only include n,K,C∗
n in our bound for simplicity.
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2 Related works

Offline RL Offline reinforcement learning (RL) [Ernst et al., 2005, Riedmiller, 2005, Lange et al.,
2012, Levine et al., 2020] addresses the challenge of learning a policy from a pre-collected dataset
without direct online interactions with the environment. A central issue in offline RL is the inadequate
dataset coverage, stemming from a lack of exploration [Levine et al., 2020, Liu et al., 2020]. A
common strategy to address this issue is the application of the pessimism principle, which penalizes
the estimated value of under-covered state-action pairs. Numerous studies have integrated pessimism
into various single-environment offline RL methodologies. This includes model-based approaches
[Rashidinejad et al., 2021, Uehara and Sun, 2021, Jin et al., 2021, Yu et al., 2020, Xie et al., 2021b,
Uehara et al., 2021, Yin et al., 2022], model-free techniques [Kumar et al., 2020, Wu et al., 2021,
Bai et al., 2022, Ghasemipour et al., 2022, Yan et al., 2023], and policy-based strategies [Rezaeifar
et al., 2022, Xie et al., 2021a, Zanette et al., 2021, Nguyen-Tang and Arora, 2024]. To the best of
our knowledge, we are the first to theoretically study the generalization ability of offline RL in the
contextual MDP setting.

Generalization in online RL There are extensive empirical studies on training online RL agents
that can generalize to new transition and reward functions [Rajeswaran et al., 2017, Machado et al.,
2018, Justesen et al., 2018, Packer et al., 2019, Zhang et al., 2018a,b, Nichol et al., 2018, Cobbe
et al., 2018, Küttler et al., 2020, Bengio et al., 2020, Bertran et al., 2020, Ghosh et al., 2021, Kirk
et al., 2023, Juliani et al., 2019, Ajay et al., 2021, Samvelyan et al., 2021, Frans and Isola, 2022,
Albrecht et al., 2022, Ehrenberg et al., 2022, Song et al., 2020, Lyle et al., 2022, Ye et al., 2020, Lee
et al., 2020, Jiang et al.]. They use techniques including implicit regularizationSong et al. [2020],
data augmentation Ye et al. [2020], Lee et al. [2020], uncertainty-driven exploration [Jiang et al.], etc.
These works focus on the online RL setting and do not provide theoretical guarantees, thus differing
a lot from ours.

There are also some recent works aimed at understanding online RL generalization from a theoretical
perspective. Wang et al. [2019] examined a specific class of reparameterizable RL problems and
derived generalization bounds using Rademacher complexity and the PAC-Bayes bound. Malik
et al. [2021] established lower bounds and introduced efficient algorithms that ensure a near-optimal
policy for deterministic MDPs. A more recent work Ye et al. [2023] studied how much pre-training
can improve online RL test performance under different generalization settings. To the best of our
knowledge, no previous work exists on theoretical understanding of the zero-shot generalization of
offline RL.

Our paper is also related to recent works studying multi-task learning in reinforcement learning
(RL) [Brunskill and Li, 2013, Tirinzoni et al., 2020, Hu et al., 2021, Zhang and Wang, 2021, Lu
et al., 2021, Bose et al., 2024, Ishfaq et al., 2024, Zhang et al., 2023], which focus on transferring
the knowledge learned from upstream tasks to downstream ones. Additionally, these works typically
assume that all tasks share similar transition dynamics or common representations while we do not.
Meanwhile, they typically requires the agent to interact with the downstream tasks, which does not
fall into the ZSG regime.

3 Preliminary
Contextual MDP We study contextual episodic MDPs, where each MDPMc is associated with
a context c ∈ C belongs to the context space C. Furthermore,Mc = {Mc,h}Hh=1 consists of H
different individual MDPs, where each individual MDP Mc,h := (S,A, Pc,h(s′|s, a), rc,h(s, a)).
Here S denotes the state space, A denotes the action space, Pc,h denotes the transition function and
rc,h denotes the reward function at stage h. We assume the starting state for eachMc is the same
state x1. In this work, we interchangeablely use “environment" or MDP to denote the MDPMc with
different contexts.

Policy and value function We denote the policy πh at stage h as a mapping (S×A×[0, 1])h−1×S →
∆(A), which maps the history at the h-th stage and the current state to a distribution over the action
space. We use π = {πh}Hh=1 to denote their collection. Then for any episodic MDPM, we define
the value function for some policy π as
V π
M,h(x) := E[rh + ...+ rH |sh = x, ah′ ∼ πh′ , rh′ ∼ rh′(sh′ , ah′), sh′+1 ∼ Ph′(·|sh′ , ah′), h′ ≥ h] ,

Qπ
M,h(x, a) := E[rh + ...+ rH |sh = x, ah = a, rh ∼ rh(sh, ah), sh′ ∼ Ph′−1(·|sh′−1, ah′−1), ah′ ∼ πh′ ,

rh′ ∼ rh′(sh′ , ah′), h′ ≥ h+ 1].
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For any individual MDP M with reward r and transition dynamic P , we denote its Bellman operator
[BMf ](x, a) as [BMf ](s, a) := E[rh(s, a) + f(s′)|s′ ∼ P (·|s, a)]. Then we have the well-known
Bellman equation

V π
M,h(x) = ⟨Qπ

M,h(x, ·), πh(·|x)⟩A, Qπ
M,h(x, a) = [BMhV

π
M,h+1](x, a).

For simplicity, we use V πc,h, Q
π
c,h,Bc,h to denote V πMc,h

, QπMc,h
,BMc,h

. We also use Pc to denote
PMc , the joint distribution of any potential objects under theMc episodic MDP. We would like to
find the near-optimal policy π∗ w.r.t. expectation, i.e., π∗ := argmaxπ∈Π Ec∼CV πc,1(xc), where Π is
the set of collection of Markovian policies, and with a little abuse of notation, we use Ec∼C to denote
the expectation taken w.r.t. the i.i.d. sampling of context c from the context space. Then we would
like to characterize the following zero-shot generalization gap (ZSG gap):

SubOpt(π) := Ec∼C

[
V π∗
c,1 (x1)

]
− Ec∼C

[
V π
c,1(x1)

]
.

Remark 1 Compared with ZSG, another line of measurements aim to characterize the generalization
performance of RL with further interactions with unseen MDPs [Ye et al., 2023]. Clearly, such
a setting is stronger than ours, and the additional interactions are often hard to be satisfied in
real-world practice. We leave the study of such a setting for future work.

Offline RL data collection process The data collection process is as follows. An experimenter
i.i.d. samples number n of contextual episodic MDP Mi from the context set (e.g., i ∼ C). For
each episodic MDP Mi, the experimenter collects dataset Di := {(xτi,h, aτi,h, rτi,h)Hh=1}Kτ=1 which
includes K trajectories. Note that the action aτi,h selected by the experimenter can be arbitrary, and it
does not need to follow a specific behavior policy [Jin et al., 2021]. We assume that Di is compliant
with the episodic MDPMi, which is defined as follows.

Definition 2 ([Jin et al., 2021]) For a dataset Di := {(xτi,h, aτi,h, rτi,h)Hh=1}Kτ=1, let PDi be the joint
distribution of the data collecting process. We say Di is compliant with episodic MDPMi if for any
x′ ∈ S, r′, τ ∈ [K], h ∈ [H], we have

PDi
(rτi,h = r′, xτi,h+1 = x′|{(xji,h, a

j
i,h)}

τ
j=1, {(r

j
i,h, x

j
i,h+1)}

τ−1
j=1 )

= Pi(ri,h(sh, ah) = r′, sh+1 = x′|sh = xτh, ah = aτh).

In general, we claim Di is compliant with Mi when the conditional distribution of any tuple of
reward and next state in Di follows the conditional distribution determined by MDPMi.

4 Provable offline RL with zero-shot generalization

In this section, we propose offline RL with small ZSG gaps. We show that two popular offline RL
approaches, model-based RL and policy optimization-based RL, can output RL agent with ZSG ability,
with a pessimism-style modification that encourages the agent to follow the offline dataset pattern.

4.1 Pessimistic policy evaluation

We consider a meta-algorithm to evaluate any policy π given an offline dataset, which serves as a key
component in our proposed offline RL with ZSG. To begin with, we consider a general individual
MDP and an oracle O, which returns us an empirical Bellman operator and an uncertainty quantifier,
defined as follows.
Definition 3 (Empirical Bellman operator and uncertainty quantifier, Jin et al. 2021) For any
individual MDP M , a dataset D ⊆ S × A × S × [0, 1] that is compliant with M , a test
function VD ⊆ [0, H]S and a confidence level ξ, we have an oracle O(D, VD, ξ) that returns
(B̂VD(·, ·),Γ(·, ·)), a tuple of Empirical Bellman operator and uncertainty quantifier, satisfying

PD

(∣∣(B̂VD)(x, a)− (BMVD)(x, a)
∣∣ ≤ Γ(x, a) for all (x, a) ∈ S ×A

)
≥ 1− ξ.

Remark 4 Here we adapt a test function VD that can depend on the dataset D itself. Therefore, Γ
is a function that depends on both the dataset and the test function class. We do not specify the test
function class in this definition, and we will discuss its specific realization in Section 5.

4



Algorithm 1 Pessimistic Policy Evaluation (PPE)
Require: Offline dataset {Di,h}Hh=1, policy π = (πh)

H
h=1, confidence probability δ ∈ (0, 1).

1: Initialize V̂ π
i,H+1(·)← 0, ∀i ∈ [n].

2: for step h = H,H − 1, . . . , 1 do
3: Let (B̂i,hV̂

π
i,h+1)(·, ·),Γi,h(·, ·)← O(Di,h, V̂

π
i,h+1, δ)

4: Set Q̂π
i,h(·, ·)← min{H − h+ 1, (B̂i,hV̂

π
i,h+1)(·, ·)− Γi,h(·, ·)}+

5: Set V̂ π
i,h(·)← ⟨Q̂π

i,h(·, ·), πh(·|·)⟩A
6: end for

Ensure: V̂ π
i,1(·), . . . , V̂ π

i,H(·), Q̂π
i,1(·, ·), . . . , Q̂π

i,H(·, ·).

