Under review as a conference paper at ICLR 2025

ALIGNING LARGE LANGUAGE MODELS WITH PREF-
ERENCE PRIVACY

Anonymous authors
Paper under double-blind review

ABSTRACT

Alignment is a crucial part in the implementation pipeline of Large Language
Models (LLMs) that utilizes human feedback to ensure that LLMs adhere to hu-
man values and societal norms. This introduces privacy threats associated with the
identity and preferences of the labelers responsible for creating the human feed-
back data. Several recent works have explored using differential privacy (DP) as a
notion to protect the privacy of human labeled data; primarily relying on DP-SGD
based solutions, which privatize the gradients during fine-tuning and alignment.
Human preferences, however are only associated with the labels of the (prompt,
response) tuples; therefore DP-SGD based approaches can be superfluous, provid-
ing more privacy than necessary and can degrade model utility. In this work, we
focus on the problem of aligning LLMs with preference level privacy, which only
preserve the privacy of preferences provided by humans. We build and expand
upon the concept of label DP for this problem, and present a series of increasingly
sophisticated, yet practical privacy preserving mechanisms for alignment. Specif-
ically, starting from a standard randomized response (RR) mechanism which ran-
domly flips human preferences, and its corresponding unbiased RR mechanism
(which ensures an unbiased loss during alignment), we propose a new mechanism,
PROPS (PROgressively Private Self-alignment). PROPS works in multiple stages
as follows: in each stage, the privately trained and partially aligned model from the
previous stage to act as a labeler for the training data for the next stage and com-
bine it with RR which is repeated across multiple stages. Motivation for PROPS
comes from the following critical observations: a) learning to label correct pref-
erences might be an easier problem than generating responsible content; b) pro-
gressively combining RR with partially aligned models for labeling preferences
significantly reduces the amount of necessary perturbation needed for privacy and
also shows the potential of possibly reducing the number of human labeled pref-
erence samples. We present comprehensive experiments using multiple models
(including Pythia and GPT models), and two datasets (t ruthy-dpo-v0.1 and
Anthropic HH-RLHF) to showcase the utility gains of PROPS over existing pri-
vacy preserving methods (including DP-SGD and RR). Our results demonstrate
that PROPS is especially effective in high-privacy regimes compared to conven-
tional DP-SGD. For example, with ¢ = 0.1 the Win-Tie-Lose rates of PROPS
against DP-SGD for GPT2-Large and GPT2-Medium are respectively 66 : 2 : 32
and 76 : 1 : 23, which demonstrate a clear advantage of using PROPS.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have gained significant attention across various dis-
ciplines due to their ability to generate responses based on open-ended human instructions. Training
LLMs typically involves three key stages: pre-training, supervised fine-tuning (SFT), and align-
ment. Among these, alignment is particularly important as it guides LLMs to produce responses
that align with societal norms and human preferences. The alignment process typically relies on a
dataset D consisting of n samples, each containing a prompt x, LLM-generated responses (y1, ¥2),
and a human-preferred label £*, collectively referred to as preference data (which one of y; or yo
is the prefered response). Over the past few years, two main alignment approaches have emerged,
namely, Reinforcement Learning with Human Feedback (RLHF) (Stiennon et al., [2020) and Direct
Preference Optimization (DPO) (Rafailov et al., |2024)), both of which utilize preference datasets
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with ranked labels provided by human annotators. While alignment improves the quality of gener-
ated responses, the use of human-labeled samples introduces privacy risks, particularly concerning
the identity of the annotators and their associated preferences. Intuitively, LLM generated (prompt,
response) pairs in datasets may not require strict privacy protections, but human preference labels
require privacy, as they often reveal sensitive insights. For instance, in medical applications, pub-
licly available case reports or anonymized symptoms can prompt LLMs to generate diagnoses, with
human feedback providing expert alignment with best practices, necessitating privacy to safeguard
clinical judgments. Similarly, in policy analysis, publicly available survey questions or proposals
can elicit LLM-generated analyses, where policymakers’ feedback reveals sensitive interpretative
insights that may require protection.

Related works & motivation: To mitigate the privacy Privacy | PROPS vs DP-SGD (Win-Tie-Lose)

risks associated with human-annotated preference data, Budget GPT2-Large GPT2Medinst

the notion of Differential Privacy (DP) 1 —— —
2014) has recently been explored for fine-tuning and i 66 T2 5elind

alignment of LLMs. For example, (2021) ap- = i 60:2:38 30:11:39
plied DP to fine-tuning by introducing privacy guaran- € =1 60:3:37 49:7:44

tees for smaller, appended parameters such as LoRA and €=2 44:6:50 54:4:42

adapters. [Behnia et al.| (2022)) proposed a DP fine-tuning
framework for LLMs using the Edgesworth accountant, Figure 1: Comparison of Win-Tie-Lose

while [Zheng et al.| (2024) provided DP guarantees for in-  rate for PROPS vs DP-SGD for high privacy
context learning. [Singh et al] (2024) introduced a two- regimes with GPT2-Large, GPT2-Medium
stage fine-tuning process, and |Yu et al] (2024) addressed ~Models (for more results see Section ).

the privacy-preserving alignment challenge by ensuring

DP protection for users’ prompts against labelers during the generation of preference datasets for
alignment. DP for LLM inference privacy has also been studied by [Mai et al.| (2024) and [Flemings|
(2024). Additionally, proposed applying DP to RLHF by splitting the dataset
into three disjoint sets to ensure DP at each stage of RLHF. We now make the following critical
observations that motivate this paper:

1. The aforementioned works view the entire tuple of {prompt = (z) , responses = (y1, y2),
human-annotated labels = (¢£*)} as a private entry in the training dataset and the associated
DP notion is invoked to protect this entire tuple. We note that in typical alignment scenar-
ios, the prompts and responses are not generated by humans (the two responses (y1, y2) are
usually obtained from the fine-tuned LLM). Human input is only used to label/rank the re-
sponses. Therefore, providing privacy of the entire tuple can be superfluous and potentially
hurt the utility of the privately aligned model. This observation motivates the problem of
this paper: alignment with preference privacy, where only the preferences of the labelers
need to be protected, rather than prompt and response pairs.

