
Oracle-Augmented Prophet Inequalities

Sariel Har-Peled∗ Elfarouk Harb† Vasilis Livanos‡

April 19, 2024

Abstract

In the classical prophet inequality settings, a gambler is given a sequence of n random
variables X1, . . . , Xn, taken from known distributions, observes their values in this (potentially
adversarial) order, and select one of them, immediately after it is being observed, so that its
value is as high as possible. The classical prophet inequality shows a strategy that guarantees
a value at least half of that an omniscience prophet that picks the maximum, and this ratio is
optimal.

Here, we generalize the prophet inequality, allowing the gambler some additional information
about the future that is otherwise privy only to the prophet. Specifically, at any point in the
process, the gambler is allowed to query an oracle O. The oracle responds with a single bit
answer: YES if the current realization is greater than the remaining realizations, and NO
otherwise. We show that the oracle model with m oracle calls is equivalent to the Top-1-of-
(m+1) model when the objective is maximizing the probability of selecting the maximum. This
equivalence fails to hold when the objective is maximizing the competitive ratio, but we still
show that any algorithm for the oracle model implies an equivalent competitive ratio for the
Top-1-of-(m+ 1) model.

We resolve the oracle model for any m, giving tight lower and upper bound on the best
possible competitive ratio compared to an almighty adversary. As a consequence, we provide
new results as well as improvements on known results for the Top-1-of-m model.

1. Introduction

The field of optimal stopping theory concerns optimization settings where one makes decisions
in a sequential manner, given imperfect information about the future, in a bid to maximize a
reward or minimize a cost. A canonical setting in this area is the prophet inequality [KS77 , KS78].
In these settings, a gambler is presented with rewards X1, . . . , Xn, one after the other, drawn
independently from known distributions. Upon seeing a reward Xi, the gambler must immediately
make an irrevocable decision to either accept Xi, in which case the process ends, or to reject Xi

and continue, losing the option to select Xi in the future. The goal of the gambler is to maximize

∗Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA;
 sariel@illinois.edu ; http://sarielhp.org/ . Work on this paper was partially supported by NSF AF award CCF-
2317241.

†Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA;
eyharb2@illinois.edu; https://farouky.github.io/ .

‡Department of Computer Science; University of Chile; Chile; livanos3@illinois.edu; https://livanos3.web.

engr.illinois.edu/ .

1

ar
X

iv
:2

40
4.

11
85

3v
1

 [
cs

.G
T

]
 1

8
A

pr
 2

02
4

mailto:spam@illinois.edu
http://sarielhp.org/
https://farouky.github.io/
https://livanos3.web.engr.illinois.edu/
https://livanos3.web.engr.illinois.edu/

the selected reward comparing against a prophet who knows all realizations in advance and selects
the maximum realized reward. Throughout, we assume, without loss of generality, that X1, . . . , Xn

are continuous random variables.
The performance of the gambler can be measured in terms of several objectives. A common

metric used in the literature is the competitive ratio, which is also known as the Ratio of Expectations
(RoE) (see Definition 1.2). Another common distinction is between the case in which the given
distributions are different and the case in which they are identical. For the former, Krengel et al.
[KS77 , KS78] showed an optimal strategy that is 1/2-competitive. In this setting, the optimal
competitive ratio can be achieved by simple, single-threshold algorithms [Sam84 , KW19]. For IID

and non-IID random variables, Hill and Kertz [HK82] initially gave a (1−1/e)-competitive algorithm.
This was improved to ≈ 0.738 [AEE+17] and later ≈ 0.745 [CFH+21], which is tight, due to a
matching upper bound [HK82 , Ker86].

Another relevant metric, introduced by Gilbert and Mosteller [GM66] for IID random variables,
is that of maximizing the Probability of selecting the Maximum realization (Pmax) - see Definition

 1.3 . For this objective and IID random variables, Gilbert and Mosteller [GM66] gave an algorithm
that achieves a probability of ≈ 0.58, which is the best possible. Later, Esfandiari, Hajiaghayi,
Lucier and Mitzenmacher [EHLM17] studied the same objective for general random variables,
obtaining a tight probability equal to 1/e when the random variables arrive in adversarial order and
0.517 when the random variables arrive in random order. The latter case was recently improved to
the tight ≈ 0.58 by Nuti [Nut22], showing that the IID setting is not easier than the non-IID setting
with random order. In this paper, we introduce a new model as a means to study variations of
both the IID and the general settings, for both the RoE and Pmax objectives.

A setting that is related to ours is the Top-1-of-m model, formally introduced by Assaf and
Samuel-Cahn [AS00] for IID random variables, although it had been studied initially by Gilbert and
Mosteller [GM66]. In this setting, the algorithm is allowed to select m ≥ 1 values, but the value
it gets judged by is the maximum selected value. Gilbert and Mosteller [GM66] gave numerical
approximations of the Pmax objective for 2 ≤ m ≤ 10, using a simple, single-threshold algorithm.
Later, Assaf and Samuel-Cahn [AS00] studied the RoE objective for general distributions and gave
an elegant and simple (1− 1/m+1)-competitive algorithm. This was improved [AGS02] by bounding
the competitive ratio of the optimal algorithm by a recursive differential equation. They gave
numerical approximations for 2 ≤ m ≤ 5, but studying the asymptotic nature of the constants for
large m turned out to be difficult. Ezra et al. [EFN18] later revisited the problem and gave a new
algorithm for large m that is 1 − O

(
e−m/6

)
-competitive for the same problem. This improves the

error term from [AGS02] from linear in m to exponential in m. Harb [Har24] recently improved

this into a 1 − e
−mW0

(m√
m!

m

)
-competitive algorithm, where W0 is the Lambert-W function

1
 , and

improved the lower bound for m = 2 separately. However, the asymptotic nature of this function
is difficult to analyze.

Type of Adversary. In the context of prophet inequalities, the distinction between an offline
adversary and an almighty adversary is crucial to understanding the competitive ratio bounds of
prophet inequalities. An offline adversary, often considered less powerful, observes the distributions
of the random variables, and chooses an adversarial order based on the distributions. An almighty
adversary is stronger:

1The Lambert-W function is W0(x) defined as the solution y to the equation yey = x.

2

Definition 1.1. An almighty adversary possesses complete information, including the algorithm’s
random decisions, and can thus tailor the ordering of the sequence to worst-case scenarios with
perfect foresight. In particular, the almighty adversary observes the gambler’s algorithm, and the
values of X1, . . . , Xn, then chooses a permutation order Xσ(1), . . . , Xσ(n) to show the algorithm the
values in that order.

Consequently, while both types of adversaries present different levels of challenge, the almighty
adversary sets a far stricter benchmark, typically leading to lower competitive ratios for prophet
inequalities. Unless stated otherwise, we work with the almighty adversary. For a discussion on
the (very subtle) differences between the two adversaries for our model, see Appendix B .

Model. We introduce a new model that generalizes the standard prophet inequality setting, and
analyze it as a means to obtain new results and improvements in the Top-1-of-m model. Our
model allows the algorithm some information about the future that is otherwise privy only to
the prophet. Specifically, at any point in the process, upon seeing a reward Xi, the algorithm is
allowed to query an oracle O. The oracle O responds with a single bit answer: YES if the current
realization is larger than the remaining realizations, i.e., Xi > maxnj=i+1Xj and NO otherwise. In
other words, the oracle O informs the algorithm it should select Xi, or reject it, because there is
a reward coming up that is at least as good

2
 . Clearly, with no queries available, one recovers the

classical prophet inequality setting, whereas with n − 1 queries, the strategy of using a query on
every Xi, for i = 1, . . . , n− 1, leads to the algorithm selecting the highest realization always. Thus,
this model interpolates nicely between the two extremes of full or no information about the future.

In this paper, we consider the following different settings.

Definition 1.2. The competitive ratio or Ratio of Expectations is denoted by RoE . An algorithm
ALG is α-competitive, for α ∈ [0, 1], if E[ALG] ≥ α · E[maxiXi], and α is called the competitive
ratio.

Definition 1.3. The Probability of selecting the Maximum realization is denoted by Pmax . An
algorithm ALG achieves a Pmax of α if it returns a value v such that P[v = Z] ≥ α, where
Z = max {X1, . . . , Xn}. Note that in some works (for example [GM66]), the notation PbM has
also been used.

Definition 1.4. We use the term IID to refer to the setting where X1, . . . , Xn are independent and
identically distributed random variables. We use non-IID to refer to the more general setting where
X1, . . . , Xn are independent, but not necessarily identical.

Definition 1.5. We use Proph m to refer to the Top-1-of-m model, in which the algorithm is
allowed to choose up to m values, and its payoff is the maximum of the chosen values. We use O m

refers to our oracle model where the algorithm has access to m oracle calls, and can only select one
value.

Note that it makes sense to compare the model Proph m+1 to O m since in the former, the
algorithm can choose m+1 values, where as the later can ask the oracle m times, and then choose

2There are very subtle differences between an oracle that answers > queries, vs ≥ queries. See Appendix B for a
discussion on this. In particular, the > oracle is weaker than the ≥ oracle; imagine a stream of 1 values, the > oracle
will always answer NO, while the ≥ oracle answers YES on the first query

3

an item. To help distinguish between the different settings, we denote each model as M(x, y, z),
where

• x is either Proph m or O m with m ∈ N,
• y is either IID or non-IID , and
• z is either Pmax or RoE .

Motivation. Our oracle choice was driven by our initial effort to reformulate the Top-1-of-m
model in order to get a better understanding of that settings and improve the known bounds.
While we initially thought the two models are the same, we later observed the subtle differences
between the two models. Thankfully, it turns out that one can still use this oracle model to study
the Top-1-of-m model and improve the previously known bounds, which was our original goal.
We did consider a few other oracle models, which we briefly mention here: if the oracle predicts
the maximum value, then there is a trivial solution of asking the oracle at X1, and just waiting
until the maximum value v arrives. Another option is for the oracle to predict a range for the
maximum value, but formalizing this in a more general setting turns out to be difficult without
assuming something about the support of each random variable. While we explored various other
oracle formulations, we chose the simplest version that improved the lower bound for the Top-1-
of-m model and for which we can also achieve a tight competitive ratio. We leave exploring more
complex oracle models for future work.