Based on the oracle O, we propose our pessimistic policy evaluation (PPE) algorithm as Algorithm
1. In general, PPE takes a given policy π as its input, and its goal is to evaluate the V value and Q
value {(V πi,h, Qπi,h)}Hh=1 of π on MDPMi. Since the agent is not allowed to interact withMi, PPE
evaluates the value based on the offline dataset {Di,h}Hh=1. At each stage h, PPE utilizes the oracle
O and obtains the empirical Bellman operator based on Di,h as well as its uncertainty quantifier, with
high probability. Then PPE applies the pessimism principle to build the estimation of the Q function
based on the empirical Bellman operator and the uncertainty quantifier. Such a principle has been
widely studied and used in offline policy optimization, such as pessimistic value iteration (PEVI) [Jin
et al., 2021]. To compare with, we use the pessimism principle in the policy evaluation problem.

4.2 Model-based approach: pessimistic empirical risk minimization

Given PPE, we propose algorithms that have the ZSG ability. We first propose a pessimistic empirical
risk minimization (PERM) method which is model-based and conceptually simple. The algorithm
details are in Algorithm 2. In detail, for each dataset Di drawn from i-th environments, PERM
builds a model using PPE to evaluate the policy π under the environmentMi. Then PERM outputs
a policy πPERM ∈ Π that maximizes the average pessimistic value, i.e., 1/n

∑n
i=1 V̂

π
i,1(x1). Our

approach is inspired by the classical empirical risk minimization approach adopted in supervised
learning, and the Optimistic Model-based ERM proposed in Ye et al. [2023] for online RL. Our
setting is more challenging than the previous ones due to the RL setting and the offline setting,
where the interaction between the agent and the environment is completely disallowed. Therefore,
unlike Ye et al. [2023], which adopted an optimism-style estimation to the policy value, we adopt a
pessimism-style estimation to fight the distribution shift issue in the offline setting.

Next we propose a theoretical analysis of PERM. Denote NΠ
ϵ as the ϵ-covering number of the policy

space Π w.r.t. distance d(π1, π2) = maxs∈S,h∈[H] ∥π1
h(·|s)−π2

h(·|s)∥1. Then we have the following
theorem to provide an upper bound of the suboptimality gap of the output policy πPERM.

Algorithm 2 Pessimistic Empirical Risk Minimization (PERM)
Require: Offline dataset D = {Di}ni=1,Di := {(xτ

i,h, a
τ
i,h, r

τ
i,h)

H
h=1}Kτ=1, policy class Π, confidence proba-

bility δ ∈ (0, 1), a pessimistic offline policy evaluation algorithm Evaluation as a subroutine.
1: Set Di,h = {(xτ

i,h, a
τ
i,h, r

τ
i,h, x

τ
i,h+1)}Kτ=1

2: πPERM = argmaxπ∈Π
1
n

∑n
i=1 V̂

π
i,1(x1),

where [V̂ π
i,1(·), ·, . . . , ·] = Evaluation

(
{Di,h}Hh=1, π, δ/(3nHNΠ

(Hn)−1))
)

Ensure: πPERM.

Theorem 5 Set the Evaluation subroutine in Algorithm 2 as PPE (Algo.1). Let Γi,h be the uncertainty
quantifier returned by O through the PERM. Then w.p. at least 1− δ, the output πPERM of Algorithm
2 satisfies

SubOpt(πPERM) ≤ 7

√
2 log(6NΠ

(Hn)−1/δ)

n︸ ︷︷ ︸
I1:Supervised learning (SL) error

+
2

n

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(sh, ah)|s1 = x1]︸ ︷︷ ︸
I2:Reinforcement learning (RL) error

, (1)

where Ei,π∗ is w.r.t. the trajectory induced by π∗ with the transition Pi in the underlying MDPMi.
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Proof See Appendix C.1.

Remark 6 The covering number NΠ
(Hn)−1 depends on the policy class Π. Without any specific

assumptions, the policy class Π that consists of all the policies π = {πh}Hh=1, πh : S 7→ ∆(A) and
the log ϵ-covering number logNΠ

ϵ = O(|A||S|H log(1 + |A|/ϵ)).

Remark 7 The SL error can be easily improved to a distribution-dependent bound logN · Var/
√
n,

where N is the covering number term denoted in I1, Var = maxπ Vc∼CV πc,1(x1) is the variance of
the context distribution, by using a Bernstein-type concentration inequality in our proof. Therefore,
for the singleton environment case where |C| = 1, our suboptimality gap reduces to the one of PEVI
in Jin et al. [2021].

Theorem 5 shows that the ZSG gap of PERM is bounded by two terms I1 and I2. I1, which we
call it supervised learning error, depends on the number of environments n in the offline dataset
D and the covering number of the function (policy) class, which is similar to the generalization
error in supervised learning. I2, which we call it reinforcement learning error, is decided by the
optimal policy π∗ that achieves the best zero-shot generalization performance and the uncertainty
quantifier Γi,h. In general, I2 is the “intrinsic uncertainty" denoted by Jin et al. [2021] over n MDPs,
which characterizes how well each dataset Di covers the optimal policy π∗. Since I2 depends on
the concrete form of the uncertainty quantifier, we leave the discussion of the concrete convergence
guarantee to Section 5.

4.3 Model-free approach: pessimistic proximal policy optimization

Algorithm 3 Pessimistic Proximal Policy Optimzation (PPPO)
Require: Offline dataset D = {Di}ni=1,Di := {(xτ

i,h, a
τ
i,h, r

τ
i,h)

H
h=1}Kτ=1, confidence probability δ ∈ (0, 1),

a pessimistic offline policy evaluation algorithm Evaluation as a subroutine.
1: Set Di,h = {(xτ ·H+h

i,h , aτ ·H+h
i,h , rτ ·H+h

i,h , xτ ·H+h
i,h+1 )}⌊K/H⌋−1

τ=0

2: Set π0,h(·|·) as uniform distribution over A and Q̂π0
0,h(·, ·) as zero functions.

3: for i = 1, 2, · · · , n do
4: Set πi,h(·|·) ∝ πi−1,h(·|·) · exp(α · Q̂

πi−1

i−1,h(·, ·))
5: Set [·, . . . , ·, Q̂πi

i,1(·, ·), . . . , Q̂
πi
i,H(·, ·)] = Evaluation({Di,h}Hh=1, πi, δ/(nH))

6: end for
Ensure: πPPPO = random(π1, ..., πn)

PERM in Algorithm 2 works as a general model-based algorithm framework to enable ZSG for any
pessimistic policy evaluation oracle. However, note that in order to implement PERM, one needs
to maintain n different models or critic functions simultaneously in order to evaluate

∑n
i=1 V̂

π
i,1(x1)

for any candidate policy π. Note that existing online RL [Ghosh et al., 2021] achieves ZSG by a
model-free approach, which only maintains n policies rather than models/critic functions. Therefore,
one natural question is whether we can design a model-free offline RL algorithm also with access
only to policies.

We propose the pessimistic proximal policy optimization (PPPO) in Algorithm 3 to address this issue.
Our algorithm is inspired by the optimistic PPO [Cai et al., 2020] originally proposed for online RL.
PPPO also adapts PPE as its subroutine to evaluate any given policy pessimistically. Unlike PERM,
PPPO only maintains n policies π1, ..., πn, each of them is associated with an MDPMn from the
offline dataset. In detail, PPPO assigns an order for MDPs in the offline dataset and names them
M1, ...,Mn. For i-th MDPMi, PPPO selects the i-th policy πi as the solution of the proximal
policy optimization starting from πi−1, which is

πi ← argmax
π

V πi−1,1(x1)− α−1Ei−1,πi−1
[KL(π∥πi−1)|s1 = x1], (2)
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where α is the step size parameter. Since V πi−1,1(x1) is not achievable, we use a linear approximation
Li−1(π) to replace V πi−1,1(x1), where

Li−1(π) = V
πi−1

i−1,1(x1) + Ei−1,πi−1

[ H∑
h=1

⟨Q̂πi−1

i−1,h(xh, ·), πh(·|xh)− πi−1,h(·|xh)⟩
∣∣∣∣s1 = x1

]
, (3)

where Q̂πi−1

i−1,h ≈ Q
πi−1

i−1,h are the Q values evaluated on the offline dataset forMi−1. (2) and (3) give
us a close-form solution of π in Line 4 in Algorithm 3. Such a routine corresponds to one iteration of
PPO [Schulman et al., 2017]. Finally, PPPO outputs πPPPO as a random selection from π1, ..., πn.

Remark 8 In Algorithm 3. First, we adopt a data-splitting trick [Jin et al., 2021] to build Di,h,
where we only utilize each trajectory once for one data tuple at some stage h. It is only used to avoid
the statistical dependency of V̂ πi

i,h+1(·) and xτi,h+1 for the purpose of theoretical analysis.

Next we have our theorem to bound the suboptimality of PPPO.

Theorem 9 Set the Evaluation subroutine in Algorithm 3 as Algorithm 1. Let Γi,h be the uncertainty
quantifier returned by O through the PPPO. Selecting α = 1/

√
H2n. Then selecting δ = 1/8, w.p.

at least 2/3, we have

SubOpt(πPPPO) ≤ 10

(√
log |A|H2

n︸ ︷︷ ︸
I1:SL error

+
1

n

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(sh, ah)|s1 = x1]︸ ︷︷ ︸
I2:RL error

)
.

where Ei,π∗ is w.r.t. the trajectory induced by π∗ with the transition Pi in the underlying MDPMi.

Proof See Appendix C.2.

Theorem 9 shows that the suboptimality gap of PPPO can also be bounded by the SL error I1 and RL
error I2. Interestingly, I1 in Theorem 9 for PPPO only depends on the cardinality of the action space
|A|, which is different from the covering number term in I1 for PERM. Such a difference is due to the
fact that PPPO outputs the final policy πPPPO as a random selection from n existing policies, while
PERM outputs one policy πPERM. Whether these two guarantees can be unified into one remains an
open question.

