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Abstract
Prior research has found that differences in the early period of neural network training significantly
impact the performance of in-distribution (ID) tasks. However, trained neural networks are often
sensitive to out-of-distribution (OOD) data, making them less reliable in downstream applications.
Yet, the impact of the early training period on OOD generalization remains unknown due to
its complexity and lack of effective analytical methodologies. In this work, we investigate the
relationship between learning dynamics and OOD generalization during the early period of neural
network training. We utilize the trace of Fisher Information and sharpness, focusing on gradual
unfreezing (i.e., progressively unfreezing parameters during training) as the methodology for
investigation. Through a series of empirical experiments, we show that 1) changing the number
of trainable parameters at certain times (via gradual unfreezing) has minor impacts on ID results,
but significantly improves OOD results; 2) the absolute values of sharpness and trace of Fisher
Information at the initial period of training are not indicative for OOD generalization, a higher
sharpness may be beneficial for OOD generalization in this period.

1. Introduction

Deep neural networks have achieved impressive results in the tasks they are trained on, but they
are often sensitive to distribution shifts (i.e., out-of-distribution, OOD) during inference. As in
many applications of deep neural networks, the training and testing data may come from different
distributions. Failure to generalize to the OOD setting degrades the models’ robustness and reliability.

A plethora of research has found that differences in the early period of training have a significant
impact on the in-distribution (ID) performance [1, 8, 10, 24, inter alia] for a wide range of settings.
The wide observation of such a period in machine learning applications suggests that the early period
of learning is generally important for neural network training [18].

In particular, prior literature identifies that modifications (or interventions) to the optimization
process are critical in shaping the early period of training for ID generalization. Training techniques
such as weight decay [10], learning rates [15, 24], data augmentation ([10, 23], such as with
MixUp, [28]) or adding noise to weights [9] impact learning dynamics early on, and can significantly
improve or hamper the final task results depending on the time of application or removal. However, to
the best of our knowledge, there haven’t been studies on how the early period of training impacts OOD
generalization. Such a study could lead to the development of new theories for OOD generalization
and new methods for improving model performance in OOD scenarios.

[22] found that gradual unfreezing [13] (i.e., progressively releasing trainable parameters during
training at fixed time intervals) impacts the trace of Fisher Information (tr(F)) in the early period
of training. However, the work was focused on which parameters to select for better cross-lingual
transfer (where cross-lingual transfer is a form of natural OOD generalization). Besides the tr(F),
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other sharpness metrics have also been used to study the generalization of network training, especially
after the success of methods such as Sharpness-Aware Minimization (SAM, [7, 20, 29]), however,
sharpness is less used in prior work to study the early period of training.

In this work, we conduct empirical investigations into how the early period of training impacts
OOD generalization (with a focus on covariate/input shift). We first use gradual unfreezing [13] to
intervene in the dynamics of the early period of training from scratch, examining its impact on OOD
generalization. Next, we investigate different metrics for studying the early period of training for
OOD generalization. To summarize, we show that 1) changing the number of trainable parameters at
certain times (via gradual unfreezing) has a minor impact on ID results, but significantly improves
OOD results; 2) the absolute values of sharpness and tr(F) at the initial period of training are not
indicative for OOD generalization, a higher sharpness may be beneficial for OOD generalization in
this period.

2. Preliminaries

2.1. Fisher Information Matrix (FIM)

To investigate the training process, we first look at the Fisher Information [6]. Fisher Information
reflects the local curvature and measures the amount of information with respect to network param-
eters, i.e., how sensitive the network predictions are to the changes in parameters. A larger Fisher
Information indicates that a small change in network parameters can change the output significantly,
which can be interpreted as a “sharper” loss landscape.

Estimating the full Fisher Information is generally expensive. Prior work shows that the trace of
the Fisher Information (tr(F)) correlates well with the full Fisher Information when used in real
applications to capture signals during the learning process [1, 15, 27, inter alia]. Let x be the inputs
and y be the labels of a dataset D. Given a neural network that is parameterized by w, and using the
empirical data distribution Q̂(x), the Fisher Information is defined as:

tr(F) = Ex∼Q̂(x) Eŷ∼pw(ŷ|x) ||∇w log pw(ŷ|x)||2. (1)

2.2. Sharpness

Let LD(w) = 1
|D|

∑
(x,y)∈D log pw(y|x) be the loss over training datasets of a neural network

parameterized by w, and δ be a small perturbation drawn from a noise distribution, such as a
Gaussian distribution N (0, ρ2diag(c2)). The definitions of average and worst-case sharpness are
[2, 7, 12, 20]:

Sρ
avg = Eδ∼N (0,ρ2diag(c2)) LD(w − δ)− LD(w), (2)

Sρ
worst = max

∥δ⊙c−1∥p ≤ ρ
LD(w − δ)− LD(w), (3)

where ⊙ denotes element-wise multiplication.
The sharpness here refers to how rapidly the loss changes with respect to the changes in the

model parameters.1 While both the Fisher Information and sharpness are used for investigating loss
landscapes and generalization, they offer different views of the training process.