1.1. Our contributions

In this paper, we study the oracle model for independent random variables following identical or
general distributions with the Pmax and RoE objectives and make the following contributions:

(I) We establish an equivalence between the oracle model and theTop-1-of-mmodel for the Pmax

objective.

(II) We show that this equivalence fails to hold for the RoE objective and that the best-possible
competitive ratios in the two settings are quite separated. However, we show that guarantees
for RoE in the oracle model translate to guarantees in the Top-1-of-m model, thus further
motivating our study of the oracle model.

(III) We resolve the oracle model M(O m, non-IID , RoE) by presenting a single-threshold algorithm.
Our algorithm achieves a competitive ratio of 1− e−ξm for general m, where ξm is the unique
positive solution

3
 to the equation 1 − e−ξm = Γ(m+1,ξm)

m!

4
 . Furthermore, we show that this

lower bound is optimal by showing a construction that yields an equal upper bound. Since
we showed that lower bound guarantees for M(O m, non-IID , RoE) also hold for the alterna-
tive settings M(Proph m+1, non-IID , RoE), this strictly improves the current state of the art
bounds of [Har24], even though the guarantees are obtained in the weaker oracle model.

(IV) We give a single-threshold algorithm for the oracle model and the Pmax objectiveM(O m, IID , Pmax)
that achieves a 1−O(m−m/5) probability of selecting the maximum, as well as providing an
upper bound that is asymptotically (almost) tight. To the best of our knowledge, this is the
first result for the Pmax objective and general m in the well studied Top-1-of-m model. Our
algorithm achieves a probability of ≈ 0.797 even with m = 1 calls to the oracle, a significant
improvement on the ≈ 0.58 achieved without oracle calls [GM66].

3In Section 3 , we prove that there is indeed a unique positive solution.
4Γ(n, x) =

∫∞
x

tn−1e−t dt denotes the upper incomplete gamma function

4

As discussed earlier, the main motivation behind our oracle model comes from our first two results
which relate it to the Top-1-of-m model.

1.2. Our results in detail

1.2.1. Equivalence of models as far as Pmax

In Theorem 2.3 we prove that M(O m, y, Pmax) model is equivalent to the M(Proph m+1, y, Pmax)
model, where y = IID or non-IID . In other words, the best algorithms in these models achieve the
same probability of realizing the maximum.

This result might not seem that surprising due to the apparent similarity of the two models.
However, thinking about the Top-1-of-m setting from the viewpoint of oracle calls allows for a
different perspective that we exploit in our analysis.

1.2.2. Difference of the models as far as RoE

Perhaps more surprisingly, our oracle model and the Top-1-of-m model stop being equivalent
when one considers the RoE objective. The oracle model is strictly weaker.

Specifically, in Theorem 2.8 , we prove that there exists a prophet inequality instance, and an al-
gorithmA forM(Proph m+1, non-IID , RoE) instance for which no algorithm forM(O m, non-IID , RoE)
can achieve the same competitive ratio as that ofA. Furthermore, any algorithm forM(O m, y, RoE)
can be modified to be an algorithm for M(Proph m+1, y, RoE) that achieves a competitive ratio
that is at least as good.

1.2.3. Bounding the performance of the oracle model

After establishing the relationship between our oracle model and the Top-1-of-m model, we turn
our attention to upper and lower bounds for the oracle model. First, for the non-IID setting and the

 RoE objective, we present an extremely simple single-threshold algorithm achieving a competitive
ratio that approaches 1 exponentially in m. Even though our algorithm is for the oracle model,
for which weaker guarantees are expected due to Theorem 2.8 , it improves upon the best-known
guarantee for theTop-1-of-m setting, due to Harb [Har24]. Our algorithm relies on two techniques;
sharding and Poissonization, introduced by [Har24] for the analysis of threshold-based algorithms
for prophet inequalities. As an added benefit, the algorithm’s analysis is easy to understand.

Specifically, in Theorem 3.11 , we show that there is a constant ξm, such that for the oracle
model M(O m, non-IID , RoE), there exists an algorithm with competitive ratio at least 1−e−ξm . As
m→ +∞, this behaves as 1− e−m/e+o(m). The competitive ratio plot for m = 1, . . . 15 is shown in

 Figure 1.1 .

Matching upper bound. In addition, we provide a construction for every m that gives a match-
ing upper bound to the competitive ratio, thus resolving the problem for the case of general distri-
butions and the RoE objective. The construction we have is perhaps of independent interest in the
design of counterexamples for other settings, as it combines and generalizes standard counterexam-
ples of prophet inequalities.

Specifically, in Theorem 3.14 , we show that for every δ > 0, there exists an instance of
M(O m, non-IID , z), where z = RoE or Pmax , in which no single-threshold algorithm can achieve a(
1− e−ξm + δ

)
-competitive ratio or select the maximum realization with probability≥

(
1− e−ξm + δ

)
.

5

Figure 1.1: The value of 1− e−ξm for m = 1, . . . , 15.

Model Lower Bound Upper Bound

Prev. Best Current Best Prev. Current Best

 RoE

General Settings
1−O

(
e−m/6

)
[EFN18] 1− e−m/e+o(m) - 1− e−m/e+o(m) single-threshold

 Pmax , IID Setting ≈ 0.58 [GM66]
≈ 0.797 (m = 1)

1−O
(
m−m/5

) - 1−O(m−m)

Figure 1.2: State of the art.

Intuitively, the above follows since an algorithm for the oracle model performs poorly when,
every time it uses an oracle call and gets a YES answer, the next value it sees that is at least the
queried value is roughly equal, and thus the oracle call was used without any real gain. The idea
behind the worst-case for this setting is to have what is essentially a Poisson random variable with
rate ξm, providing the algorithm with several non-zero values, each roughly the same. By carefully
selecting ξm in order to equate the probability of having no non-zero values and the probability of
having more than m non-zero values, we are forcing the algorithm to use a query for every non-zero
realization, thus rendering the oracle calls as useless as possible.

1.2.4. The benefit of several oracle calls

Next, we turn our attention to the IID setting with m oracles calls and the Pmax objective. We
present a simple, single-threshold algorithm that selects the maximum realization with probability
that approaches 1 in a super-exponential fashion. As a warm-up, we first present the analysis for
m = 1 before generalizing it to all m.

Specifically, in Theorem 4.2 , we show that for M(O m, IID , Pmax), one can select the maximum
realization with probability at least 1−O

(
m−m/5

)
.

We also present, in Theorem 4.3 , an upper bound on the probability of success that is asymp-
totically tight, up to small multiplicative constants in the exponent. Because of Theorem 2.3 , both
upper and lower bounds on the probability of success carry over in the Top-1-of-m settings as
well.

See Figure 1.2 for a summary of our results for the oracle model in the different settings.

6

1.3. Additional related work

We have already mentioned the related work on algorithms with predictions, as well as the works
of Gilbert and Mosteller [GM66], Esfandiari, Hajiaghayi, Lucier and Mitzenmacher [EHLM17] and
Nuti [Nut22] for the Pmax objective. Related work includes the study of order-aware algorithms by
Ezra, Feldman et al. [EFGT23], algorithms with fairness guarantees by Correa et al. [CCDN21]
and algorithms with a-priori information of some of the values by Correa et al. [BCGL22]. In
addition to these, Esfandiari et al. [EHLM17] study a related but distinct variant to ours. They
relax the objective to allow the return of one out of the top k realizations, and show exponential
upper and lower bounds. Their model, however, is incomparable to ours.

Organization. In Section 2 we relate our model to Top-1-of-m model of Assaf and Samuel-
Cahn [AS00] and prove the reductions. In Section 3 we present our tight algorithm for the non-IID

setting. Section 4 contains our algorithms and upper bounds for the IID setting. Due to space
constraints, we present some background on concentration inequalities that we use for our results
in Appendix A . Finally, we present .

2. Reductions

To motivate our oracle model, we start by establishing an equivalence between M(O m, y, Pmax)
and M(Proph m+1, y, Pmax), for both the y = IID and y = non-IID case (see Theorem 2.3 below).
We also show that, perhaps surprisingly, this equivalence does not hold for the RoE objective; lower
bound guarantees for M(O m, y, RoE) translate to guarantees for M(Proph m+1, y, RoE) (Theorem

 2.8), but not the converse. Later, we use this result to improve the best-known lower bound
guarantees on M(Proph m+1, y, RoE).

2.1. The Pmax objective

Lemma 2.1. Fix an instance of the prophet problem. Let A be an algorithm for this instance in
M(O m, y, Pmax), where y = IID or non-IID . Then, there exists an algorithm B for tor this instance
in M(Proph m+1, y, Pmax), with black-box access to A, such that Pmax (B) ≥ Pmax (A).

Proof: The idea is for B to simulate A’s behavior by selecting each realization that A decides to
query. Initially, B starts with an empty set S of selected values. Whenever B is presented with a
realization Xi, it feeds it to A. If A decides to select Xi or expend a query for Xi, regardless of
the outcome of the query, B always selects Xi into S, otherwise B decides not to select Xi. By
induction, S contains exactly all the realizations that were queried by A as well as at most one
more realization that might have been selected by A if it run out of queries. Therefore, |S| ≤ m+1.

Observe that A succeeds if and only if it selects the maximum, and it only selects a realization
Xi if (i) it chose to expend a query on Xi, or (ii) when it observed Xi it run out of queries. In both
cases, by the description of B, we know that Xi ∈ S, and thus the probability that B succeeds is
at least Pmax (A).