5 Provable generalization for offline linear MDPs

In this section, we instantiate our Algo.2 and Algo.3 for general MDPs on specific MDP classes. We
consider the linear MDPs defined as follows.

Assumption 10 (Linear MDP, Yang and Wang 2019, Jin et al. 2019) We assume ∀i ∈ C,Mi is
a linear MDP with a known feature map ϕ : S × A → Rd if there exist d unknown measures
µi,h = (µ

(1)
i,h , . . . , µ

(d)
i,h) over S and an unknown vector θi,h ∈ Rd such that

Pi,h(x
′ |x, a) = ⟨ϕ(x, a), µi,h(x′)⟩, E

[
ri,h(sh, ah)

∣∣ sh = x, ah = a
]
= ⟨ϕ(x, a), θi,h⟩ (4)

for all (x, a, x′) ∈ S × A × S at every step h ∈ [H]. We assume ∥ϕ(x, a)∥ ≤ 1 for all (x, a) ∈
S × A and max{∥µi,h(S)∥, ∥θi,h∥} ≤

√
d at each step h ∈ [H], and we define ∥µi,h(S)∥ =∫

S ∥µi,h(x)∥ dx.

Remark 11 We assume that each environmentMi shares the same feature mapping ϕ(x, a). Such
an assumption is for the ease of presentation, and our results can be easily extended to the setting
where different environments enjoy different feature mappings.

We first specialize the general PPE algorithm (Algo.1) to obtain the PPE algorithm tailored for linear
MDPs (Algo.4). This specialization is achieved by constructing B̂i,hV̂ πi,h+1, Γi,h, and V̂ πi,h based on
the dataset Di. We denote the set of trajectory indexes in Di,h as Bi,h. Algo.4 subsequently functions
as the policy evaluation subroutine in Algo.2 and Algo.3 for linear MDPs. In detail, we construct
B̂i,hV̂i,h+1 (which is the estimation of Bi,hV̂i,h+1) as (B̂i,hV̂i,h+1)(x, a) = ϕ(x, a)⊤ŵi,h, where

ŵi,h = argminw∈Rd

∑
τ∈Bi,h

(
rτi,h + V̂i,h+1(x

−,τ
i,h )− ϕ(xτi,h, aτi,h)⊤w

)2
+ λ · ∥w∥22 (5)
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with λ > 0 being the regularization parameter. The closed-form solution to (5) is in Line 4 in
Algorithm 4. Besides, we construct the uncertainty quantifier Γi,h based on Di as

Γi,h(x, a) = β(δ) · ∥ϕ(x, a)∥Λ−1
i,h
,Λi,h =

∑
τ∈Bi,h

ϕ(xτi,h, a
τ
i,h)ϕ(x

τ
i,h, a

τ
i,h)

⊤ + λ · I2, (6)

with β(δ) > 0 being the scaling parameter.

Algorithm 4 Pessimistic Policy Evaluation (PPE): Linear MDP
Require: Offline dataset {Di,h}Hh=1,Di,h = {(xτ

i,h, a
τ
i,h, r

τ
i,h, x

−,τ
i,h )}τ∈Bi,h , policy π, confidence probability

δ ∈ (0, 1).
1: Initialize V̂ π

i,H+1(·)← 0, ∀i ∈ [n].
2: for step h = H,H − 1, . . . , 1 do
3: Set Λi,h ←

∑
τ∈Bi,h

ϕ(xτ
i,h, a

τ
i,h)ϕ(x

τ
i,h, a

τ
i,h)

⊤ + λ · I .

4: Set ŵi,h ← Λ−1
i,h(

∑
τ∈Bi,h

ϕ(xτ
i,h, a

τ
i,h) · (rτi,h + V̂ π

i,h+1(x
−,τ
i,h ))).

5: Set Γi,h(·, ·)← β(δ) · (ϕ(·, ·)⊤Λ−1
i,hϕ(·, ·))

1/2.
6: Set Q̂π

i,h(·, ·)← min{ϕ(·, ·)⊤ŵi,h − Γi,h(·, ·), H − h+ 1}+.
7: Set V̂ π

i,h(·)← ⟨Q̂π
i,h(·, ·), πh(·|·)⟩A

8: end for
Ensure: V̂ π

i,1(·), . . . , V̂ π
i,H(·), Q̂π

i,1(·, ·), . . . , Q̂π
i,H(·, ·).

The following theorem shows the suboptimality gaps for Algo.2 (utilizing subroutine Algo.4) and
Algo.3 (also with subroutine Algo.4).

Theorem 12 Under Assumption 10, in Algorithm 4, we set λ = 1, β(δ) = c ·dH
√

log(2dHK/δ),
where c > 0 is a positive constant. Then, we have:
(i) for the output policy πPERM of Algo.2 with subroutine Algo.4, with probability at least 1− δ, the
suboptimality gap satisfies

SubOpt(πPERM) ≤ 7

√
7 log(6NΠ

(Hn)−1/δ)

n
+

2β
(

δ
3nHNΠ

(Hn)−1

)
n

n∑
i=1

H∑
h=1

Ei,π∗

[
∥ϕ(sh, ah)∥Λ̃−1

i,h

∣∣ s1 = x1

]
,

(7)

(ii) for the output policy πPPPO of Algo.3 with subroutine Algo.4, setting δ = 1/8, then with
probability at least 2/3, the suboptimality gap satisfies

SubOpt(πPPPO) ≤ 10

(√
log |A|H2

n
+

β
(

1
4nH

)
n

n∑
i=1

H∑
h=1

Ei,π∗

[
∥ϕ(sh, ah)∥Λ̄−1

i,h

∣∣ s1 = x1

])
, (8)

where Ei,π∗ is with respect to the trajectory induced by π∗ with the transition Pi in the underlying
MDPMi given the fixed matrix Λ̃i,h or Λ̄i,h.

Proof See Appendix D.1.

∥ϕ(sh, ah)∥Λ−1
i,h

indicates how well the state-action pair (sh, ah) is covered by the dataset Di. The

term
∑n
i=1

∑H
h=1 Ei,π∗

[
∥ϕ(sh, ah)∥Λ−1

i,h

∣∣ s1 = x1

]
in the suboptimality gap in Theorem 12 is small

if for each context i ∈ [n], the dataset Di well covers the trajectory induced by the optimal policy π∗

on the corresponding MDPMi.

Well-explored behavior policy Next we consider a case where the dataset D consists of
i.i.d. trajectories collecting from different environments. Suppose D consists of n indepen-
dent datasets D1, . . . ,Dn, and for each environment i, Di consists of K trajectories Di =
{(xτi,h, aτi,h, rτi,h)Hh=1}Kτ=1 independently and identically induced by a fixed behavior policy π̄i in the
linear MDPMi. We have the following assumption:

2Spefically, for Algo.2, Λ̃i,h =
∑K

τ=1 ϕ(x
τ
i,h, a

τ
i,h)ϕ(x

τ
i,h, a

τ
i,h)

⊤ + λ · I , for Algo.3, Λ̄i,h =∑⌊K/H⌋−1
τ=1 ϕ(xτ ·H+h

i,h , aτ ·H+h
i,h )ϕ(xτ ·H+h

i,h , aτ ·H+h
i,h )⊤ + λ · I due to the data-splitting techniques.

8



Definition 13 (Well-Explored Policy, Duan et al. 2020, Jin et al. 2021) For an behavior policy π̄
and an episodic linear MDPM with the feature mapping ϕ, we say π̄ well-exploresM with constant
c if there exists an absolute positive constant c > 0 such that

∀h ∈ [H], λmin(Σh) ≥ c/d, where Σh = Eπ̄,M
[
ϕ(sh, ah)ϕ(sh, ah)

⊤].
A well-explored policy guarantees that the obtained trajectories is “uniform" enough to represent
any policy and value function. The following corollary shows that with the above assumption, the
suboptimality gaps of Algo.2 (with subroutine Algo.4) and Algo.3 (with subroutine Algo.4) decay to
0 when n and K are large enough.

Corollary 14 Suppose that for each i ∈ [n], Di is generated by behavior policy π̄i which well-
explores MDPMi with constant ci ≥ cmin. In Algo.4, we set λ = 1, β(δ) = c′ · dH

√
log(4dHK/δ)

where c′ > 0 is a positive constant. Suppose we have K ≥ 40d/cmin log(4dnH/δ) and set C∗
n :=

1/n ·
∑n
i=1 c

−1/2
i . Then we have:

(i) for the output πPERM of Algo.2 with subroutine Algo.4, with probability at least 1 − δ, the
suboptimality gap satisfies

SubOpt(πPERM) ≤ 7

√
2 log(6NΠ

(Hn)−1/δ)

n
+ 2
√
2c′ · d3/2H2K−1/2

√
log(12dHnKNΠ

(Hn)−1/δ) · C∗
n ,

(9)

(ii) for the output policy πPPPO of Algo.3 with subroutine Algo.4, setting δ = 1/8, then with
probability at least 2/3, the suboptimality gap satisfies

SubOpt(πPPPO) ≤ 10

(√
log |A|H2

n
+ 2
√
2c′ · d3/2H2.5K−1/2

√
log(16dHnK) · C∗

n

)
. (10)

Proof See Appendix D.2.

Remark 15 The mixed coverage parameter C∗
n = 1

n

∑n
i=1

1√
ci

is small if for any i ∈ [n], ci is large,

i.e., the minimum eigenvalue of Σi,h = Eπ̄i,Mi

[
ϕ(sh, ah)ϕ(sh, ah)

⊤] is large. Note that λmin(Σi,h)
indicates how well the behavior policy π̄i explores the state-action pairs on MDPMi; this shows
that if for each environment i ∈ [n], the behavior policy exploresMi well, the suboptimality gap will
be small.