2. Most of the existing works listed above achieve DP by using DP-Stochastic Gradient De-
scent (DP-SGD) and their variants, such as Differentially Private Proximal Policy Opti-
mization (DP-PPO). These approaches modify the training procedure by privatizing the
gradients based on the leakage budgets. While these methods are adequate in terms of
privacy, they provide the privacy for the entire tuple (i.e., lack the specificity of only keep-
ing human preferences private) and often degrade performance in high-privacy regimes (as
shown in Figure[T).

Overview and Main Contribution: Motivated by the above observations, we study the problem
of aligning LLMs with preference privacy. Specifically, we investigate two notions of privacy:
a) preference-level privacy and b) a stronger notion of labeler-level privacy. Preference level pri-
vacy ensures that the individual human-preference ¢* for any tuple (x, y1, y2) does not significantly
impact the aligned model. Formally, we leverage the existing notion of Label-DP, and use it to
formalize the notion of (e, §)-preference-level DP, where (¢, §) represent the privacy budgets. The
stronger notion of labeler-level privacy (also commonly referred to as “user” level privacy in the
DP literature) hides the presence/absence of any individual human labeler and protects all the labels
annotated by the labeler. For the scope of this paper, we focus predominantly on DPO
(2024) as the alignment algorithm for two reasons: a) there is no existing work on DPO with
differential privacy; and b) DPO is less computationally expensive than RLHF, since DPO learns a
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Figure 2: PROPS: Progressively Private Self-Alignment algorithm: PROPS aligns in multiple stages, where
in each stage, the model learned from the previous stage is used to generate labels/preferences for the next
batch; these preferences together with the noisy versions (perturbed via randomized response (RR)) of ground
truth preferences are combined via a maximum-likelihood estimator (MLE) which are used for alignment.

aligned model directly, whereas RLHF involves training a reward model, followed by reinforcement
learning stage. We summarize and highlight the main contributions and novel aspects of this work:

* Randomized Response base methods: We start by studying the classical mechanism of
Randomized response (RR) which directly perturbs the human-labels, which can then be
used for model alignment via conventional DPO training. This method however, ends up
introducing a bias in the loss.

* PROPS Algorithm: we present Progressively Private Self Alignment (PROPS), a novel al-
gorithm which takes a more nuanced approach to alignment through a multi-staged process.
Rather than using the entire perturbed dataset in one go, PROPS divides the alignment task
into multiple stages, each involving a fraction of the dataset (see Figure[2). Let us focus on
the kth stage for £ > 1: at this stage we have a model obtained from the previous stage,
denoted by Mj_1. We now make two observations: in the kth stage in order to use fresh
batch of samples, we still need to perturb the true private labels (say using RR). However,
we also have access to the model M}, (which can be used without additional leakage due
to post-processing of DP), as well as the non-private (prompts, responses) of the fresh batch
of samples. We use the model Mj,_; to also provide it’s own ranking of these responses
(and denote it as £5s, _,). We also have the noisy perturbed labels, {rr on the fresh batch
of samples. Viewing ({ggr,fn,_,) as two noisy observations of the ground truth pref-
erence £*, we combine these observations and derive the maximum-likelihood estimator
(MLE) using both the observations. These MLE estimates act as the labels for this stage
of alignment. This process then repeats across K stages. The key insight behind PROPS is
that while intermediate LLM models M}, may not yet be fully capable of generating high-
quality outputs or responses in the early stages of training, it may still possess sufficient
knowledge to correctly label preferences. By utilizing progressively learned models like
for preference labeling, PROPS reduces the reliance on noisy perturbed labels, which can
degrade the quality of alignment if overused. This staged approach not only improves the
quality of the alignment over time but also lessens the burden of maintaining strict privacy
guarantees across the entire dataset. Each stage builds upon the knowledge accumulated
in previous stages, allowing for more refined preference labeling as the model improves.
Thus, our framework leverages the power of intermediate models to enhance alignment
efficiency while preserving privacy, offering a novel solution to the challenge of privacy-
preserving alignment. We remark here that PROPS can be also used/readily adopted for
RLHF based alignment.

