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Abstract

3D human pose estimation (3D HPE) is an important
computer vision task with various practical applications.
Researchers have proposed various deep learning-based
methods for 3D HPE. However, the majority of such meth-
ods rely on lifting 2D pose sequence to 3D which do not
perform well in challenging scenarios and are often com-
putationally expensive. Such methods typically rely on 2D
joint coordinates which do not provide much spatial context
to solve ambiguity problem. In addition, merely relying on
information extracted from RGB frames may miss temporal
information and structural context. Thus, in this paper, we
propose a framework that incorporates event stream as an
additional input since event features provide such useful in-
formation. Moreover, instead of using 2D joint coordinates
in pose sequence, our framework uses intermediate visual
representations produced by off-the-shelf 2D pose detec-
tors to implicitly encode joint-centric spatial context. Our
new framework is a novel state space model (SSM)-based
solution called Event-Guided Context Aware MambaPose
(CA-MambaPose). In CA-MambaPose framework, we de-
sign a novel cross modality fusion mamba module to skill-
fully fuse the RGB and Event features. CA-MambaPose has
lower computational cost due to the efficiency of Mamba
blocks. We conduct extensive experiments to evaluate CA-
MambaPose using two existing datasets. Our experimental
results show that CA-MambaPose achieves better perfor-
mance than SOTA methods.

1. Introduction
3D human pose estimation (3D HPE), a fundamental and

challenging computer vision task, has attracted much atten-
tion from computer vision researchers in recent years. 3D
HPE aims to precisely localize the 3D joints of individu-
als given monocular images or videos, serving as a crucial
component for various applications including action recog-
nition [25, 45], behavior monitoring [14], and human-robot
interaction [21].

Recently, benefiting from SOTA performance of the ex-

isting 2D pose estimators [5, 35, 47], lifting-based meth-
ods which lift 2D skeleton sequences to 3D space has be-
come the dominated methods in the 3D HPE task. Com-
pared to raw RGB images, 2D human poses (as an interme-
diate representation) have two essential advantages. First,
2D joint coordinates provide highly position-relevant infor-
mation to such lifting-based methods for localizing joints
in 3D space. In addition, 2D coordinate representation
which only requires J × 2 (J = number of joints) is ex-
ceptionally lightweight in terms of memory cost. Such
properties enable SOTA lifting-based methods to take ad-
vantage of extremely long-term temporal clues to improve
accuracy. Significant advancements in deep learning ap-
proaches have been made so far, consistently improving
performance [4, 6, 23, 43]. Recently, the transformer-based
approaches [22,53,55] have demonstrated further improve-
ment in 3D HPE.

However, recovering accurate 3D pose from 2D key-
points is still challenging due to depth ambiguity and self-
occlusion in monocular data [20, 26]. Most lifting-based
methods generally consists of two stages. In Stage 1, an
off-the-shelf 2D pose estimator detects 2D pose joints for
each input video frame, with a set of intermediate represen-
tations as byproducts, e.g., feature maps of varying resolu-
tions. In Stage 2, the detected 2D pose sequence is lifted to
3D space, while such feature representations are discarded.
Some problems naturally arise here: the (multi-scale) joint-
centric spatial context encoded by these image feature maps
is lost. We claim that the spatial context carrying crucial vi-
sual clues (e.g., occlusions, shade) also provides necessary
information for 3D HPE. For example, depth ambiguity and
self-occlusion related problem can be mitigated by utilizing
spatial information encoded in the image features. Since 2D
keypoints alone are unable to encode the spatial contextual
information, existing lifting-based approaches have to de-
pend on long-term temporal clues to alleviate ambiguities,
which bring non-trivial computational costs.

In this paper, we design a novel state space model
(SSM) based framework which incorporates both RGB &
Event stream, named Event-guided Context-Aware Mam-
baPose (CA-MambaPose). Unlike existing lifting-based
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methods, we engage the lost intermediate visual represen-
tations learned by 2D pose detectors. The proposed method
leverages both multi-resolution RGB & Event feature maps
produced by backbone network in a sparse manner. Specif-
ically, we extract informative spatial or temporal contex-
tual features from two modality feature maps using de-
formable operations [8, 56] where the detected 2D joints
serve as reference points. This helps mitigate the noise
brought from background while avoiding heavy computa-
tion. Since event stream includes important dynamic infor-
mation of moving objects with clear edge structures, and
captures motion changes in the scene at an extremely high
dynamic range and high temporal resolution. Currently,
event stream has been used for from low-level vision (fea-
ture detection and tracking, optic flow, etc.) to high-level
vision (segmentation, recognition, etc.) tasks but not for
3D HPE. We aim to encode joint-centric context from both
RGB image and event stream, that promotes reducing am-
biguity in 3D human pose estimation. How to effectively
fuse features from two modalities is a non-trivial question.
Existing modern multi-modal fusion approaches generally
employ Transformers [1,39] to fuse the cross-modality fea-
tures. Its self-attention mechanism enables it to efficiently
capture spatio-temporal relationships for this domain. How-
ever, Transformer-based cross-modality fusion is compute-
intensive with a quadratic time and space complexity.