Remark 16 Under the same conditions of Corollary 14, we have:

(i) If n ≥
392 log(6NΠ

(Hn)−1/δ)

ϵ2 and K ≥ max{ 40dcmin
log( 4dnHδ ),

32c′2d3H4 log(12dHnKNΠ
(Hn)−1/δ)C

∗2
n

ϵ2 },
then w.p. at least 1− δ, SubOpt(πPERM) ≤ ϵ.
(ii) If n ≥ 400H2 log(|A|)

ϵ2 and K ≥ max{ 40dcmin
log(16dnH),

32c′2d3H5 log(16dHnK)C∗2
n

ϵ2 }, then w.p. at
least 2/3, SubOpt(πPPPO) ≤ ϵ.

Corollary 14 suggests that both of our proposed algorithms enjoy the O(n−1/2 + K−1/2 · C∗
n)

convergence rate to the optimal policy π∗ given a well-exploration data collection assumption, where
C∗
n is a mixed coverage parameter over n environments defined in Corollary 14.

6 Conclusion and Future Work
In this work, we study the zero-shot generalization (ZSG) performance of offline reinforcement
learning (RL). We propose two offline RL frameworks, pessimistic empirical risk minimization and
pessimistic proximal policy optimization, and show that both of them can find the optimal policy
with ZSG ability. We also show that such a generalization property does not hold for offline RL
without knowing the context information of the environment, which demonstrates the necessity of
our proposed new algorithms. Currently, our theorems and algorithm design depend on the i.i.d.
assumption of the environment selection. How to relax such an assumption remains an interesting
future direction.

9



References
Alekh Agarwal, Yuda Song, Wen Sun, Kaiwen Wang, Mengdi Wang, and Xuezhou Zhang. Prov-

able benefits of representational transfer in reinforcement learning. In The Thirty Sixth Annual
Conference on Learning Theory, pages 2114–2187. PMLR, 2023.

Anurag Ajay, Ge Yang, Ofir Nachum, and Pulkit Agrawal. Understanding the generalization gap in
visual reinforcement learning. 2021.

Joshua Albrecht, Abraham Fetterman, Bryden Fogelman, Ellie Kitanidis, Bartosz Wróblewski,
Nicole Seo, Michael Rosenthal, Maksis Knutins, Zack Polizzi, James Simon, et al. Avalon:
A benchmark for rl generalization using procedurally generated worlds. Advances in Neural
Information Processing Systems, 35:12813–12825, 2022.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv
preprint arXiv:2202.11566, 2022.

Emmanuel Bengio, Joelle Pineau, and Doina Precup. Interference and generalization in temporal
difference learning. International Conference On Machine Learning, 2020.

Martin Bertran, Natalia Martinez, Mariano Phielipp, and Guillermo Sapiro. Instance-based gen-
eralization in reinforcement learning. Advances in Neural Information Processing Systems, 33:
11333–11344, 2020.

Avinandan Bose, Simon Shaolei Du, and Maryam Fazel. Offline multi-task transfer rl with represen-
tational penalization. arXiv preprint arXiv:2402.12570, 2024.

Emma Brunskill and Lihong Li. Sample complexity of multi-task reinforcement learning. arXiv
preprint arXiv:1309.6821, 2013.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimiza-
tion. In International Conference on Machine Learning, pages 1283–1294. PMLR, 2020.

Karl Cobbe, Oleg Klimov, Christopher Hesse, Taehoon Kim, and J. Schulman. Quantifying general-
ization in reinforcement learning. International Conference On Machine Learning, 2018.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pages
2048–2056. PMLR, 2020.

Yaqi Duan, Zeyu Jia, and Mengdi Wang. Minimax-optimal off-policy evaluation with linear function
approximation. In International Conference on Machine Learning, pages 2701–2709. PMLR,
2020.

Andy Ehrenberg, Robert Kirk, Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. A study of
off-policy learning in environments with procedural content generation. In ICLR Workshop on
Agent Learning in Open-Endedness, 2022.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6, 2005.

Kevin Frans and Phillip Isola. Powderworld: A platform for understanding generalization via rich
task distributions. arXiv preprint arXiv:2211.13051, 2022.

Kamyar Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating
uncertainties for offline rl through ensembles, and why their independence matters. Advances in
Neural Information Processing Systems, 35:18267–18281, 2022.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why
generalization in rl is difficult: Epistemic pomdps and implicit partial observability. Advances in
neural information processing systems, 34:25502–25515, 2021.

10



Jiachen Hu, Xiaoyu Chen, Chi Jin, Lihong Li, and Liwei Wang. Near-optimal representation learning
for linear bandits and linear rl. In International Conference on Machine Learning, pages 4349–4358.
PMLR, 2021.

Haque Ishfaq, Thanh Nguyen-Tang, Songtao Feng, Raman Arora, Mengdi Wang, Ming Yin, and
Doina Precup. Offline multitask representation learning for reinforcement learning. arXiv preprint
arXiv:2403.11574, 2024.

Yiding Jiang, J Zico Kolter, and Roberta Raileanu. Uncertainty-driven exploration for generalization
in reinforcement learning. In Deep Reinforcement Learning Workshop NeurIPS 2022.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. arXiv preprint arXiv:1907.05388, 2019.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin Teng, Hunter Henry,
Adam Crespi, Julian Togelius, and Danny Lange. Obstacle Tower: A Generalization Challenge in
Vision, Control, and Planning. In IJCAI, 2019.

Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian Togelius, and
Sebastian Risi. Illuminating generalization in deep reinforcement learning through procedural
level generation. arXiv: Learning, 2018.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot
generalisation in deep reinforcement learning. Journal of Artificial Intelligence Research, 76:
201–264, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The NetHack Learning Environment. In Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS), 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning: State-of-the-art, pages 45–73. Springer, 2012.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple technique
for generalization in deep reinforcement learning. In International Conference on Learning
Representations. https://openreview. net/forum, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch off-policy
reinforcement learning without great exploration. Advances in neural information processing
systems, 33:1264–1274, 2020.

Rui Lu, Gao Huang, and Simon S Du. On the power of multitask representation learning in linear
mdp. arXiv preprint arXiv:2106.08053, 2021.

Clare Lyle, Mark Rowland, Will Dabney, Marta Kwiatkowska, and Yarin Gal. Learning dynamics and
generalization in deep reinforcement learning. In International Conference on Machine Learning,
pages 14560–14581. PMLR, 2022.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and
Michael H. Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. In IJCAI, 2018.

11



Dhruv Malik, Yuanzhi Li, and Pradeep Ravikumar. When is generalizable reinforcement learning
tractable? Advances in Neural Information Processing Systems, 34, 2021.

Bogdan Mazoure, Ilya Kostrikov, Ofir Nachum, and Jonathan J Tompson. Improving zero-shot
generalization in offline reinforcement learning using generalized similarity functions. Advances
in Neural Information Processing Systems, 35:25088–25101, 2022.

Ishita Mediratta, Qingfei You, Minqi Jiang, and Roberta Raileanu. The generalization gap in offline
reinforcement learning. arXiv preprint arXiv:2312.05742, 2023.

Thanh Nguyen-Tang and Raman Arora. On sample-efficient offline reinforcement learning: Data
diversity, posterior sampling and beyond. Advances in Neural Information Processing Systems, 36,
2024.

Alex Nichol, V. Pfau, Christopher Hesse, O. Klimov, and John Schulman. Gotta learn fast: A new
benchmark for generalization in rl. ArXiv, abs/1804.03720, 2018.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song.
Assessing generalization in deep reinforcement learning. ICLR, 2019.

Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham M. Kakade. Towards generaliza-
tion and simplicity in continuous control. In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 6550–6561, 2017.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. Advances in Neural Information
Processing Systems, 34:11702–11716, 2021.

Shideh Rezaeifar, Robert Dadashi, Nino Vieillard, Léonard Hussenot, Olivier Bachem, Olivier
Pietquin, and Matthieu Geist. Offline reinforcement learning as anti-exploration. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 36, pages 8106–8114, 2022.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforcement
learning method. In Machine Learning: ECML 2005: 16th European Conference on Machine
Learning, Porto, Portugal, October 3-7, 2005. Proceedings 16, pages 317–328. Springer, 2005.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro, Fabio
Petroni, Heinrich Küttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet: A
sandbox for open-ended reinforcement learning research. arXiv preprint arXiv:2109.13202, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational overfitting
in reinforcement learning. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=HJli2hNKDH.

Andrea Tirinzoni, Riccardo Poiani, and Marcello Restelli. Sequential transfer in reinforcement
learning with a generative model. In International Conference on Machine Learning, pages
9481–9492. PMLR, 2020.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under partial
coverage. arXiv preprint arXiv:2107.06226, 2021.

Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and offline rl
in low-rank mdps. arXiv preprint arXiv:2110.04652, 2021.

Huan Wang, Stephan Zheng, Caiming Xiong, and Richard Socher. On the generalization gap in
reparameterizable reinforcement learning. In International Conference on Machine Learning,
pages 6648–6658. PMLR, 2019.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan Salakhutdinov, and
Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. arXiv preprint
arXiv:2105.08140, 2021.

12

https://openreview.net/forum?id=HJli2hNKDH


Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in neural information processing systems,
34:6683–6694, 2021a.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
ing sample-efficient offline and online reinforcement learning. Advances in neural information
processing systems, 34:27395–27407, 2021b.

Yuling Yan, Gen Li, Yuxin Chen, and Jianqing Fan. The efficacy of pessimism in asynchronous
q-learning. IEEE Transactions on Information Theory, 2023.

Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features.
In International Conference on Machine Learning, pages 6995–7004, 2019.

Rui Yang, Lin Yong, Xiaoteng Ma, Hao Hu, Chongjie Zhang, and Tong Zhang. What is essential for
unseen goal generalization of offline goal-conditioned rl? In International Conference on Machine
Learning, pages 39543–39571. PMLR, 2023.

Chang Ye, Ahmed Khalifa, Philip Bontrager, and Julian Togelius. Rotation, translation, and cropping
for zero-shot generalization. In 2020 IEEE Conference on Games (CoG), pages 57–64. IEEE,
2020.

Haotian Ye, Xiaoyu Chen, Liwei Wang, and Simon Shaolei Du. On the power of pre-training for
generalization in rl: provable benefits and hardness. In International Conference on Machine
Learning, pages 39770–39800. PMLR, 2023.