* Comprehensive Experimental Results: We conduct a comprehensive set of experiments to
evaluate the impact of preference-level differential privacy (DP) on alignment performance
with different models (namely Pythia-1B, GPT2-Large and GPT2-Medium) across various
privacy regimes. Specifically, we focus on DPO-based methods for alignment and analyze
how the Win-Tie-Lose rates of privately aligned DPO models vary as a function of the
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privacy budget e. First, we compare Randomized Response (RR) based DPO against SFT
model to show the benefit of incorporating privacy during alignment. Second, we com-
pare the Win-Tie-Lose rates of our proposed method against conventional DP-SGD that
shows the benefit of using preference-level privacy over centralized differential privacy for
alignment. In Figure[T} we highlight results demonstrating that in high-privacy regimes, the
preference-privacy-based PROPS approach outperforms DP-SGD for two different models:
GPT2-Large and GPT2-Medium. We also analyze the effect of model size and privacy con-
straints when using PROPS compared to RR-DPO, and show that the gains from PROPS
are prominent for larger model sizes. We present the Win-Tie-Lose rate for two differ-
ent datasets (truthy—-dpo-v0.1 and Anthropic HH-RLHF) on GPT2-Medium model
which show the consistent improvement provided by PROPS. The detailed experimental
results along with discussions are provided in Section ]

2 BACKGROUND ON ALIGNMENT AND PRIVACY

Model Alignment: Alignment of pre-trained LLM models enable the models adhere to human
values and societial norms by adjusting the generated responses. Reinforcement Learning based
Human Feedback (RLHF) (Stiennon et al, 2020} [Bai et al.,[2022) and Direct Preference Optimiza-
tion (DPO) (Rafailov et al.,[2024) are two pre-dominant methods for alignment. In this paper, we
focus on the DPO-based method for alignment. We start with a preference dataset D with n-samples
where the i‘" sample can be expressed as (z;, y%, y4, £F) where x; is the prompt, ¥, 33 are two LLM
generated responses and £} is the human chosen label that can be defined as:

o= 1 if yi is preferred over the response 3,
! 0 otherwise.

For the ease of notation, we define y, is the preferred response and y,,,, is the not-preferred response,
and suppress the index ¢. Specifically, if £* = 1, then we will have y, = y1, Ynp = ¥2, and for the

case £* = 0,yp, = Y2,Ynp = y1. For a prompt x in the dataset D with y, response preferred over
the response y,,;,, we define the DPO (instance specific) loss as:

o (Yp|z) — Blog o (Ynp|2) )
Tret (Yp|T) Tref (Ynp| T)

=1(" =1)-loss(x,y1 > y2) + L(¢* =0) -loss(z,y2 > y1). (1)
The instant-specific true loss mentioned in equation [T] represents the loss for every prompt z in
preference data D, therefore the expected DPO loss can be defined as:
Elloss(z, y1,y2, )] = Bz y yo,05)np [L(E" = 1) -loss(z,y1 > y2) + L(£* = 0) - loss(z, y2 = y1)]

2

Privacy for Alignment: The notion of Differential Privacy (DP) Dwork et al.| (2014) has been

adopted in the alignment frameworks to ensure that the presence or absence of a single sample
in a preference dataset does not significantly alter the outcome of the model.

loss™ (z, yp > ynp) = logo (B log

Definition 1 ((¢, ¢) Differential Privacy) For all pair of neighboring datasets D and D’ that differ
by a single entry, i.e., ||D — D'||1 < 1, a randomized algorithm M with an input domain of D and
output range R is considered to be (e, §)-differentially private, if VS C R:

P[M(D) € S] < ¢ - PIM(D') € S] + .

The DP framework ensures that the inclusion or exclusion of a single data entry {z;, yi, y3, £ } does
not significantly influence the aligned model’s behavior. However, the traditional DP framework
may offer a stronger privacy guarantee than what is required since it not only privatize the human
generated label £; in the context of LLM alignment that can be achieved by exploiting the idea of
Label-DP (Chaudhuri & Hsul 2011}, [Ghazi et al.} 2021b)), a relaxed version of DP which specifically
aims to protect the privacy of the labels of the dataset, may offer a more ideal solution.

Definition 2 (¢, -Label DP) (Chaudhuri & Hsul 2011} [Ghazi et al] 2021d) For all neighbor-
ing datasets D and D' that differ by one preference ranking (i.e. {z;,yi,ys, ¢;} € D and
{zi,v4,v2, (1 — £;)} € D', with privacy parameters ¢ € R~g, and § € [0,1) an algorithm M,
whose output domain S consists of all possibly aligned models, will satisfy e-preference privacy if :

P[M(D) € S] < e -P[M(D’) € S]+ 6. 3)
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For the case with § = 0, the model M satisfies e-label DP.This motivates the notion of Preference-
level privacy that places a guarantee on labeler’s privacy while not significantly impacting a model
during its alignment stage. Specifically, preference level privacy ensures that the resulting LLM after
alignment should not be significantly impacted by a change in a single preference. Similar to Label-
DP, the randomized response mechanism (Warner, [1965) is a direct approach for implementing
preference privacy, as the preference ¢; of a data entry is flipped with probability v, = ﬁ where
v is used for convenience in notation and e represents the privacy budget. We define e-preference
level DP and the randomized response mechanism as follows:

Definition 3 ((¢, §)-Preference level DP) For all neighboring datasets D and D’ that differ by one
preference ranking (i.e. {x;, vy}, vy5, 0;} € D and {x;,y%,y?, (1 — ;)} € D', a model after perform-
ing an alignment procedure M, whose output domain S consists of all possibly aligned models, will
satisfy e-preference privacy if :

P[M(D) € S] < e -PIM(D') € ] + 4. (4)

From Preference-level DP to Labeler-level DP: Preference-level DP would be a strong guarantee
for each labeler if each labeler (user) labels only one prompt’s responses. However, in practice this
is not the case, and typically each labeler can annotate multiple responses. In this case labeler-
level privacy safeguards all instances from the same user (labeler). In this scenario, the notion of
adjacency of datasets would be defined w.r.t. presence/absence of a labeler. This distinction has
been widely noted and studied in the literature, including including (McMahan et al.| [2017; [Liu
et al., 2020; [Levy et al., [2021). One can use techniques from privacy accounting and composition
techniques to convert preference-level DP guarantees to labeler-level DP. For the remainder of this
paper, we focus on the design of preference-level DP techniques for alignment as the transformation
to user level DP can be done by above techniques.

