
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BIRD-INTERACT: RE-IMAGINING TEXT-TO-SQL EVAL-
UATION VIA LENS OF DYNAMIC INTERACTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable performance on
single-turn text-to-SQL tasks, but real-world database applications predominantly
require multi-turn interactions to handle ambiguous queries, execution errors, and
evolving user requirements. Existing multi-turn benchmarks fall short of capturing
this complexity, either by treating conversation histories as static context or by lim-
iting evaluation to narrow, read-only (SELECT-ONLY) operations, thereby failing
to reflect the challenges encountered in production-grade database assistant. In
this work, we introduce BIRD-INTERACT, a benchmark that restores this missing
realism through: (1) a comprehensive interaction environment that couples each
database with a hierarchical knowledge base, metadata files, and a function-driven
user simulator, enabling models to solicit clarifications, retrieve knowledge, and
recover from execution errors without human supervision; (2) two evaluation
settings reflecting real-world interaction settings which contain a pre-defined con-
versational protocol (c-Interact) and a more open-ended agentic setting (a-Interact)
in which the model autonomously decides when to query the user simulator or
explore the DB environment; (3) a challenging task suite that covers the full
CRUD spectrum for both business-intelligence and operational use cases, guarded
by executable test cases. Each task features ambiguous and follow-up sub-tasks,
requiring LLMs to engage in dynamic interaction. The suite is organized into two
sets: a full set (BIRD-INTERACT-FULL) of 600 tasks which unfold up to 11,796
dynamic interactions for a comprehensive overview of performance and a lite set
(BIRD-INTERACT-LITE) of 300 tasks, with simplified databases for detailed be-
havioral analysis of interactions, and fast development of methods. Our empirical
results highlight the difficulty of BIRD-INTERACT: the most recent flagship model
GPT-5 completes only 8.67% of tasks in the c-Interact setting and 17.00% in the
a-Interact setting on the full task suite. Further analysis via memory grafting and
Interaction Test-time Scaling (ITS) validates the importance of effective interaction
for achieving success in complex, dynamic text-to-SQL tasks.

1 INTRODUCTION

Data-driven decision-making has become indispensable across modern enterprises, prompting a surge
of interest in Natural Language Interfaces to Databases (NLIDB) that empower non-technical users
to extract insights from relational databases using natural language (Shi et al., 2024). Motivated by
this vision, a wave of methods (Pourreza et al., 2025a;b; Pourreza & Rafiei, 2023; Liu et al., 2025;
Qu et al., 2024; Li et al., 2025b; Maamari et al., 2024; Sheng & Xu, 2025; Li et al., 2025a; Talaei
et al., 2024; Caferoğlu & Ulusoy, 2024; Cao et al., 2024; Lee et al., 2025) based on large language
models (LLMs) has recently achieved impressive text-to-SQL performance on popular single-turn
benchmarks such as Spider (Yu et al., 2018) and BIRD (Li et al., 2023).

However, real-world data interaction is rarely a single, perfectly-formed query (Li et al., 2025c;
Dinan et al., 2019). It is an iterative, stateful dialogue characterized by ambiguity (Chen et al., 2025b)
and evolving goals (Wu et al., 2025). The task in Figure 1 exemplifies this complexity. To succeed,
the text-to-SQL system must first engage the user to resolve the ambiguity of the term urgent
care. Only with this clarified context can it generate the correct SQL. If its initial code fails an
execution test, LLM must debug and revise its SQL solution based on the error feedback. After the
user confirms the SQL is correct, they may proceed with a follow-up question that depends on its

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Subtask 𝒒𝟏	: “Build a function to calculate and rank all
artifacts to to identify which need urgent care.”
Subtask 𝒒𝟐: “For the most urgent, show its most recent
risk-assessment level and conservation-priority score.”

User Simulator

User Task

“need urgent care”

Annotated Amb. and Real Intentions

→ SQL

Actions

❓

❓

❓

“AVS” (Artifact
Vulnerability Score)

→❓

User-Agent Interaction Example

✅

✅

“Build a function to calculate and rank all artifacts to
identify which need urgent care. ”

“The urgent care determination is ranked by the
Artifact Vulnerability Score calculation.”

“AVS is calculated as IF multiplied by CPI”

Turn 1

Turn 2

Turn 3

Turn 4

Turn 5

Turn 6

Clarify

Clarify

Subtask 𝑞!	

Subtask 𝑞"	

feedback

feedback

SQL is checked by the annotated test case

SQL is checked by the annotated test case

“Good job! , that’s what I want. Now, for the most urgent
artifact you just reported, show its most recent risk-
assessment level and conservation-priority score.”

“Good job! , you solved all my questions!” [Termination]

Reading the DB schema, and column meanings.

Searching “AVS” from KB, but find no definition.

Submit

“I see. Can you clarify the exact formula for the AVS?”

“Can I ask what specific scoring metric should be
used to determine ‘urgent care’?” Ask

Ask

CREATE OR REPLACE FUNCTION rank_urgent_care()
RETURNS TABLE(id INT, name VARCHAR, cpi NUMERIC) AS $$

SELECT a.artregistry, a.artname,
((r.histsignrating + r.researchvalrating +

r.cultscore) * (10 - a.conservestatus) / 30.0 AS avs
FROM artifactscore AS a
JOIN artifactratings AS r ON a.artregistry = r.artref
ORDER BY avs DESC;

$$ LANGUAGE sql;

SELECT ta.id, ta.name, lr.conservepriorityscore, ta.avs
FROM (SELECT * FROM rank_urgent_care() LIMIT 1)
AS ta
CROSS JOIN LATERAL (

SELECT riskassesslevel, conservepriorityscore
FROM riskassessments
WHERE artrefconcerned = ta.art_registry_id
ORDER BY riskassessregistry DESC
LIMIT 1) AS lr; Submit

Submit

CREATE OR REPLACE FUNCTION rank_urgent_care()
RETURNS TABLE(id INT, name VARCHAR, cpi NUMERIC) AS $$

SELECT a.artregistry, a.artname,
((r.histsignrating + r.researchvalrating +

r.cultscore) * (10 - a.conservestatus) / 30.0) AS avs
...

DB Metadata Files

Knowledge Base DocDB

Configuration

missing?

System

Checked by the test case

“Your SQL is not executable. syntax
error at LINE 5:) / 30.0”

Influence Factor (IF): historical rating times cultural
score.

ArtifactRatings|HistSignRating: rating for historical
ArtifactRatings|ResearchValRating: rating for

DB Environment
Actions

Observations

Observations

def test_case(pred_sqls, sol_sqls,
execute_queries(pred_sqls, db_name, conn)
verify_sql = “SELECT * FROM rank_urgent_
pred_query_result = execute_queries(
expected_results = [
(101, 'Ancient Scroll', Decimal('7.20'
actual_results = pred_query_result[0]
assert len(actual_results) == 3
assert actual_results == expected_
return True

Configuration

ORDER BY AVS DESC

IF * CPI AS AVS SQL

status) / 30

Figure 1: Task overview of BIRD-INTERACT showing the evaluated system interacting with DB
Environment and User Simulator to complete the user task with a sequence of sub-tasks.

intermediate results. Therefore, evaluation on true practical utility LLMs with these multi-faceted
aspects requires a benchmark containing a complete interactive problem-solving process, rather than
isolated, single-turn SQL generation, but the entire interactive problem-solving loop.

Although existing interactive text-to-SQL datasets (Yu et al., 2019b;a; Chen et al., 2025b; Guo et al.,
2021; Dahl et al., 1994) have been developed, they inadequately model this reality for two primary
reasons. First, most multi-turn text-to-SQL benchmarks rely on static conversation transcripts
(Yu et al., 2019a; Chen et al., 2025b; Yu et al., 2019b; Guo et al., 2021). They present models
with a clean interaction history without recording the failed attempts, digressions, and clarifications
that occur in practice. This design introduces a fundamental limitation: every LLM is evaluated
against the same predetermined dialogue trajectory, regardless of how it would have naturally guided
the interaction. This setup fails to reward intelligent interaction strategies and cannot effectively
penalize conversational mess up. Second, existing benchmarks suffer from a narrow task scope,
overwhelmingly focusing on read-only (SELECT-only) queries typical of business intelligence
reporting. This ignores a vast and critical range of database operations, including data manipulation
(INSERT, UPDATE, DELETE), schema modifications (ALTER TABLE), and transactional control,
which are also common operations in the normal DBA cycle (Chen et al., 2024).

To address these critical limitations, we introduce BIRD-INTERACT, a new benchmark designed to
evaluate LLMs in a dynamic text-to-SQL environment. Our work makes the following contributions:
(1) A High-Fidelity Interactive Environment: We develop a comprehensive sandbox upon an
open-source project LIVESQLBENCH (BIRD-Team, 2025) for each task, including a hierarchical
knowledge base (HKB) with domain-specific facts, metadata files, an executable database environ-
ment, and most critically, an interactive user simulator as recent research (Wu et al., 2025; Yao et al.,
2025; Wang et al., 2024). This simulator can respond to clarification questions, provide feedback
on proposed actions, and guide the model through complex tasks, enabling end-to-end evaluation
without human intervention. However, recognizing that traditional simulators, even those powered by
advanced models like GPT-4o, exhibit unfair behaviors such as ground-truth leakage, we propose a
novel two-stage function-driven approach that maps model questions to constrained symbolic actions
before generating controlled simulator responses. (2) Two Evaluation Settings: We propose two
popular evaluation settings. c-Interact (protocol-guided) presents tasks with a clear conversational
protocol, testing a model’s ability to follow a structured conversation with the user. In contrast,
a-Interact (agentic) provides only a high-level goal, requiring the model to autonomously plan a
strategy, decide when to query the database, consult documentation, or ask the user simulator for
help. (3) A Comprehensive and Challenging Task Suite: BIRD-INTERACT expands the scope of
evaluation to include the full spectrum of CRUD operations. Tasks are drawn from both analytical
and operational domains and are accompanied by executable test cases that verify functional correct-
ness. Each task features an ambiguous initial priority sub-task, dynamic clarification requirements,
follow-up sub-tasks, and environmental uncertainties, which can only be resolved through dynamic
interaction. The suite consists of two parts: a full set (BIRD-INTERACT-FULL) of 600 tasks, un-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

folding up to 11,796 dynamic interactions for a comprehensive evaluation of performance, and a lite
set (BIRD-INTERACT-LITE) of 300 tasks with cleaner databases, enabling finer-grained behavioral
analysis and faster deployment.

Our experiments show that state-of-the-art models struggle with BIRD-INTERACT, with GPT-5
achieving only 8.67% success in c-Interact and 17% in a-Interact. We identify distinct challenges
across interaction modes: communication effectiveness often determines success in c-Interact, while
a-Interact suffers from bias toward costly trial-and-error over strategic resource exploration. We
also observe Interaction Test-time Scaling (ITS), where performance improves monotonically with
additional interaction opportunities across multiple models. These findings support our hypothesis
that developing strategic interaction capabilities is key to improving LLM performance on complex
database reasoning.

2 PROBLEM DEFINITION

Task Definition. We formalize interactive text-to-SQL as a multi-turn collaboration between a
text-to-SQL system Sθ and user simulator Uγ operating over database environment E = {D,M,K},
where D is the executable database, M contains schema metadata, and K represents external
knowledge (Lee et al., 2021; Dou et al., 2022; Li et al., 2023). Given a sequence of related sub-tasks
Q = {q1, q2, . . . , qn}, the goal is for S to generate SQL solutions {σ1, . . . , σn} through interactions.
For each sub-task qi, the interaction proceeds through interaction turn t = 1, 2, . . . until completion:

ut
i = Uγ(h

t−1
i , qi, E), sti = Sθ(h

t−1
i , ut

i, E), ht
i = ht−1

i ⊕ ⟨ut
i, s

t
i⟩ (1)

where ht
i represents the interaction history up to turn t and ⊕ denotes text concatenation in prompt.

The user simulator Uγ manages the interaction by presenting sub-tasks, answering clarification
questions for ambiguous queries, and providing feedback on submitted SQL. Critically, subsequent
sub-tasks are released only after successful completion of first sub-tasks.

Metrics. Each sub-task qi is annotated with ground-truth SQL σ∗
i and executable test cases Ti

that define correctness. A predicted solution σi is correct if it passes all associated test cases,
ensuring functional equivalence with σ∗

i . In our implementation, each task consists of two related
sub-tasks (n = 2): an initial priority sub-task q1 containing ambiguities requiring resolution, and (2)
a subsequent follow-up sub-task q2. We evaluate system performance using: (1) Success Rate (SR):
The proportion of sub-tasks completed successfully, with each sub-task scored 0 or 1. We report SR
separately for sub-task 1 and sub-task 2 as an online evaluation during interaction. (2) Normalized
Reward: Defined as normalized scoring according to priority weighting as designed in Appendix F
to [0, 1] for analyzing system behaviors after interaction (offline evaluation) (Yao et al., 2022).