Ming Yin, Yaqi Duan, Mengdi Wang, and Yu-Xiang Wang. Near-optimal offline reinforcement
learning with linear representation: Leveraging variance information with pessimism. arXiv
preprint arXiv:2203.05804, 2022.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Andrea Zanette, Martin J Wainwright, and Emma Brunskill. Provable benefits of actor-critic methods
for offline reinforcement learning. Advances in neural information processing systems, 34:13626–
13640, 2021.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in
continuous reinforcement learning. ArXiv, abs/1806.07937, 2018a.

Chicheng Zhang and Zhi Wang. Provably efficient multi-task reinforcement learning with model
transfer. Advances in Neural Information Processing Systems, 34, 2021.

Chiyuan Zhang, Oriol Vinyals, Rémi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. ArXiv, abs/1804.06893, 2018b.

Weitong Zhang, Jiafan He, Dongruo Zhou, Amy Zhang, and Quanquan Gu. Provably efficient
representation selection in low-rank markov decision processes: from online to offline rl. In
Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, pages 2488–
2497, 2023.

13



A Offline RL without context information

In Section 4 and 5, we have proposed provable offline RL with small generalization gaps. Both PERM
and PPPO require the agent to maintain policies/models for different MDPs separately. One may ask
whether directly applying existing offline RL algorithms over datasets from multiple environments
without maintaining their identity information can yield the same ZSG property. In this section, we
show that such a strategy does not work, which is aligned with the existing observation of the poor
generalization performance of offline RL [Mediratta et al., 2023]. In detail, given contextual MDPs
M1, ...,Mn and their corresponding offline datasets D1, ...,Dn, we assume the agent only has the
access to the offline dataset D̄ = ∪ni=1Di, where D̄ = {(xτcτ ,h, a

τ
cτ ,h

, rτcτ ,h)
H
h=1}Kτ=1. Here cτ ∈ C

is the context information of trajectory τ , which is unknown to the agent.

Numerical experiments To show that the context information is important to ZSG property, we
conduct numerical experiments on Combination Lock environment [Bose et al., 2024] to compare the
performance of Pessimistic Value Iteration (PEVI) (Jin et al. [2021]), a representative algorithm for
offline RL, and PPPO. Due to the space limit, the detailed description of experiments and results are
deferred to Appendix B. Our results show that PPPO performs better, which backs up our theoretical
claim.

Theoretical justification To explain why offline RL without knowing context information performs
worse, we have the following proposition suggesting the offline dataset from multiple MDPs is not
distinguishable from an “average MDP" if the offline dataset does not contain context information.

Proposition 17 D̄ is compliant with average MDP M̄ := {M̄h}Hh=1, M̄h :=
(
S,A, H, P̄h, r̄h

)
,

P̄h(x
′|x, a) := Ec∼C

Pc,h(x
′|x, a)µc,h(x, a)

Ec∼Cµc,h(x, a)
, P(r̄h = r|x, a) := Ec∼C

P(r̄c,h = r|x, a)µc,h(x, a)
Ec∼Cµc,h(x, a)

,

where µc,h(·, ·) is the data collection distribution of (s, a) at stage h in dataset Dc.

Proof See Appendix E.1.

Proposition 17 suggests that if no context information is revealed, then the merged offline dataset
D̄ is equivalent to a dataset collected from the average MDP M̄. Therefore, the output policy of
existing offline algorithms like PEVI converges to the optimal policy π̄∗ of the average MDP M̄. We
leave the convergence analysis of PEVI to Appendix E.2. In general, π̄∗ can be very different from
π∗ when the transition probability functions of each environment are different. For example, consider
the 2-context cMDP problem shown in Figure 1, each context consists of one state and three possible
actions. The offline dataset distributions µ are marked on the arrows that both of the distributions
are following near-optimal policy. By Proposition 17, in average MDP M̄ the reward of the middle
action is deterministically 0, while both upper and lower actions are deterministically 1. As a result,
the optimal policy π̄∗ will only have positive probabilities toward upper and lower actions. This leads
to Ec∼C [V π

∗

c,1 (x1)] = 0, though we can see that π∗ is deterministically choosing the middle action
and Ec∼C [V π

∗

c,1 (x1)] = 0.5. This theoretically illustrates that the generalization ability of offline RL
algorithms without leveraging context information is weak. In a sharp contrast, imitation learning
such as behavior cloning (BC) converges to the teacher policy that is independent of the specific MDP.
Therefore, offline RL methods such as CQL [Kumar et al., 2020] might enjoy worse generalization
performance compared with BC, which aligns with the observation made by Mediratta et al. [2023].

Figure 1: A cMDP problem with 2 equally distributed contexts.

B Experiment

In this section, we run experiments on both synthetic data and real-world data to validate the
effectiveness of our proposed algorithm. The main idea of our proposed PERM and PPPO is to
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leverage multiple environments individually, unlike previous approaches which essentially treat
different environments as the same one. Therefore, we will mainly verify how the different number
of contexts (Appendix B) and the number of value networks (Appendix B.2) affect the performance
of the baseline algorithm.

B.1 Experiments on synthetic data

Environments We are using the comblock framework that we adapted from [Bose et al., 2024],
where we directly record the policies and Q-values through state-action pairs instead of recovering
them linear-algebraically through rich observations. We leverage the PyTorch framework with CPU
device to process the tabular numerical operations. The entire dataset generation and experiment
process is conducted on MacBook Pro with M3 Max chip where the dataset generation process takes
about 2 hours.

We consider the Combination Lock environment adapted from [Bose et al., 2024]. At each timestep
h, there are three states s0,h, s1,h, s2,h with 5 possible actions; only s0,h, s1,h are considered as
desirable states that are reachable toward final reward. The environment uniformly and independently
samples 1 out of 5 actions for each desirable state a0,h, a1,h at each timestep, where taking these
actions will result transition to one of the good states s0,h+1, s1,h+1 with equal probability, otherwise
the transition will deterministically to the bad state s2,h+1 and remains in the bad states for the rest
of the horizon. If the agent is staying in the good states at the end of the horizon, the reward will be 1;
otherwise the agent has 0.5 probability to receive a 0.1 reward.

Implementation details We consider two experiment settings, one with 5 context environments and
the other with 10 context environments. Each context environment is generated randomly. For the
generation of the offline dataset, as in [Bose et al., 2024], we adopt the Exploratory Policy Search
(EPS) algorithm proposed by [Agarwal et al., 2023] to obtain exploratory polices (not necessarily
optimal) that cover as much of the feature space. For each context environment, 500 exploratory
trajectories are i.i.d. sampled. We compare our proposed PPPO with the previous baseline PEVI Jin
et al. [2021] w.r.t. their average reward. In our experiment, we calibrate the β(δ) parameter for PEVI
to reflect the optimal performance, as well as the β(δ), α parameters for PPPO to reflect near-optimal
performance.

Experiment results We find that PPPO generally outperforms PEVI on average rewards in both
contextual settings as shown in Table 2, this validates our theory hypothesis (see discussion in
Appendix E.2 for an analysis of PEVI).

Number of Contexts PEVI [Jin et al., 2021] PPPO
5 0.0628 0.0670± 0.0141

10 0.0514 0.0650± 0.0173

Table 2: The average rewards for PEVI and PPPO algorithms in two different contextual settings with
5 and 10 contexts. In PPPO, noting that the result policy is randomly sampled from n polices, we are
taking the average value and calculating the standard deviation (reported as 1-sigma error bars) of the
evaluation results for trained policies π1, . . . , πn.

B.2 Experiments on real data

Environments We conduct an extensive evaluation over the Procgen Benchmark Cobbe et al. [2020].
Our experiment is conducted on a server with NVIDIA RTX A6000 GPUs. For the offline setting
of Procgen, we adopt the offline dataset collected from Mediratta et al. [2023], which includes the
Procgen expert dataset with 1M transitions and the Procgen mixed expert-suboptimal dataset
with 1M transitions, both of them are for the easy difficulty of the Procgen games. Following
Mediratta et al. [2023], for each game in Procgen, the data is collected from 200 different Procgen
levels for offline training, validate the hyperparameters online to perform model selection on the
another 50 levels, and evaluate the agents’ online performance on the remaining levels.

Implementation details For conceptual simplicity, we adopt the Implicit Q-Learning (IQL) frame-
work Kostrikov et al. [2021], while simultaneously leveraging n critic value networks for different
environments (see Algorithm 5, IQL-nV). Note that this isn’t exactly the same optimization objective
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as we proposed in Algorithm 2, but nonetheless a first-order approximation of what could be achieved
with PERM framework. In our implementation of IQL-nV, we adapt the original implementation of
IQL Kostrikov et al. [2021] to the one with several value networks Vψi , the expectile optimization
objectives LV (ψi) are the same as Kostrikov et al. [2021], while we use multiple MSE losses for Q
network, with one for each Vψi

, LiQ(θ) = E(s,a,s′)∼Di
[(r(s, a)+γVψi

(s′)−Qθ(s, a))2]. Algorithm
5 gives our modified TD learning process from IQL. For the policy extraction method, we use AWR,
which is the same as IQL.

Algorithm 5 TD Learning (IQL-nV)

1: Initialize parameters {ψi}, θ, θ̂, ϕ.
2: for each gradient step do
3: for each i do
4: ψi ← ψi − λV∇ψi

LV (ψi), θ ← θ − λQ∇θLiQ(θ)
5: end for
6: θ̂ ← (1− α)θ̂ + αθ
7: end for

In the Procgen datasets for evaluation, there are 200 randomly sampled training environments in each
game, thus for practical reason we regard every 50 of them as one environment and only leverage 4
different value networks in our IQL-4V implementation. We tune the hyperparameters separately
for expert and mixed expert-suboptimal datasets, which aligns with the practice of Mediratta et al.
[2023]. Moreover, we found that the policy extraction via Soft Actor-Critic (SAC) implementation
endows IQL-4V’s policy a stochastic nature in some settings, so we tune the policy sampling method
to leverage this effect. Table 3 shows our hyperparameters.