To this end, we propose a Cross Modality Fusion Mamba
method, aiming to fuse features in a hidden state space,
which might open up a new paradigm for cross-modality
feature fusion. We are inspired by Mamba [13, 24, 54] with
a linear complexity to build a hidden state space, which can
extracts key information from source features and explores
relationships between different modalities. Furthermore,
we design a Pose-Context Feature Exchange module to ex-
change information between the extracted multi-level con-
textual features and the 2D joint embedding that encodes
positional clues. Specifically, we develop a Selective-Scan
based modeling approach for feature exchange to help re-
duce the domain gaps. Finally, a spatial transformer module
is adopted to model spatial dependencies between human
joints. As a result, CA-MambaPose shows encouragingly
strong performance in 3D HPE benchmarks.

In summary, CA-MambaPose is a novel Event-guided
method that leverages Mamba to directly capture multi-
modality dependency for accurate 3D pose estimation. Our
contributions can be summarized as follows:

• To the best of our knowledge, we are the first to pro-
pose the Mamba-based cross-modality fusion, to com-
bine event stream and RGB image for context-aware
3D HPE using lifting-based paradigm. Such context
awareness which includes both spatial and temporal
clues is achieved by leveraging readily available visual
representations learned by 2D pose detectors.

• We introduce a novel Cross Modality Fusion Mamba
which enables deep fusion between RGB & Event fea-
tures in a hidden state space and reduces domain gaps
between cross-modality features. Further, we use a
selective-scan based module to efficiently fuse infor-
mative context features with 2D joint embedding that
provides positional clues.

• CA-MambaPose achieves new state-of-the-art results
on two widely used video 3D HPE benchmarks, Hu-
man3.6M and MPI-INF-3DHP. Our model demon-
strates significant performance improvements over
other temporal methods that use many video frames.

2. Related works

2.1. Image-based 3D Pose Estimation

The image-based multi-person 3D pose estimation meth-
ods can be mainly divided into two types of paradigms: top-
down [22, 29, 36] and bottom-up approaches [40, 48, 52].

Similar to 2D HPE, the top-down paradigm first con-
ducts human detection, followed by performing single-
person 3D pose estimation. For single-person, they pre-
dict 3D poses by learning 3D heatmaps [29], or estimat-
ing 2D poses via 2D pose estimator [33] and performing
2D-to-3D lifting [49]. For example, PoseNet [29] predicts
the root depths of each person during the human detection
stage, then estimates the 3D coordinates from 3D heatmaps.
The bottom-up paradigm [40, 48, 52] follows a pipeline of
firstly estimating the 3D coordinates for each human joint
in an image and then assigning them to different human in-
stances. Although these methods achieve great improve-
ment on 3D human HPE, the performances of these meth-
ods rely on the accuracy of human detection. In addition,
image-based 3D HPE methods are not good at handling oc-
clusion cases compared with the video-based approaches.

2.2. Video-based 3D Pose Estimation

Video-based 3D human pose estimation methods [4, 49,
52, 53] can extract more temporal context to achieve better
consistency for pose estimation across frames. Generally,
there are two categories methods of extracting temporal in-
formation: 1. based on image visual features [7, 17] and 2.
based on 2D pose sequence [2, 30, 53].

The methods [7, 17, 37] based on image visual features
usually crop the human features through predicted human
bounding boxes, and then use 3D convolution or RNN to ex-
tract the temporal information from these cropped sequence
features. For example, TCMR [7] uses ResNet to extract
visual features from video frames, then captures temporal
dependency on these deep features by the RNN. However,
these methods rely on such cropped image inputs that face
the feature alignment problem. The methods [2, 30, 53]

951



based on 2D pose sequence usually estimate 2D joints se-
quence at first, then lift 2D coordinate sequence to 3D pose
using a temporal lifting network. However, these methods
cannot capture contextual depth information from visual
features which have been lost during the 2D HPE process-
ing stage. Besides, these video-based methods are multi-
stage which cannot be optimized in an end-to-end manner.