3 BENCHMARK CONSTRUCTION

This section details the methodology for the construction of BIRD-INTERACT benchmark. We begin
by outlining the overall benchmark setup (Section 3.1), and then elaborate on how we convert clear
single-turn tasks into ones requiring interactions (Section 3.2).

3.1 SETUP AND RESOURCES

We build our benchmark on the text-to-SQL tasks and infrastructure of LIVESQLBENCH (BIRD-
Team, 2025). We selected this foundation due to several key advantages. First, LIVESQLBENCH
provides a comprehensive evaluation environment. It supports the full spectrum of SQL operations,
including DML and DDL, which allows for dynamic database states that reflect real-world usage.
Furthermore, its permissive license and ready-to-use artifacts, including an executable database
sandbox and metadata files, facilitate extension and reproducibility. Third, it features a Hierarchical
Knowledge Base (HKB) that organizes external knowledge as nodes in a directed acyclic graph
(DAG) shown in Figure 1. This structure explicitly models dependencies between facts that require
multi-hop reasoning to connect isolated information. Despite these strengths, LIVESQLBENCH
is fundamentally a single-turn benchmark. This design fails to capture the interactive and often

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ambiguous nature of real-world data analysis scenarios. Our primary contribution is to convert this
static benchmark into a dynamic, interactive setting.

3.2 INTERACTIVE TASK ANNOTATION

To maintain the integrity and quality of our benchmark, we recruit 12 expert annotators through
a rigorous multi-stage selection process detailed in Appendix C. We describe systematically the
conversion from single-turn tasks of LIVESQLBENCH into multi-turn interactive scenarios through
two key annotation strategies: ambiguity injection and follow-up sub-task generation:

Ambiguity Injection. Ambiguities in daily life require interactions to seek clarification. To make
annotation and evaluation controllable, we design methods to inject ambiguities into single-turn
queries and the environment from LIVESQLBENCH, pairing each with a unique clarification.

(1) Superficial user query ambiguities: we target surface-level ambiguity in the user request. These
include intent-level ambiguities, where the user language is vague (e.g., "elderly people"),

“Ranked by AVS index.”

need urgent care

“AVS=IF × CPI”

AVS

“historical rating times cultural
score”

IF
“ (10 - conservation status) / 30”

CPI

masked

explanation

knowledge

Knowledge Chain

Figure 2: Knowledge chain break-
ing ambiguity.

and implementation-level ambiguities, where the user’s intent is
clear but the implementation details (e.g., decimal precision) are
under-specific. (2) Knowledge ambiguities: we inject incom-
pleteness into the external knowledge. This category includes
two subtypes: (i) one-shot knowledge ambiguity, where isolated
knowledge entries are removed. (ii) knowledge chain breaking,
where intermediate nodes in multi-hop knowledge chains are
masked. For example, consider the chain "urgent care"→
"AVS"→ "IF/CPI" in Figure 2. By masking the intermedi-
ate node, i.e., the fact "AVS" in HKB, we deliberately break the
inferential chain, rendering knowledge ambiguous and requiring
user clarification to proceed. (3) Environmental ambiguities:
LIVESQLBENCH databases already contain natural noise, such
as NULL in critical fields, which further introduces uncertainty in how these cases should be handled.

Each injected ambiguity is paired with a corresponding SQL snippet from the ground-truth query
as a clarification source, which guides our user simulator in generating consistent and contextually
appropriate clarifications. Quality control ensures that ambiguous queries are unsolvable without
clarification yet fully reconstructable once clarifications are provided. Complete details are given in
Appendix H.

Follow-Up Sub-tasks Annotation. User intents frequently evolve throughout an interactive session
(Taylor, 2015), with users modifying, filtering conditions, or exploring related aspects of their queries.
Therefore, we also extend each initial priority sub-task with one additional follow-up sub-task to
resonate with this scenario.

These follow-up sub-tasks are designed carefully using a principled 5-category taxonomy de-
tailed in Appendix H.6. A key contribution of our benchmark is the introduction of state de-
pendency between sub-tasks, different with other datasets (Yu et al., 2019a;b; Lee et al., 2021;
Zhong et al., 2017; Li et al., 2025d). System models must reason over modified database
states or the newly created tables from preceding queries to write SQLs for Follow-up sub-tasks.

Table 1: Data Statistics

STATISTIC LITE FULL

Total Tasks 300 600
BI tasks 195 410
DM tasks 105 190
Distinct Test Cases 135 191
Tokens / User Query 40.22 32.95

Tokens / SQL 361.52 252.21
Ambiguities / Task 5.16 3.89
sub-tasks / Task 2 2
Interactions / Task 13.04 13.64

Inter-Agreement 93.33 93.50

3.3 FUNCTION-DRIVEN USER SIMULATOR

Evaluating interactive text-to-SQL systems requires user interactions,
such as multi-turn requests and responses to clarification questions.
Conducting such human-in-the-loop evaluations at scale is imprac-
tical. To make large-scale evaluations feasible, recent interactive
benchmarks, such as MINT (Wang et al., 2024), employ LLMs to
simulate human users (Li et al., 2025c; Yu et al., 2019a;b). However,
we observe that there are two major issues among these simulators:
(1) they sometimes leak information from ground-truth SQL query,
and (2) they may deviate from the original task requirements (Barres
et al., 2025; Kazi et al., 2024).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

En
vi
ro
nm

en
t

(a) Databases

Knowledge Base Doc

schema.txt

cols_meaning.jsonl

kb.jsonl

(c) User Simulator

Alien

Arch

Robots

News

DB Metadata Files DBs

Clarify Ambiguity

Make Follow-Up Request

Make Initial Request

Test the Submitted SQL

User Actions

Follow-Up Question

Debugging
Ambiguity Resolution

Reward

c-Interact

Environment

User Sim.

Database Env.

Initial
Request

Action

Observation

RewardIn
te
ra
ct
io
n

a-Interact

LLM as Parser

Clarification

Asked Question
Gold SQL

Labeled Amb.

Two-Stage
Clarifications

LLM as Generator

Budget
Constrained

AMB(), LOC(), UNA()

Corporate Knowledge Base Wiki
…
Observational Environment
The Atmospheric Observability Index (AOI)
gauges how transparent and steady the air is
during an observation: AOI = Atmospheric
transparency × (1 – Relative humidify/100) …

Budget Constrained

reward=0.7 reward=0.5

reward+=0.2

Subtask 𝑞!	

Subtask 𝑞"	

Debugging

“I want some analyzable signals.
Show their info. ” …

User Task

𝑞!, 𝑞"

∈{0,0.7,1}

×2

×3

×1

×1

(b) System Actions

Ask Question

Submit SQL

Execute SQL

Get All Knowledges

Get All Column Meanings

×.5

×.5

Retrieve Column Meaning

Retrieve Knowledge

×1 Get DB Schema

×1

reward+=0.3

Real Intent in SQL
“some” →

→ SELECT name, id“info”
LIMIT 5

Figure 3: Two evaluation settings for BIRD-INTERACT: c-Interact, where the system engages in
conversation with the user, and a-Interact, where the system interacts flexibly. At the end of the task,
the system will receive a reward r ∈ [0, 1].

Two-Stage Strategy. To ensure a more robust evaluation, we introduce a two-stage function-driven
user simulator, as illustrated in Figure 3(c). In the first stage, an LLM functions as a semantic
parser. It maps the system’s clarification request into one of three predefined allowed actions: AMB(),
LOC(), or UNA(). AMB() is invoked for queries related to ambiguities that have been pre-annotated
with the key SQL snippet. LOC() handles reasonable clarification requests that fall outside our
pre-annotated ambiguities, such as questions about SQL formatting or specific sub-components. In
these cases, the simulator uses an AST-based retrieval step to locate the relevant SQL fragment
(detailed in Appendix N). Finally, UNA() rejects any inappropriate requests, such as attempts to
elicit ground-truth answers. In the second stage, the user simulator generates a final response based
on the chosen action and the annotated GT SQL with clarification source. This two-stage approach,
ensures the simulator’s behavior remains predictable and controllable, while still permitting diverse
and context-aware interactions. Detailed prompts are provided in Appendix T.

3.4 DATA STATISTICS

Table 1 reports key properties of BIRD-INTERACT. The resulting benchmark comprises a total of
900 interactive text-to-SQL tasks, each featuring an ambiguous initial priority sub-task, dynamic
clarification requirements, follow-up sub-tasks, and environmental uncertainties covering CRUD
spectrums. In Appendix E, we also conduct a comprehensive comparison against other relevant
benchmarks, showing that BIRD-INTERACT is among the most open, challenging, and long-horizon
interactive benchmarks in text-to-SQL scenarios.

4 EVALUATION SETTINGS

Two Evaluation Settings. The interactive framework of BIRD-INTERACT supports evaluation in
two scenarios: LLMs as conversational assistants (c-Interact) (Dinan et al., 2019) and as agents
(a-Interact) (Schluntz & Zhang, 2024).

Budget-Constrained Awareness Testing. The application of LLMs is limited by computational
resources and user patience (Wen et al., 2025; Li et al., 2025e). We introduce a budget-constrained
awareness mechanism to both evaluation settings, where interactions are capped by an adaptive
budget and systems are informed of the remaining budget. This enables evaluation under varying
budgets, including stress-testing (Ahmad et al., 2025; Hubinger, 2024) in low-budget conditions to
assess the system’s ability to ask the right questions and plan effectively. The specific budget settings
are detailed in the following sections.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1 c-INTERACT EVALUATION

Interaction Setup. The c-Interact evaluation establishes a multi-turn dialogue between user simu-
lator U and system S. The session unfolds in two sequential phases of sub-tasks: First, U presents
an underspecified sub-task q1 alongside database metadata M and knowledge base K. System S
may engage in clarification dialogue before generating SQL σ1. Upon successful validation against
test cases T1, U issues a contextually coherent follow-up sub-task q2, prompting S to respond with
SQL σ2. Each sub-task incorporates a single debugging opportunity: following query failure, S
may submit one revised query after receiving execution feedback from U . The evaluation episode
concludes when both sub-tasks are successfully completed or all attempts are exhausted. Notably,
failure in the initial priority sub-task immediately terminates the entire session.

Budget Constraints. The budget is implemented as a constraint on the number of clarification turns.
The total allowed turns, τclar, are calculated as follows: τclar = mamb + λpat, Here, mamb represents
the minimum budget required to resolve the ambiguities, set to the number of annotated ambiguities
in the user query. The parameter λpat simulates user patience, granting the evaluated system extra
turns for clarification.

4.2 a-INTERACT EVALUATION

Interaction Setup. The a-Interact provides LLMs with autonomous planning and execution within
a pre-defined action space, following REACT paradigm (Yao et al., 2023). We model the complete
database environment as a set of callable tools, containing the target database, metadata, HKB, and
User Simulator, allowing the agent to determine optimal invocation strategies dynamically. In this
work, we summarize and define 6 discrete actions common to text-to-SQL with details in Appendix J.

Budget Constraints. To reflect the varying computational costs of different actions, we implement
a budget-constrained evaluation framework where each action consumes a predetermined amount
of budget, encouraging cost-effective action sequences. The total budget for each task is B =
Bbase + 2mamb + 2λpat, where Bbase = 6 is the base budget, mamb is the number of annotated
ambiguity points, and λpat is the user patience parameter, maintaining consistency with the c-Interact
framework. This setting evaluates the agent’s ability to achieve high performance under resource
constraints while balancing thoroughness with efficiency. Action-specific costs are detailed in
Appendix J.

This setting can evaluate agent performance under realistic constraints that present practical database
interaction scenarios, where users have limited patience and computational resources are finite.

5 EXPERIMENT

We benchmark 7 recent and powerful LLMs (2 open-source, 5 closed-source) as system models
via a fresh PostgreSQL 15 Docker instance for more stable evaluation. We set the user patience
to 3 by default and a-Interact base budget of 6. All models use deterministic decoding (tempera-
ture=0, top_p=1) with default reasoning settings, conducting single runs due to cost (full details in
Appendix I.1 and I.2).

5.1 MAIN RESULTS

Table 2 summarizes the success rate (SR) and normalized reward (NR) obtained by 7 representative
frontier LLMs on BIRD-INTERACT-FULL. The full experimental results of BIRD-INTERACT-LITE
can be found in Table 10. We can observe:

BIRD-INTERACT remains challenging, leaving ample room for future improvement. Even the
strongest models in our study, GPT-5 and Gemini-2.5-Pro, capture only 20.92% and 25.52% of
the available reward respectively, in the c-Interact and a-Interact mode. Absolute success rates reveal
similar limitations: no more than 16.33% of tasks are solved end-to-end in c-Interact and 17.00% in
a-Interact, with most models falling in substantially lower rates.