Experiment results We report the mean and standard deviation of returns of each algorithm and each
task in Table 4. The results of BC and IQL are reported by Mediratta et al. [2023]. To summarize
results over all tasks, for each algorithm, we also report the mean and median of the min-max
normalized returns of each game. The min-max normalized return is calculated by using the rmin and
rmax value for each game provided by the Procgen benchmark Cobbe et al. [2020]. From Table 4 we
found that IQL-nV’s min-max normalized returns across the set of Procgen games outperforms the
baseline IQL, which suggests the effectiveness of our proposed approach. From another perspective,
we list the difference between IQL-4V and IQL w.r.t. to different games, and we arrange the order of
games based on the performance of IQL. The results for both expert and mixed expert-suboptimal
datasets are recorded in Figure 2. From Figure 2, we can see that IQL-4V improves IQL mainly from
the games where IQL performs bad in the sense of min-max normalized returns. This is aligned with
the idea we improve the ZSG performance of offline RL, since our algorithm aims to improve the
average performance over all games, rather than only a subset of them. It is worth noting that our
approach still lags behind BC, which is aligned with the observation made by Mediratta et al. [2023].
We aim to develop offline RL with good ZSG performance that outperforms both BC and offline RL
in the future work.

In our ablation study, we aim to verify the effectiveness of multiple value networks and the stochastic
policy on the Miner game with the 1M expert dataset. We test IQL-nV with n = 1, 2, 4, 8 with
stochastic policy. The results are in Table 5. We can see that by increasing the number of value
networks, the performance of IQL also increases. Meanwhile, it is worth noting by using the
stochastic policy also helps the performance. We hypothesize it is because that the 1M Expert
Dataset of Procgen games enjoys a higher diversity w.r.t. to the action selection, which causes the
performance gain brought by the use of stochastic policy.
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Hyperparameter IQL-4V (Expert) IQL-4V (Mixed)
Learning Rate 0.0005 0.0005

Target model Weight Update Polyak Polyak
Batch Size 512 512

τ 0.005 0.005
Target update frequency 100 100

Temperature 3.0 3.0
Expectile 0.8 0.8

Policy Sampling Stochastic Deterministic

Table 3: Hyperparameters in our experiment.

Procgen game BC(Expert) IQL(Expert) IQL-4V(Expert) BC(Mixed) IQL(Mixed) IQL-4V(Mixed)
bigfish 4.38 ± 0.38 4.85 ± 0.52 2.72 ± 1.23 2.89 ± 0.15 4.14 ± 0.54 5.46 ± 3.03

bossfight 5.87 ± 0.26 7.62 ± 0.33 5.74 ± 1.05 5.13 ± 0.14 7.12 ± 0.43 6.8 ± 0.26
caveflyer 4.92 ± 0.28 3.43 ± 0.22 3.52 ± 1.46 4.05 ± 0.24 1.66 ± 0.67 3.2 ± 1.33

chaser 4.62 ± 0.36 3.17 ± 0.17 4.35 ± 0.55 3.43 ± 0.22 1.41 ± 0.6 1.32 ± 0.22
climber 4.91 ± 0.22 2.33 ± 0.33 3.92 ± 1.41 4.64 ± 0.29 0.57 ± 0.35 1.5 ± 0.80
miner 7.85 ± 0.32 1.66 ± 0.17 6.36 ± 1.85 6.56 ± 0.09 0.8 ± 0.1 1.64 ± 0.86

coinrun 8.26 ± 0.19 7.74 ± 0.21 9.8 ± 0.40 7.77 ± 0.24 6.0 ± 0.36 7.2 ± 1.17
dodgeball 0.98 ± 0.07 0.93 ± 0.12 1.0 ± 0.75 1.19 ± 0.14 0.87 ± 0.11 1.32 ± 0.48
fruitbot 21.18 ± 0.62 25.22 ± 0.94 22.24 ± 3.56 18.84 ± 0.7 22.0 ± 0.43 23.56 ± 4.43

heist 2.42 ± 0.14 0.58 ± 0.26 4.4 ± 0.80 2.37 ± 0.3 0.27 ± 0.03 0.6 ± 0.49
jumper 5.68 ± 0.18 4.06 ± 0.21 6.2 ± 1.17 4.63 ± 0.47 3.0 ± 0.5 4.2 ± 0.98
leaper 2.84 ± 0.07 2.44 ± 0.21 3.0 ± 1.41 2.6 ± 0.25 2.27 ± 0.53 3.6 ± 0.80
maze 4.46 ± 0.16 2.68 ± 0.31 5.0 ± 1.26 4.77 ± 0.32 2.1 ± 0.15 3.0 ± 0.63
ninja 5.88 ± 0.3 4.38 ± 0.12 6.0 ± 1.10 5.23 ± 0.12 3.23 ± 0.81 5.0 ± 1.41

plunder 4.94 ± 0.13 4.03 ± 0.14 5.38 ± 0.94 4.59 ± 0.16 3.86 ± 0.25 3.58 ± 0.83
starpilot 17.69 ± 0.59 22.88 ± 0.59 13.88 ± 3.35 17.93 ± 0.32 19.64 ± 1.79 11.72 ± 4.31
Mean 0.240 0.114 0.263 0.189 0.010 0.096

Median 0.261 0.065 0.183 0.234 -0.031 0.076

Table 4: Test performance of IQL-4V against BC and IQL baselines reported by Mediratta et al.
[2023], on the 1M Expert Dataset and 1M Mixed Expert-Suboptimal Dataset respectively. For
the IQL-4V returns, mean and standard deviation over 5 random seeds are reported.

Figure 2: Differences of the mean min-max normalized test returns on Procgen 1M Expert Dataset
(left) and 1M Mixed Expert-Suboptimal Dataset (right) over 5 random seeds.

Procgen game 8V-SP(Expert) 4V-SP(Expert) 2V-SP(Expert) 1V-SP(Expert) 1V-DP(Expert)
miner 7.88± 0.71 6.36± 1.85 6.85± 0.92 5.6± 1.89 1.66± 0.17

Table 5: The IQL-nV ablation study results conducted on Miner, with 1M expert dataset tested.
nV-SP represents IQL-nV with a stochastic policy variant, where 1V-DP represents the default IQL
setup, recorded in Mediratta et al. [2023]. Mean and standard deviation of test performance over 5
random seeds are reported.
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C Proof of Theorems in Section 4

C.1 Proof of Theorem 5

We define the model estimation error as

ιπi,h(x, a) = (Bi,hV̂ πi,h+1)(x, a)− Q̂πi,h(x, a). (11)

And we define the following condition∣∣(B̂i,hV̂ πi,h+1)(x, a)−(Bi,hV̂ πi,h+1)(x, a)
∣∣ ≤ Γi,h(x, a) for all i ∈ [n], π ∈ Π, (x, a) ∈ S×A, h ∈ [H] .

(12)
We introduce the following lemma to bound the model estimation error.

Lemma 18 (Model estimation error bound (Adapted from Lemma 5.1 in Jin et al. [2021])
Under the condition of Eq.(12), we have

0 ≤ ιπi,h(x, a) ≤ 2Γi,h(x, a), for all i ∈ [n], π ∈ Π, (x, a) ∈ S ×A, h ∈ [H]. (13)

Then, we prove the following lemma for pessimism in V values.

Lemma 19 (Pessimism for Estimated V Values) Under the condition of Eq.(12), for any i ∈
[n], π ∈ Π, x ∈ S, we have

V πi,h(x) ≥ V̂ πi,h(x) . (14)

Proof For any i ∈ [n], π ∈ Π, x ∈ S, a ∈ A, we have

Qπi,h(x, a)− Q̂πi,h(x, a)

≥ ri,h(x, a) + (Bi,hV πi,h+1)(x, a)−
(
ri,h(s, a) + (B̂i,hV̂ πi,h+1)(x, a)− Γi,h(x, a)

)
= (Bi,hV πi,h+1)(x, a)− (Bi,hV̂ πi,h+1)(x, a) + Γi,h(x, a)

−
(
(B̂i,hV̂ πi,h+1)(x, a)− Bi,hV̂ πi,h+1)(x, a)

)
≥ (Bi,hV πi,h+1)(x, a)− (Bi,hV̂ πi,h+1)(x, a)

=
(
Pi,h(V

π
i,h+1 − V̂ πi,h+1)

)
(x, a) ,

where the second inequality is because of Eq.(12). And since in the H + 1 step we have V πi,H+1 =

V̂ πi,h+1 = 0, we can get Qπi,H(x, a) − Q̂πi,H(x, a). Then we use induction to prove Qπi,h(x, a) ≥
Q̂πi,h(x, a) for all h. Given Qπi,h+1(x, a) ≥ Q̂πi,h+1(x, a), we have

Qπi,h(x, a)− Q̂πi,h(x, a) ≥
(
Pi,h(V

π
i,h+1 − V̂ πi,h+1)

)
(x, a)

= E
[
⟨Qπi,h+1(sh+1, ·)− Q̂πi,h+1(sh+1, ·), πh+1(·|sh+1)⟩A|sh = x, ah = a

]
≥ 0 . (15)

Then we have

V πi,h(x)− V̂ πi,h(x) = ⟨Qπi,h(x, ·)− Q̂πi,h(x, ·), πh(· |x)⟩A ≥ 0 .

Then we start our proof.

Proof [Proof of Theorem 5]

First, we decompose the suboptimality gap as follows

SubOpt(πPERM)
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= Ec∼CV π
∗

c,1 (x1)− V π̂
∗

c,1 (x1)

= Ec∼CV π
∗

c,1 (x1)−
1

n

n∑
i=1

V π
∗

i,1 (x1) +
1

n

n∑
i=1

V π
PERM

i,1 (x1)− Ec∼CV π
PERM

c,1 (x1)

+
1

n

n∑
i=1

(
V π

∗

i,1 (x1)− V π
PERM

i,1 (x1)
)
. (16)

For the first two terms, we can bound them following the standard generalization techniques (Ye et al.
[2023]), i.e., we use the covering argument, Chernoff bound,and union bound.