Randomized Response Based Approach: As a first baseline solution, one can achieve e-Preference
level DP by Randomized Response (RR). For each entry of the preference dataset D, {z, y1, y2, £*},
the output of the RR mechanism is {x, y1, y2, {rr }, where:

A with probability (1 — 7¢) = 15—
tren = { G-=m )

1— ¢ with probability ve = 3.

More generally, for a private label generated with RR, ¢rp, the private loss on individual prompt
x € D can be defined as:

loss(x,y1,Y2,lrr) = L(lgr = 1) - loss(z,y1 > y2) + L(lrr = 0) - loss(z,y2 > y1).  (6)
From the above equation, the expected DPO loss with randomized response can be written as:
Eepplloss(z,y1,y2,Lrr)] =P(lrr = €7) - [l08S(z,y1, Y2, lrRllRR = €7)]+
P((rr # (7) - [l0sS(z, y1, Y2, Lrr|lRR # £7)]
:(1 - 76) : |OSS[.’L‘, Y1,Y2, f*] + Ve - IOSS[JT, Y1,Y2, 1- E*] (7)

Thus, we observe that the DPO loss on the private preference is a biased estimate of the non-private
DPO loss. To mitigate this issue, we can instead define a new loss function for DPO training as
follows:

oSl ' B 1712% (1 = 7yo)loss(z, y1 = y2) — Yeloss(z,y2 = 1)), if brr = 1,
yY1,Y2, LRR) = 1 . _
1—2v, ((1 - WE)IOSS(xayQ -~ yl) - %'053(%% - y2)7 lféRR =0

®)
We note that the above loss function is an unbiased estimate of the true DPO loss (defined w.r.t. the

ground truth human preferences), i.e., E[loss""™*(z, y1,ys,rr)] = 1088(2,y, = Ynp) . This
result was shown in|Ghazi et al.| (2021Db)).

Remark on Connections to & Differences from robust DPO: We note that the problem of preference-
level privacy is similar to the problem of robust alignment in presence of noisy preferences. Specif-
ically, recent works, including Mitchelll (2023)), [Chowdhury et al.| (2024a)) and |Chowdhury et al.
(2024b)) study the robustness of alignment when the human-annotated labels are intrinsically noisy.
The distinction however, is the following: in our setting, the injected noise (and more importantly
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the parameters of the privacy preserving mechanisms (detailed in the next Section)) are known and
can be controlled as a function of the privacy parameters. Furthermore, we remark here that some
of the theoretical results obtained in/Chowdhury et al.|(2024a) can be readily applied to our problem
and assess the utility-privacy tradeoff of RR based methods. To avoid repetition, we choose not to
repeat these kind of results in this paper.

3 PROGRESSIVELY PRIVATE SELF-ALIGNMENT (PROPS)

In this section, we present Progressively Private Self-Alignment algorithm (PROPS), which is the
main technical contribution of this paper. To facilitate understanding, we first describe PROPS in
a two-stage (K = 2) setting and the generalization to arbitrary number of stages is straightfor-
ward. We begin with the preference dataset D consists of n samples. Each sample is represented
as (z,y1, Y2, £*), where x is the prompt, (y1, y2) are the large language model (LLM) generated re-
sponses, and ¢* is the human labeler’s preference. We partition this dataset into two halves, denoted
as D; and Ds. Let us perturb the labels of each entry using the RR mechanism, i.e., the labels are
flipped a probability . = 1/(1 + €°).

Stage 1: In the first stage, we use the dataset D; (with perturbed labels) and use it to align a fine-
tuned model via DPO. Let us denote the resulting model as M. First note that since the training
was done on private (perturbed preferences), due to post-processing the model M; can be used in
subsequent stages without additional leakage.

Stage 2: In this stage, we use the dataset Do, and use the model M; (of the pre-

vious stage) to label/rank the preference of each prompt/response-pairs. Note that

this procedure only requires the prompt and response pairs (and not the ground-

truth human preferences); thus, this does not cause any additional privacy leakage.

Let us denote the corresponding label obtained from the

model M; for a prompt as ¢p;,. To summarize, at PROPS with K=2 stages

this point, for each tuple (x,y1,y2), we have access to

(¢rR,far,). Viewing these as two noisy observations of ~ **** (=) &3

the ground truth £*, it is natural to ask the following: can ‘

one combine these predictions to obtain a better predic-

tion about the ground truth preference? Note that we g2
D,

know the error rate of RR (which is v.), however, we do
not know the error rate of the model M; (say vz, , which
denotes the probability with which the model M; makes
errors). Howeyer, if we knew the error rate of the model Figure 3: Illustration of PROPS (K = 2
M, (or an estimate for ~y,s, ), then we could then use a
combining approach (e.g., the maximum-likelihood esti-
mator or MLE) to design a potentially better estimate of the ground truth label for alignment. In fact,
it is not too difficult to work out the MLE combiner using two noisy observations. Assuming that the
RR noise and the noise induced by the model M are independent, the MLE statistic (log-likelihood
ratio) can be written and simplified as follows (see Proof in the Section[6):

stages).