Evolving User Intent is a Challenge in Online Assessment. Follow-up sub-tasks are noticeably
more challenging, likely because the longer, concatenated context in these turns remains a bottleneck
for LLMs in interactive text-to-SQL tasks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Success Rate and Final Normalized Reward of different models on BIRD-INTERACT-FULL.
The success rate is cumulative; Reward* is the normalized reward (%). The values reported in
c-Interact are after debugging phase, and (+n) means the performance gained via debugging. Avg.
Cost is the cost for one task on average in USD. Our user simulator has an avg. cost of 0.03 USD.

Model Priority Question (Success Rate %) ↑ Follow Ups (Success Rate %) ↑ Reward* ↑ Avg.
Cost ↓BI DM Overall BI DM Overall

c-Interact Text-to-SQL

GPT-5 9.49 (+0.00) 25.40 (+2.12) 14.50 (+0.67) 5.84 (+0.24) 14.81 (+0.53) 8.67 (+0.33) 12.58 $ 0.08
Claude-Sonnet-3.7 10.71 (+4.62) 33.86 (+7.41) 18.00 (+5.50) 4.62 (+0.49) 16.40 (+3.17) 8.33 (+1.33) 13.87 $ 0.29
Deepseek-Chat-V3.1 11.44 (+0.73) 33.86 (+3.17) 18.50 (+1.50) 4.62 (+0.24) 16.93 (+1.06) 8.50 (+0.50) 15.15 $ 0.12
Qwen-3-Coder-480B 16.30 (+2.68) 34.39 (+5.29) 22.00 (+3.50) 8.03 (+0.97) 16.93 (+4.23) 10.83 (+2.00) 17.75 $ 0.11
Claude-Sonnet-4 16.06 (+4.87) 35.98 (+10.58) 22.33 (+6.67) 10.46 (+1.22) 22.22 (+3.70) 14.17 (+2.00) 18.35 $ 0.29
O3-Mini 17.76 (+2.92) 37.57 (+11.11) 24.00 (+5.50) 11.44 (+0.73) 25.40 (+4.23) 15.83 (+1.83) 20.27 $ 0.07
Gemini-2.5-Pro 18.73 (+4.38) 38.62 (+10.05) 25.00 (+6.17) 12.41 (+1.22) 24.87 (+5.29) 16.33 (+2.50) 20.92 $ 0.04

a-Interact Text-to-SQL

Qwen-3-Coder-480B 8.05 24.74 13.33 3.90 4.74 4.17 10.58 $ 0.07
Deepseek-Chat-V3.1 10.49 31.58 17.17 4.63 5.26 4.83 13.47 $ 0.06
O3-Mini 12.20 36.32 19.83 5.85 14.21 8.50 16.43 $ 0.06
Gemini-2.5-Pro 10.49 41.58 20.33 5.85 20.00 10.33 17.33 $ 0.22
Claude-Sonnet-3.7 11.46 41.58 21.00 5.61 16.84 9.17 17.45 $ 0.60
Claude-Sonnet-4 15.85 53.68 27.83 8.05 22.63 12.67 23.28 $ 0.51
GPT-5 15.61 58.42 29.17 10.98 30.00 17.00 25.52 $ 0.24

Offline Reward v.s. Online SR Evaluation. Table 2 shows that offline normalized reward (NR)
and online success rate (SR) generally correlate positively, though notable divergences occur due to
the reward structure allocating 70% to the primary sub-task and 30% to follow-up sub-tasks. These
complementary metrics capture different aspects of model performance. Success rate measures
holistic task completion across multi-turn interactions, relevant when users prioritize successful
outcomes regardless of path. Normalized reward assesses performance on users’ critical initial
objectives while crediting challenging follow-up sub-tasks. Together, they provide comprehensive
evaluation of the distinct capabilities required for advanced interactive text-to-SQL systems.

Business Intelligence versus Data Management. BI queries pose significantly greater challenges
for LLMs compared to data management (DM) tasks since DM operations typically follow stan-
dardized, predictable patterns that LLMs can effectively learn (Li et al., 2025d), whereas BI queries
demand nuanced understanding of complex, domain-specific business logic and analytical reasoning
that varies substantially across contexts.

Interaction Mode Emerged as the Decisive Factor for a Successful Outcome. Furthermore, we
observe that different models demonstrate varying aptitudes for different interaction paradigms, with
each model showing relative strengths in specific modes. For example, GPT-5 performs poorly in
the constrained, predefined flow designed personally of the c-Interact mode by achieving only 14.50%
SR (worst) but excels in the a-Interact setting with 29.17% SR (best), which affords more flexible
and exploratory space. This evidence demonstrates the critical importance of matching interaction
modes to model-specific capabilities, which we hypothesize stem from differences in training data
distributions and architectural inductive biases (Liu et al., 2024; Gao et al., 2024b).

5.2 INTERACTION ANALYSIS

The Impact of Communication on Task Success in c-Interact. A notable finding is the under-
performance of the flagship model, GPT-5, on the c-Interact, despite its strong performance on
many single-turn tasks (Phan et al., 2025; Glazer et al., 2024; Rein et al., 2024). Therefore, we
hypothesize that this stems from a deficiency in its interactive communication abilities rather than
its core generation capability. To test this hypothesis, we conduct an experiment termed Memory
Grafting. In this setup, we provide GPT-5 with the ambiguity resolution histories from two other
better models, Qwen-3-Coder and O3-mini, before asking it to generate the final SQL query.
The results, presented in Figure 5, show that GPT-5’s performance improves significantly when
leveraging the interaction history from either model. This finding indicates that while GPT-5 pos-
sesses robust SQL generation capabilities, a more effective communication schema is required to
help it achieve satisfactory outcomes for user tasks. We also further analyze the patterns for effective
communication in Appendix Q.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: The performance of different LLMs with different user patience on BIRD-INTERACT-LITE.
The red line denotes a-Interact mode (-a); the blue line denotes c-Interact mode (-c). And the dotted
line (Idealized Performance) denotes the performance under ambiguity-free single-turn text-to-SQL.

Figure 5: SR of GPT-5 with
memory grafting.

Interaction Test-Time Scaling. To investigate the relationship be-
tween interaction frequency and model performance, we conduct an
Interaction Test-Time Scaling (ITS) experiment in BIRD-INTERACT-
LITE where results are shown in Figure 4. We simulate varying levels
of user patience by allowing different numbers of interaction turns
for both c-Interact and a-Interact. As a baseline, we include single-
turn task performance for each model, where all necessary context
is provided to create self-contained tasks. This single-turn condition
represents an idealized scenario that, while potentially requiring sig-
nificant user effort to ensure complete information provided (Li et al.,
2025d; BIRD-Team, 2025), eliminates the need for further clarification.
As demonstrated in the figure, Claude-3.7-Sonnet exhibits clear
scaling behavior with respect to increasing interaction opportunities.
This pattern indicates that the model can keep increasing its perfor-
mance through incremental communication chances of interactions.

ITS Law: A model satisfies this law if, given enough conversational turns, its perfor-
mance can match or even surpass that of the idealized single-turn task.

Action Distribution Patterns in a-Interact. We analyze action distributions across 7 system
models and find concentration in two primary actions: submit (direct code execution with error
feedback) and ask (user clarification requests), which together comprise 60.87% of all actions.
Despite being the most computationally expensive actions (Figure 3), models favor these over
systematic exploration behaviors like knowledge and schema retrieval. This suggests LLMs prefer
direct trial-and-error execution over comprehensive environment exploration, likely due to pre-
training biases. Future work should incentivize broader tool utilization for complex interactive tasks.
Additional analysis on the FULL set appears in Appendix J.

6 USER SIMULATOR ANALYSIS

This section presents a comprehensive evaluation of our function-driven user simulator compared
to conventional user simulators and their respective impacts on dynamic interactive text-to-SQL
benchmarks through both objective and subjective experiments.

Evaluation on USERSIM-GUARD. To provide an objective and comprehensive observation of
different user simulator mechanisms, we construct a static dataset called USERSIM-GUARD, compris-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ing 1,989 questions with reference actions labeled by human experts. Detailed information regarding
the distribution and annotation procedures can be found in Appendix O. We employed an LLM-as-
Judge (Zheng et al., 2023) evaluation framework using Qwen-2.5-72B and Llama-3.1-70B
as independent evaluators to mitigate potential self-enhancement bias. Our analysis reveals sig-
nificant reliability concerns with conventional user simulator designs. Specifically, as shown in
Figure 6, when confronted with Unanswerable (UNA) questions, baseline user simulators consistently
fail to implement safeguards, resulting in unfair or inappropriate feedback generation with over
34% failure rate. In contrast, our proposed function-driven approach demonstrates substantially im-
proved reliability, with only 5.9% of responses falling into problematic categories. This represents a
significant improvement in user simulator robustness and reliability compared to baseline approaches.

AMB LOC UNA60%

70%

80%

90%

100%

A
cc

ur
ac

y

Baseline (Gemini) Ours (Gemini) Baseline (GPT) Ours (GPT)

Figure 6: The accuracy of different user
simulators on USERSIM-GUARD.

Alignment with Human User. We evaluate alignment
between our user simulators and actual human behavior
by having human experts interact with 7 system models
on 100 randomly sampled tasks across BI and DM do-
mains. We then compute correlations (Ivey et al., 2024;
Kong et al., 2024) between success rates (SR) achieved
by human users versus our simulators across the same
tasks. As shown in Table 3, function-driven simulators
demonstrate significantly stronger alignment with human
behavior: GPT-4o with function calling achieves 0.84
Pearson correlation (p = 0.02) compared to 0.61 without
function calling (p = 0.14), while Gemini-2.0-Flash shows similar improvements (0.79 vs. 0.54).
These results confirm that incorporating our designed user simulator mechanism produces more
realistic user simulators that better reflect actual human-AI interaction patterns (detailed analysis in
Appendix O).

7 RELATED WORK

Table 3: Correlation analysis be-
tween AI and human users.

User Simulator Pearson (p-value)

GPT-4o 0.84 (p = 0.02)- w/ Func. (Ours)
Gemini-2.0-Flash 0.79 (p = 0.03)- w/ Func. (Ours)
GPT-4o 0.61 (p = 0.14)- Baseline
Gemini-2.0-Flash 0.54 (p = 0.21)- Baseline

Recent progress in Text-to-SQL is driven by large language models
(LLMs) (OpenAI, 2025; Team et al., 2023; Team, 2024; Guo et al.,
2025), with single-turn methods ranging from few-shot in-context
learning (DIN-SQL (Pourreza & Rafiei, 2023), DAIL-SQL (Gao
et al., 2024a)) and curated training (CodeS (Li et al., 2024), DTS-
SQL (Pourreza & Rafiei, 2024)) to iterative agent-based frame-
works (MAC-SQL (Wang et al., 2025)). However, this body of
work focuses on single-turn settings, overlooking conversational
interactions. While multi-turn benchmarks like COSQL (Yu et al.,
2019a) and LEARN-TO-CLARIFY (Chen et al., 2025b) exist, their
use of static dialogue histories is a key limitation (Yao et al., 2025;
Barres et al., 2025), as dynamic interaction is hard to simulate realistically for databases (Zhou et al.,
2025; Barres et al., 2025), unlike in other agent benchmarks (Wang et al., 2024). We address this
gap by introducing an interactive benchmark with an optimized user simulator to evaluate models
in realistic, uncertain conversational text-to-SQL scenarios. Detailed related work can be found in
Appendix P.

8 CONCLUSION

We present BIRD-INTERACT, a benchmark for evaluating interactive text-to-SQL systems through
dynamic, multi-turn conversations that better reflect real-world usage scenarios. Our benchmark
features a function-driven user simulator, dual evaluation settings for conversational and autonomous
planning modes, and totally 900 challenging tasks designed to test LLM abilities to handle ambiguities
and maintain state across turns. Comprehensive evaluation demonstrates a critical gap between
existing SQL generation capabilities and the strategic interaction skills required for effective human-
AI collaboration in database querying.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research complies with the ICLR Code of Ethics. We have carefully reviewed the guidelines
and ensured that our work aligns with the stated ethical standards, including considerations of data
privacy, fairness, and responsible use of released datasets and code. Justification: This work does
not involve crowdsourcing or research with human subjects. All annotation and task creation were
carried out by the authors themselves.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. First, for the evaluated systems,
all experimental settings, including model parameters, temperature (= 0), and budget configurations,
are clearly documented in Appendix I, ensuring that our evaluation can be replicated under the
same conditions. Each task is executed in a freshly re-initialized PostgreSQL 15 instance (Docker).
The Docker image contains the database engine and benchmark code, and is restarted for every
run to guarantee a clean and consistent state. This setup makes experiments deterministic, isolated
across runs, and easy to reproduce by rebuilding the environment from scratch. Second, for the
user simulator, we validate its robustness in Section 6, and detail in Section 3 how we designed
and annotated the benchmark to guarantee reliability, uniqueness of clarifications, and consistency
of responses from the user simulator. This safeguards reproducibility across different runs and
systems. Third, for the benchmark suite, we will publicly release all components under a permissive
license, including databases, tasks, hierarchical knowledge bases, documentation, interaction logs,
and the source code for both evaluation settings and the user simulator. This full release ensures
transparency and faithful replication of our experiments. We also provide the prompts used across
the whole experiment, which can be found in Appendix T, from Figure 20 to Figure 27. Due to the
dynamic nature of our interaction evaluation, we will also open-source our interaction trajectories
upon publication for better reproducibility.