Define the distance between polices d(π1, π2) ≜ maxs∈S,h∈[H] ∥π1
h(·|s)− π2

h(·|s)∥1. We construct
the ϵ-covering set Π̃ w.r.t. d such that

∀π ∈ Π,∃π̃ ∈ Π̃, s.t. d(π, π̃) ≤ ϵ. (17)

Then we have

∀i ∈ [n], π ∈ Π,∃π̃ ∈ Π̃, s.t.V πi,1(x1)− V π̃i,1(x1) ≤ Hϵ. (18)

By the definition of the covering number,
∣∣∣Π̃∣∣∣ = NΠ

ϵ . By Chernoff bound and union bound over the

policy set Π̃, we have with prob. at least 1− δ
3 , for any π̃ ∈ Π̃,∣∣∣∣∣ 1n

n∑
i=1

V π̃i,1(x1)− Ec∼CV π̃c,1(x1)

∣∣∣∣∣ ≤
√

2 log(6NΠ
ϵ /δ)

n
. (19)

By Eq.(18) and Eq.(19), ∀i ∈ [n], π ∈ Π,∃π̃ ∈ Π̃ with
∣∣∣Π̃∣∣∣ = NΠ

ϵ , s.t.V
π
i,1(x1)− V π̃i,1(x1) ≤ Hϵ,

and with probability at least 1− δ/3, we have∣∣∣∣∣ 1n
n∑
i=1

V πi,1(x1)− Ec∼CV πc,1(x1)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

V π̃i,1(s1)− Ec∼CV π̃c,1(x1)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

V πi,1(s1)−
1

n

n∑
i=1

V π̃i,1(s1)

∣∣∣∣∣+ ∣∣∣Ec∼CV π̃c,1(x1)− Ec∼CV πc,1(x1)
∣∣∣

≤
√

2 log(6NΠ
ϵ /δ)

n
+ 2Hϵ . (20)

Therefore, we have for the first two terms, w.p. at least 1 − 2
3δ we can upper bound them with

4Hϵ+ 2

√
2 log(6NΠ

ϵ /δ)
n .

Then, what remains is to bound the term 1
n

∑n
i=1

(
V π

∗

i,1 (x1)− V π
PERM

i,1 (x1)
)
.

First, by similar arguments, we have

V π
∗

i,1 (x1)− V π
PERM

i,1 (x1) ≤
(
V π

∗

i,1 (x1)− V π̃
PERM

i,1 (x1)
)
+ |V π̃

PERM

i,1 (x1)− V π
PERM

i,1 (x1)|

≤ Hϵ+ V π
∗

i,1 (x1)− V π̃
PERM

i,1 (x1) , (21)

where π̃PERM ∈ Π̃ such that |V π̃PERM

i,1 (x1)− V π
PERM

i,1 (x1)| ≤ Hϵ.
By the definition of the oracle in Definition.3, the algorithm design of Algo.1 (e.g., we call oracle
O(Dh, V̂h+1, δ/(3nHNΠ

(Hn)−1))), and use a union bound over H steps, n contexts, and NΠ
(Hn)−1

policies, we have: with probability at least 1− δ/3, the condition in Eq.(12) holds (with the policy
class Π replaced by Π̃ (and ϵ = 1/(Hn)).
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Then, we have

1

n

n∑
i=1

(
V π

∗

i,1 (x1)− V π̃
PERM

i,1 (x1)
)

≤ 1

n

n∑
i=1

(
V π

∗

i,1 (x1)− V̂ π̃
PERM

i,1 (x1)
)

=
1

n

n∑
i=1

(
V π

∗

i,1 (x1)− V̂ π
PERM

i,1 (x1)
)
+

1

n

n∑
i=1

(
V̂ π

PERM

i,1 (x1)− V̂ π̃
PERM

i,1 (x1)
)

≤ 1

n

n∑
i=1

(
V π

∗

i,1 (x1)− V̂ π
PERM

i,1 (x1)
)
+H · 1

Hn

≤ 1

n

n∑
i=1

(
V π

∗

i,1 (x1)− V̂ π
∗

i,1 (x1)
)
+ 1/n , (22)

where the first inequality holds because of the pessimism in Lemma 19, the second inequality holds
because |V̂ π̃PERM

i,1 (x1)− V̂ π
PERM

i,1 (x1)| ≤ Hϵ with ϵ here specified as 1/(Hn), and the last inequality
holds because that in the algorithm design of Algo.2 we set πPERM = argmaxπ∈Π

1
n

∑n
i=1 V̂

π
i,1(x1).

Then what left is to bound V π
∗

i,1 (x1)− V̂ π
∗

i,1 (x1).

And using Lemma A.1 in Jin et al. [2021], we have

V π
∗

i,1 (x1)− V̂ π
∗

i,1 (x1) = −
H∑
h=1

Eπ̂∗,Mi

[
ιπ

∗

i,h(sh, ah)
∣∣ s1 = x

]
+

H∑
h=1

Eπ∗,Mi

[
ιπ

∗

i,h(sh, ah)
∣∣ s1 = x

]
+

H∑
h=1

Eπ∗,Mi

[
⟨Q̂π

∗

i,h(sh, ·), π∗
h(· | sh)− π∗

h(· | sh)⟩A
∣∣ s1 = x

]
≤ 2

H∑
h=1

Eπ∗,Mi

[
Γi,h(sh, ah)

∣∣ s1 = x
]
, (23)

where in the last inequality we use Lemma 18.

Finally, with Eq.(16), Eq.(20), Eq.(21), Eq.(22), and Eq.(23), with ϵ set as 1
nH , we can get w.p. at

least 1− δ

Ec∼CV π
∗

c,1 (x1)− V π
PERM

c,1 (x1)

≤ 5

n
+ 2

√
2 log(6NΠ

(Hn)−1/δ)

n
+

2

n

n∑
i=1

H∑
h=1

Eπ∗,Mi
[Γi,h(sh, ah)|s1 = x1]

≤ 7

√
2 log(6NΠ

(Hn)−1/δ)

n
+

2

n

n∑
i=1

H∑
h=1

Eπ∗,Mi
[Γi,h(sh, ah)|s1 = x1] .

C.2 Proof of Theorem 9

Our proof has two steps. First, we define that

ιi,h(x, a) := Bi,hVi,h+1(x, a)−Qi,h(x, a) (24)

Then we have the following lemma from Jin et al. [2021]:

20



Lemma 20 Define the event E as

E =

{∣∣(B̂V̂ πi

i,h+1)(x, a)− (Bi,hV̂ πi

i,h+1)(x, a)
∣∣ ≤ Γi,h(x, a) ∀(x, a) ∈ S ×A,∀h ∈ [H],∀i ∈ [n]

}
,

Then by selecting the input parameter ξ = δ/(Hn) in O, we have P(E) ≥ 1− δ and

0 ≤ ιi,h(x, a) ≤ 2Γi,h(x, a).

Proof The proof is the same as [Lemma 5.1, Jin et al. 2021] with the probability assigned as δ/(Hn)
and a union bound over h ∈ [H], i ∈ [n].

Next lemma shows the difference between the value of the optimal policy π∗ and number n of
different policies πi for n MDPs.

Lemma 21 Let π be an arbitrary policy. Then we have
n∑
i=1

[V πi,1(x1)− V π
i

i,1 (x1)] =

n∑
i=1

H∑
h=1

Ei,π[⟨Qi,h(·, ·), πh(·|·)− πi,h(·|·)⟩A]

+

n∑
i=1

H∑
h=1

(Ei,π[ιi,h(xh, ah)]− Ei,πi [ιi,h(xh, ah)]) (25)

Proof The proof is the same as Lemma 3.1 in Jin et al. [2021] except substituting π into the lemma.

We also have the following one-step lemma:

Lemma 22 (Lemma 3.3, Cai et al. 2020) For any distribution p∗, p ∈ ∆(A), if p′(·) ∝ p(·)·exp(α·
Q(x, ·)), then

⟨Q(x, ·), p∗(·)− p(·)⟩ ≤ αH2/2 + α−1 ·
(

KL(p∗(·)∥p(·))− KL(p∗(·)∥p′(·))
)
.

Given the above lemmas, we begin our proof of Theorem 9.

Proof [Proof of Theorem 9] Combining Lemma 20 and Lemma 21, we have
n∑
i=1

[V π
∗

i,1 (x1)− V π
i

i,1 (x1)]

≤
n∑
i=1

H∑
h=1

Ei,π∗ [⟨Qi,h, π∗
h − πi,h⟩] + 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(xh, ah)]

≤
n∑
i=1

H∑
h=1

αH2/2 + α−1Ei,π∗ [KL(π∗
h(·|xh)∥πi,h(·|xh))− KL(π∗

h(·|xh)∥πi+1,h(·|xh))]

+ 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(xh, ah)]

≤ αH3n/2 + α−1 ·
H∑
h=1

Ei,π∗ [KL(π∗
h(·|xh)∥π1,h(·|xh))] + 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(xh, ah)]

≤ αH3n/2 + α−1H log |A|+ 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(xh, ah)],

where the last inequality holds since π1,h is the uniform distribution over A. Then, selecting
α = 1/

√
H2n, we have
n∑
i=1

[V π
∗

i,1 (x1)− V π
i

i,1 (x1)] ≤ 2
√
n log |A|H2 + 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(sh, ah)],
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which holds for the random selection of D with probability at least 1 − δ. Meanwhile, note that
each MDP Mi is drawn i.i.d. from C. Meanwhile, note that πi only depends on MDP M1, ...,Mi−1.
Therefore, by the standard online-to-batch conversion, we have

P
(
1

n

n∑
i=1

[V π∗
i,1 (x1)− V πi

i,1 (x1)] +

(
1

n

n∑
i=1

Ec∼CV
πi
c,1(x1)− Ec∼CV

π∗
c,1 (x1)

)
≤ 2H

√
2 log 1/δ

n

)
≥ 1− δ,

which suggests that with probability at least 1− 2δ,

Ec∼CV π
∗

c,1 (x1)−
1

n

n∑
i=1

Ec∼CV πi
c,1(x1) ≤ 2

√
log |A|H2

n
+

2

n

n∑
i=1

H∑
h=1

Eπ∗ [Γi,h(xh, ah)] + 2

√
2H log 1/δ

n
.