2.3. Transformers in 3D Human Pose Estimation

Recently, the transformer-based approaches [27, 30, 34,
46, 53, 55] have been proposed to improve the long-term
modeling capabilities of video sequence for 3D human pose
estimation. TransPose [46] formulates human joints as vi-
sual tokens and captures the relationship between human
joints via self-attention. PRTR [19] exploits the end-to-end
transformer-based pose estimation network. PoseFormer
[53] and MotionBERT [55] explore the spatial-temporal at-
tention mechanism for 3D pose estimation. MotionAG-
Former [27] introduces a new GCNFormer module that har-
nesses the power of transformers to capture global informa-
tion while simultaneously employing Graph Convolutional
Networks (GCNs) to integrate local spatial and temporal re-
lationships. However, these methods did not study the atten-
tion on real visual features from images since they lift 3D
poses from a sequence of 2D poses. Moreover, the existing
transformer-based pose estimation methods are designed
for single-person pose estimation, which limits their ap-
plications in crowded scenarios. Although POTR-3D [30]
proposes three types of transformer to model single-person,
inter-person and inter-frame relationships, they still follow
the 2D-to-3D lifting paradigm and lose the contextual in-
formation from visual features. In this paper, we study an
E2E video 3D pose estimation framework for either single-
person or multi-person. Our work explores extracting spa-
tial and temporal relationships in both spatial and channel
branches under the event stream guidance.

2.4. State Space Models

Recently, Mamba [13] has achieved a significant break-
through with its linear-time inference and efficient training
methodology. Building on the success of Mamba, MoE-
Mamba [32] amalgamated Mixture of Experts with Mamba,
unlocking the scalability potential of SSMs and achieving
performance akin to Transformers. For vision applications,
Vision Mamba [54] and VMamba [24] used bidirectional
SSM blocks and the cross-scan module, respectively, to en-
hance data-dependent global visual context. For example,
vision Mamba [54] expands the original 2D scan to differ-
ent bidirectional 3D scans and designs a Mamba framework
to use mamba in video understanding tasks. However, the
exploration of Mamba’s potential in 3D human pose estima-
tion remains untapped. In this paper, we do not simply ap-

ply SSM for pose estimation. We incorporate event stream
for 3D HPE, thus we focus on exploiting Mamba for multi-
modality feature fusion. We introduce a carefully designed
Mamba-based structure to integrate the cross-modality fea-
tures.

3. Methodology
3.1. Preliminaries

State Space Model. State Space Models (SSMs) can be
considered as a linear time-invariant (LTI) system that maps
a one-dimensional input sequence x(t) ∈ RL to an out-
put y(t) ∈ RL via intermediate hidden states h(t) ∈ RN .
Mathematically, SSMs are often formulated as linear ordi-
nary differential equations (ODEs):

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t) +Dx(t)
(1)

where the system’s behavior is defined by a set of parame-
ters, including the state transition matrix A ∈ RN×N , the
projection parameters B,C ∈ RN×1 , and the weighting
parameter D ∈ R1.
Discretization of SSM. The continuous-time nature of
SSMs in Eq. 1 poses significant challenges when applied
in deep learning scenarios. To address this issue, it is
necessary to discretize the ODEs through a discretization
process, which includes a timescale parameter ∆ to trans-
form the continuous parameters A,B to discrete parame-
ters A,B. The commonly used method for transformation
is zero-order hold (ZOH), which is defined as follows:

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I) ·∆B
(2)

After the discretization of A,B, the discretized version of
Eq. 1 using a step size ∆ can be rewritten as:

ht = Aht−1 +Bxt,

yt = Cht +Dxt

(3)

After discretization, SSMs are computed via a global con-
volution with a structured convolutional kernel K ∈ RM .

K = (CB,CAB, · · · , CAM−1B),

y = x ∗K
(4)

where M is the length of the input sequence x.