Experiment Configuration. All experiments on BIRD-INTERACT are conducted via API, except
for the LLM-as-Judge evaluations of different user simulators, which are run on 4 NVIDIA A100
80G GPUs. The estimated cost for each model under BIRD-INTERACT-FULL is shown in Table 2,
and the estimated cost for BIRD-INTERACT-LITE is shown in Table 10.

REFERENCES

Lama Ahmad, Sandhini Agarwal, Michael Lampe, and Pamela Mishkin. Openai’s approach to
external red teaming for ai models and systems. arXiv preprint arXiv:2503.16431, 2025.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. tau2-bench: Evaluating
conversational agents in a dual-control environment. arXiv preprint arXiv:2506.07982, 2025.

Adithya Bhaskar, Tushar Tomar, Ashutosh Sathe, and Sunita Sarawagi. Benchmarking and improving
text-to-SQL generation under ambiguity. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 7053–7074, Singapore, December 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.436.

BIRD-Team. Livesqlbench: A dynamic and contamination-free benchmark for evaluating llms
on real-world text-to-sql tasks. https://github.com/bird-bench/livesqlbench, 2025. Accessed:
2025-05-22.

Hasan Alp Caferoğlu and Özgür Ulusoy. E-sql: Direct schema linking via question enrichment in
text-to-sql. arXiv preprint arXiv:2409.16751, 2024.

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin Zhang, Wei Chen, and Xiang Bai. Rsl-sql: Robust
schema linking in text-to-sql generation. arXiv preprint arXiv:2411.00073, 2024.

Chongyan Chen, Yu-Yun Tseng, Zhuoheng Li, Anush Venkatesh, and Danna Gurari. Accounting for
focus ambiguity in visual questions. arXiv preprint arXiv:2501.02201, 2025a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Maximillian Chen, Ruoxi Sun, Tomas Pfister, and Sercan Ö. Arik. Learning to clarify: Multi-turn
conversations with action-based contrastive self-training. In ICLR, 2025b.

Xi Chen, Jinguo You, Kun Li, and Xiang Li. Beyond read-only: Crafting a comprehensive Chinese
text-to-SQL dataset for database manipulation and query. In Kevin Duh, Helena Gomez, and
Steven Bethard (eds.), Findings of the Association for Computational Linguistics: NAACL 2024,
pp. 3383–3393, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.findings-naacl.214.

Deborah A. Dahl, Madeleine Bates, Michael Brown, William Fisher, Kate Hunicke-Smith, David
Pallett, Christine Pao, Alexander Rudnicky, and Elizabeth Shriberg. Expanding the scope of the
ATIS task: The ATIS-3 corpus. In Human Language Technology: Proceedings of a Workshop held
at Plainsboro, New Jersey, March 8-11, 1994, 1994.

Bryan L. M. de Oliveira, Luana G. B. Martins, Bruno Brandão, and Luckeciano C. Melo. Infoquest:
Evaluating multi-turn dialogue agents for open-ended conversations with hidden context. arXiv
preprint arXiv:2502.12257, 2025.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason Weston. Wizard of
wikipedia: Knowledge-powered conversational agents. In ICLR (Poster). OpenReview.net, 2019.

Longxu Dou, Yan Gao, Xuqi Liu, Mingyang Pan, Dingzirui Wang, Wanxiang Che, Dechen Zhan, Min-
Yen Kan, and Jian-Guang Lou. Towards knowledge-intensive text-to-SQL semantic parsing with
formulaic knowledge. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 5240–5253, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.emnlp-main.350.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132–1145, January 2024a. ISSN 2150-8097. doi: 10.14778/3641204.3641221.

Jie Gao, Simret Araya Gebreegziabher, Kenny Tsu Wei Choo, Toby Jia-Jun Li, Simon Tangi Perrault,
and Thomas W Malone. A taxonomy for human-llm interaction modes: An initial exploration. In
Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, CHI EA ’24,
New York, NY, USA, 2024b. Association for Computing Machinery. ISBN 9798400703317. doi:
10.1145/3613905.3650786.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, Olli Järviniemi,
Matthew Barnett, Robert Sandler, Jaime Sevilla, Qiuyu Ren, Elizabeth Pratt, Lionel Levine, Grant
Barkley, Natalie Stewart, Bogdan Grechuk, Tetiana Grechuk, Shreepranav Varma Enugandla, and
Mark Wildon. Frontiermath: A benchmark for evaluating advanced mathematical reasoning in ai.
arXiv preprint, arXiv:2411.04872, 2024.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594,
2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jiaqi Guo, Ziliang Si, Yu Wang, Qian Liu, Ming Fan, Jian-Guang Lou, Zijiang Yang, and Ting Liu.
Chase: A large-scale and pragmatic Chinese dataset for cross-database context-dependent text-to-
SQL. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 2316–2331, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.180.

Moshe Hazoom, Vibhor Malik, and Ben Bogin. Text-to-SQL in the wild: A naturally-occurring dataset
based on stack exchange data. In Royi Lachmy, Ziyu Yao, Greg Durrett, Milos Gligoric, Junyi Jessy

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Li, Ray Mooney, Graham Neubig, Yu Su, Huan Sun, and Reut Tsarfaty (eds.), Proceedings of the 1st
Workshop on Natural Language Processing for Programming (NLP4Prog 2021), pp. 77–87, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.nlp4prog-1.9.

Evan Hubinger. Introducing alignment stress-testing at anthropic. In AI Alignment Forum, January,
2024.

Jonathan Ivey, Shivani Kumar, Jiayu Liu, Hua Shen, Sushrita Rakshit, Rohan Raju, Haotian Zhang,
Aparna Ananthasubramaniam, Junghwan Kim, Bowen Yi, et al. Real or robotic? assessing
whether llms accurately simulate qualities of human responses in dialogue. arXiv preprint
arXiv:2409.08330, 2024.

Taaha Kazi, Ruiliang Lyu, Sizhe Zhou, Dilek Hakkani-Tür, and Gokhan Tur. Large language models
as user-agents for evaluating task-oriented-dialogue systems. In SLT, pp. 913–920. IEEE, 2024.

Chuyi Kong, Yaxin Fan, Xiang Wan, Feng Jiang, and Benyou Wang. Platolm: Teaching llms in
multi-round dialogue via a user simulator. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 7841–7863, 2024.

Maya Larbi, Amal Akli, Mike Papadakis, Rihab Bouyousfi, Maxime Cordy, Federica Sarro, and
Yves Le Traon. When prompts go wrong: Evaluating code model robustness to ambiguous,
contradictory, and incomplete task descriptions. arXiv preprint arXiv:2507.20439, 2025. Accessed:
2025-09-23.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. Kaggledbqa: Realistic evaluation of
text-to-sql parsers. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 2261–2273, 2021.

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and Heesoo Park. MCS-SQL: leveraging multiple
prompts and multiple-choice selection for text-to-sql generation. In COLING, pp. 337–353.
Association for Computational Linguistics, 2025.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, SU Hongjin, ZHAOQING
SUO, Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al. Spider 2.0: Evaluating language models
on real-world enterprise text-to-sql workflows. In The Thirteenth International Conference on
Learning Representations, 2025.

Boyan Li, Jiayi Zhang, Ju Fan, Yanwei Xu, Chong Chen, Nan Tang, and Yuyu Luo. Alpha-SQL:
Zero-shot text-to-SQL using monte carlo tree search. In Forty-second International Conference on
Machine Learning, 2025a.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
text-to-sql. Proceedings of the ACM on Management of Data (PACMMOD), 2(3):1–28, 2024. doi:
10.1145/3654930.

Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei Huang, Jing Zhang, Fuxin Jiang, Shuai Wang,
Tieying Zhang, Jianjun Chen, Rui Shi, Hong Chen, and Cuiping Li. Omnisql: Synthesizing
high-quality text-to-sql data at scale. Proc. VLDB Endow., 18(11):4695–4709, September 2025b.
ISSN 2150-8097. doi: 10.14778/3749646.3749723.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chen-Chuan Chang, Fei Huang,
Reynold Cheng, and Yongbin Li. Can LLM already serve as A database interface? A big bench for
large-scale database grounded text-to-sqls. In NeurIPS, 2023.

Jinyang Li, Nan Huo, Yan Gao, Jiayi Shi, Yingxiu Zhao, Ge Qu, Bowen Qin, Yurong Wu, Xiaodong
Li, Chenhao Ma, Jian-Guang Lou, and Reynold Cheng. Are large language models ready for
multi-turn tabular data analysis? In Forty-second International Conference on Machine Learning,
2025c.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jinyang Li, Xiaolong Li, Ge Qu, Per Jacobsson, Bowen Qin, Binyuan Hui, Shuzheng Si, Nan Huo,
Xiaohan Xu, Yue Zhang, et al. Swe-sql: Illuminating llm pathways to solve user sql issues in
real-world applications. arXiv preprint arXiv:2506.18951, 2025d.

Junyan Li, Wenshuo Zhao, Yang Zhang, and Chuang Gan. Steering llm thinking with budget guidance.
arXiv preprint arXiv:2506.13752, 2025e.

Zongxi Li, Yang Li, Haoran Xie, and S. Joe Qin. Condambigqa: A benchmark and dataset for
conditional ambiguous question answering. In Proceedings of the 2025 Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL) / EMNLP?, 2025f.
also arXiv preprint arXiv:2502.01523, revised version 2.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024.

Yifu Liu, Yin Zhu, Yingqi Gao, Zhiling Luo, Xiaoxia Li, Xiaorong Shi, Yuntao Hong, Jinyang Gao,
Yu Li, Bolin Ding, et al. Xiyan-sql: A novel multi-generator framework for text-to-sql. arXiv
preprint arXiv:2507.04701, 2025.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, and Amine Mhedhbi. The death of schema
linking? text-to-sql in the age of well-reasoned language models. arXiv preprint arXiv:2408.07702,
2024.

OpenAI. Openai o3 and o4-mini system card, 2025. Accessed: 2025-05-15.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-sql
with self-correction. Advances in Neural Information Processing Systems, 36:36339–36348, 2023.

Mohammadreza Pourreza and Davood Rafiei. Dts-sql: Decomposed text-to-sql with small large
language models. In Findings of the Association for Computational Linguistics: EMNLP 2024,
2024.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan Ö. Arik. CHASE-SQL: multi-path
reasoning and preference optimized candidate selection in text-to-sql. In ICLR. OpenReview.net,
2025a.

Mohammadreza Pourreza, Shayan Talaei, Ruoxi Sun, Xingchen Wan, Hailong Li, Azalia Mirhoseini,
Amin Saberi, Sercan Arik, et al. Reasoning-sql: Reinforcement learning with sql tailored partial
rewards for reasoning-enhanced text-to-sql. arXiv preprint arXiv:2503.23157, 2025b.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo, Chenhao Ma, and Reynold Cheng. Before
generation, align it! A novel and effective strategy for mitigating hallucinations in text-to-sql
generation. In ACL (Findings), pp. 5456–5471. Association for Computational Linguistics, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a benchmark.
In First Conference on Language Modeling, 2024.

Irina Saparina and Mirella Lapata. AMBROSIA: A benchmark for parsing ambiguous questions
into database queries. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024.

Erik Schluntz and Barry Zhang. Building effective agents, December 2024. Engineering at Anthropic.

Lei Sheng and Shuai-Shuai Xu. Slm-sql: An exploration of small language models for text-to-sql.
arXiv preprint arXiv:2507.22478, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang, and Zhi Yang. A survey on employing large
language models for text-to-sql tasks. ACM Computing Surveys, 2024.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
Chess: Contextual harnessing for efficient sql synthesis. arXiv preprint arXiv:2405.16755, 2024.

Robert S Taylor. Question-negotiation and information seeking in libraries. College & Research
Libraries, 76(3):251–267, 2015.

DeepSeek-AI Team. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen
Zhang, Di Yin, Xing Sun, and Zhoujun Li. Mac-sql: A multi-agent collaborative framework for
text-to-sql. In Proceedings of the 31st International Conference on Computational Linguistics
(COLING 2025), pp. 540–557, 2025.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. Mint:
Evaluating llms in multi-turn interaction with tools and language feedback. In The Twelfth
International Conference on Learning Representations, 2024.