Both Sρ
avg and Sρ

worst are studied in prior literature for generalization [5, 16, 20]. While prior
work believes that flatter (less sharp) minima in the loss landscape lead to better generalization in

1. The sharpness can be negative.
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neural networks [3, 12, 14, 17], these metrics’ attribution to the early period of training and how their
early period trends are related to OOD generalization is understudied.

2.3. Gradual Unfreezing

Gradual unfreezing [13] is a simple tuning method that progressively increases the number of
trainable parameters (i.e., unfreeze, layer-by-layer) of the neural network from the top to the bottom
of the network with a fixed interval of training steps, k (i.e., the unfreezing interval). In this paper, we
applied a modified version of gradual unfreezing [22], progressively unfreezing parameter “blocks”
top-down early in training. A “block” can range from a single layer to multiple consecutive layers,
defined by the standard parameter namespaces in typical implementations in our experiments. See
Appendix A for details and the algorithm.

3. Experimental Setup

We perform our experiments on the ResNet-18 network, trained from scratch. For evaluation, we use
MNIST [21], CIFAR10 [19] and CIFAR100 [19] for training, and MNIST-C [25], CIFAR10-C [11]
and CIFAR-100-C [11] for OOD evaluation (results averaged across different corruption types and
severity). We use the Auto-PGD algorithm [4] as implemented in [2] (we refer the readers to the
original papers for details). In our experiments, the default learning rate specified in Appendix B is
denoted as lrd and we also experimented with reduced learning rates which are 1/10th of the default,
specified as 0.1*lrd. Other training details are also given in Appendix B.

4. Gradual Unfreezing in the Early Period of Training Can Improve
Out-of-Distribution Generalization

Here, we first validate that gradual unfreezing applied to the early period of training in our controlled
setting (training from scratch) could also help OOD generalization. By examining three different
datasets and two model architectures in Table 1, progressive parameter unfreezing (i.e., gradual
unfreezing) does not influence ID results by a large margin (mostly minor degradation, but can also
positively impact the ID results). However, gradual unfreezing has a non-negligible positive impact
on the OOD results. This observation applies to various learning rates, but empirically, the default
(higher) learning rate performs better for both ID and OOD tasks on CIFAR datasets. Here, we
provide evidence that gradual unfreezing can improve OOD performance when training from scratch
even if it was proposed for transfer learning [13], and validate the usability of gradual unfreezing as
an intervention for our study.

5. Evidence of Impact on Out-of-Distribution Generalization

Using gradual unfreezing, we experimented with different unfreezing steps k (ranging from 1 to
equally dividing the total training steps among the number of trainable parameter blocks) to measure
its impact on both ID and OOD test results. Indeed (as in Figure 1), it is possible that withholding
trainable parameters can influence the OOD generalization as early as after training on a single batch
of data. The effect is especially prominent for simpler datasets like MNIST.

Prolonging the unfreezing interval of parameters during training initially results in minimal
change in the ID test performance with a larger learning rate, subsequently leading to quick de-
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Table 1: Classification results on various datasets and model architectures. RN18 is ResNet-18.
The default learning rate (lrd) cases are the same as described in §3, 0.1*lrd indicates the
learning rate is 1/10th of the default learning rate. GU: indicates that gradual unfreezing is
applied to the early period of training, here we observe the results that are close to the ID
results, but with better OOD results (bolded).