3.2. Overview

In this section, we give an overview of the proposed
ContextAware(CA)-Mambapose. The whole framework is
shown in Fig 1. CA-Mambapose takes two types of input
namely RGB image I and event eI . A pretrained 2D pose
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Figure 1. The overview of Event-guidend Context-Aware MambaPose (CA-MambaPose). CA-MambaPose takes two types of input which
are RGB (I) and event (eI ) image. Event image is offline syntheticly generated using v2e [15] toolbox. A pretrained 2D pose detector
estimates the 2D pose from RGB input with a set of multi-scale RGB feature maps Fl as byproducts. We use the same backbone to
generate a set of multi-scale event feature maps El. Then, we extract informative join-context features from two types of feature maps via
Deformable Context Extraction (Sec.3.3) and subsequently fuse them with a proposed Cross Modality Fusion Mamba (Sec.3.4) module.
The fused features Xl with cross-modality information interact with 2D pose embeddings P via Pose-Context Feature Exchange (Sec.3.5)
module. Finally, such joint-level context-aware representations are fed into Inter-joint Relation Modeling before inputing into the regression
head for final 3D pose estimation.

estimator facilitates the extraction of multi-scale features
from RGB and event images, denoted by Fl and El, respec-
tively. It also estimates the 2D pose p from the multi-scale
RGB features. After that, we feed both types of features
with 2D pose as reference points into Deformable Context
Extraction module to separately extract joint-context fea-
tures. Subsequently, we input these contextual features into
Cross Modality Fusion Mamba (CMFM), which reduces
domain gaps between cross-modal features and enhances
the representation consistency of fused features. After that,
the fused features with cross-modality information interact
with 2D pose embeddings via Pose-Context Feature Ex-
change module. Finally, we apply an Inter-joint Relation
Modeling to extract inter-joint dependencies for each repre-
sentation, before feeding into the regression head for final
3D pose estimation.

Next, we provide detailed descriptions of our approach.
Since the spatial context carries crucial visual clues (e.g.,
occlusions, shade) to help solve the ambiguity problem in
3D HPE task, we aim to utilize the intermediate visual rep-
resentations learned via 2D pose detector in our approach.
Besides the informative spatial context encoded in RGB
feature maps, DVS event stream includes important dy-
namic (temporal) information, reacting to changes in the
scene with microsecond precision. This can be advanta-

geous for capturing accurate temporal motion information
which can be considered as temporal context to help 3D
HPE.

Figure 2. Event stream.

For a given RGB image I of size H × W × 3, we first
simply use the v2e toolbox [15] to generate realistic syn-
thetic event stream eI for each RGB image I (shown in
Fig 2). The events and frames of a hybrid camera system
are hard to be perfectly aligned in practice. To take this
into consideration, we apply random perspective transforms
between them as in [18] during data preparation. An off-
the-shelf (pretrained) 2D pose detector (e.g., HRNet) pro-
duces two sets of intermediate feature maps with varying
resolutions for both inputs, Fl ∈

{
RHl×Wl×Cl

}L

l=1
from

RGB image I (where L is the total number of feature maps)
and El ∈

{
RHl×Wl×Cl

}L

l=1
from event eI . Since high-
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resolution feature maps encode fine-grained visual cues
(e.g., joint position) while low-resolution ones tend to keep
high-level semantics (e.g., human skeleton structures), we
aim to take full advantage of these multi-scale feature maps
to implicitly encode information about human joints. In ad-
dition, the 2D pose detector also estimates the correspond-
ing 2D human pose p ∈ RJ×2 merely based on multi-
scale RGB features. Inspired by [50], we apply the De-
formable Context Extraction module to further extract the
spatial and temporal contextual features from both types of
multi-scale feature maps using the 2D detected joints as ref-
erence points. This helps mitigate the noise brought from
background while avoiding heavy computation.

How to effectively fuse the spatial contextual features
and temporal contextual features from both input streams is
a non-trivial question. Blindly processing them in a global
way like e.g., convolutions, or vision transformers, may
bring unnecessary computational overhead. Since Mamba
[13] was proposed for linear-time sequence modeling in the
NLP field, it has been rapidly extended in various computer
vision tasks. We propose a Cross Modality Fusion Mamba
(CMFM) module which incorporates bidirectional SSM to
fuse the spatial contextual features and temporal contextual
features in a hidden state space. Moreover, we design a
Pose-Context Feature Exchange module to fuse the con-
textual features and 2D joint embeddings that encode po-
sitional clues about human joints. Specifically, we propose
a Selective-Scan based modeling approach for feature ex-
change to help reduce the domain gaps. The key compo-
nents will be explained in the following sub-sections.