Lemma 2.2. Fix an input instance of the prophet problem. Fix an algorithm B for M(Proph m+1,
y, Pmax), where y = IID or non-IID . Then, there exists an algorithm A for M(O m, y, Pmax), with
black-box access to B, such that such that Pmax (A) ≥ Pmax (B).

7

Proof: The idea is that A can simulate B’s behavior using the oracle queries instead of storing
the values like B does. Initially, B starts with an empty set S of selected values. Whenever A is
presented with a realization Xi, it feeds it to B. If B selects Xi into S, A performs an oracle O

query whether Xi > maxnj=i+1Xj . Consider the first i where this happens. We distinguish between
the two possible answers:

(I) If O answers YES, then we know that all future realizations are ≤ Xi. However, we also
know that since the objective is Pmax , any optimal algorithm for Proph m+1 will only select
a value Xi if it is larger than any previously observed value (otherwise it “wastes” a spot in
S for a value that is definitely not the maximum). Therefore, if B selects Xi, we know that
Xi > maxj<iXj . In this case, both B and A succeed in selecting the maximum realization.

(II) If O answers NO, then we know that there exists a future realization that is ≥ Xi. In this case,
the instance for B reduces to M(Proph m, y, Pmax) on Xi+1, . . . , Xn, whereas the instance for
A reduces to M(O m−1, y, Pmax). Since we know that M(Proph 1, y, Pmax) = M(O 0, y, Pmax)
by definition, we have that by induction, the probability that A succeeds is at least Pmax (B).

Combining the above two lemmas, we get the following result.

Theorem 2.3. The M(O m, y, Pmax) model is equivalent to the M(Proph m+1, y, Pmax) model,
where y = IID or non-IID . In other words, for every prophet inequality instance, the probabil-
ity achieved by the best-possible algorithm in the M(O m, y, Pmax) model is the same as the one
achieved by the best-possible algorithm in the M(Proph m+1, y, Pmax) model.

2.2. For the RoE objective Om ≤ Prophm+1

We demonstrate that the Proph m model strictly surpasses the Om for non-IID random variables.

Definition 2.4. For two integers i ≤ j, let Ji : jK = {i, i+ 1, . . . , j}.

Definition 2.5. For an instance I of M(x, non-IID , RoE), we denote RoE (x, I) as the competitive
ratio of an optimal algorithm for I. For example, RoE (O m, I) denotes the best competitive ratio
on instance I in the oracle model.

Lemma 2.6. For m = 1, there exists an input instance I, made out of 3 non-IID random variables,
such that RoE (O1, I) ≤ 3

4 RoE (Proph 2, I).

Proof: Consider the input instance I of three independent random variablesX1, X2, X3 with default
value 0, such that

X1 = 1, P[X2 = 1 + ε] =
1

2
− ε, and P

[
X3 =

1

ε

]
= ε.

We have that

E
[
max {X1, X2, X3}

]
=

1

ε
ε+ (1 + ε)(1− ε)

(
1

2
− ε

)
+ 1(1− ε)

(
1

2
+ ε

)
= 2−O(ε).

8

For small ε, an algorithm B that is optimal for the Proph2 model in this instance is to select X1,
ignore X2 and then select X3 if it is non-zero. This yields

E[B] = 1 · (1− ε) +
1

ε
· ε = 2− ε.

However, the optimal A for the oracle model queries O at X1. With probability (1− ε)(1/2 + ε),
it stops and select X1, getting a value of 1. Otherwise, it continues, with no oracle calls left. It
ignores X2 and select X3. Thus,

E[A] = 1 ·
(
1

2
+ ε

)
(1− ε) +

1

ε
· ε = 3

2
+
ε

2
− ε2.

The competitive ratios of A is RoE (O 1, I) =
3
2 + ε

2 − ε2

2−O(ε)
=

3

4
+ O(ε) → 3

4
(the limit is for ε → 0).

The competitive ratio of B is

 RoE (Proph 2, I) =
2− ε

2 +O(ε)
= 1−O(ε) → 1.

The above example, appropriately generalized for m > 1 by having random variables

X1 = 1 w.p. 1, Xi =

{
1 + (i− 1)ε w.p. 1

2 − ε

0 w.p. 1
2 + ε

, for i = 2, . . . ,m+ 1, and

Xm+2 =

{
1
ε w.p. ε

0 w.p. 1− ε
,

shows that the gap between RoE (O m, I)) and RoE (Proph m+1, I)) is at most 1−1/2m+1 for general
m. The analysis of this example for general m is similar to the m = 1 case. We do not present
it here as, even though this example is very simple, this gap is not the tightest one possible. For
a tighter gap between the competitive ratio of the two models, see the example in the proof of

 Theorem 3.14 .

Lemma 2.7. For any input instance I, we have RoE (Proph m+1, I) ≥ RoE (O m, I), for IID or
 non-IID variables.

Proof: Let A be the algorithm in M(O m, RoE , I) realizing the maximum RoE for I. We construct
an algorithm B ∈ M(Om, RoE , I).

The algorithm B simulates A’s behavior by selecting each realization that A decides to query.
Initially, B starts with an empty set S. Whenever B is presented with a realization Xi, it feeds it
to A. If A decides to return Xi, or performs an oracle query for Xi, the algorithm B adds Xi to S.

Observe that the algorithm A stops as soon as an oracle query returns NO. Thus, the simulation
B of A, assumes the oracle always answers YES (i.e., a larger value is coming up in the future).
(i.e., the simulation replaces a call to the oracle by a function that always returns YES), as this
enables it (potentially) to save more values into the available slots, thus increasing its RoE .

The set S contains exactly all the realizations that were queried by A, as well as at most one
additional realization returned by A. Therefore, |S| ≤ m+ 1.

Every possible sequence of realizations A queried (or selected to return) are in S. Therefore, if
VA is the value returned by A and VB is the value returned by B, we have VB ≥ VA, which readily
implies that RoE (B) ≥ RoE (A).

9

Theorem 2.8. For every m ≥ 1, and for all input instances J (of IID or non-IID variables), we
have RoE (O m,J) ≤ RoE (Proph m+1,J), Furthermore, there exists an input instance I, made out
of m+ 2 non-IID random variables, such that RoE (Om, I) ≤ (1− 1/2m+1) RoE (Proph 2, I).

3. The non-IID settings

By Theorem 2.8 , any guarantees we provide for the oracle model with the RoE objective can be
directly translated to guarantees for the Top-1-of-m model, improving upon the previous work on
this model [AS00 , AGS02 , EFN18 , Har24]. We provide a simple, single-threshold algorithm that
resolves the RoE objective in the oracle model.

3.1. The exponent sequence

Definition 3.1. For everym ≥ 1, let ξm denote the unique positive solution to the following equation:

1− e−ξm =
Γ(m+ 1, ξm)

m!
,

where Γ(m + 1, x) =
∫∞
t=x t

me−t dt denotes the upper incomplete gamma function. The exponent
sequence is ξ1, ξ2,

We show below that the optimal competitive ratio of M(O m, non-IID , RoE) is exactly 1− e−ξm . It
is known that, for x ≥ 0 and an integer m+ 1 > 0, we have

Γ(m+ 1, x) = m! e−x
m∑
k=0

xk

k!
≤ m!e−xex ≤ m!. (3.1)

As such, the above equation on the value of ξm, becomes

1− e−ξm = e−ξm

m∑
k=0

(ξm)k

k!
⇐⇒

∞∑
k=m+1

(ξm)k

k!
= 1.

This readily implies that the exponent sequence is monotonically increasing, and m/e2 ≤ ξm ≤ m.

Definition 3.2. Let qk+1(x) =
Γ(k+1,x)

k! = e−x
∑k

j=0
xj

j! . This implies qm+1(ξm) = 1− e−ξm .

Lemma 3.3. q′m+1(x) = −e−x xm

m! .

Proof: As (e−x)′ = −e−x, we have q′m+1(x) = −e−x +
∑m

j=1

(
e−x xj−1

(j−1)! − e−x xj

j!

)
= −e−x + e−x −

e−x xm

m! = −e−x xm

m! .

Lemma 3.4. For all m ≥ 1, we have (m!)
1/m < ξm < ((m+ 1)!)

1/m+1.

Proof: Guided by Eq. (3.1) , define

h(x) =
Γ(m+ 1, x)

m!
− 1 + e−x = qm+1(x)− 1 + e−x = e−x

(
m∑
i=0

xi

i!
− ex + 1

)
= e−x(1− T (x)),

10

https://en.wikipedia.org/wiki/Incomplete_gamma_function

where T (x) =
∑∞

i=m+1
xi

i! . By Lemma 3.3 , we have h′(x) = −e−x xm

m! − e−x < 0. Namely, h(·) is a
strictly decreasing function. Thus, ξm the positive root of h(x) = 0 is unique, as h(0) = 1, and
limx→∞ h(x) = −1.

Setting β = ((m+ 1)!)1/(m+1), we have T (β) > βm+1

(m+1)! = (m+1)!
(m+1)! = 1, which readily implies

h(β) < 0. By the AM-GM inequality, we have that γ = m
√
m! <

∑m
i=1 i/m = m+1

2 . In particular,
we have

γm+1

(m+ 1)!
=

m! · γ
(m+ 1)!

=
γ

m+ 1
<

1

2
.

As such, we have

T (γ) ≤
∞∑

i=m+1

γi

i!
≤

∞∑
i=m+1

γm+1γi−m−1

(m+ 1)!(m+ 1)i−m−1
<

1

2

∞∑
j=0

γj

(m+ 1)j
<

1

2

∞∑
j=0

((m+ 1)/2)j

(m+ 1)j
= 1.

Thus, h(γ) > 0. We conclude that γ < ξm < β.

Remark 3.5. Setting ν(x) = ν(m,x) = Γ(m+1,x)
m! , and arguing as in Lemma 3.4 , we have ν ′(x) < 0,

which readily implies that ν(x) is monotonically decreasing.

Stirling’s formula applied to Lemma 3.4 readily implies the following.