Hao Wen, Xinrui Wu, Yi Sun, Feifei Zhang, Liye Chen, Jie Wang, Yunxin Liu, Ya-Qin Zhang, and
Yuanchun Li. Budgetthinker: Empowering budget-aware llm reasoning with control tokens. arXiv
preprint arXiv:2508.17196, 2025.

Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, Gavin Li, Yao Dou, Weixin Cai, James Zou,
Jure Leskovec, and Jianfeng Gao. Collabllm: From passive responders to active collaborators.
arXiv preprint arXiv:2502.00640, 2025.

John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing
and benchmarking interactive coding with execution feedback. Advances in Neural Information
Processing Systems, 36:23826–23854, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 20744–20757. Curran Associates, Inc., 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik R Narasimhan. {τ}-bench: A benchmark
for \underline{T}ool-\underline{A}gent-\underline{U}ser interaction in real-world domains. In
The Thirteenth International Conference on Learning Representations, 2025.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In
EMNLP, pp. 3911–3921. Association for Computational Linguistics, 2018.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga, Sungrok Shim, Tao Chen, Alexander R.
Fabbri, Zifan Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vincent Zhang, Caiming Xiong,
Richard Socher, Walter S. Lasecki, and Dragomir R. Radev. Cosql: A conversational text-to-sql
challenge towards cross-domain natural language interfaces to databases. In EMNLP/IJCNLP (1),
pp. 1962–1979. Association for Computational Linguistics, 2019a.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene Li,
Bo Pang, Tao Chen, Emily Ji, Shreya Dixit, David Proctor, Sungrok Shim, Jonathan Kraft, Vincent
Zhang, Caiming Xiong, Richard Socher, and Dragomir R. Radev. Sparc: Cross-domain semantic
parsing in context. In ACL (1), pp. 4511–4523. Association for Computational Linguistics, 2019b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017.

Yifei Zhou, Song Jiang, Yuandong Tian, Jason Weston, Sergey Levine, Sainbayar Sukhbaatar, and
Xian Li. Sweet-rl: Training multi-turn llm agents on collaborative reasoning tasks. arXiv preprint
arXiv:2503.15478, 2025.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 7: Examples of training materials by screenshots for BIRD-Interact annotators.

A LIMITATIONS.

Our work has centered on the text-to-SQL domain, but we believe our proposed interaction evaluation
is not inherently limited to it. Instead, it can cover a generalizable human-AI collaboration. Exploring
the adaptation of this framework to other generative domains, such as Python code synthesis or
API call generation, is a promising direction for future research. But at this time, we think it’s a
representative scenario since it also features long-context, hierarchical knowledge, and AI coding
problem.

B THE USE OF LLM STATEMENT

Large Language Models (LLMs) were used only for light post-editing of the paper (i.e., reducing
syntax errors and performing minor grammar checks). LLMs were not involved in any part of the
research discussions, analyses, or idea generation. All insights, contributions, and intellectual content
are entirely the authors’ own.

C ANNOTATION GROUP DETAILS

To ensure the high quality of annotations for the BIRD-INTERACT benchmark, we designed a rigorous,
multi-stage process for annotator selection, training, and qualification. This process aimed to ensure
that all annotators possessed strong SQL expertise and followed a consistent, reproducible workflow.

C.1 ANNOTATOR ENTRANCE TEST

All potential annotators were required to complete a structured training program before contributing
to the benchmark. We began by recruiting a pool of 33 candidates, including students, engineers,
and text-to-SQL researchers with prior database experience. Each candidate underwent a week-
long training period consisting of tutorials and guided exercises (detailed below), followed by a
qualification exam. This exam tested proficiency in SQL generation, schema understanding, and
annotation of interactive tasks. Only candidates who achieved a passing score of at least 90% were
admitted as official annotators, resulting in a final team of 12 highly qualified contributors.

C.2 TRAINING TUTORIALS

Candidates participated in an intensive tutorial program covering essential aspects of interactive
text-to-SQL, including:

• Database environment setup

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Database schema analysis and comprehension

• Reproduction of single-turn text-to-SQL examples from LIVESQLBENCH

• Ambiguity taxonomy, injection procedures, and clarification annotation

• Follow-up sub-task taxonomy and construction, with solution SQL and test scripts

• Solution validation and evaluation script development

The tutorials contain the DB sandbox, code suite, detailed procedures, examples, and hands-on
exercises that mirror the interactive feature of real-world SQL tasks. Some parts of the tutorials
are shown in Figure 7. Annotators were introduced to the full annotation workflow required for the
creation of the BIRD-INTERACT benchmark.

C.3 QUALIFICATION TEST

Following the tutorial phase, candidates were required to complete a qualification assignment con-
sisting of 20 representative interactive text-to-SQL tasks. For each task, candidates were asked
to:

1. Reproduce the environment and baseline single-turn text-to-SQL task.

2. Inject ambiguity into the task and annotate the corresponding unique clarification, ensuring
that with clarification the original clear task could be recovered.

3. Create a follow-up sub-task and annotate it with solution SQL and test scripts.

4. Validate that the solution SQLs passed all annotated test scripts in sequence across sub-tasks.

5. Document their approach and provide a validation log.

Only candidates who successfully completed the assignment with satisfactory quality were approved
as annotators. This stringent qualification process ensured that all annotators met the high standards
required for building a robust and trustworthy benchmark. The overall success rate was approximately
90%, demonstrating the effectiveness of the tutorial materials and training program in preparing
candidates for interactive text-to-SQL annotation. All annotators contributing to the final release of
BIRD-INTERACT passed this qualification process.

D BENCHMARK DESIGN PRINCIPLES

Our design philosophy for BIRD-INTERACT is guided by two core principles: incorporating realistic
interaction challenges and ensuring robust, reproducible evaluation.

Realistic Interaction Challenges. To mirror the complexity of real-world data analysis, we es-
tablish scenarios where interaction is indispensable for task completion. This is achieved through
two mechanisms. (1) Ambiguity: We deliberately inject different types of ambiguity—spanning
user queries, knowledge bases, and database environments—such that tasks cannot be solved cor-
rectly without clarification. Resolving these ambiguities often requires multi-turn exchanges, forcing
systems to decide when to query the user, consult the HKB, or explore the database. This design
captures the iterative, source-dependent nature of ambiguity resolution. (2) Contextual Follow-ups:
Every task includes a subsequent, related query that requires the system to reason over the preceding
conversation, the interaction history, and, critically, a potentially changed database state.

Reliable and Reproducible Evaluation. We ensure the reliability and reproducibility of evaluation
from three key aspects. (1) Unambiguous annotation: each ambiguity is annotated with a single
definitive interpretation. The user simulator resolves ambiguities by referencing key SQL snippets
associated with each ambiguity point, rather than natural-language annotations. This enables the
simulator to produce fluent, natural responses while keeping clarifications precise and grounded in
the underlying logic. (2) Reference-based disambiguation: to avoid cases where certain ambiguities
lack explicit annotations, the simulator is additionally provided with the reference SQL, allowing
it to generate accurate clarifications when necessary. While in real-world scenarios, real users may
only have vague initial goals without an answer when making a request, this pragmatic design

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Data statistics of features in BIRD-INTERACT compared to the evaluation set of related
benchmarks. # Avg Interactions: Number of interactions by unfolding the model’s interaction
trajectory. # Toks./Output: Average number of tokens in the reference output; “/” indicates bench-
marks without reference output. Dynamic User: Whether the benchmark supports real-time user
interaction (vs. static offline datasets). Dynamic Env State: Whether the database or environment
state can be modified during interaction. Amb. Sources: Sources of ambiguity in user queries or
environments. LLM + Guard means LLM as user simulator with Guard mechanism to make actions
more controllable.

Category Dataset # Tasks # Avg Interactions # Toks. / Output Dynamic User Dynamic Env State Amb. Sources Ext. Knowledge

SQL Generation

KaggleDBQA (Lee et al., 2021) 272 1 24.28
WikiSQL (Zhong et al., 2017) 15,878 1 15.59

Spider (Yu et al., 2018) 2,147 1 30.18
Spider 2.0 (Lei et al., 2025) 632 1 412.37
BIRD-SQL (Li et al., 2023) 1,534 1 50.01

BIRD-Critic (Li et al., 2025d) 1,100 1 109.66
BIRD-Mini-Dev (Li et al., 2023) 500 1 63.56

Ambiguity Handling

AMBROSIA (Saparina & Lapata, 2024) 1,277 1 88.36 User
AmbiQT (Bhaskar et al., 2023) 3,000 1 31.72 User

When Prompts Go Wrong (Larbi et al., 2025) 300 1 55.71 Description
InfoQuest (de Oliveira et al., 2025) 1,000 3.76 / LLM 1 User + Persona
CondAmbigQA (Li et al., 2025f) 200 1 44.94 Query + Docs

VQ-FocusAmbiguity (Chen et al., 2025a) 5,500 1 1.54 Visual

Multi-Turn Benchmark

SparC (Yu et al., 2019b) 422 1 34.58 Offline
CoSQL (Yu et al., 2019a) 1300 1 39.34 Offline
CHASE (Guo et al., 2021) 2,494 1 43.71

MT-Bench (Zheng et al., 2023) 160 1 37.58 Offline

Interactive Benchmark

MINT (Wang et al., 2024) 586 3.12 64.97 LLM
InterCode (Yang et al., 2023) 2,208 5.46 40.35
τ -bench (Yao et al., 2025) 165 13.29 / LLM

WebShop (Yao et al., 2022) 500 9.61 /

Our Benchmark BIRD-INTERACT-LITE 300 13.04 365.14 LLM + Guard User + Env
BIRD-INTERACT-FULL 600 13.64 252.21 LLM + Guard User + Env

choice enhances evaluation reliability. (3) Simulator robustness and reproducibility: we employ
a two-stage function-driven design to safeguard against adversarial manipulation and ground-truth
leakage.

Table 5: Comparison of released databases across benchmarks.

Benchmark # DBs # Col./DB KB Doc. License Cost
BIRD-SQL (Li et al., 2023) 15 54.2 ✓ CC BY-SA 4.0 Free
Spider (Yu et al., 2018) 40 27.1 × CC BY-SA 4.0 Free
WikiSQL (Zhong et al., 2017) 5230 6.3 × BSD 3-Clause Free
KaggleDBQA (Lee et al., 2021) 8 23.4 ✓ CC BY-SA 4.0 Free
SEDE (Hazoom et al., 2021) 1 212 × Apache License Free
Spider 2.0 (Lei et al., 2025) 632 743.5 ✓ Restricted May incur cost

BIRD-INTERACT-LITE 18 126.9 ✓ CC BY-SA 4.0 Free
BIRD-INTERACT-FULL 22 91.4 ✓ CC BY-SA 4.0 Free

Window Functions (632)

JSON Operations (548)

CTEs & Subqueries (484)

Advanced Aggregation (143)Schema Management (139)
Date/Time Functions (111)

Procedures & Triggers (79)

Figure 8: Distribution of advanced
SQL features in BIRD-INTERACT.

E COMPARISON WITH RELATED BENCHMARKS

E.1 TASK COMPARISON

Table 4 compares BIRD-INTERACT with existing text-to-SQL and interactive benchmarks across
multiple dimensions. We categorize related work into four groups: SQL Generation, Ambiguity
Handling, Multi-Turn Benchmarks, and Interactive Benchmarks. This taxonomy highlights the
broader coverage and higher difficulty of BIRD-INTERACT.

First, unlike most SQL generation benchmarks that evaluate single-turn queries or pre-collect static
conversation history, BIRD-INTERACT integrates ambiguity handling, dynamic multi-turn interac-
tions, and dynamic environments in a unified framework. Our tasks require systems not only to
generate SQL but also to actively engage in clarification and reasoning with both user and environ-
ment. Second, the # Avg Interactions of BIRD-INTERACT is around 13 per task, significantly higher
than prior benchmarks which typically unfold into one or a few turns. This reflects the increased
difficulty of our benchmark: solving a task demands repeated clarification and tool use across multiple
rounds of interaction. Third, the # Toks./Output of BIRD-INTERACT is substantially larger (252–365
tokens on average), indicating that our SQL queries are longer and structurally more complex. Fourth,
unlike static multi-turn benchmarks with offline conversation transcripts, BIRD-INTERACT features a

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Dynamic User during evaluation. Our two-stage function-driven user simulator ensures robustness
by mapping clarification requests into symbolic actions before generating responses. This design
reduces ground-truth leakage and adversarial manipulation, while preserving naturalness and diversity
of interaction. Fifth, BIRD-INTERACT introduces multiple ambiguity sources. Whereas most prior
datasets only consider ambiguity at the user query level, we additionally inject knowledge and
environmental ambiguities. This requires systems to strategically alternate between user clarification
and environment exploration to recover the true intent.