P(lrr,la, | £* =0)

A(lrr,? =1 ! 9
(¢rr,lar,) = log (P(gRRngl = 1) )

1—7 1-—
= (=1)%"% . log < i > + (=1)1 - log (le) (10)

Ve VM,
The above then yields the methodology one can use for creating a new label for each prompt as:
1 ifA(ERR EM)SO

14 lrr,t = T ’ 11
props ({RR, £y ) {0 it A(Crm, (ar) > 0. 1D

With access to the new label estimates, fprops (for all samples in the set D5), we then train M,
using DPO to obtain a new model AM,. This procedure can be repeated in a multi-stage setting by
replacing M, by My, which is then trained on PROPS labels to obtain the model Mj, for the next
stage.

Estimating s, : Now, the remaining challenge is to estimate 7y, , the rate at which the model M,
predicts incorrect labels. We next present an interesting approach to estimate 7z, . Suppose that
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we make the hypothesis that the model M; also independently flips the ground truth labels with
probability vy, , then we can write the output of the model and the output of the RR mechanisms as
follows:

brr=0"®U, Iy, =08V, (12)

where U ~ Bernoulli(v.) and V' ~ Bernoulli(vyy, ). Thus, estimating vy, is equivalent to estimat-
ing the parameter of the Bernoulli random variable V. Note that we have | D3| such observations
(one for each sample in the second half of the dataset). If we compute

XA e
Py, = —————, (13)
|Ds

which represents the number of disagreements between the labels predicted by RR and the model
M, this value in fact converges to the the expected value of E[lU® V] = vyar, (1—7ve) +7ve(1—var,))-
Since we know ., we can then use it to compute the unknown parameter s, . This leads us to
propose the following estimator for vy, :

Har, — Ve

- 14
= (14)

(BEstimate of yar,) Y, =

The detailed proof of the above result and the fact that above estimator is unbiased is presented in
the Section@ With all the above, we have all the ingredients for PROPS.

Algorithm 1 PROgressively Private Self-alignment (PROPS)

Inputs: Fine-tuned Model My, Dataset D, Stages K, Privacy parameters (¢, §)
Output: Aligned model Mg
RR(v.)

Perform RR on dataset D, such that D ———= D’
Partition the dataset D’ into K -disjoint datasets such that D' = D; U Dy U ... U Dk
Flip labels using Randomized Response (RR) with probability . =
Align model M, with dataset D, to get model M,
fork=2,3,..., K do

Generate labels éﬁ’z . for dataset Dy, using the model M}_ (from previous stage)

1
1+4e€

Obtain Egg and ZADj; _, and obtain the maximum likelihood estimator (MLE) A according to
equation T3] and generate label as:

oD

1 IfA <0,
PROPS —

0 IfA>0.

Align model M}, _; on dataset Dy, with PROPS labels (Eg{ops) to get model Mj,
end for
QOutput: Aligned model Mk on dataset D

PROPS Algorithm & Remarks We present the main algorithm of this paper (PROgressively Pri-
vate Self-alignment) PROPS in Algorithm[I] We now make a sequence of remarks regarding this
algorithm: (a) Privacy guarantees of PROPS: PROPS satisfies (e, 0)-preference-level differential
privacy (DP). Furthermore, techniques such as sub-sampling can be readily combined with our idea
for privacy amplification. The key aspect of PROPS is that even though it does not explicitly re-
duce privacy leakage, for the same leakage as one would achieve by a vanilla RR mechanism, it can
potentially provide higher utility (as PROPS trains on potentially less noisy preferences compared
to vanilla RR). (b) Compatibility with RLHF and other alignment approaches: While we have pre-
sented the idea with DPO in the backdrop, the exact same procedure is applicable for alignment using
RLHF based algorithms (as these algorithms also require labeled prompt-response pairs). (c) The
description of the algorithm satisfies (¢, 0)-preference level DP. However, we can /ift the algorithm
to achieve user/labeler level privacy as discussed in Remark in Section 2. Specifically, achieving
labeler level DP would require a bound on the maximum number of responses (per labeler), which
can then be used together with composition techniques to provide labeler-level DP guarantees. (d)
Distinction from Multi-Stage RR: We would also like to note that even though PROPS bears simi-
larities to Multi-Stage RR |Ghazi et al.| (2021b), it has important differences. In multi-stage RR, in
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each stage the labels for the next stage are obtained by either using RR or via the model from the
previous stage (e.g., using a sampling strategy). The distinction lies in the fact how one combines
the noisy labels and the model predictions. Instead of using a simple approach of randomly selecting
between the two, we instead first estimate the error rate of the model, which are then combined using
an MLE approach. Secondly, we note that in LLM alignment, the models are not directly trained
for preference classification, but rather for responding to prompts in a socially acceptable manner.
The versatility of LLMs and their ability to handle multiple tasks allows us to use the LLMs for
dual purposes; namely preference classification for self-alignment. (e) Distinction between PATE
and PROPS: We highlight key distinctions between PATE [Papernot et al| (2018) and PROPS. First,
PATE provides the privacy of all features; whereas in this paper we focused on preference-level-
privacy. Second, PROPS is based on a sequential and iterative approach. In each iteration (stage),
we use the model learned from the previous stage to rank the prompt/responses and combine them
with the RR-perturbed rankings. These combined rankings (which are obtained using a Maximum-
Likelihood-combiner) are then used to train the model in the next iteration using DPO. On the other
hand, PATE follows a parallel-training paradigm; namely it trains multiple teacher models on data
partitions in parallel, whose outputs (labels) are then aggregated with DP. These labels are then used
for subsequent training. (f) Impact of number of stages and privacy budget in PROPS: The number
of stages in the PROPS framework can be treated as a hyperparameter and optimized based on the
dataset. Since the 2-stage PROPS approach was already outperforming baseline methods, we did
not extend our comparisons to multi-stage settings in our experiments. However, a carefully chosen
number of stages has the potential to further enhance the framework’s privacy-utility tradeoff.