Lemma 3.6. We have lim
m→∞

ξm
m

=
1

e
.

Lemma 3.7. For all k,m ≥ 0 integers, we have f(k,m) =

k∑
j=1

ξjm
j!

−
m+k∑

j=m+1

ξjm
j!

≥ 0.

Proof: By definition f(0,m) = 0. We have

f(k + 1,m)− f(k,m) =
ξk+1
m

(k + 1)!
− ξm+k+1

m

(m+ k + 1)!
.

Thus f(k+1,m) ≥ f(k,m) ⇐⇒ (m+k+1)!/(k+1)! ≥ ξm+k+1
m /ξk+1

m = ξmm . for k > 0 and m > 0, we have

(m+ k + 1)! = (m+ 1)! · 1 · (m+ 2)︸ ︷︷ ︸
>2

· (m+ 3)︸ ︷︷ ︸
>3

· · · (m+ k + 1)︸ ︷︷ ︸
>k+1

> (m+ 1)!(k + 1)!.

Thus, it sufficient to prove that ξmm < (m + 1)! ⇐⇒ ξm < m
√

(m+ 1)!. The later is immediate

from Lemma 3.4 , as ξm <
(
(m+ 1)!

)1/(m+1)
< m
√
(m+ 1)!.

3.2. Background: Sharding, poissonization, and stochastic dominance

For a sequence of random variables X = X1, . . . , Xn, let |α ≤ X ≤ β| = |{i | α ≤ Xi ≤ β}| denote
the number of realizations in this sequence falling in the interval [α, β].

11

3.2.1. Sharding

For the lower bound, we use poissonization and sharding [Har24]. Given random variablesX1, . . . , Xn

with cdfs F1, . . . , Fn, instead of sampling Xi from Fi, we instead replace it with a sequence of K
independent random variables Hi = Yi,1, . . . , Yi,K , such that maxj Yi,j has the same distribution as

Xi. Specifically, the cdf of Yi,j , for all j, is F
1/K
i . Thus, the distribution of max {Yi,1, . . . , Yi,K} is

the same as Xi. This creates a new sequence of Kn samples S = H1 · H2 · · ·Hn, where · is the
concatenation operator. Observe that for any α ≥ 0 and integer t, we have

P[|X ≥ α| > t] < P[|S ≥ α| > t].

This implies, that for threshold algorithms, running on S instead of X can only generate worst
results. We emphasize that this sharding is done only for analysis purposes.

3.2.2. Poissonization

Definition 3.8. A random variable X has Poisson distribution with rate λ, denoted by X ∼ Pois(λ),
if P[X = i] = λke−λ/k!. Conveniently, E[X] = V[X] = λ.

The purpose of the sharding is to be able to bound quantities of the form P[|β ≤ S ≤ τ | = t]. As
K grows, the underlying random variable |β ≤ S ≤ τ | has a binomial distribution that converges
to a Poisson distribution.

Observation 3.9. For c ∈ (0, 1], we have, using L’Hôpital’s rule, that limx→∞ x(1 − c1/x) =

limx→∞
1−exp(log(c)/x)

1/x = limx→∞
log(c) exp(log(c)/x)/x2

−1/x2 = − log c, where log = loge.

Let τ be a threshold such that
∑n

i=1

∑K
j=1 P[Yi,j ≥ τ] = c for some constant c to be determined

shortly. We can rewrite this into the following.

n∑
i=1

K
(
1− P[Xi ≤ τ]1/K

)
= c. (3.2)

The limit of Eq. (3.2) , as K → +∞, is
∑n

i=1− logP[Xi ≤ τ] = c, by Observation 3.9 . Equivalently,
for Z = max {X1, . . . , Xn}, we have

e−c = exp
(n∑
i=1

logP[Xi ≤ τ]
)
=

n∏
i=1

P[Xi ≤ τ] = P[X1, . . . , Xn ≤ τ] = P[Z ≤ τ].

In particular, the distribution of the number of indices j, such that Yi,j ≥ τ can be well approxi-
mated with a Poisson distribution. Specifically, let Vi,j = 1 ⇐⇒ Yi,j ≥ τ , and consider the sum

Vi =
∑K

j=1 Vi,j . The variable Vi ∼ bin(K,ψi), where ψi = 1− P[Xi ≤ τ]1/K .
Let λi = ψiK, and consider the random variable Ui ∼ Pois(λi) (i.e., Ui has a Poisson distribution

with rate λi). Intuitively, Vi and Ui have similar distributions. Formally, Le Cam theorem implies
that for any set T ⊆ {0, 1, . . . ,K}, we have |P[Vi ∈ T]− P[Ui ∈ T]| ≤ 2Kψ2

i = 2λ2i /K ≤ 2c2/K, by
 Eq. (3.2) . The later quantity goes to zero as K increases.

Thus, we get a variable Ui with a Poisson distribution for each shard sequence Hi, with rate λi,
where Ui models the number of times we encounter in Hi values larger than τ . Thus, Uτ =

∑
i Ui

models the total number of times in the splintered sequence S that values encountered are larger
than τ . The variable Uτ has a Poisson distribution with rate λτ =

∑n
i=1 λi.

12

3.2.3. The distribution in a range

Repeating the same process with a bigger threshold β > τ , would yield a similar Poisson random
variable Uβ with a lower rate λβ. The quantity ∆ = Uτ − Uβ is the number of values in S
in the range [τ, β]. Furthermore, ∆ has a Poisson distribution with rate λτ − λβ. Specifically,

P[|β ≤ S ≤ τ | = t] = P[∆ = t].
The key to our analysis is that the variables ∆ and Uβ are independent (in the limit as K

increases).

3.2.4. Stochastic dominance

A standard observation is that for a non-negative random variableX, we have E[X] =
∫∞
x=0 P[X ≥ x] dx.

Thus, for Z = max {X1, . . . , Xn}, and for an algorithm A, if one can guarantee that there is
c ∈ [0, 1], such that for all ν ≥ 0, P[A ≥ ν] ≥ cP[Z ≥ ν], then

E[A] =

∫ ∞

0
P[A ≥ x] dx ≥ c

∫ ∞

0
P[Z ≥ x] dx ≥ cE[Z] .

And hence c is a lower bound on the competitive ratio of A. This argument is used in several
results on prophet inequalities and is often referred to as majorizing A with Z.

3.3. An optimal single-threshold algorithm (lower bound)

Here, we describe a single-threshold algorithm that achieves the optimal competitive ratio in the
oracle model.

Definition 3.10. A single threshold algorithm sets a threshold τ , and start reading the sequence.
Whenever encountering a realization > τ , the algorithm stops and consult with the oracle. The
oracle query is whether all the values remaining in the suffix of the sequence are of value ≤ τ .
If the oracle returns YES, the algorithm accepts the current value and stops. Otherwise it raises
its threshold to τ = Xi and continues. If the oracle runs out of oracle calls, it returns the first
value encountered after the last oracle call that is bigger than τ (which exists, since all oracle calls
returned NO).

While technically, the querying threshold of the algorithm might change during its execution, we
call the algorithm a single-threshold algorithm since it uses a single-threshold to decide whether to
query the oracle or not, and this threshold does not change with i, unlike for example the optimal
DP for the IID prophet inequality or the prophet secretary model. Our oracle model is quite different
than most other prophet inequality models in the sense that the algorithm has some knowledge of
the (true) future. Of course, any algorithm that knows that the maximum of Xi+1, . . . , Xn is larger
than Xi would be wasting queries if it expended them on some Xj < Xi for j > i, and thus the
spirit of it being a single-threshold algorithm to decide whether to query the oracle or not remains.

Theorem 3.11. Let α = 1 − e−ξm = 1 − e−m/e+o(m), see Definition 3.1 . For any finite sequence
X of non-IID variables, one can compute a value τ , such that the single-threshold algorithm (with
initial threshold τ) has competitive ratio ≥ α. i.e., the competitive ratio of M(O m, non-IID , RoE) is
≥ α.

13

Proof: Let X = X1, . . . , Xn, and Z = maxiXi. The threshold τ is the e−ξm quantile of the
maximum, i.e. P[Z ≤ τ] = e−ξm . We use A(X) to denote the result of running the algorithm on
X.

As suggested in Section 3.2.1 (for the analysis), we imagine running the algorithm on the
splintered sequence S. Some counterintuitively, imagine first generating S, and computing Xi =
maxj Yi,j , see Section 3.2.1 . Thus, maxS = maxX. For the sequence S, let S≥τ denote the
subsequence of elements of S that their values are above τ . Observe that X≥τ is a subsequence of
S≥τ . Thus, we analyze the algorithm performance on S.

Let β ∈ [0, τ]. The probability the algorithm selects a value above β is equal to the probability
it selects any value. Thus,

P[A(X) ≥ β] = P[A ≥ τ] = P[Z ≥ τ] = 1− e−ξm ≥
(
1− e−ξm

)
P[Z ≥ β]. (3.3)

For β ∈ [τ,+∞), let P[Z ≤ β] = e−q > e−ξm , implying P[Z ≥ β] = 1 − e−q. By sharding and
Poissonization, the number of shards in the range [τ, β] (resp. ≥ β) is a Poisson random variable
∆ (resp. Uβ) with rate ξm − q (resp. q), see Section 3.2.3 . Critically, Uβ and ∆ are independent.
Consider the event of there being at most m values in the range [τ, β], and there being at least one
value in [β,+∞). The value A(X) ≥ β in that case. Hence, by the independence of ∆ and Uβ, we
have

P[A(X) ≥ β]

P[Z ≥ β]
≥ P[(Uβ ≥ 1) ∩ (0 ≤ ∆ ≤ m)]

P[Z ≥ β]
=

P[Uβ ≥ 1]

P[Z ≥ β]
P[0 ≤ ∆ ≤ m] = P[0 ≤ ∆ ≤ m].