3.3. Deformable Context Extraction

This module uses deformable attention to extract infor-
mative spatial/temporal contextual cues from RGB/event
feature maps. Specifically, for each detected 2D joint, we
produce a set of sampling points on multi-scale feature
maps whose offsets and weights are learned based on the
features of reference points (i.e., the detected joint of inter-
est). We also add the position embedding of 2D joint coor-
dinates Pj to the source features to preserve position detail.
In this way, we can sample feature vectors not only at the
detected joints but also the regions around them. Let l index
a feature level and j index a human joint, and Deformable
Context Extraction is formulated as:

R
′n
lj = DeformAttn(Rn−1

lj + Pj) +Rn−1
lj

Rn
lj = MLP (R

′n
lj ) +R

′n
lj

DeformAttn(Rn−1
lj + Pj) =

M∑
m=1

[
K∑

k=1

Almk ·WlmFl(pj +∆plmk)

] (5)

where m iterates over the attention heads, n ∈ (1 · · ·N1)
represents each layer, k over the sampled points around the
detected joint pj , and K is the total sampling point num-
ber. For the lth feature map, ∆plmk represents the sam-
pling offset of the kth sampling point in the mth atten-
tion head, while Almk denotes its corresponding attention
weight. Given different source features Fl or El from RGB
image and event stream, we can extract the contextual fea-
tures {R}Ll=1 and {E′}Ll=1 containing either spatial or tem-
poral clues of joints.

Figure 3. Cross Modality Fusion Mamba Module (CMFM)

3.4. Cross Modality Fusion Mamba

In contrast to prior methods using attention mecha-
nisms with quadratic computational complexity, we pro-
pose a state space model to capture comprehensive spatial-
temporal relationship. The features output by the De-
formable Context Extraction are further fed into the Cross
Modality Fusion Mamba (CMFM) module (Fig 3) for
fine-grained fusion and exploration of information correla-
tion between different modalities. The contextual features
{R}Ll=1 and {E′}Ll=1 from both RGB and event stream are
first mixed to generate the mixed features H̄n:

H l = Dwc (Linear(Rl))⊗Dwc(Linear(E′
l))⊕Rl⊕E′

l (6)

where Dwc(·) is the Depthwise convolution operation. ⊗
and ⊕ are the Element-wise multiplication and addition op-
eration. These hybrid contextual features are then input into
a bidirectional SS2D (2D-Selective-Scan) layer to capture
the spatial long-term dependencies.

H l
R = LN

(
SS2D(SiLU(H l))

)
⊗ SiLU(Linear(Rl)),

H l
E = LN

(
SS2D(SiLU(H l))

)
⊗ SiLU(Linear(E′

l)),

H l
f = H l

R ⊕H l
E

(7)
To enhance the expressive power of different channels, we
integrate Efficient Channel Attention (ECA) [44] into our
CMFM module. This allows SS2D to concentrate on learn-
ing diverse channel representations, with subsequent chan-
nel attention selecting critical channels to prevent redun-
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dancy. The output contextual features Hn
l pass through the

ECA module, resulting in the final fused feature map Xl:

Xl = ECA
(
LN(H l

f )
)
⊕Rl ⊕ E′

l (8)

3.5. Pose-Context Feature Exchange

This module aims at exchanging information between
2D pose embeddings and the fused multi-level contextual
features simultaneously. Instead of using a unified trans-
former encoder to model interactions between pose em-
bedding and multi-level context features, we apply SSM
to learn a joint representation for both types of features.
In contrast to the self-attention mechanism in transformer,
SSM ensures that each feature token gains contextual
knowledge exclusively through a compressed hidden state
computed along the corresponding scanning path, thereby
reducing the computational complexity from quadratic to
linear. The implementation of this module is:

Y 0
j = Concat([Pj , X1j , · · ·XLj ] , dim = 0)

Y
′n
j = SSM(Y n−1

j ) + Y n−1
j

Y n
j = MLP(Y

′n
j ) + Y

′n
j

(9)

where j ∈ (1 · · · J) indicates that Pose-Context feature
exchange is performed for each joint and n ∈ (1 · · ·N2)
represents each layer. Mamba layers reduce domain gaps
for both types of features in shared hidden space and pro-
mote message-passing where joint-position information and
multi-level contextual cues complement each other.

3.6. Inter-joint Relation Modeling

With the three modules above, elegant local represen-
tations are learned for each joint individually. To under-
stand the human skeleton system and its corresponding spa-
tial context in a global view, inter-joint dependencies are
modeled based on the learned per-joint features using a spa-
tial transformer encoder as in PoseFormer [53]. The spatial
encoder takes our joint-level context-aware representation{
Y N2
j

}J

j=1
as input, where each joint token (J in total) is

of (L + 1) × C dimensions, encoding both positional and
contextual information for the related joint.

3.7. Output and Loss Function

Since we already have each joint-level representation, a
simple MLP layer is adopted to obtain the final 3D pose
y ∈ Rj×3. We use L2 loss to minimize the error between
the predicted and ground truth pose as:

L =
1

J

J∑
j=1

∥yj − ŷj∥2 (10)

where ŷj and yj are the ground truth and estimated 3D joint
locations of the jth joint, respectively.