Therefore, by selecting πPPPO := random(π1, ..., πn) and applying the Markov inequality, setting
δ = 1/8, we have our bound holds.

D Proof of Theorems in Section 5

D.1 Proof of Theorem 12

By Lemma 5.2 and its proof in Jin et al. [2021], the parameters specified as λ = 1, β(δ) =

c · dH
√

log(2dHK/δ), and applying union bound, we can get: for Algo.4, with probability at least
1− δ/3∣∣(B̂i,hV̂ πi,h+1)(x, a)− (Bi,hV̂ πi,h+1)(x, a)

∣∣ ≤ β( δ

3nHNΠ
(Hn)−1

)(
ϕ(x, a)⊤Λ−1

i,hϕ(x, a)
)1/2

,

for all i ∈ [n], π ∈ Π̃, (x, a) ∈ S ×A, h ∈ [H] , (26)

where Π̃ is the 1
Hn -covering set of the policy space Π w.r.t. distance d(π1, π2) =

maxs∈S,h∈[H] ∥π1
h(·|s)− π2

h(·|s)∥1.

Therefore, we can specify the Γi,h(·, ·) in Theorem 5 with β
(

δ
3nHNΠ

(Hn)−1

)(
ϕ(x, a)⊤Λ−1

i,hϕ(x, a)
)1/2

,

and follow the same process as the proof of Theorem 5 to get the result for Algo.2 with subroutine
Algo.4.

Similarly, we can get: we can get: for Algo.4, with probability at least 1− 1/4∣∣(B̂i,hV̂i,h+1)(x, a)− (Bi,hV̂i,h+1)(x, a)
∣∣ ≤ β( δ

4nH

)(
ϕ(x, a)⊤Λ−1

i,hϕ(x, a)
)1/2

,

for all i ∈ [n], (x, a) ∈ S ×A, h ∈ [H] . (27)

Therefore, we can specify the Γi,h(·, ·) in Theorem 9 with β
(

δ
4nH

)(
ϕ(x, a)⊤Λ−1

i,hϕ(x, a)
)1/2

and
follow the same process as the proof of Theorem 9 to get the result for Algo.3 with subroutine Algo.4.

D.2 Proof of Corollary 14

By the assumption that Di is generated by behavior policy π̄i which well-explores MDPMi with
constant ci (where the well-explore is defined in Def.13), the proof of Corollary 4.6 in Jin et al.
[2021], and applying a union bound over n contexts, we have that for Algo.2 with subroutine Algo.4
w.p. at least 1− δ/2

∥ϕ(x, a)∥Λ−1
i,h
≤

√
2d

ciK
for all i ∈ [n], (x, a) ∈ S ×A and all h ∈ [H] , (28)

and for Algo.2 with subroutine Algo.4 w.p. at least 1− δ/2

∥ϕ(x, a)∥Λ−1
i,h
≤

√
2dH

ciK
for all i ∈ [n], (x, a) ∈ S ×A and all h ∈ [H] , (29)

because we use the data splitting technique and we only utilize each trajectory once for one data tuple
at some stage h, so we replace K with K/H .

Then, the result follows by plugging the results above into Theorem12.
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E Results in Section A

E.1 Proof of Proposition 17

Proof [Proof of Proposition 17] Let D′ = {(xτcτ ,h, a
τ
cτ ,h

, rτcτ ,h)}
H,K
h=1,τ=1 denote the merged dataset,

where each trajectory belongs to a context cτ . For simplicity, let Dc denote the collection of
trajectories that belong to MDPMc. Then each trajectory in D′ is generated by the following steps:

• The experimenter randomly samples an environment c ∼ C.

• The experimenter collect a trajectory from the episodic MDPMc.

Then for any x′, r′, τ we have

PD′(rτcτ ,h = r′, xτcτ ,h+1 = x′|{(xjcj ,h, a
j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 )

=
PD′(rτcτ ,h = r′, xτcτ ,h+1 = x′, {(xjcj ,h, a

j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 )

PD′({(xjcj ,h, a
j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 )

=
∑
c∈C

PD′(rτcτ ,h = r′, xτcτ ,h+1 = x′|{(xjcj ,h, a
j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 , cτ = c)q(c), (30)

where

q(c′) :=
PD′({(xjcj ,h, a

j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 , cτ = c′)∑

c∈C PD′({(xjcj ,h, a
j
cj ,h

)}τj=1, {r
j
cj ,h

, xjcj ,h+1}
τ−1
j=1 , cτ = c)

.

Next, we further have

(30)

=
∑
c∈C

Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτcτ ,h, ah = aτcτ ,h)q(c)

=
∑
c∈C

Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτcτ ,h, ah = aτcτ ,h)PD′(sh = xτcτ ,h, ah = aτcτ ,h, cτ = c)∑
c∈C PD′(sh = xτcτ ,h, ah = aτcτ ,h, cτ = c)

=
∑
c∈C

p(c) ·
Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτcτ ,h, ah = aτcτ ,h)Pc(sh = xτcτ ,h, ah = aτcτ ,h)∑

c∈C p(c) · Pc(sh = xτcτ ,h, ah = aτcτ ,h)

= Ec∼C
Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτcτ ,h, ah = aτcτ ,h)µc,h(x

τ
cτ ,h

, aτcτ ,h)

Ec∼Cµc,h(xτcτ ,h, a
τ
cτ ,h

)
,

where the first equality holds since for all trajectories τ satisfying cτ = c, they are compliant with
Mc, the second one holds since all trajectories are independent of each other, the third and fourth
ones hold due to the definition of µc,h(·, ·).
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E.2 PEVI algorithm

Algorithm 6 [Jin et al., 2021] Pessimistic Value Iteration (PEVI)
Require: Dataset D = {(xτcτ ,h, a

τ
cτ ,h

, rτcτ ,h)
H
h=1}Kτ=1, confidence probability δ ∈ (0, 1).

1: Initialization: Set V̂H+1(·)← 0.
2: for step h = H,H − 1, . . . , 1 do
3: Set Λh ←

∑K
τ=1 ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λ · I .
4: Set ŵh ← Λ−1

h (
∑K
τ=1 ϕ(x

τ
h, a

τ
h) · (rτh + V̂h+1(x

τ
h+1))).

5: Set Γh(·, ·)← β(δ) · (ϕ(·, ·)⊤Λ−1
h ϕ(·, ·))1/2.

6: Set Q̂h(·, ·)← min{ϕ(·, ·)⊤ŵh − Γh(·, ·), H − h+ 1}+.
7: Set π̂h(· | ·)← argmaxπh

⟨Q̂h(·, ·), πh(· | ·)⟩A.
8: Set V̂h(·)← ⟨Q̂h(·, ·), π̂h(· | ·)⟩A.
9: end for

Ensure: πPEVI = {π̂h}Hh=1.

We analyze the suboptimality gap of the Pessimistic Value Iteration (PEVI) (Jin et al. [2021]) in the
contextual linear MDP setting without context information to demonstrate that by finding the optimal
policy for M̄ is not enough to find the policy that performs well on MDPs with context information.

Pessimistic Value Iteration (PEVI). Let π∗ be the optimal policy w.r.t. the average MDP M̄.
We analyze the performance of the Pessimistic Value Iteration (PEVI) [Jin et al., 2021] under the
unknown context information setting. The details of PEVI is in Algo.6.

Suppose that D̄ consists of K number of trajectories generated i.i.d. following by a fixed behavior
policy π̄. Then the following theorem shows the suboptimality gap for Algo.6 does not converge to 0
even when the data size grows to infinity.

Theorem 23 Assume that π̄ In Algo.4, we set

λ = 1, β(δ) = c′ · dH
√

log(4dHK/δ) , (31)

where c′ > 0 is a positive constant. Suppose we have K ≥ c̃ · d log(4dH/ξ), where c̃ > 0 is a
sufficiently large positive constant that depends on c. Then we have: w.p. at least 1− δ, for the output
policy πPEVI of Algo.6,

sup
π
V πM̄,1 − V

πPEVI

M̄,1 ≤ c
′′ · d3/2H2K−1/2

√
log(4dHK/δ), (32)

and the suboptimality gap satisfies

SubOpt(πPEVI) ≤ c′′ · d3/2H2K−1/2
√

log(4dHK/δ) + 2 sup
π
|V πM̄,1(x1)− Ec∼CV πc,1(x1)| ,

(33)

where c′′ > 0 is a positive constant that only depends on c and c′.

Proof [Proof of Theorem 23] First, we define the value function on the average MDP M̄ as follows.

V
π

h(x) = Eπ,M̄
[ H∑
i=h

ri(si, ai)
∣∣ sh = x

]
. (34)

We then decompose the suboptimality gap as follows.

SubOpt(πPEVI)

= Ec∼C
[
V π

∗

c,1 (x1)
]
− Ec∼C

[
V π

PEVI

c,1 (x1)
]

= V
π∗

1 (x1)− V
πPEVI

1 (x1) +
(
Ec∼C

[
V π

∗

c,1 (x1)
]
− V π

∗

1 (x1)
)
+
(
V
πPEVI

1 (x1)− Ec∼C
[
V π

PEVI

c,1 (x1)
])
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≤ V π
∗

1 (x1)− V
πPEVI

1 (x1) + 2 sup
π
|V πM̄,1(x1)− Ec∼CV πc,1(x1)| . (35)

Then, applying Corollary 4.6 in Jin et al. [2021], we can get that w.p. at least 1− δ

V
π∗

1 (x1)− V
πPEVI

1 (x1) ≤ c′′ · d3/2H2K−1/2
√

log(4dHK/δ) , (36)

which, together with Eq.(35) completes the proof.

Theorem 23 shows that by adapting the standard pessimistic offline RL algorithm over the offline
dataset without context information, the learned policy πPEVI converges to the optimal policy π̄∗ over
the average MDP M̄.
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