Now, we have

P[0 ≤ ∆ ≤ m] =

m∑
i=0

e−(ξm−q) (ξm − q)i

i!
=

Γ(m+ 1, ξm − q)

m!
≥ Γ(m+ 1, ξm)

m!
= 1− e−ξm .

by Eq. (3.1) , Remark 3.5 and Definition 3.1 .
The above implies that, for any β ≥ 0, we have P[A(X) ≥ β] ≥ (1 − e−ξm)P[Z ≥ β], Namely,

 RoE (A) ≥ 1− e−ξm .

3.4. A matching upper bound for single-threshold algorithms

To this end, we present an input sequence for which no algorithm can do better for the oracle that
answers if Xi > maxnj=i+1Xj , and against an almighty adversary.

Input instance. The input instance I is a sequence made out of n + 2 random variables, for n
sufficiently large. Each of these random variables can have only two values – either zero or some
positive value. Specifically, for ε > 0 sufficiently small (e.g., ε≪ 1/n4), let

X1 = 1, P[Xi = 1] =
ξm
n
, for i ∈ J2 : n+ 1K , and P

[
Xn+2 =

1
ε

]
= ε.

By Lemma 3.6 , ξm ≈ m/e, as such, the expected number of non-zero entries in this sequence is
(roughly) m/e+ 1.

Lemma 3.12. For Z = maxiXi, we have E[Z] = 2 as ε→ 0.

14

Proof: Let Z ′ = maxi∈Jn+1KXi. Observe that Z ′ = 1. As such, for Z = max(Z ′, Xn+2), we have

E[Z] = E[maxiXi] = (1/ε)ε+ (1− ε)E[Z ′] −−−→
ε→0

2.

Observation 3.13. Let X̂i be an indicator variable for the event that Xi = 1. For sufficiently
large n, ∇ =

∑n+1
i=2 X̂i has a binomial distribution that can be well approximated by a Poisson

distribution (see Theorem A.2) with rate ξm. That is, lim
n→∞

P
[
∇ = k

]
= e−ξm (ξm)k

k!
.

Observe that limn→∞ P[∇ ≤ k] =
∑k

i=0 e
−ξm (ξm)i

i! = qk+1(ξm). For simplicity of exposition, we
will assume n→ ∞ in the following analysis and thus P[∇ ≤ k] = qk+1(ξm), see Definition 3.2 .

Theorem 3.14. Consider any choice of m ≥ 1, and δ > 0, and the above input instance I formed
by a sequence of non-IID random variables. Then, for any algorithm, against the almighty adversary
(see Definition 1.1), we have A ∈ M(O m, non-IID , RoE) for I, we have RoE (A) ≤ 1− e−ξm + δ.

Proof: First, we discuss the strategy that the almighty adversary adopts. The adversary first
observes all values. Suppose k nonzero values show up from X2, ..., Xn at indices U = {i1, ..., ik},
and all other n−k values from X2, . . . , Xn+1 at indices B = {̂i1, . . . , în−k} are zero. The adversary
provides the random variables in the order Xσ(1), . . . , Xσ(n+2) where σ is defined as σ(1) = 1,

σ(j) = ij , j = 2, . . . , k + 1, σ(j) = îj and finally σ(n + 2) = n + 2. In other words, the adversary
stacks all the k non zero values from X2, . . . , Xn+1 starting from index 2 to index k + 1.

Now we consider any algorithm for this setting. We strengthen the algorithm by telling it the
almighty adversary’s strategy; this can never reduce its expected reward. Hence, the algorithm
knows it will see Xσ(1) = X1, then a stream of k ones (where it does not know k), then n − k
zeros, and finally Xσ(n+2) = Xn+2. The algorithm has two initial decisions to make; either query
at X1 and continue (if the answer is NO) to Xσ(2), . . . Xσ(n+1) with m− 1 oracle calls, or it can just
proceed to Xσ(2), . . . Xσ(n+1) with m oracle calls. Thus, the only difference in the two cases is that
in the former, we have only m−1 oracle calls for Xσ(2), . . . , Xσ(n+1) but we get an expected reward
of 1 if Xσ(2) = · · · = Xσ(n+2) = 0, and in the later case, we get m oracle calls for Xσ(2), . . . , Xσ(n+1),
but we get 0 reward if Xσ(2) = · · · = Xσ(n+2) = 0.

Let k be the number of non-zeros in X2, . . . , Xn+1 (i.e., Xσ(k+1) is the last 1). When the
algorithm starts reading the stream of 1s from Xσ(2), ..., Xσ(n+1), it needs to decide indices S ⊆
J2 : n+ 1K , |S| ≤ m where it will expend the oracle call. Further, it is suboptimal to use the
oracle at a 0 value, since regardless, the algorithm will receive a value of 0 in the end if it fails.
Consider what happens if the algorithm decides to query at index i ∈ J2 : n+ 1K with Xσ(i) = 1. If
Xσ(i+1) = . . . Xσ(n+1) = 0, then the algorithm gets on expectation 1/ε · ε+(1− ε) · 1 −−−→

ε→0
2 reward

on expectation. However, if Xσ(i+1) = 1, then the oracle will return NO because 1 = Xσ(i) ̸>
max(Xσ(i+1), . . . , Xσ(n+2)). On the other hand, if the algorithm does not query at index k+1 (i.e.,
(k + 1) ̸∈ S), then the algorithm gets on expectation E

[
Xσ(n+2)

]
= E[Xn+2] = 1/ε · ε = 1.

Hence, the crucial observation is that an algorithm starting at Xσ(2) that uses its query calls at
indices S ⊆ J2 : n+ 1K gets on expectation 2 if and only if (k + 1) ∈ S, and 1 otherwise. Thus, for

15

algorithm A1 that skips Xσ(1) and uses its oracles at indices S, |S| = m, it satisfies

E[A1] = 2 ·
∑

i≥0,(i+1)∈S

e−ξm ξ
i
m

i!
+ 1 ·

∑
i≥0,(i+1)/∈S

e−ξm ξ
i
m

i!

=
∑
i≥0

e−ξm ξ
i
m

i!
+

∑
i≥0,(i+1)∈S

e−ξm ξ
i
m

i!

= 1 +
∑

(i+1)∈S

e−ξm ξ
i
m

i!

On the other hand, for algorithm A2 that uses its oracle at Xσ(1) and uses its remaining oracles
at indices S′ ∈ J2 : n+ 1K , |S′| = m− 1, it gets an extra benefit of getting a reward with expected
value 2 (as ε→ 0) if Xσ(2) = · · · = Xσ(n+1) = 0. Hence, it satisfies

E[A2] =
(
e−ξm · 2

)
+

2 ·
∑

i≥0,(i+1)∈S′

e−ξm ξ
i
m

i!

+

1 ·
∑

i≥1,(i+1)/∈S′

e−ξm ξ
i
m

i!


=

∑
i≥0

e−ξm ξ
i
m

i!

+ e−ξm +
∑

(i+1)∈S′

e−ξm ξ
i
m

i!

= 1 + e−ξm +
∑

(i+1)∈S′

e−ξm ξ
i
m

i!
.

First, we show that the expression
∑

(i+1)∈S e
−ξm ξim

i! subject to S ⊆ J2 : n+ 1K , |S| = m is
maximized for S∗ = J2 : m+ 1K. Note that it is easy to verify that for a Poisson distribution with
rate λ, its probability mass function e−λλi/i! is increasing for i < λ, and decreasing after i > λ.
Hence, the optimal S∗ = Jk : k +m− 1K for some k ≥ 2 that “covers” the rate ξm (this is the
region with the most mass for a Poisson distribution). The optimal choice of k is k = 2 because

m∑
i=1

e−ξm ξ
i
m

i!
−

k+m−2∑
i=k−1

e−ξm ξ
i
m

i!
=

k−2∑
i=1

e−ξm ξ
i
m

i!
−

m+k−2∑
i=m+1

e−ξm ξ
i
m

i!
≥ 0,

where the last inequality holds by Lemma 3.7 . Similarly, k = 2 is optimal for when |S| = m − 1.
Hence, we get the inequalities

E[A1] ≤ 1 +

m∑
i=1

e−ξm ξ
i
m

i!
= 1 + qm+1(ξm)− e−ξm ,

E[A2] ≤ 1 + e−ξm +
m−1∑
i=1

e−ξm ξ
i
m

i!
= 1 + qm(ξm).

Thus, we have

max(E[A1] ,E[A2]) ≤ 1− e−ξm + qm(ξm) + e−ξm max{1, ξ
m
m

m!
}

16

But recall from Lemma 3.4 that ξmm ≥ m!, thus

max(E[A1] ,E[A2]) ≤ 1− e−ξm + qm(ξm) + e−ξm · ξ
m
m

m!

= 1− e−ξm + qm+1(ξm)

= 2
(
1− e−ξm

)
.

Therefore, the competitive ratio of every algorithm is

 RoE ≤
2
(
1− e−ξm

)
2

= 1− e−ξm .

Remark 3.15. For a weaker adversary (i.e., offline adversary), one can so very slightly better than
 Theorem 3.14 . See Appendix B for details.

4. The IID settings

Motivated by the early work of [GM66] for the Top-1-of-m model, in this section we study the
 IID setting and the Pmax objective. As a warm-up, we take a look at the IID setting with the Pmax

objective and the case of m = 1, providing a simple single-threshold algorithm.

4.1. A single-threshold algorithm for m = 1

Our single-threshold algorithm Ap for M(O 1, IID , Pmax) selects a threshold τ equal to the pth
quantile of the given distribution D, for some p ∈ [0, 1]. In other words, τ is set such that p =

P[Xi ≥ τ]. The first time the algorithm observes a realization above τ , it queries the oracle to see
whether the realization should be selected or not. If it continues, it simply accepts the first value
encountered above the observed realization on which it queried O .

Lemma 4.1. There exists p ∈ [0, 1] such that Ap selects the maximum realization with probability
at least 0.797 in the M(O 1, IID , Pmax) model for large n.