4 EXPERIMENTAL SETUP AND RESULTS

In this Section, we present results on e-preference level DP for DPO, and compare the re-
sults with our proposed algorithm PROPS. The code for PROPS along with the used datasets
are publicly available . In our experiments and validation, we have used (1) two datasets
(jondurbin/truthy-dpo-v0.1 dataset and Anthropic HH-RLHF ) and (2) three different

models of varying sizes: Pythia-1B [EleutherAll (2024)) , GPT2-Large (774M) (2024a) and
GPT2-Medium (355M)|OpenAl|(2024b)). We have adopted a similar experimental setup as the prior

works [Rafailov et al| (2024)); |Chakraborty et al.| (2024)); von Werra et al.| (2020)[Lior-Baruch| (2024))
Our results are organized as follows: (a) We first show how RR-based scheme and our method
(PROPS) impact the Win-Tie-Lose rate relative to a SFT model, and the improvement provided by
PROPS compared to RR. (b) We also compare PROPS vs DP-SGD for the three models and the two
datasets to show the consistent advantage of PROPS.

Impact of Preference Privacy on Win-rate Performance. We now present results using
the PROPS algorithm. We implemented a two-stage (K = 2) procedure, where the first
stage aligns the initial SFT model using noisy RR perturbed labels to obtain a model M;;
in the second stage, we use model M;’s predictions together with noisy labels (of the sec-
ond half of the dataset) to obtain new PROPS labels. We then train the model M; using
PROPS labels to obtain the final model M,. Figure [] reports the win-rate for the privately
trained DPO models with respect to the fine-tuned model (denoted as SFT for supervised fine-
tuning) used before DPO assuming the t ruthy—-dpo-v0. 1 dataset and GPT-2-Large model.
The objective of this experiment is to observe if the pri-

vately trained DPO models can still attain a compara- | pyiyacy Budg Win-Tie-Lose rate

ble utility while enforcing a stronger privacy guaran- —oi T
tee. Specifically, Figure ] shows two sets of win-tie-loss e=05 54.3.23 7330
rate results: PROPS against SFT and RR against SFT. €= 54:9:37 59:0:41
We report results in the practically relevant high-privacy €=2 71:2:27 56:7:37

regime, evaluating Label-DP for four values of e: 0.1, 0.5
1, 2. The results indicate that the privately trained meth-
ods can still generate responses aligned with societal val-
ues compared to their original SFT counterparts while guaranteeing preference DP. As expected, for
stricter privacy budgets (i.e. € = 0.1, 0.5) the win-rate is smaller compared to more relaxed privacy
budgets (i.e. € = 1, 2).

Figure 4: Relative performance of RR and
PROPS based alignment versus SFT model.

PROPS vs RR: We report results comparing the responses of PROPS vs. RR mechanism in Fig-
ure ] in terms of Win-Tie-Lose rate. We used GPT-4 as the evaluator and t ruthy-dpo-v0.1
dataset was used for alignment. To analyze the impact of model size, we ran this comparison for
Pythia-1B, GPT2-Large, and GPT2-Medium models on the t ruthy-dpo-v0.1 dataset



Under review as a conference paper at ICLR 2025

comparing our PROPS method with randomized response (RR) in Figure 5} The results indicate

that PROPS can significantly outperform RR when using a larger model such as Pythia-1B.

Furthermore, PROPS can benefit larger models more con-

sistently (i.e. across varying privacy budgets) more than | Privacy PROPS vs RR (Win-Tie-Lose)

RR. For Pythia-1B, PROPS beats RR at all privacy ~ PUdget| Pythia(B) |GPT2-Large GPT2-Medium

budgets and for GPT2-Large (774 million parameters) ::851 :i;:;ig f::.fo.ffs ZZ;?;:;

beats RR at all budgets except ¢ = 0.5, where it loses by =1 57:5:38 | 54:11:35 | 42:9:49

a slight margin. For GPT2-Medium (355 million pa- |e=2 | 51:11:38 |49:28:23 | 49:6:45

rameters), an interesting trend is observed where PROPS ] o

beats RR at e = 0.1, 2 but loses at e = 0.5, 1. This could Figure 5: Comparison of Win-Tie-Lose

be a result of GPT2-Medium having fewer parameters ' for PROPS vs RR for high privacy

than GPT2-Large and Pythia, as it would have lower fglmes with three models: Pythia, GPT2-
. e . . . arge, GPT2-Medium.

generalization capabilities causing it to make incorrect

predictions during the subsequent stages of PROPS.