Taken together, these characteristics establish BIRD-INTERACT as the first benchmark that jointly
stresses SQL generation, ambiguity resolution, and dynamic interaction with both users and envi-
ronments. Compared to existing work, it sets a higher bar for evaluating interactive text-to-SQL
systems.

E.2 DATABASE COMPARISON

Table 5 compares the databases used in BIRD-INTERACT with those of other widely used text-to-SQL
benchmarks. Compared to most prior benchmarks, our databases span diverse domains (around
20 DBs in different domains), contain more columns per database, resulting in more complex and
richer schemas. All databases are paired with knowledge base documents. In terms of licensing,
BIRD-INTERACT builds on the open-source LIVESQLBENCH (BIRD-Team, 2025) datasets released
under CC BY-SA 4.0, ensuring unrestricted academic and industrial use. This licensing framework
ensures unrestricted accessibility for both academic research and industrial applications. Spider 2.0
represents another high-quality benchmark with large data resources, but its reliance on data primarily
sourced from BigQuery and Snowflake Marketplace introduces licensing complexities that may limit
direct further academic adaptation and potentially incur usage costs for researchers.

F EVALUATION METRICS

F.1 SUCCESS RATE (SR)

The Success Rate (SR) is our primary online evaluation metric, measuring whether each sub-task
is solved correctly during interaction. Let N denote the total number of tasks, where each task i
in BIRD-INTERACT consists of exactly two sub-tasks, denoted qi,1 and qi,2. Each sub-task qi,j is
annotated with a ground-truth SQL solution σ∗

i,j and a set of executable test cases Ti,j . A predicted
SQL σi,j is considered correct if it passes all test cases in Ti,j . The success rate for the j-th sub-task
across all tasks is defined as:

SRj =
1

N

N∑
i=1

I
[
Ti,j(σi,j) = True

]
, (2)

where I[·] is the indicator function that equals 1 if the prediction is correct and 0 otherwise. In
reporting, we provide SR separately for the two sub-tasks: (1) qi,1, the ambiguous priority sub-task,
and (2) qi,2, the follow-up sub-task. To assess functional correctness, we rely on executable test
scripts that validate predicted SQL against the annotated ground truth. Details of the test scripts are
provided in Appendix G.

F.2 NORMALIZED REWARD

To capture the relative importance of different sub-tasks (e.g., success on the initial ambiguous sub-
task is critical for continuing the interaction) and to distinguish system behaviors such as first-attempt
success versus post-debugging success, we propose a Normalized Reward metric. It is calculated by
the average reward across all tasks. This metric is reported in addition to the sub-task-level success
rates described in Section 2. Formally, with N total tasks, the normalized reward is calculated as

R =

∑
i ri
N

=

∑
i

∑
j∈{1,2} ri,j

N
,

where the ri, rij is the reward of the task i and the sub-task j of task i. In the c-Interact setting, to
distinguish first-attempt and post-debugging solutions, the reward is defined by:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

ri,1 =


0.7 if 1st sub-task is solved without debugging
0.5 if 1st sub-task is solved with debugging
0 otherwise

ri,2 =


0.3 if 2nd sub-task is solved without debugging
0.2 if 2nd sub-task is solved with debugging
0 otherwise

In the a-Interact setting, since the interaction flow is not fixed, e.g. the debugging times, the reward
only considers the pass or fail of each sub-task:

ri =


1.0 if both sub-tasks are passed
0.7 if only the 1st sub-task is passed
0 otherwise

G TEST SCRIPTS

We check sub-task correctness using executable test scripts. For BI sub-tasks (analytical queries),
we use a default soft exact-match (EM) script that normalizes benign SQL differences (e.g., removing
comments, redundant DISTINCT, or rounding) and compares execution results between the predicted
SQL and the annotated solution SQL under task-specific conditions. For DM sub-tasks (data
manipulation or state-changing operations), we use manually annotated, case-by-case verification
scripts that assert task-specific postconditions of the database.

G.1 BI QUERIES

The default test script cleans predictions/solutions (e.g., remove comments, DISTINCT, ROUND
wrappers) and then compares execution results between the predicted SQL and the annotated solution
SQL via a configurable comparator ex_base with a conditions map (e.g., order:false to
ignore row ordering if the task does not require ordering):

def test_case_default(pred_sqls, sol_sqls, db_name, conn,
conditions=None):

"""Default test_case: pytest-style assertion."""
pred_sqls = remove_comments(pred_sqls)
sol_sqls = remove_comments(sol_sqls)
pred_sqls = remove_distinct(pred_sqls)
pred_sqls = remove_round(pred_sqls)
sol_sqls = remove_distinct(sol_sqls)
sol_sqls = remove_round(sol_sqls)

result = ex_base(pred_sqls, sol_sqls, db_name, conn, conditions)
assert result == 1, f"ex_base returned {result} but expected 1."
return result

G.2 DM QUERIES

DM sub-tasks may involve DML/DDL, stored procedures, or functions and do not always return
a result set. We therefore use case-specific scripts that execute the predicted SQL and then assert
task-specific postconditions. Depending on the sub-task, the test script may (i) check the return value
of a verification query (e.g., calling a created function/view), (ii) inspect the presence/shape/content
of created artifacts (tables, indexes, constraints), or (iii) compare targeted state properties (e.g., row
counts, key invariants). For example, this is one test case for the user sub-task in Figure 1:

def test_case(pred_sqls, sol_sqls, db_name, conn):
execute_queries(pred_sqls, db_name, conn)

verify_sql = "SELECT * FROM rank_urgent_care()"

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

pred_query_result = execute_queries(verify_sql, db_name, conn)
actual = pred_query_result[0]

expected = [
(101, ’Ancient Scroll’, Decimal(’7.20’)),
(102, ’Bronze Vase’, Decimal(’6.85’)),
(103, ’Stone Tablet’, Decimal(’6.50’)),

]
assert len(actual) == len(expected)
assert actual == expected
return True

H AMBIGUITY AND FOLLOW-UP ANNOTATION DETAILS

H.1 USER QUERY AMBIGUITY ANNOTATION

A central step in constructing interactive scenarios is the deliberate introduction of ambiguity into
originally unambiguous single-turn queries. Our annotation process ensures that systems cannot
succeed without active clarification, thereby reflecting the uncertainties inherent in real-world human–
database interactions. Figure 9 shows the distribution of annotated ambiguities across the dataset.

Two basic ambiguity categories. We distinguish between two fundamental categories that guide
annotation:

• Intent-level ambiguity arises directly from user language, where the request is vague, un-
derspecified, or missing critical details (e.g., “find elderly people” without defining the age
threshold). If not resolved, intent-level ambiguity can severely degrade user experience and
lead to erroneous SQL. Clarifying such ambiguities is the primary requirement for an LLM
to faithfully capture user intent.

• Implementation-level ambiguity occurs when the user’s high-level intent is clear, but the SQL
execution admits multiple valid formulations, such as numeric precision, ranking direction,
or null handling. While less disruptive to comprehension, resolving these cases improves
SQL precision and alignment with user expectations.

For each category, we provide annotators with a structured taxonomy including type definitions,
annotation conditions, and examples, ensuring systematic and consistent ambiguity injection, as
outlined in Appendix H.4.

Ambiguity and clarification sources. Each injected ambiguity is paired with a unique clarification
represented by a key SQL snippet from the ground-truth SQL rather than natural language text. For
instance, the ambiguous query “find elderly people” is linked to the clarification snippet WHERE age
> 80. This design guarantees reproducibility: the user simulator can reliably ground clarifications in
SQL semantics, while still generating diverse natural-language paraphrases during interaction.

Quality control. To maintain benchmark reliability, annotators follow a strict checklist: (1) Necessity
of clarification: each ambiguous query must be unsolvable without clarification, ensuring genuine
reliance on interaction. (2) Completeness after clarification: once clarification is provided, the
information must suffice for an expert to reconstruct the exact solution SQL. This guarantees that
injected ambiguities are both necessary and recoverable, enabling reproducible evaluation.

H.2 KNOWLEDGE AND ENVIRONMENTAL AMBIGUITY ANNOTATION

In addition to user query modifications, we also introduce ambiguities that arise from missing or
noisy external resources. These require systems to reason dynamically with both knowledge bases
and database environments. We annotate them in two categories: knowledge ambiguities and
environmental ambiguities.

Knowledge Ambiguities. We introduce incompleteness into the hierarchical knowledge base
(HKB) to simulate the deployment conditions where documentation is often partial or fragmented.
We distinguish two subtypes:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• One-shot knowledge ambiguity: individual knowledge entries are masked without involving
dependent chains. For example, if the definition of CPI is omitted, the system cannot
directly calculate indices that rely on it. These isolated gaps require the system to explicitly
ask the user for missing facts.

• Knowledge chain breaking: intermediate nodes in multi-hop reasoning chains are masked,
disrupting dependencies across concepts. Consider the chain "urgent care"→ "AVS"
→ "IF/CPI" shown in Figure 2. By masking the intermediate node AVS, the inferential
link is broken: the query becomes ambiguous, and the system must first request clarification
from the user before proceeding to the knowledge IF/CPI.

Database Inconsistencies. LIVESQLBENCH databases already contain noise, including string
fields mixing numeric values with units, inconsistent column naming across related tables, and NULL
values in critical fields. Moreover, their SQL tasks already involve this database noise, providing a
foundation for data quality challenges. We deliberately leverage these existing inconsistencies as
evaluation scenarios. When constructing subsequent sub-tasks, we also intentionally involve these
noisy columns to increase the complexity of multi-turn interactions. These require systems to handle
data quality issues through appropriate querying strategies and robust SQL patterns.

As in user query ambiguities, each ambiguity is also paired with a ground-truth SQL fragment that
acts as the clarification source.

H.3 AMBIGUITY CHAIN

We combine those individual ambiguities with different types into ambiguity chains that require
Multi-Hop Ambiguity Resolution, which integrates three aspects:

1. Nested ambiguities. Clarification itself may introduce further uncertainty, requiring multi-
stage resolution. Not all ambiguities are visible at the surface level of the query; some
unfold only when earlier uncertainties are addressed.

2. Multiple clarification sources. Each ambiguity may require information from different
sources. In particular, the system must decide whether to seek clarification from the user or
to consult the environment (e.g., knowledge base, schema, or documentation).

3. Clarification flows. We define three canonical transition types that characterize how clarifi-
cation flows across sources:

• User → User: an initial user clarification is itself ambiguous and requires further
follow-up with the user.

• User → Environment: the user’s clarification points to auxiliary information that must
be retrieved from the environment, e.g. KB.

• Environment → User: the system first consults the environment, but the retrieved
knowledge is incomplete or underspecified, necessitating a return to the user for
explanation.

These transitions can compose into multi-hop clarification sequences such as User → Environment →
User. For example, as shown in Figure 1, there are two ambiguities: (1) the vague query “need urgent
care” is clarified as “ranked by AVS” (2) but because the KB entry for AVS is masked, the system
must return to the user for further clarification. To implement such cases, (1) annotated clarification
snippets are intentionally underspecified, leaving residual ambiguity, and (2) some KB nodes in HKB
are masked to simulate missing documentation. Together, these mechanisms ensure that successful
resolution requires multi-stage reasoning and source selection.

H.4 USER QUERY AMBIGUITY TAXONOMY

We distinguish between two fundamental categories of user query ambiguity that guide annotation:

Intent-Level Ambiguity Types. Intent-level ambiguity arises directly from user language, where
the request is vague, underspecified, or missing critical details (e.g., “find elderly people” without
defining the age threshold). If not resolved, intent-level ambiguity can severely degrade user expe-
rience and lead to erroneous SQL. We summarize six types of user query ambiguity (Table 6) and

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

33.0%

25.1%

16.6%

12.6%12.6%

intent-level + knowledge ambiguities

knowledge_linking_ambiguity
knowledge_ambiguity
intent_ambiguity
schema_linking_ambiguity
semantic_ambiguity

30.6%

26.6%

24.6%

10.4%
3.6%2.5%1.7%

implementation-level ambiguities

sort_ambiguity
decimal_ambiguity
null_ambiguity
join_ambiguity
distinct_ambiguity
divide_zero_ambiguity
other

Figure 9: Ambiguity types distribution.

guide the annotators to inject them into unambiguous user queries: (1) Lexical Ambiguity from
tokens with multiple meanings, (2) Syntactic Ambiguity from multiple valid grammatical structures,
(3) Semantic Ambiguity from vague phrasing (e.g., "recent"), (4) Schema Linking Ambiguity
from unclear schema references, (5) Query Intent Ambiguity where user goals (e.g., "top") are
underspecified, and (6) Knowledge Linking Ambiguity involving implicit references to external
knowledge.