Proof: Let Y be the total number of realizations above τ , and i1 < i2 < · · · < iY be the indices of
the random variables above τ , i.e. Xit > τ , for t = 1, . . . , Y . Furthermore, let rt be the rank of Xit

in X = {Xi1 , . . . , XiY }, i.e. the number k such that Xit is the kth largest number in X , and Z be
the maximum realization of X1, . . . , Xn.

Xi1 is the first realization we observe above τ . Notice that if r1 = 1 or r1 = 2 then the
algorithm always selects the maximum realization Z. In other words, given that Y = 1 or Y = 2,
the algorithm selects Z with probability 1. Consider the case Y > 2. Again, if r1 ≤ 2, the algorithm
selects Z with probability 1. Otherwise, if r1 > 2, the algorithm returns Z if and only if for all
realizations above τ that appear after Xi1 and are also larger than Xi1 , the first to encounter is Z.
In other words, for the algorithm to succeed in this case, it must be that among the r1−1 values of
rank smaller than r1, the first one in the arrival order is the element of rank 1. Since the random
variables are IID , the probability of this event is exactly 1/r1−1.

17

Let j be the first index such that Xij > Xi1 , and α(Y) = P[A selects Z | Y]. Conditioned on
Y ≥ 3, the probability that the algorithm selects Z is

α(Y | Y ≥ 3) = P[r1 = 1] + P[r1 = 2] +

Y∑
t=3

P[r1 = t]P[rj = 1 | r1 = t]

=
2

Y
+

Y∑
t=3

P[rz = 1 | r1 = t]

Y

=
1

Y

(
2 +

Y∑
t=3

P[rz = 1 | r1 = t]

)

=
1

Y

(
2 +

Y∑
t=3

1

t− 1

)

=
1

Y

(
1 +

Y−1∑
t=1

1

t

)

=
1

Y
(1 +HY−1),

where Hn denotes the nth harmonic number. Recall also that α(Y | Y = 1) = α(Y | Y = 2) = 1.
Next, we estimate P[Y = i], by approximating Y with a Poisson distribution via Le Cam’s

theorem . Let δi =
∣∣∣(ni)pi(1− p)n−i − e−np (np)

i

i!

∣∣∣. The idea is to set p such that np = q, where q ≥ 1

is a fixed constant. We know that P[Y = i] =
(
n
i

)
pi(1− p)n−i, and thus, by Theorem A.2 , we have

∞∑
i=0

δi =
∞∑
i=0

∣∣∣∣∣P[Y = i]− e−np (np)
i

i!

∣∣∣∣∣ =
∞∑
i=0

∣∣∣∣∣P[Y = i]− e−q (q)
i

i!

∣∣∣∣∣ ≤ 2qp

max {1, q}
≤ 2p =

2q

n
.

Overall, the probability that A selects Z is

α(Y) =
n∑

i=0

P[Y = i] · α(Y | Y = i)

= P[Y = 1] +
n∑

i=2

P[Y = i] · α(Y | Y = i)

≥ np(1− p)(n−1) +
n∑

i=2

(
e−q q

i

i!
− δi

)
· α(Y | Y = i),

where the last inequality follows by the definition of δi. Thus,

α(Y) = q(1− q/n)(n−1) +

n∑
i=2

e−q q
i

i!
· α(Y | Y = i)−

n∑
i=2

δi · α(Y | Y = i)

≥ q(1− q/n)(n−1) +
n∑

i=2

e−q q
i

i!

1 +Hi−1

i
−

n∑
i=2

δi

≥ q(1− q/n)(n−1) + e−q
n∑

i=2

qi(1 +Hi−1)

i! · i
− 2q

n
. (4.1)

18

It is not too difficult to see after some calculations that, as n → ∞, Eq. (4.1) is maximized for
q ≈ 2.435, yielding α(Y) ≈ 0.798.

It is easy to see that simply setting q = 2, which corresponds to p = 2/n and τ being the 2/nth
quantile of D, yields α(Y) > 0.5801 for all n ≥ 20. Thus, our simple single-threshold algorithm,
augmented with a single oracle call, beats, even for small n, the optimal algorithm for the IID

prophet inequality which uses different thresholds per distribution and achieves a probability of
success approximately 0.5801 [GM66].

Since the worst-case probability of ≈ 0.5801 by [GM66] is achieved for n → ∞, one might be
interested in the asymptotic behavior of the probability of our algorithm, α(Y), for large n.

4.2. A single-threshold algorithm for general m

As we saw in the previous section, even for a simple, single-threshold algorithm, the analysis of
the winning probability gets tedious quickly. In this section, we generalize our single-threshold
algorithm to the case of general m, and use the fact that the maximum of a uniformly random
permutation of n values changes O(log n) times with high probability to obtain a guarantee on the
winning probability that is super-exponential with respect to m.

As before, our algorithm selects a threshold τ such that p = P[X ≥ τ] and every time the
algorithm observes a realization above τ , it uses an oracle query and asks O if the realization
should be selected or not. If not, then it updates the threshold to the new higher value. If the
algorithm runs out of oracle calls, then it selects the first element above the current threshold τ that
is encounters, if any. In other words, the algorithm uses the oracle calls greedily for all realizations
above τ .

Theorem 4.2. For sufficiently large m,n, and an instance of M(O m, IID , Pmax), there exists an
algorithm that selects the maximum realization with probability at least 1−O

(
m−m/5

)
.

Proof: Let L = e
√
m. The idea is to set τ so that p = P[X ≥ τ] = L/n. As before, let Y be the

number of realizations above τ . By Theorem A.1 , we have

P[|Y − L| ≥ δL] ≤ 2e−δ2L/3.

Setting δ = 1 yields that 1 ≤ Y ≤ 2L with probability at least 1−2e−L/3 = 1−2e−e
√
m/3 ≥ 1−m−m/4

for all m.
Next, let X ′

1, . . . , X
′
Y be the subsequence of all realizations larger than τ , according to their

arrival order, and let Zi = 1 if X ′
i > maxi−1

j=1X
′
j , in other words if X ′

i is larger than all previous
realizations, and Zi = 0 otherwise. Observe that P[Zi = 1] = 1/i, and that the random variables
Z1, . . . , Zn are independent. Furthermore, letM =

∑
i Zi be the number of times that the maximum

realization changes in the sequence X ′
1, . . . , X

′
Y . Observe that if M ≤ m+1, then m oracle queries

are sufficient for the algorithm to always select the maximum realization. Therefore, our goal is to
bound the probability that this event happens.

Conditioned on 1 ≤ Y ≤ 2L, we have

E[M] =

2L∑
i=1

1

i
≤ log(2L) + 1 ≤

√
m+ 2.

19

For δ = m+2/E[M] − 1, we have

P[M ≥ m+ 2] = P[M ≥ (1 + δ)E[M]].

Notice that for m ≥ 98, we have δ ≥ e2, and thus, by Theorem A.1 , we obtain

P[M ≥ m+ 2] ≤ e−E[M]δ log δ/2 ≤ e−
(m−

√
m)(log(m−

√
m)−log(m+2)/2)

2 ≤ m−m/5.

If we instead use the tight Chernoff bound in Theorem A.1 , we can show that P[M ≥ m + 2] ≤
m−m/4+ε for all m and ε > 0.

Putting everything together, for our algorithm to succeed, it suffices to have 1 ≤ Y ≤ 2L and
M ≤ m+ 1, both of which happen together with probability at least 1−O

(
m−m/5

)
.

4.3. An (almost) tight upper bound

Now that we have presented a simple, single-threshold algorithm for the M(O m, IID , Pmax) setting,
a reasonable question to ask is how far it is from being optimal. As we show in this section, the
algorithm is asymptotically almost optimal.

Theorem 4.3. There exists an instance of M(O m, IID , Pmax) for which no algorithm can select
the maximum realization with probability greater than 1−O(m−m).

Proof: To construct an instance in which no algorithm can achieve a high probability, fix m and
consider n random variables X1, . . . , Xn drawn IID from the uniform distribution on [0, 1], where n
is a sufficiently large number. We first divide [0, 1] into k = n/m logm intervals B1, . . . , Bk of length
m logm/n each, with Bi =

(
(i − 1) · m logm/n, i · m logm/n

]
. For each i = 1, . . . , n, let Yi denote the

random variable that is equal to 1 if Xi ∈ Bk and 0 otherwise, where Bk is the last interval. Also,
let Y =

∑n
i=1 Yi. Since the Xi’s follow the uniform distribution, we have P[Yi = 1] = m logm

n for all
i, and E[Y] = m logm.

Next, consider an algorithm A for M(O m, IID , Pmax) on this instance, and assume that Y ≥ 1,
i.e. there exists at least one realization that falls in the last interval. Consider the moment that
A observes a realization Xi ∈ Bk that is larger than all previous realizations (including previous
realizations in Bk). There are two cases:

• If A decides not to use a query to O for this realization and skip it, there is a chance it fails
to select the highest realization. This definitely happens if no other realization in the future
is in Bk, which occurs with probability

(1−Xi)
n−i ≥

(
1− m logm

n

)n−i

≥
(
1− m logm

n

)n

≥ e−m logm−1 = Ω
(
m−m/1−ε

)
for sufficiently large n, for any ε > 0.

• If A decides to expend a query to O for this realization, there is a chance it fails to select
the highest realization by running out of queries, deciding to select the next realization in Bk

that is higher than all previous ones, and missing out on a higher realization in the future.
For this to happen, it must be that Y ≥ m + 2. Let δ = 1 − (1+1/m)/logm. By Theorem A.1 ,
this happens with probability

P[Y > m+ 1] = 1− P[Y ≤ m+ 1] = 1− P[Y ≤ (1− δ)E[Y]] ≥ 1− e
−m logm(logm−1−1/m)2

2logm2

≥ 1−m−m/4.

20

Given that Y ≥ m + 2, the probability that the first m + 2 realizations arrive in increasing
order is 1/(m+2)!. Therefore, A misses out on the maximum realization in this case with
probability at least (for m ≥ 6)

1−m−m/4

(m+ 2)!
≥ m−m.