PROPS vs DPSGD: In Figure [0] we present Win-Tie-Lose rates comparing
our proposed algorithm PROPS with the conventional DP-SGD algorithm for
GPT2-Large and GPT2-Medium models on the truthy-dpo-v0.1 dataset.
DP-SGD was ran using the Gaussian mechanism for 1

epoch with § = 10~'Y, a gradient clipping threshold of [ privacy | PROPS vs DP-SGD (Win-Tie-Lose)
10, and a batch size of 4. PROPS was ran for 2 epochs Budget | GPT2-Large | GPT2-Medium
with a batch size of 4. As the results indicate, PROPS  |e=0.1 66:2:32 76:1:23
is able to consistently outperform DP-SGD at higher pri- |e=0.5 60:2:38 50:11:39
vacy regimes (e = 0.1, 0.5, 1) for both models. This indi- e=1 60:3:37 49:7:44
cates that while DP-SGD attempts to additionally protect | =2 44:6:50 54:4:42

the prompts and responses, it suffers a significant drop in

utility for smaller privacy budgets. One critical distinc- Figure 6: Comparison of Win-Tie-Lose
tion to highlight is that the implementation of PROPS en- rate for PROPS vs DP-SGD for high privacy
sures a pure differential privacy (DP) guarantee, specifi- regimes with GPT2-Large, GPT2-Medium
cally (e, 0)-DP. In contrast, DP-SGD provides an approx- models.

imate differential privacy guarantee, denoted as (e, )-DP. Next, we present results to show the
mean and standard deviation of the normalized Win-Tie-Lose rates for PROPS vs DP-SGD on (a)
HH-RLHF dataset and (b) t ruthy—-dpo-v0.1 datasets in Figure [/| for four privacy parameters.
The table indicates that PROPS on-average outperforms DP-SGD on both datasets at high privacy
regimes (details regarding the experiments are presented in the Appendix).

Privacy Budget PROPS vs DP-SGD (Win-Tie-Lose)
truthy-dpo-v0.1 dataset HH-RLHF dataset
e=0.1 776+£2.19:2+2:204+0.89 50+8.24:19.2+7.29:30.8+7.15
e=10.5 53.6+6.69:84+16:38+7.07 46.8+£6.41:272+7.01:26+2.44
e=1 52+6.78:48+4.14:43.2+5.93 54.4+£9.52:18+£6.78:27.6 £7.92
€=2 65.6+4.34:2+2:324+3.28 32.8+54:252+7.29:42+7.87

Figure 7: Mean and Standard Deviation for 5 independent runs on truthy—-dpo-v0.1, and HH-RLHF
datasets for high-privacy and moderate-privacy regimes with GPT2-Medium model.

Illustrative Example Responses to Prompts for varying privacy levels: To further illustrate the
privacy-utitity tradeoff, we analyze the responses of LLMs trained at different privacy budgets for
the same prompt. Figure[§|presents responses for models trained when e = 0, 1, oo for two different
prompts. For instance, the first prompt is: “I’ve been seeing a lot of slugs outside recently, even
crawling up trees. Should I do something about them, or just let them be?”. As the table indicates,
the model trained with ¢ = 0 (corresponding to random flipping) only regurgitates the question to
the user. The model trained with e = 1 does produce an actual response but introduces its own
opinion/bias on the matter. The model trained with € = oo gives a more “professional” answer but
is not very helpful. For the second prompt, an interesting trend can be observed where the models
trained when € = 0, 0o behave similarly to the previous example, but at ¢ = 1 a more informa-
tive answer is given. This again indicates that privacy can be ensured while still attaining a decent
utility. It should be noted that quality assessment of language models is inherently subjective and
could alternatively be analyzed along three individual axes: (a) Coherence, (b) Helpfulness, and (c)
Harmlessness. While GPT-4 can provide fine-grained rankings for individual attributes, combining
these into an overall judgment remains subjective. When generating the win-tie-loss results in the
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Prompt 1: I've been seeing a lot of slugs outside recently, even crawling up trees.
- Should | do something about them, or just let them be?
=
¢=0 => Perfect Privacy T:“ ¢ =0DPO Response: I've been seeing a lot of slugs outside lately, even crawling up trees. Should |
o model do something about them, or just let them be?
]
c . o o
e=1 => High Privacy a e = 1DPO Response: | don't have a slugs problem. | just don't like them. | don't like slugs, and |
g model don't like the idea of slugs. | don't like slugs.
c
e=100 = No Privacy € = oo DPO Response: | don't have a physical location, so | can't tell you what's causing the slugs. |
model can't tell you what's causing the slugs, either.
Prompt 2: Can you tell me the stops on the B Line subway in Los Angeles?
e=0 = Perfect Privacy %‘ € = 0 DPO model Response: | can't tell you stops on the B Line subway. | can't tell you where the
3 stops are.
o
a0 = : i i i y
e=1 = High Privacy % € = 1 DPO model Response: The B Line stops are at the end of the line, and the B Line is a one-way
s street.
5
=100 => No Privacy £ € = oo DPO Response: | don't have a physical location, so | can't tell you the stops on the B
model Line.

Figure 8: This figure shows examples of responses to two prompts (denoted as Prompts 1 & 2) for three
different aligned models using e-Preference-level DP: ¢ = 0 DPO model was trained on completely randomly
labeled preferences; € = oo DPO model refers to the non-privately aligned model. We can clearly observe a
perceptual increase in response quality; moreover, the response remains coherent even at a high privacy regime
(corresponding to € = 1).

Privacy Budget Response Coherence Helpfulness |Harmlessness

Yes, it does. But it also protects the speech of others. The First
€ = (0.1 |Amendment protects the speech of others, but it also protects 4 3 10
the speech of the speaker. The First Amendment.

€ = OO |This is a misconception due to the common belief that the First 6 4 10
Amendment protects individuals from restrictions on speech.