Table 6: Intent-Level User Query Ambiguity Taxonomy in BIRD-INTERACT

Ambiguity Type Definition Example
Lexical Ambiguity A token has multiple meanings or senses

within the query context.
“Show bills” — “Bills” could mean in-
voices, legislation, or billing records.

Syntactic Ambiguity The sentence has multiple valid grammatical
structures leading to different interpretations.

“Get orders for customers from 2020” —
Are we filtering orders or customers by
year?

Semantic Ambiguity The query is grammatically correct but se-
mantically vague, lacking details necessary
for precise interpretation.

“Recent transactions” — The time frame
for “recent” is unspecified.

Schema Linking
Ambiguity

Ambiguity in mapping a query term to the
correct schema element due to multiple plau-
sible candidates.

“List users by status” — “Status”
could refer to account_status,
login_status, etc.

Query Intent Ambi-
guity

Uncertainty about the user’s intended opera-
tion or ranking criterion.

“Show the top customers” — “Top” may
refer to revenue, number of orders, or fre-
quency.

Knowledge Linking
Ambiguity

A referenced concept exists in the external
knowledge base, but the query’s link to the
knowledge is implicit or unclear.

“Get Impact Score” — “Impact Score”
refers to “Artist Impact Score” in the KB.

Implementation-Level Ambiguity Types. Implementation-level ambiguity occurs when the user’s
high-level intent is clear, but the SQL execution admits multiple valid formulations, such as numeric
precision, ranking direction, or null handling. While less disruptive to comprehension than intent-
level ambiguity, resolving these cases improves SQL precision and alignment with user expectations.
These ambiguities are annotated conditionally, i.e., only when the corresponding SQL operations are
present in the ground-truth SQL. For each case, annotators identify the relevant SQL fragment and
mark the corresponding clarification source.

• Decimal ambiguity. Annotated when the solution SQL applies rounding or numeric
formatting. Example: ambiguous query “show average score,” clarified query “show average
score in two decimals,” with the solution SQL using ROUND(AVG(score), 2).

• Join ambiguity. Annotated when the solution SQL requires non-default join semantics
(e.g., LEFT JOIN, FULL OUTER JOIN). Example: ambiguous query “list all customers

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

and their orders,” clarified query “list all customers and their orders, even if they have no
records,” with the solution SQL using LEFT JOIN.

• Distinct ambiguity. Annotated when the SQL solution contains the DISTINCT keyword.
Example: ambiguous query “get all product names,” clarified query “get all different product
names,” with solution SQL SELECT DISTINCT product_name.

• Sort ambiguity. Annotated when the SQL solution applies an ORDER BY clause without a
LIMIT. Example: ambiguous query “show recent purchases,” clarified query “show recent
purchases sorted by time,” with solution SQL including ORDER BY purchase_time
DESC.

• Null ambiguity. Annotated when the SQL solution contains null-handling opera-
tions (e.g., COALESCE, ISNULL). Example: ambiguous query “count users by re-
gion,” clarified query “count users by region, treating null as 0,” with solution SQL
COUNT(COALESCE(region, 0)).

• Rank ambiguity. Annotated when ranking functions are applied in the solution SQL (e.g.,
ROW_NUMBER, DENSE_RANK). Example: ambiguous query “show top customers with
ranks of revenue,” clarified query “show top customers with ranks of revenue; if tied, assign
the same rank,” with SQL using DENSE_RANK().

• Divide-by-zero ambiguity. Annotated when the SQL solution explicitly handles the case
of dividing by zero. Example: ambiguous query “show the ratio of passed to total exams,”
clarified query “show the ratio of passed to total exams, treating cases with zero total as
0,” with solution SQL using CASE WHEN total=0 THEN 0 ELSE passed/total
END.

These annotations ensure that implementation-level ambiguities are reproducible and systematically
linked to concrete SQL constructs. By marking such cases only when relevant SQL operations are
present, we preserve annotation consistency while enriching the benchmark with the challenges of
SQL details in implementation.

Table 7: Implementation-Level User Query Ambiguity Types in BIRD-INTERACT

Ambiguity Type Annotation Condition Example Transformation
Decimal Ambiguity ROUND function is used in solution SQL "Show average score in 2 decimal" →

"Show average score"

Join Ambiguity Non-default join (e.g., LEFT JOIN) is
used in solution SQL

"Show all customers and their orders
even though they don’t have records" →
"Show all customers and their orders"

Distinct Ambiguity DISTINCT keyword is used in solution
SQL

"Get all different product names" →
"Get all product names"

Sort Ambiguity ORDER BY is used without LIMIT in
solution SQL

"Show recent purchases sorted by time"
→ "Show recent purchases"

Null Ambiguity Solution SQL contains null handling op-
erations (e.g., COALESCE, ISNULL)

"Count users by region, treat null as 0"
→ "Count users by region"

Rank Ambiguity Solution SQL uses ranking func-
tions (e.g., ROW_NUMBER, RANK,
DENSE_RANK)

"Show top customers with ranks of rev-
enue. If they are tied, give them the same
rank number." → "Show top customers
with ranks of revenue."

Divide-by-zero Am-
biguity

Solution SQL must handle division by
zero explicitly

"Show the ratio of passed to total exams,
treating cases with zero total as 0" →
"Show the ratio of passed to total ex-
ams"

H.5 ENVIRONMENTAL KNOWLEDGE AMBIGUITY

Beyond user query ambiguities, our benchmark also incorporates environmental uncertainties that
arise from incomplete or missing knowledge bases. In such cases, systems must return to the user for
clarification when the environment alone provides insufficient information.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Knowledge Ambiguity Injection. We systematically remove or obscure nodes in the Hierarchical
Knowledge Base (HKB) to simulate the scenario of information missing. When essential domain
knowledge is missing, systems must recognize the knowledge gap and explicitly request clarification
from users about entity relationships, domain-specific conventions, or missing context.

Examples of Knowledge Ambiguity:

• Missing Definitions: The query asks for "Artist Impact Score" but the KB lacks a definition
for this metric, forcing the system to ask the user for clarification about calculation methods.

• Incomplete Hierarchies: Domain concepts exist in the KB but their relationships are
incomplete, requiring systems to seek additional context about entity connections.

• Outdated Information: Knowledge base entries may not reflect current database schema
or business logic, necessitating clarification about current practices.

This environmental knowledge ambiguity complements user query ambiguities by testing systems’
ability to recognize information gaps and strategically gather missing context through user interaction.

H.6 FOLLOW-UP SUB-TASK TAXONOMY

In addition to initial ambiguities, interactive scenarios require systems to handle diverse follow-up
requests that extend or refine the analytical chain. We categorize follow-ups into six types (Table 8),
covering constraint adjustments, topic pivots, attribute modifications, result-driven drill-downs,
aggregation-based summarizations, and state-dependent follow-ups based on newly created objects.
These follow-ups test whether evaluated systems can maintain context, adapt to evolving user needs
and database, and produce coherent SQL across multiple turns.

Table 8: Follow-up Sub-Task Taxonomy in BIRD-INTERACT

Follow-up Type Description First Query Example Follow-up Example
Constraint Change Tighten or relax filtering conditions. “List employees hired in

2024.”
“Only engineers.” / “Include
2023 as well.”

Topic Pivot Compare or switch entity values to explore
alternatives.

“Sales of Product A in
2023.”

“What about Product B?”

Attribute Change Modify the requested attributes, metrics, or
columns.

“Departments with >50
staff.”

“Give their average salary.”

Result-based Drill down, regroup, nest, or reformat based
on the previous result set.

“List projects finished in
2023.”

“For Apollo, show its budget.”

Aggregation Request statistics, concatenations, counts, or
Boolean checks (e.g., AVG, STRING_AGG,
MAX FILTER, ARRAY_AGG+LIMIT,
EXISTS). Final output is typically a scalar,
single row, or compact table.

“Show the top-10 artists
by track count.”

“Give me their names joined
into a single comma-separated
string.”

Object-Dependent First query creates or modifies a database
object (e.g., table, view), and the follow-up
query operates on it.

“Create a table of
employees with salary
above 100k.”

“From that table, list only engi-
neers.”

I EXPERIMENT DETAILS

I.1 MODEL ALIAS

The following aliases are used for the models in this work:

• Gemini-2.0-Flash: gemini-2-0-flash-001

• DeepSeek-R1: deepseek-r1

• GPT-4o: gpt-4o-2024-11-20

• DeepSeek-V3: deepseek-chat

• O3-Mini: o3-mini-2025-01-31

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

• Claude-Sonnet-3.7: claude-3-7-sonnet-20250219

• Qwen-3-Coder-480B: Qwen3 Coder 480B A35B

• DeepSeek-Chat-V3.1: deepseek-chat-v3.1

• Gemini-2.5-Pro: gemini-2-5-pro

• Claude-Sonnet-4: claude-sonnet-4-20250514

• GPT-5: gpt-5

I.2 EXPERIMENT SETUP

All experiments were conducted under deterministic decoding to ensure reproducibility. Specifically,
we set temperature=0 and top_p=1 for all models. Each experiment was executed a single time
due to the high cost of commercial API calls and the deterministic nature of the outputs under these
settings. For both c-Interact and a-Interact, the default user patience budget was set to 3, in addition to
the required turns for ambiguity resolution, which equals the number of annotated ambiguities. In the
Interaction Test-Time Scaling experiments, we considered patience values of 0, 3, 5, and 7 to evaluate
robustness under varying interaction budgets. For a-Interact, the base budget was set to 6 to allow
systems sufficient capacity to explore the environment and execute SQL queries before submitting.
All model inferences were obtained directly from their official APIs or released checkpoints to ensure
authenticity and consistency. For those models with reasoning capabilities, we set reasoning effort as
default "medium".

J ACTION SPACE AND SELECTION PATTERNS IN a-INTERACT

Table 9: Action space for the agent showing available actions, their environments, arguments, return
values (as observation), and associated costs.

Action Env. Arguments Return Value Cost
execute DB sql Query Result 1
get_schema DB - Database Schema 1
get_all_column_meanings DB - All Columns’ Meanings 1
get_column_meaning DB table, column Column Meaning 0.5
get_all_external_knowledge_names DB - All Knowledge Names 0.5
get_knowledge_definition DB knowledge Knowledge Definition 0.5
get_all_knowledge_definitions DB - All Knowledge Definitions 1

ask User question User Clarification 2
submit User sql User Feedback 3

J.1 ACTION SPACE IN a-INTERACT

Table 9 lists the nine actions an agent may invoke during the a-Interact evaluation. They naturally
cluster into two families:

Environment-only probes (cost ≤ 1). Seven low-cost calls let the agent inspect the database and
hierarchical knowledge base (HKB) without engaging the user:

• execute: run a candidate SQL statement and receive the result set;

• get_schema, get_all_column_meanings, get_column_meaning: expose
structural and semantic metadata;

• get_all_external_knowledge_names, get_knowledge_definition,
get_all_knowledge_definitions: retrieve business concepts from the HKB.

Graduated costs (0.5–1) discourage brute-force enumeration yet remain low enough to support
iterative exploration.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

9.0%

26.2%

6.8%6.8%
21.9%

6.5%

19.6%

Claude-3.7-Sonnet
(P1: 34.0%, P2: 17.7%)

27.8%

6.6% 64.0%

o3-mini
(P1: 25.7%, P2: 12.0%)

9.0%

36.1%

3.9%11.9%
7.5%

10.2%

19.0%

deepseek-deepseek-chat
(P1: 23.3%, P2: 9.7%)

10.5%

40.0%

5.0%6.4%
11.3%

7.6%

17.6%

GPT-4o
(P1: 23.3%, P2: 9.0%)

3.6%

27.9%

6.6%
5.9%10.3%8.2%

3.0%

33.5%

Qwen3
(P1: 22.0%, P2: 14.0%)

8.0%

29.5%

3.3%4.7%5.3%7.5%
8.1%

4.4%

28.8%

Gemini-2.0-flash
(P1: 21.0%, P2: 10.3%)

6.3%
8.2%

5.5%

17.7%

8.3%9.3%

42.0%

deepseek-deepseek-r1
(P1: 21.0%, P2: 12.3%)

ask
execute
get_all_column_meanings
get_all_external_knowledge_names
get_all_knoweldge_definitions
get_column_meaning
get_knowledge_definition
get_schema
invalid_action
submit

Figure 10: System action distribution of systems under default setting (patience=3) on LITE set. P1
and P2 indicate the success rate for the first sub-task and the second sub-task.

.