4. Experiments

In this section, we present the experimental results of
ContextAware-Mambapose. We first introduce the imple-
mentation details of Mambapose, and then report results
and compare with SOTA methods using two widely-used
single-person datasets: Human3.6M [16], MPI-INF-3DHP
[28]. All ablation studies are based on Human3.6 dataset.

4.1. Implemental Details

We use HRNet-32 [42] pre-trained on ImageNet [9] as
the backbone network ∅ of CA-Mambapose for all exper-
iments and follow the most configuration of [41]. In our
experiments, CA-Mambapose is trained on 4 A100 GPUs
with a batch size of 10 frames/GPU, while the input size is
512×512. The total number of training epochs is 60. Adam
optimizer is adopted and the initial learning rate is 5e-4,
which decreases 10× at 40 and 50 epochs.

4.2. Datasets and Evaluation Metric

Human3.6M dataset. Human3.6 [16] is the largest indoor
benchmark for single-person 3D pose estimation, which in-
cludes 7 subjects performing 15 different daily activities.
To ensure fair evaluation, we follow the standard approach
and train the model using data from subjects 1, 5, 6, 7, and
8, and then test it on data from subjects 9 and 11. Following
previous works [27, 34, 55], we use two protocols for eval-
uation. The first protocol (referred to as P1) uses Mean Per
Joint Position Error (MPJPE) in millimeters that measures
the error between the estimated pose and the actual pose,
after aligning their root joints (sacrum). The second proto-
col (referred to as P2) measures Procrustes-MPJPE, where
the actual pose and the estimated pose are aligned through
a rigid transformation.
MPI-INF-3DHP. MPI-INF-3DHP [28] is another large-
scale dataset gathered in three different settings: green
screen, non-green screen, and outdoor environments. Fol-
lowing previous works [34,38], MPJPE, Percentage of Cor-
rect Keypoint (PC) within the 150 mm range, and Area Un-
der the Curve (AUC) are reported as evaluation metrics.

4.3. Comparison with the State-of-the-art Methods

4.3.1 Results on Human3.6M

The comparisons with state-of-the-art methods on the Hu-
man3.6M dataset are shown in Table1. Our single-frame
CA-Mambapose achieves new state-of-the-art results with
an MPJPE of 36.5mm and a PA-MPJPE of 28.6mm in Pro-
tocol 1 and Protocol 2, respectively. The results demon-
strate the effectiveness of the proposed CA-Mambapose.
Compared with other transformer-based methods [27, 55],
CA-Mambapose outperforms them by a large margin. Even
these models are based on a larger frame number above 81,
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Protocol 1 T Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.↓
Pavllo et al. [31] CVPR’19 243 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8

Liu et al. [23] CVPR’20 243 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1
Zheng et al. [53] ICCV’21 81 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3

Li et al. [20] CVPR’22 351 39.2 43.1 40.1 42.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
Einfalt et al. [10] WACV’23 351 39.6 43.8 40.2 42.4 46.5 53.9 42.3 42.5 55.7 62.3 45.1 43.0 44.7 30.1 30.8 44.2
Tang et al. [38] CVPR’23 243 39.6 41.6 37.4 38.8 43.1 51.1 39.1 39.7 51.4 57.4 41.8 38.5 40.7 27.1 28.6 41.0
Foo et al. [11] CVPR’23 243 37.5 39.2 36.9 40.6 39.3 46.8 39.0 41.7 50.6 63.5 40.4 37.8 44.2 26.7 29.1 40.8
Zhu et al. [55] ICCV’23 243 36.3 38.7 38.6 33.6 42.1 50.1 36.2 35.7 50.1 56.6 41.3 37.4 37.7 25.6 26.5 39.2

Gong et al. [12] CVPR’23 243 33.2 36.6 33.0 35.6 37.6 45.1 35.7 35.5 46.4 49.9 37.3 35.6 36.5 24.4 24.1 36.9
Mehraban1 et al. [27] WACV’24 243 36.4 38.4 36.8 32.9 40.9 48.5 36.6 34.6 51.7 52.8 41.0 36.4 36.5 26.7 27.0 38.4

Ours(CA-Mambapose) 1 33.1 36.0 33.3 34.5 37.8 44.7 35.2 34.9 46.9 49.7 40.1 35.3 36.1 25.1 25.7 36.5
Protocol 2 T Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg. ↓