MNIST RN18 CIFAR10 RN18 CIFAR100 RN18
Method ID / OOD ID / OOD ID / OOD

lrd 99.06/33.36 93.32/72.36 71.07/45.10
lrd + GU 98.98/63.99 93.26/72.95 71.03/46.34
0.1*lrd 99.26/58.46 91.66/71.14 69.95/44.59
0.1*lrd + GU 99.18/62.51 91.51/71.26 70.67/46.03
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Figure 1: Change in ID and OOD evaluation results when unfreezing parameters at different times
(compared to standard training). The shortest unfreezing interval k is 1 (training with 1
batch of data). Experiments in the first row use lrd and the second row uses 0.01*lrd. The
x-axis is in the log scale.

terioration of the ID results. The deterioration of ID results over unfreezing intervals aligns with
trends observed in the early stages of training using other interventions and complements the prior
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work [1, 10]. The impact on OOD results serves as evidence that the early period of training can
influence OOD generalization.

Gradual unfreezing reveals interesting trends in the OOD evaluation results and highlights the
trade-off between ID and OOD generalization. There exists a brief period during which OOD results
may improve, prior to a rapid decline in ID performance. As soon as the ID results start to decrease
rapidly, the OOD results first increase, then rapidly decrease for CIFAR10/100 with ResNet, but
not in MNIST. The experiment results indicate that there may be a range of k in the early period of
training with improved OOD results and minimal decay in ID results.

6. Learning Dynamics in the Early Period of Training

Observe in Figure 2 (for CIFAR10, and Figure 3 in the Appendix for other datasets) that by freezing
the number of trainable parameters at a time (and gradually unfreezing them), we can induce higher
Fisher Information and larger Sρ

avg, Sρ
worst at the beginning of training compared to the standard

training procedure. In general, the longer we withhold parameters, the higher the level of sharpness
and tr(F) we can sustain, unfreezing parameters reduces these metrics.

While there are variations between Sρ
avg, Sρ

worst and tr(F), they are all sensitive to the early
period of training and interventions. Sρ

avg shows more consistent trends across datasets and archi-
tectures compared to the other two metrics. Due to the randomness in estimating Sρ

avg, Sρ
worst, and

tr(F), it is also evident that a single, absolute largest value of these metrics during the early period
of training may not be a consistent indication of OOD generalization (or ID generalization, in fact).
This indicates that the discussion for a high or low value of Sρ

avg, Sρ
worst, or tr(F) during the early

period of training should focus on relative rather than absolute values of these metrics.
Empirically, our findings differ from prior work on ID generalization (such as [15]) that demon-

strated an ‘explosion’ of tr(F) during the early period of training (due to using a small learning
rate) is harmful. Here, a higher tr(F) induced by parameter freezing does not hurt generalization, in
both ID and OOD. When considering the trainable parameters as a variable, having initial higher
sharpness or tr(F) can be advantageous up to a certain time frame during training. Overall, our
results suggest that while a lower sharpness or tr(F) during the early period of training may be
good for ID generalization, when factoring in the trainable parameters, a lower initial sharpness or
tr(F) could lead to worse OOD generalization. This observation applies strictly to the very early
period of training, and the eventual reduction of sharpness or tr(F) after the initial period is still
desirable (evident in Figure 1, Figure 2, and work like SAM, [7, 20, 26]). This indicates the need to
develop new theories for OOD generalization. While sharpness and tr(F) are effective for studying
the early period of training, their relative trends are important for OOD generalization (also in ID).

7. Impact of Early Period of Training is a General Phenomenon

Gradual unfreezing is a specific case where high sharpness at the initial learning period could benefit
OOD generalization. A critical question is: are there alternative methods for intervening during the
early period of training with higher initial sharpness, that also positively impact OOD generalization?

Higher Initial Sharpness via Learning Rate Recall that a higher learning rate typically results in
lower sharpness (and a lower learning rate results in higher sharpness, as indicated in [15]). Based
on our findings in the previous sections, we hypothesize that using a lower learning rate at the initial
period of learning, then switching to a higher learning rate later (high sharpness to low sharpness)
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Figure 2: Unfreezing parameters at different times affects the learning dynamics in the early period
of training. The y-axis uses a log scale and is normalized from 0 to 1000 for visualization.

Table 2: Effect of interventions during the early period of training on ID and OOD performance.
Sharpness profiles are induced by: changing the learning rate (LR, left in blue), and delaying
the application of a Fisher penalty (FP, right in red).