Therefore, A must miss the maximum realization with probability at least Ω(m−m).

References

[AEE+17] M. Abolhassani, S. Ehsani, H. Esfandiari, M. Hajiaghayi, R. D. Kleinberg, and B.
Lucier. Beating 1-1/e for ordered prophets . Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, 61–71, 2017.

[AGS02] D. Assaf, L. Goldstein, and E. Samuel-Cahn. Ratio prophet inequalities when the
mortal has several choices. The Annals of Applied Probability, 12(3): 972–984, 2002.

[AS00] D. Assaf and E. Samuel-Cahn. Simple ratio prophet inequalities for a mortal with
multiple choices . Journal of Applied Probability, 37(4): 1084–1091, 2000.

[BCGL22] S. Banerjee, V. Cohen-Addad, A. Gupta, and Z. Li. Graph Searching with Predictions .
2022.

[Cam60] L. L. Cam. An approximation theorem for the poisson binomial distribution. Pacific
Journal of Mathematics, 10: 1181–1197, 1960.

[CCDN21] J. Correa, A. Cristi, P. Duetting, and A. Norouzi-Fard. Fairness and bias in online selec-
tion . Proceedings of the 38th International Conference on Machine Learning, vol. 139.
2112–2121, 2021.

[CFH+21] J. R. Correa, P. Foncea, R. Hoeksma, T. Oosterwijk, and T. Vredeveld. Posted price
mechanisms and optimal threshold strategies for random arrivals . Math. Oper. Res.,
46(4): 1452–1478, 2021.

[Den12] F. Den Hollander. Probability theory: the coupling method , 2012. Notes available
online: https://mathematicaster.org/teaching/lcs22/hollander_coupling.

pdf .

[DP09] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Ran-
domized Algorithms . Cambridge University Press, 2009.

[EFGT23] T. Ezra, M. Feldman, N. Gravin, and Z. G. Tang. ”who is next in line?” on the
significance of knowing the arrival order in bayesian online settings . Proceedings of the
2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy,
January 22-25, 2023, 3759–3776, 2023.

[EFN18] T. Ezra, M. Feldman, and I. Nehama. Prophets and secretaries with overbooking .
Proceedings of the 2018 ACM Conference on Economics and Computation, 319–320,
2018.

21

http://dx.doi.org/10.1145/3055399.3055479
http://www.jstor.org/stable/3215496
http://www.jstor.org/stable/3215496
http://dx.doi.org/10.48550/ARXIV.2212.14220
https://proceedings.mlr.press/v139/correa21a.html
https://proceedings.mlr.press/v139/correa21a.html
http://dx.doi.org/10.1287/moor.2020.1105
http://dx.doi.org/10.1287/moor.2020.1105
https://mathematicaster.org/teaching/lcs22/hollander_coupling.pdf
https://mathematicaster.org/teaching/lcs22/hollander_coupling.pdf
https://mathematicaster.org/teaching/lcs22/hollander_coupling.pdf
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://dx.doi.org/10.1137/1.9781611977554.ch145
http://dx.doi.org/10.1137/1.9781611977554.ch145
http://dx.doi.org/10.1145/3219166.3219211

[EHLM17] H. Esfandiari, M. Hajiaghayi, V. Liaghat, and M. Monemizadeh. Prophet secretary .
SIAM Journal on Discrete Mathematics, 31(3): 1685–1701, 2017. eprint: https://

doi.org/10.1137/15M1029394 .

[GM66] J. P. Gilbert and F. Mosteller. Recognizing the maximum of a sequence . Journal of
the American Statistical Association, 61(313): 35–73, 1966.

[Har24] E. Harb. New Prophet Inequalities via Poissonization and Sharding. 2024. arXiv: 2307.

00971 [cs.DS] .

[HK82] T. P. Hill and R. P. Kertz. Comparisons of stop rule and supremum expectations of
i.i.d. random variables . Ann. Probab., 10(2): 336–345, 1982.

[Ker86] R. P. Kertz. Stop rule and supremum expectations of i.i.d. random variables: a com-
plete comparison by conjugate duality . Journal of Multivariate Analysis, 19(1): 88–
112, 1986.

[KS77] U. Krengel and L. Sucheston. Semiamarts and finite values . Bull. Amer. Math. Soc.,
83(4): 745–747, 1977.

[KS78] U. Krengel and L. Sucheston. On semiamarts, amarts, and processes with finite value.
Probability on Banach spaces, 4: 197–266, 1978.

[KW19] R. Kleinberg and S. M. Weinberg. Matroid prophet inequalities and applications to
multi-dimensional mechanism design . Games Econ. Behav., 113: 97–115, 2019.

[Nut22] P. Nuti. The secretary problem with distributions . Integer Programming and Com-
binatorial Optimization: 23rd International Conference, IPCO 2022, Eindhoven, The
Netherlands, June 27-29, 2022, Proceedings, 429–439, 2022.

[Sam84] E. Samuel-Cahn. Comparison of threshold stop rules and maximum for independent
nonnegative random variables . The Annals of Probability, 12(4): 1213–1216, 1984.

A. Some tools from probability

Theorem A.1 (Chernoff’s inequality [DP09]). Let Y1, . . . , Yn be independent indicator ran-
dom variables with pi = P[Yi = 1] and Y =

∑
i Yi. Let µ = E[Y] =

∑
i pi. Then,

(I) For δ ≥ 0: P[Y ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
.

(II) For δ ≥ 0: P[Y ≤ (1− δ)µ] ≤
(

e−δ

(1−δ)(1−δ)

)µ
.

(III) For δ ∈ (0, 1], P[Y ≥ (1 + δ)µ] ≤ e−µδ2/3.

(IV) For δ ∈ (0, 1] P[Y ≤ (1− δ)µ] ≤ e−µδ2/2.

(V) For δ > e2, P[Y ≥ (1 + δ)µ] < e−
µδ log δ

2 .

The following is known as Le Cam’s theorem, see [Cam60 , Den12].

Theorem A.2 (Le Cam’s theorem). Let X1, . . . , Xn be independent Bernoulli random vari-
ables, with pi = P[Xi = 1], for i ∈ JnK. Let S =

∑
iXi and λ =

∑
i pi. Then S has a Poisson

binomial distribution with expectation λ. Furthermore, let Y ∼ Poisλ. Then we have

n∑
i=0

|P[S = i]− P[Y = i]| =
n∑

i=0

∣∣∣∣P[S = i]− e−λλ
i

i!

∣∣∣∣ ≤ 2
n∑

i=1

p2i .

22

http://dx.doi.org/10.1137/15M1029394
https://doi.org/10.1137/15M1029394
https://doi.org/10.1137/15M1029394
http://www.jstor.org/stable/2283044
https://arxiv.org/abs/2307.00971
https://arxiv.org/abs/2307.00971
http://dx.doi.org/10.1214/aop/1176993861
http://dx.doi.org/10.1214/aop/1176993861
http://dx.doi.org/https://doi.org/10.1016/0047-259X(86)90095-3
http://dx.doi.org/https://doi.org/10.1016/0047-259X(86)90095-3
https://projecteuclid.org:443/euclid.bams/1183538915
http://dx.doi.org/10.1016/j.geb.2014.11.002
http://dx.doi.org/10.1016/j.geb.2014.11.002
http://dx.doi.org/10.1007/978-3-031-06901-7_32
http://www.jstor.org/stable/2243359
http://www.jstor.org/stable/2243359

B. Discussion on variants of the oracle and adversary choice.

In this discussion, we will weaken the adversary from an almighty adversary to an offline adversary.
This can only increase the upper bound. We will also strengthen the oracle to answer ≥ instead of
> oracles. Note that the sharding analysis still holds, and the lower bound of 1− e−ξm still holds.
We show that

1. Amongst single-threshold algorithms, our algorithm is still optimal. That is, no single thresh-
old algorithm can get a competitive ratio ≥ 1− e−ξm .

2. However, if we allow the algorithm to use thresholds that depend on i in the sequence
X1, . . . , Xn, then our single-threshold ceases to be optimal. However, we show that the dis-
crepancy from an optimal algorithm in this scenario, to an optimal single-threshold algorithm
is very small

5

Input instance. The input is a sequence made out of n+ 2 random variables, for n sufficiently
large. Each of these random variables can have only two values – either zero or some positive value.
Specifically, for ε > 0 sufficiently small (e.g., ε≪ 1/n4), let

X1 = 1, P[Xi = 1 + ε(i− 1)] =
ξm
n
, for i ∈ J2 : n+ 1K , and P

[
Xn+2 =

1
εΨ
]
= ε,

where Ψ = m!/ξmm . By Lemma 3.6 , ξm ≈ m/e, as such, the expected number of non-zero entries in
this sequence is (roughly) m/e+ 1.

Observation B.1. We have that Ψ = m!/ξmm < 1 by Lemma 3.4 .

Lemma B.2. For Z = maxiXi, we have E[Z] = 1 + Ψ, where Ψ = m!/ξmm.

Proof: Let Z ′ = maxi∈Jn+1KXi. Observe that 1 = X1 ≤ Z ′ ≤ 1 + εn. Thus, limε→0 Z
′ = 1. As

such, for Z = max(Z ′, Xn+2), we have E[Z] = E[maxiXi] = (Ψ/ε)ε+ (1− ε)E[Z ′] −−−→
ε→0

Ψ+ 1.

Observation B.3. Let X̂i be an indicator variable for the event that Xi ≥ 1. For sufficiently large
n, ∇ =

∑n+1
i=2 X̂i has a binomial distribution that can be well approximated by a Poisson distribution

(see Theorem A.2) with rate ξm. That is, lim
n→∞

P
[
∇ = k

]
= e−ξm (ξm)k

k!
.

Observe that limn→∞ P[∇ ≤ k] =
∑k

i=0 e
−ξm (ξm)i

i! = qk+1(ξm). For simplicity of exposition, we
are going to pretend that P[∇ ≤ k] = qk+1(ξm).