Figure 9: Comparing individual ratings of coherence, helpfulness, and harmfulness of GPT-4 when given
prompt: “Does the First Amendment protect individuals from restrictions on speech imposed by private busi-
nesses and individuals?” for GPT2-Large trained with PROPS at € = 0.1 and when € = oo (i.e. non-private).

main paper, we focused on prompting GPT-4 to equally prioritize coherence, helpfulness and harm-
fulness when evaluating responses. We did this so that we could assess the win-tie-lose statistics
for each model across a large sample size of prompts. Having said that, if we were to assess each
response individually one can in principle ask GPT-4 to provide fine-grained rankings for each at-
tribute (coherence, helpfulness, harmlessness). However, combining these rankings to rate or judge
a response as superior becomes subjective. As an example we show these fine-grained rankings for
two responses from the same prompt at different privacy budgets in Figure PJunder varying privacy
budgets for GPT2-Large.

5 CONCLUSIONS

In this paper, we presented new results towards aligning LLMs with preference level privacy, which
preserve the privacy of preferences provided by humans. We build and expand upon the concept of
label DP for this problem, and present a series of increasingly sophisticated, yet practical privacy
preserving mechanisms for alignment. Specifically, starting from a standard randomized response
(RR) mechanism which randomly flips human preferences, we presented a new mechanism, PROPS
(PROgressively Private Self-alignment) which works across multiple stages. The key insight behind
PROPS is that while intermediate LLM models may not yet be fully capable of generating high-
quality outputs or responses in the early stages of training, it may still possess sufficient knowledge
to correctly label preferences. Thus, our framework leverages the power of intermediate models to
enhance alignment efficiency while preserving privacy, offering a novel solution to the challenge of
privacy-preserving alignment. We also provided a comprehensive set of experiments on two datasets
and multiple model sizes which show that PROPS outperforms DP-SGD and randomized response
(RR) based approaches. We quantified and measure these gains in terms of win-tie-lose rates, and
these gains are especially substantial in practically relevant high privacy regimes.

10
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6 APPENDIX

6.1 MLE ESTIMATOR FOR {* USING ({gp, {r,): EQUATION [10]

Given the flipped labels {rr and ¢;;, by Randomized Response (RR) and model M respectively,
we aim to come up with a good decision making policy for the proposed algorithm. We calculate
the likelihood of observing ({rg, £as, ) given the possible values of £*. We define . as the flipping
probability of RR and -y, as the flipping probability of the model.

0" P(lrr = 0[¢")P(£rr = 1[£")P(Car = 0]€7)P(Ly = 1[07)
0 1—7 Ve 1—yum ™M
1 Ye 1= Y I—vm

Figure 10: The table represents the probability of observing g and ¢;; based on the flipping
probabilities v, and vy,s, and true label £*.

For binary ¢*, now we present the probability of observing specific values of {rr and £, . To find
the best estimator, we compute the log-likelihood ratio:

P(lrr,ly, | £* =0)
A =1 1 1
og (]P)(ERRang = 1) (15)

@ 10g (Pwmlf* = 0) - Pty |0 = 0>>
P(ﬁRRM* = ) -]P)(EMIM* = 1)

© (_1yter log (1 — 76) +(=1)%1 log (1 — Wl)
B!

€ Y™

where, (a) is obtained since /g and ¢;;, are independent, and (b) values are obtained from Table
[T0] This concludes the proof of equation [I0}

6.2 ESTIMATOR FOR 7y, : PROOF OF EQUATION [[4]

We have noisy labels /i generated by RR with a flipping probability of 7., and predicted labels
£ar, by the model M; with a flipping (error) probability of s, . We define £rr and £,, as:

brr=0" U, Iy, =0V, (16)

where U ~ Bernoulli(y.) and V' ~ Bernoulli(yss,). We first make the observation that for ‘"

sample in the dataset, é%}l @ E%}% ={UreV)e eV, =V, U, where, U; and V; are
independent. Now, define

YR,
' D,

and note that p5y, is an unbiased estimator for the expected value of E[U & V] = a7, (1 — v¢) +
~Ye(1 — 7y, ). Hence, we can use ujy to obtain an estimate for 4y, as follows:

App, = T2 (17)

This concludes the proof of equation [T4]
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6.3 TRAINING DETAILS

We now summarize how the models were trained for the experiments. The training procedures for
each dataset were as follows:

truthy-dpo-v0.1: 15% of the data was used for SFT. 75% of the data was used for passing
the model through DPO. This segment of data was split in half, and two epochs of DPO were
ran over each half. We then filtered the dataset to keep the preference pairs that were generated
by prompting an LLM to be “an honest and helpful assistant” and performed DPO using half of
the dataset for 3 epochs. The Win-Tie-Loss rates are calculated using the remaining 10% of the
truthy-dpo-vO0.1 dataset, which is equivalent to 100 prompts.

HH-RLHF: We use an SFT modeﬂ available on huggingface that was trained for 1 epoch over the
Anthropic-HH dataset. 1000 samples from the test set were used to run DPO. Specifically, these
samples were split into 2 halves, and DPO was run for three epochs on each half. While the same
prompts were run for both PROPS and DP-SGD, PROPS was fed prompts from the same dataset but
with a different formaﬂ 100 samples from the same test set (see Footnote 2) were used to generate
the Win-Tie-Loss results.

"https://huggingface.co/jtatman/gpt2-open-instruct-v 1 -Anthropic-hh-rlhf
Zhttps://huggingface.co/datasets/psyche/anthropic-hh-rlhf
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