Baseline (LR) ID/OOD Intervention (LR) ID/OOD Baseline (FP) ID/OOD Intervention (FP) ID/OOD

lrd 93.32/72.36 lrl2h 93.35/72.89 w/o FP 84.45/65.61 - -
0.1*lrd 91.66/71.14 lrh2l 91.58/71.18 w/ FP 85.39/65.77 w/ FPk=2000 85.20/66.71

may help OOD generalization (surprisingly, this is a simple form of learning rate warm-up!). To
validate, we use CIFAR10 dataset on ResNet18 with two learning rates: we initially use 1/10th of the
default learning rate, then increase the learning rate to the default value after k steps (i.e., low-to-high,
denoted as lrl2h, and the reverse (high-to-low) lrh2l. Additionally, we experiment with using a Fisher
penalty [15] on CIFAR10 and a simple CNN network (see details in the Appendix D) and delay the
application of the Fisher penalty in order to induce a high-to-low sharpness profile. Results are in
Table 2. Inducing high-to-low sharpness profiles leads to improved OOD results in both cases.

8. Conclusions

In this work, we empirically study the early period of training of neural networks and show that 1)
changing the number of trainable parameters at certain times (via gradual unfreezing) has a minor
impact on ID results, but can significantly improve OOD results (covariate shift); 2) the absolute
values of sharpness and trace of Fisher Information at the initial period of training are not indicative
for OOD generalization, but the relative values are.
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Appendix A. Gradual Unfreezing

Following the notations and algorithm in [22], let FORWARD(∗) be the standard forward pass, and
BACKWARD(∗) calculates gradients and performs updates for trainable parameters. The modified
gradual unfreezing algorithm is in Algorithm 1.

In our experiments, we partition the blocks by their natural namespaces as follows:
ResNet18: The definition block follows the standard implementation of ResNet, with an input

convolution layer and a batch norm group together as the additional block. The model parameters
are partitioned into 5 blocks, and a classification head.

Algorithm 1: Gradual Unfreezing
Require A model’s eventual trainable parameters are partitioned into blocks j ∈ {0, . . . , L− 1}

parameterized by θj , with a task-specific classification head C, and an unfreezing interval k. A
set S of the indices of parameter blocks to unfreeze.

Initialize C, θj for all j;
S ← {C};
j ← L− 1;
for i = 1 . . .N do

Sample a data batch b ∼ D;
if i mod k == 0 and i ≤ kL then
S ← S ∪ {θj};
j ← j − 1;

end
FORWARD(∗);
BACKWARD(S) ;

end

Appendix B. Hyperparameters

The hyperparameters are listed in Table 3 for all our experiments. We use the SGD optimizer and
apply standard augmentations (i.e., random crops and flips) to the CIFAR datasets. We report results
over 6 random seeds for MNIST (due to the high variance in OOD results), and we use 4 random
seeds for all other experiments. The experiments use a single NVIDIA P100, A6000 or A100 GPU
depending on the availability.

For calculating Sρ
worst and Sρ

avg, we use L2 norm and ρ = 0.01 with 15 examples. We follow the
setup in [2] and use the implementation with 2048 data points from the training data (un-augmented
when calculating sharpness metrics) for all experiments. We use a batch size of 256 for calculating
all the metrics. The sharpness and tr(F) are recorded every 10 batches (steps) for all datasets.
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Table 3: Hyperparameters used in all experiments.

MNIST CIFAR10 CIFAR100
RN18 RN18 RN18

optimizer AdamW SGD SGD
lr scheduler const. const. const.
lrd 0.01 0.1 0.01
batch size 128 128 128
training epochs 10 200 200
weight decay 0.01 0 0.0005
momentum 0.9 0 0.9
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Appendix C. Learning Dynamics
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Figure 3: Unfreezing parameters at different times affects the learning dynamics in the early period
of training (with lrd). The y-axis is in the log scale and is normalized between 0 and 1000
for visualization.

Appendix D. Fisher Penalty

A small learning rate can induce a higher sharpness and tr(F) in general, and prior work has shown
that regularizing tr(F) can help with ID generalization [15]. Let J be the original loss, the total
loss with Fisher penalty is in Eqn. 4. Following the simple CNN setting in [15, Appendix I.2], we
train a simple 4-layer CNN (with one MaxPooling layer, no dropout) and a final fully connected
layer of 128 hidden units on the CIFAR10 dataset with data augmentations. The model is trained for
300 epochs using an SGD optimizer with batch size 128, momentum 0.9, and a learning rate decay
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of 0.1 after epochs 150 and 225. We use a starting learning rate of 0.001 (a smaller learning rate than
the default) and apply the Fisher penalty (FP) with a strength of 0.01 (α) every 10 steps.

Jtotal = J + α ∗ tr(F) . (4)
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