Theorem B.4. Consider any choice of m ≥ 1, and δ > 0, and the above input instance I formed by
a sequence of non-IID random variables. Then, for all single-threshold algorithm A ∈ M(O m)
for I, we have RoE (A) ≤ 1− e−ξm + δ and Pmax (A) ≤ 1− e−ξm + δ.

5We observed that the maximum difference between the single-threshold optimal competitive ratio and the optimal
multiple-threshold competitive ratio is at most ≤ 0.0018 for allm. In fact form = 1, the discrepancy is ≤ 0.000000973!
See Figure B.1 . This very small discrepancy is separately interesting to address, especially that the discrepancy
between optimal multiple-threshold algorithms and single-threshold algorithms for other prophet inequalities is usually
quite large. For example, the Top-1-of-2 model has a discrepancy of almost 0.1 between single threshold and
multiple-threshold algorithms.

23

Proof: Consider all the distinct values that might appear in I – there are n+2 such values. Thus,
there are only n+2 single-threshold algorithms we need to consider (corresponding to each of these
values). If the threshold is τ = Ψ/ε, then the algorithm gets on expectation Ψ < 1, which is clearly
suboptimal compared to accepting X1 immediately.

Next, consider the threshold 1. If there are at most m − 1 non-zero values in X2, . . . , Xn+1,
then the algorithm continues to Xn+2 and the algorithm gets at most max(Xn+2, 1 + nε). If there
are at least m non-zero values in X2, . . . , Xn+1, then the algorithm gets at most 1+nϵ. Hence, for

ρ = Ψ
1

ε
· ε+ (1− ε)(1 + nε)

ε→0−−−→ 1 + Ψ, (B.1)

we have

E[A] ≤ P[∇ ≤ m− 1]

(
Ψ
1

ε
· ε+ (1− ε)(1 + nε)

)
+ P[∇ ≥ m](1 + nε) ≤︸︷︷︸

ε→0

qm(ξm)Ψ + 1.

Since qm+1(ξm) = 1− e−ξm , we have

qm(ξm)Ψ = qm(ξm)
m!

ξmm
=
(
qm+1(ξm)− e−ξm ξ

m

m!

)
· m!

ξmm
= (1− e−ξm)Ψ− e−ξm .

Thus, we have (as ε→ 0) that

E[A] ≤ 1− e−ξm + (1− e−ξm)Ψ = (1− e−ξm)(1 + Ψ).

Next, consider a threshold of 1 + (i − 1)ε. Here, the algorithm is “activated” at Xi, for i ∈
J2 : n+ 1K. Let

β = (n− i+ 2)
ξm
n

denote the Poisson rate for Xi, . . . , Xn+1, and let ∇i =
∑n+1

j=i Xj . Clearly β ≤ ξm. If Xi, . . . , Xn+1

are all zeros, then the algorithm gets the expectation of Xn+2. If there are at least one, and at most
m non-zero values in Xi, . . . , Xn+1, then the algorithm continues to Xn+2 and the algorithm gets at
most E[max(Xn+2, 1 + nε)] ≤ ρ = 1+Ψ, see Eq. (B.1) . If there are at least m+ 1 non-zero values
in Xi, . . . , Xn+1, then the algorithm gets at most 1+nϵ. Hence, on expectation, the algorithm gets

E[A] ≤ P[∇i = 0]E[Xn+2] + P
[
∇i ∈ J1 : mK

]
ρ+ P

[
∇i > m

]
(1 + nε)

≤ q1(β)Ψ + (qm+1(β)− q1(β))(1 + Ψ) + (1− qm+1(β)) · (1 + nε)

−−−→
ε→0

q1(β)Ψ + qm+1(β) + qm+1(β)Ψ− q1(β)− q1(β)Ψ + 1− qm+1(β)

= 1 + qm+1(β)Ψ− q1(β) = 1 + qm+1(β)Ψ− e−β.

Let f(x) = qm+1(x)Ψ − e−x. By Lemma 3.3 , we have f ′(x) = −e−x xm

m!Ψ + e−x = −e−x xm

ξmm
+ e−x.

As such, f ′(x) > 0 for x ∈ [0, ξm). Namely, f is increasing in this range, and this range contains
the value β. Since qm+1(ξm) = 1− e−ξm , we have

E[A] ≤ 1 + f(β) ≤ 1 + f(ξm) ≤ 1 + (1− e−ξm)Ψ− e−ξm = (1− e−ξm)(1 + Ψ).

This implies, that for all cases, the competitive ratio is

E[A]

E[Z]
≤ 1− e−ξm + (1− e−ξm)Ψ

1 + Ψ
=

(
1− e−ξm

)
(1 + Ψ)

1 + Ψ
= 1− e−ξm .

24

B.1. On the optimal multiple-threshold algorithms

Intuitively, a better strategy than single-threshold, is using different thresholds (potentially based
on the values seen so far).

New Input Instance The input is a sequence made out of n + 2 random variables, for n suf-
ficiently large. Each of these random variables can have only two values – either zero or some
positive value. Specifically, for ε > 0 sufficiently small (e.g., ε≪ 1/n4), let

X1 = 1, P[Xi = 1 + ε(i− 1)] =
c1,m
n
, for i ∈ J2 : n+ 1K , and P

[
Xn+2 =

c2,m
ε

]
= ε,

Optimal algorithm. For a fixed instance of the prophet inequality problem, one can usually
argue about the optimal algorithm for the instance using reverse dynamic programming. The
argument is standard, but we include it here for the sake of completeness. Let bi = 1 + ε(i − 1),
for i ∈ J1 : n+ 1K, and bn+2 = c2,m/ε. Note that b1 ≤ · · · ≤ bn+2. Similarly, let p1 = 1, pi = c1,m/n
for i ∈ J2 : n+ 1K, and finally pn+2 = ε. Now, the input is the sequence of random variables
X1, . . . , Xn+2, with

P[Xi = bi] = pi, for i = 1, . . . , n+ 2.

Let Zi = max(Xi,, Xn). Let Et(k) be the expected value of an optimal algorithm running on

Xk, . . . , Xn having access to t oracle calls. Let E↑
t (k) be the expected value of an optimal algorithm

running on Xk, . . . , Xn with t oracle calls, given that Zk > 0. We have the (mutual) recurrence

Et(k) = P[Xk = 0]Et(k + 1)

+ P[Xk > 0]

max

{
Et(k + 1)

P[Zk+1 = 0]bk + P[Zk+1 > 0]E↑
t−1(k + 1)

t > 0

max (Et(k + 1), bk) t = 0.

Let

αk = P[Xk > 0 | Zk > 0] =
P[(Xk > 0) ∩ (Zk > 0)]

P[Zk > 0]
=

P[Xk > 0]

P[Zk > 0]
.

Consider

βk+1 = P[Zk+1 > 0 | (Xk > 0) ∩ (Zk > 0)] = P[Zk+1 > 0 | Xk > 0] = P[Zk+1 > 0].

We now have

E↑
t (k) = (1− αk)E

↑
t (k + 1) +

αk max

{
Et(k + 1),

(1− βk+1)bk + βk+1E
↑
t−1(k + 1)

t > 0

αk max (Et(k + 1), bk) t = 0

It is straightforward to argue by reverse induction on k that Et(k) is the best any algorithm can
get on expectation from Xk, . . . , Xn+2 using t oracle queries, as the recurrence includes all possible
outcomes of these queries. Also note that the recurrence can easily be evaluated in O(nm) time.

25

m c1,m c2,m OPT Competitive Ratio 1− e−ξm Difference

1 1.146 0.872 0.682 0.682 0.000000973

2 1.685 0.779 0.792 0.792 0.000689

3 2.054 0.808 0.863 0.861 0.00178

4 3.250 0.682 0.909 0.907 0.00170

5 3.696 0.651 0.939 0.937 0.00170

6 3.826 0.628 0.959 0.958 0.00154

7 4.330 0.612 0.973 0.971 0.00131

8 4.195 0.682 0.982 0.980 0.00113

9 5.234 0.580 0.988 0.987 0.000846

10 5.854 0.571 0.992 0.991 0.000656

11 6.131 0.563 0.994 0.994 0.000500

Table B.1: Maximum discrepancy between single-threshold algorithm and multiple-threshold algo-
rithm for m = 1 to m = 11. Rounded to 3 significant digits.

How far off is the optimal single-threshold algorithm It is natural to ask how far our
optimal single-threshold algorithm is from the optimal multiple-threshold algorithm above. We
set n = 100000 and ε = 10−18, and performed experiments on m = 1, . . . , 11. We observed
that the maximum difference between the single-threshold optimal competitive ratio and the op-
timal multiple-threshold competitive ratio is at most ≤ 0.0018. See Figure B.1 . This very small
discrepancy is separately interesting to address, especially that the discrepancy between optimal
multiple-threshold algorithms and single-threshold algorithms for other prophet inequalities is usu-
ally quite large. For example, the Top-1-of-2 model has a discrepancy of almost 0.1 between single
threshold and multiple-threshold algorithms.

26

	Introduction
	Our contributions
	Our results in detail
	Equivalence of models as far as P
	Difference of the models as far as RoE
	Bounding the performance of the oracle model
	The benefit of several oracle calls

	Additional related work

	Reductions
	The P objective
	For the RoE objective oracle diff prophet

	The non-IID settings
	The exponent sequence
	Background: Sharding, poissonization, and stochastic dominance
	Sharding
	Poissonization
	The distribution in a range
	Stochastic dominance

	An optimal single-threshold algorithm (lower bound)
	A matching upper bound for single-threshold algorithms

	The IID settings
	A single-threshold algorithm for m = 1
	A single-threshold algorithm for general m
	An (almost) tight upper bound

	Some tools from probability
	Discussion on variants of the oracle and adversary choice.
	On the optimal multiple-threshold algorithms