Pavllo et al. [31] CVPR’19 243 34.1 36.1 34.4 37.2 36.4 42.4 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Wang et al. [43] ECCV’20 96 32.9 35.2 35.6 34.4 36.4 42.7 31.2 32.5 45.6 50.2 37.3 32.8 36.3 26.0 23.9 35.5
Zheng et al. [53] ICCV’21 81 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6
Tang et al. [38] CVPR’23 243 29.5 33.2 30.6 31.0 33.0 38.0 30.4 29.4 41.8 45.5 33.6 29.5 31.6 21.3 22.6 32.0
Foo et al. [11] CVPR’23 243 30.3 32.2 30.8 33.1 31.1 35.5 30.3 32.1 39.4 49.6 32.9 29.2 33.9 21.6 24.5 32.5
Zhu et al. [55] ICCV’23 243 30.8 32.8 32.4 28.7 34.3 38.9 30.1 30.0 42.5 49.7 36.0 30.8 22.0 31.7 23.0 32.9

Mehraban1 et al. [27] WACV’24 243 30.6 32.6 32.2 28.2 33.8 38.6 30.5 29.9 43.3 47.0 35.2 29.8 31.4 22.7 23.5 32.6
Ours(CA-Mambapose) 1 28.1 30.9 28.2 30.3 29.7 32.5 29.3 28.4 32.1 34.9 31.8 27.6 23.4 20.2 21.4 28.6

Table 1. Quantitative comparison with state-of-the-art methods on Human3.6M under Protocol 1 (MPJPE) and Protocol 2 (PA-MPJPE). T
denotes the number of input frames used in each method. Bold indicates the best and underline indicates the second best.

CA-Mambapose with only single frame obtains better re-
sults since most of the approaches in Table 1 follow the
2D-to-3D lifting paradigm which loses the visual contex-
tual feature extracted from the 2D pose estimation.

Methods T PCK ↑ AUC ↑ MPJPE ↓
Li et al. [20] 9 93.8 66.3 58.0

Einfalt et al. [10] 81 95.4 67.6 46.9
Zhao et al. [51] 81 97.9 78.8 27.8
Tang et al. [38] 81 98.7 83.9 23.1
Chen et al. [3] 96 98.7 72.9 37.2

Gong et al. [12] 81 98.0 75.9 29.1
Ours(CA-Mambapose) 1 99.1 84.0 20.2

Table 2. Quantitative comparison with state-of-the-art methods on
MPI-INF-3DHP. T: Number of input frames. Bold indicates the
best and underline indicates the second best.

4.3.2 Results on MPI-INF-3DHP

In evaluating our method on the MPI-INF-3DHP dataset,
we also use HRNet-32 as the backbone network to generate
multi-resolution feature maps. As shown in Table 2, across
all metrics, our method consistently outperforms others in
terms of MPJPE. Notably, our CA-Mambapose achieves re-
markable results with an 84.0% AUC and a 20.2 mm P1
error. This outperforms the previous 2nd-best STCFormer
[38] by a significant margin of 1% in AUC and 2.9 mm in
P1 error. Besides, it achieves 99.1% PCK, which is 0.4%
better than the PCK performance of the 2nd-best models.
Our approach has the access to temporal information from
event stream and does not need an extra pre-training stage.
The results verify the generalization ability of our method
to different datasets, particularly in challenging outdoor en-
vironments.

4.4. Ablation Studies

In this section, we verify the effectiveness of the pro-
posed Cross Modality Fusion Mamba, Pose-Context Fea-
ture Exchange, in CA-Mambapose.

4.4.1 Effectiveness of proposed sub-modules

We conduct the ablation study on Human3.6m dataset to
verify the effectiveness of each component in our method.
First, we show why context-awareness is important. Next,
we show the effectiveness of each individual module in CA-
MambaPose (the results are shown in Table 3)).

• Base, Context-Agnostic: The baseline follows Pose-
Former [53] where 2D joint coordinates estimated by a
2D pose detector are then further projected to a high di-
mension C as joint embeddings, and Inter-joint Model-
ing (Transformer encoder) is subsequently performed
to determine correlations across the joint embeddings.
Such plain 2D coordinates contain no spatial context
for joints, is thus referred to as “context-agnostic”.
This serves as the baseline of our method.

• Exps 0-1, Context-Aware with Pose-Context Feature
Exchange: The key of “context-aware” is to incor-
porate joint-context features into each per-joint rep-
resentation. We apply the Deformable Context Ex-
traction to simply sample feature vectors on the de-
tected joint locations from multi-scale feature maps,
and project them to a high dimension C. For each
joint, we first promote pose-context feature exchange
by applying transformers to joint embeddings and the
sampled multi-scale context features before concate-
nation. As shown in the 2nd row, merely using pose-
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Exp Deform. Cont. Extraction Cross Modality Feature Fusion Pose-Context Feature Exchange Inter-joint Relation Modeling FLOPs(M) MPJPE↓
Base ✗ ✗ (w/o Event) ✗ ✓ 446.0 51.2
(0) ✓ ✗ (w/o Event) self-attention ✓ 609.9 41.4
(1) ✓ ✗ (w/o Event) SSM ✓ 557.5 40.8
(2) ✓ concat self-attention ✓ 632.7 39.7
(3) ✓ cross-attention self-attention ✓ 702.3 38.4
(4) ✓ CMFM self-attention ✓ 644.5 36.9
(5) ✓ CMFM SSM ✓ 615.1 36.5

Table 3. Ablation study on each component of our method. Experiments are conducted on Human3.6M with HRNet-32 as the backbone.
MPJPE is reported in millimeters.

context feature exchange provides a 19.1% error re-
duction (from 51.2 to 41.4mm), which demonstrates
that leveraging the readily available visual represen-
tations is effective and promising. Since the quadratic
complexity of self-attention presents a significant chal-
lenge when dealing with long input tokens, we replace
it to SSM using selective Scan Mechanism. In Exp
1, using SSM decreases MPJPE by 0.6mm and saves
huge computational cost.

• Exps 2-4, Incorporating event features: Multi-scale
features from RGB input provide spatial context with
visual cues. Event streams also provide visual infor-
mation at a high-dynamic range and with strong ro-
bustness against motion blur. These unique properties
offer great potential for motion analysis. We claim
that incorporating event stream containing temporal
context and clear structural information can be ben-
eficial. We investigate three different cross-modality
fusion methods to incorporate event features and show
the results in the 4-6th rows. Even naive involve-
ment (as simple as concatenation) of both features
brings an obvious improvement (from 41.4 to 39.7,
↓4.1%). Next, we apply transformers (cross-attention)
to sampled multi-scale RGB features and event fea-
tures, which brings another 3.3% error reduction. Con-
sider the quadratic computational complexity of atten-
tion mechanism, we develop our own Cross Modality
Fusion Mamba (CMFM) module to capture the spatial-
temporal relationship. As shown in the 6th row, our
CMFM further significantly reduces the MPJPE by
1.5mm and also improves the efficiency, which shows
the effective guidance provided by event stream. These
results demonstrate that CMFM of CA-MambaPose is
effective for cross-modality feature fusions.

• Exp 5, Final version of our Context-Aware Mamba-
Pose: Our Context-Aware MambaPose includes all the
sub-modules. CA-Mambapose further reduce MPJPE
to 36.5mm without a large increase of FLOPs. Thus,
the usage of event with a novel mamba fusion module
does not have a significant impact on model param-
eters and runtime, while it significantly improves the
pose estimation performance.

5. Conclusion and Discussion
In this paper, we propose a novel Event-guidend

Context-Aware MambaPose (CA-MambaPose) for 3D hu-
man pose estimation. We leverages readily available visual
representations from both RGB images and event streams,
which are learned by off-the-shelf 2D pose detectors. The
spatial context and temporal context from two modalities
provide crucial visual clues to improve the pose estima-
tion ability. We propose a novel Cross Modality Fusion
Mamba method for multi-modal feature fusion, which ef-
fectively extracts correlation between modalities while sup-
pressing redundant information. To further exchange infor-
mation within 2D joint embedding and contextual features,
we introduce a selective-scan based Pose-Context Feature
Exchange module which avoids quadratic complexity of at-
tention mechanism. Combined with all these components,
CA-MambaPose outperforms the state-of-the-art methods
on two 3D human pose estimation benchmarks with higher
accuracy and lower computational costs.
Limitations. We observed in Sec.4.3 that incorporating the
temporal context from event stream improves temporal sta-
bility, enhancing consistency and smoothness in the esti-
mated results, even without access to long-term video in-
put. However, we acknowledge for all single-frame meth-
ods, including ours, mitigating jitters remains a challenge
compared to multi-frame methods that leverage more tem-
poral clues. A potential solution is to extend our method to
model short-term temporal dependencies, which should not
introduce unacceptably high costs. We could achieve this
by incorporating a Temporal Transformer to our method,
where Temporal Transformer models temporal correlations
of each joint across frames independently.
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