11.3%
10.7%
6.2%

17.1%10.0%

40.8%

GPT-5
(P1: 29.2%, P2: 17.0%)

9.2%

29.9%

4.5%8.1%10.7%
6.9%
9.7%

20.0%

Claude-Sonnet-4
(P1: 27.8%, P2: 12.7%)

8.2%

35.4%

5.8%5.4%
18.3%

7.0%

16.8%

Claude-3.7-Sonnet
(P1: 21.0%, P2: 9.2%)

7.0%
14.0%

7.5%

19.8% 8.8%
6.4%

34.2%

Gemini-2.5-Pro
(P1: 20.3%, P2: 10.3%)

36.1%

4.3%4.4%

54.6%

O3-Mini
(P1: 19.8%, P2: 8.5%)

10.3%

40.8%

3.2%5.7%5.8%

16.0%

6.2%
10.2%

Deepseek-Chat-V3.1
(P1: 17.2%, P2: 4.8%)

3.2%

48.3%

4.9%4.3%
12.5%

6.5%
9.7%

8.3%

Qwen-3-Coder-480B
(P1: 13.3%, P2: 4.2%)

ask
execute
get_all_column_meanings
get_all_external_knowledge_names
get_column_meaning
get_knowledge_definition
get_schema
invalid_action
submit

Figure 11: System action distribution of systems under default setting (patience=3) on FULL set.. P1
and P2 indicate the success rate for the first sub-task and the second sub-task.

.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

ask

exe
cut

e

ge
t_a

ll_c
olu

mn_m
ea

nin
gs

ge
t_a

ll_e
xte

rna
l_k

no
wled

ge
_na

mes

ge
t_c

olu
mn_m

ea
nin

g

ge
t_k

no
wled

ge
_de

fin
itio

n

ge
t_s

che
ma

inv
alid

_ac
tio

n
sub

mit

Action Types

GPT-5
(avg: 10.05)

Claude-Sonnet-4
(avg: 14.46)

Claude-3.7-Sonnet
(avg: 14.86)

Gemini-2.5-Pro
(avg: 11.97)

O3-Mini
(avg: 7.69)

Deepseek-Chat-V3.1
(avg: 16.77)

Qwen-3-Coder-480B
(avg: 19.66)

M
od

el
s

1.14 1.08 0.02 0.62 0.24 1.72 1.01 0.12 4.11

1.33 4.32 0.14 0.65 1.17 1.54 1.00 1.41 2.89

1.22 5.26 0.38 0.86 0.81 2.72 1.04 0.07 2.49

0.84 1.67 0.04 0.90 0.24 2.37 1.05 0.77 4.10

2.78 0.33 0.01 0.01 0.00 0.01 0.34 0.01 4.20

1.73 6.85 0.54 0.96 0.98 2.68 1.04 0.27 1.72

0.64 9.50 0.42 0.97 0.84 2.46 1.29 1.90 1.64

Action Distribution Heatmap
Models vs Action Types - Average per Sample

2

4

6

8
Avg Actions per Sam

ple

Figure 12: System action distribution of systems under default setting (patience=3) in heatmap on
FULL set.

.

5 10 15 20 25 30
Turn

0

100

200

300

400

500

600

Co
un

t

GPT-5

5 10 15 20 25 30
Turn

0

100

200

300

400

500

600

Co
un

t

Claude-Sonnet-4

5 10 15 20 25 30
Turn

0

100

200

300

400

500

600

Co
un

t

Claude-3.7-Sonnet

5 10 15 20 25 30
Turn

0

100

200

300

400

500

600

Co
un

t

Gemini-2.5-Pro

5 10 15 20 25 30
Turn

0

100

200

300

400

500

600

Co
un

t

O3-Mini

5 10 15 20 25 30
Turn

0

100

200

300

400

500

600

Co
un

t

Deepseek-Chat-V3.1

5 10 15 20 25 30
Turn

0

100

200

300

400

500

600

Co
un

t

Qwen-3-Coder-480B

Action Groups Over Turns Across Models

Execute
Schema
ColumnMeaning
Knowledge
Ask
Submit
Invalid

Figure 13: The interaction pattern of systems: action groups over turns under default setting (pa-
tience=3) on FULL set.

.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

User-mediated interactions (cost ≥ 2). When autonomous reasoning is insufficient, the agent can

• ask (cost 2): pose a clarifying question to the user simulator;

• submit (cost 3): submit a full SQL candidate to the user. The user will conduct the
test-case evaluation and give the feedback to the agent.

The higher penalties reflect the real-world expense of analyst involvement and encourage systems
to reserve these calls for genuinely ambiguous scenarios or final validation. Overall, this action
design balances expressive power with explicit cost signals, promoting strategic tool use, efficient
information gathering, and minimal reliance on the user simulator.

J.2 ACTION SELECTION PATTERNS AND THEIR IMPACT (FULL SET)

Figure 11 and Figure 12 show how seven systems distribute their calls across the nine available
actions (Table 9) on the FULL set. We summarize three observations:

1. Balanced strategies outperform extremes. The strongest performers, GPT-5 (29.2%) and
Claude-Sonnet-4 (27.8%), adopt relatively balanced strategies. GPT-5 splits its budget almost evenly
between environment probes (47%) and user involvement (ask+submit: 52%). Claude-Sonnet-4
follows a similar pattern, but with heavier emphasis on execute (29.9%) and lighter use of submit
(20.0%). By contrast, O3-Mini expends an extreme 91% of its budget on user calls (36% ask,
55% submit) and allocates only 4% to execute, passing fewer than one-fifth of the first sub-
tasks. On the other side, Qwen-3-Coder (48% execute) and DeepSeek-Chat (41% execute) are
strongly execution-heavy and likewise underperform (P1 13.3% and 17.2%). This contrast suggests
that successful agents must strike a balance between exploring the environment and committing to
user-facing actions, rather than over-investing in either extreme.

2. Submitting selectively helps, brute execution hurts. Across systems, the proportion of submit
calls correlates positively with P1 (Pearson r≈0.41, Spearman ρ≈0.54), while the proportion of
execute calls correlates negatively (Pearson r≈− 0.52, Spearman ρ≈− 0.54). In practice, this
means that repeatedly probing the database with tentative execute calls without consolidation
tends to waste budget, whereas converging on a grounded hypothesis and committing to submit
improves success rates by getting the feedback from the user. For example, Claude-3.7-Sonnet and
DeepSeek-Chat each keep submit usage below 17% and 11%, instead relying heavily on execute.
At the other extreme, O3-Mini’s indiscriminate strategy of submitting more than half of all turns also
underperforms, confirming that it is not the absolute amount of submission that matters if ignoring
the information from the user and environment.

3. Interaction patterns evolve over turns: explore first, then execute and submit. As shown in
Figure 13, stronger systems (e.g., GPT-5, Claude-Sonnet-4) follow a clear turn-by-turn strategy: in
early turns they combine environment exploration with user clarifications to gather information, while
in mid and later turns, they increase execute and submit calls to test and refine SQL. In contrast,
weaker systems either submit too early (O3-Mini) or overuse execution without consolidation (Qwen-
3-Coder), leading to poorer performance. This demonstrates that performance depends not only on
overall action mix but also on how actions are sequenced across interaction turns.

Taken together, these results indicate that in the agentic c-Interact setting, performance depends less
on sheer interaction times and more on how well a system balances environment exploration with
user interaction, commits to submissions at the right time, and avoids wasted budget.

K PERFORMANCE ON DIFFERENT AMBIGUITY TYPES

Which knowledge missing type lead to more ambiguity? Linear or High-order? Figure 15
compares tasks where (1) the missing fact lies on a simple, “linear” chain of the hierarchy with (2)
those where the gap occurs within the chain—what we term a higher-order ambiguity. Linear cases
correspond to one-shot knowledge gaps, while higher-order cases correspond to knowledge chain
breaking in Section 3.2. In the scripted c-Interact setting, every model finds linear gaps easier: once

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

intent
knowledge

knowledge

 linking schema

 linking semantic
0

5

10

15

20

25

30

Su
cc

es
s R

at
e

(%
)

c-Interaction
a-Interaction

Figure 14: Success Rate of LLMs on different ambiguity types over c and a-Interact Modes.

Claude-3.7-Sonnet

DeepSeek-V3

DeepSeek-R1

Gemini-2.0-Flash
GPT-4o

O3-Mini
Qwen-3

0

5

10

15

20

25

30

Su
cc

es
s R

at
e

(%
)

High-Order-c Linear-c High-Order-a Linear-c

Figure 15: Success Rate of LLMs on linear and higher-order ambiguity over c and a-Interact Modes.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 10: Success Rate and Final Normalized Reward of different models on BIRD-INTERACT-LITE.
The success rate is cumulative; Reward* is the normalized reward (%). The values reported in
c-Interact are after the debugging phase, and (+n) means the performance gained via debugging. Avg.
Cost is the cost for one task on average in USD.

Model Priority Question (Success Rate %) ↑ Follow Ups (Success Rate %) ↑ Reward* ↑ Avg.
Cost ↓BI DM Overall BI DM Overall

c-Interact Text-to-SQL

DeepSeek-V3 9.23 (+1.54) 40.95 (+6.67) 20.33 (+3.33) 5.13 (+1.54) 24.76 (+1.90) 12.00 (+1.67) 17.00 $ 0.01
Qwen-3 14.36 (+2.56) 44.76 (+2.86) 25.00 (+2.67) 7.18 (+0.51) 28.57 (+4.76) 14.67 (+2.00) 21.17 $ 0.03
DeepSeek-R1 16.92 (+3.08) 43.81 (+6.67) 26.33 (+4.33) 9.74 (+2.05) 27.62 (+3.81) 16.00 (+2.67) 22.10 $ 0.08
Claude-Sonnet-3.7 17.44 (+3.59) 59.05 (+1.90) 32.00 (+3.00) 9.23 (+2.05) 27.62 (+7.62) 15.67 (+4.00) 26.10 $ 0.32
Gemini-2.0-Flash 16.92 (+3.59) 60.95 (+7.62) 32.33 (+5.00) 9.74 (+1.03) 40.95 (+3.81) 20.67 (+2.00) 27.63 $ 0.04
GPT-4o 26.15 (+7.18) 54.29 (+6.67) 36.00 (+7.00) 14.36 (+1.03) 30.48 (+1.90) 20.00 (+1.33) 29.67 $ 0.32
O3-Mini 22.56 (+1.54) 64.76 (+3.81) 37.33 (+2.33) 12.31 (+0.00) 46.67 (+0.95) 24.33 (+0.33) 32.93 $ 0.09

a-Interact Text-to-SQL

Gemini-2.0-Flash 8.21 44.76 21.00 4.10 21.90 10.33 17.80 0.03 $
DeepSeek-R1 6.67 47.62 21.00 3.59 28.57 12.33 18.40 0.09 $
GPT-4o 12.31 43.81 23.33 4.62 17.14 9.00 19.03 0.46 $
DeepSeek-V3 11.79 44.76 23.33 6.15 16.19 9.67 19.23 0.06 $
Qwen-3 7.18 49.52 22.00 5.64 29.52 14.00 19.60 0.03 $
O3-Mini 14.87 45.71 25.67 6.67 21.90 12.00 21.57 0.08 $
Claude-Sonnet-3.7 22.05 56.19 34.00 10.77 30.48 17.67 29.10 0.67 $

DeepSeek-V3 Qwen-3 DeepSeek-R1 Gemini-2.0-Flash GPT-4o Claude-3.7-Sonnet O3-Mini0

10

20

30

40

Pe
rf

or
m

an
ce

GPT-4o (Ours)
Gemini-2.0-flash (Ours)
Human user
GPT-4o (baseline)
Gemini-2.0-flash (baseline)

Figure 16: The performance under our proposed two-stage user simulator and baseline user simulator
compared with human users on 100 sampled tasks.

the prerequisite nodes are supplied, the remaining hop is almost mechanical. Insert a break within
the chain, however, and success drops sharply because the model must now infer which intermediate
concept is still unknown before it can even formulate a clarification. When we switch to the agentic
a-Interact the story changes only for Claude-Sonnet-3.7, whose planning policy manages to erase the
gap between the two categories; O3-Mini and Qwen-3 still stumble on higher-order cases. The trend
suggests that the fundamental obstacle is not retrieval per se but the metacognitive step of localising
the missing link in a multi-step reasoning path—something only the most disciplined agent manages
to do reliably.

L EXPERIMENTS ON BIRD-INTERACT-LITE

Table 10 reports results on BIRD-INTERACT-LITE. We observe patterns consistent with those on
the Full set: overall success rates and normalized rewards remain low, confirming the difficulty
of interactive text-to-SQL even with simpler databases. Models that balance clarification with
environment exploration, such as Claude-Sonnet-3.7, achieve higher SR and NR, while those relying
too heavily on either execution or submission lag behind. Follow-up sub-tasks continue to pose
a greater challenge than priority queries, highlighting the difficulty of maintaining context across
interactions.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 17: An example of an Abstract Syntax Tree (AST) for a SQL query.

M ERROR ANALYSIS

We conducted an error analysis by sampling 50 failed cases from our evaluation. We found that over
80% of the errors were caused by incomplete ambiguity resolution. In many cases, systems either
asked too few clarification questions, asked none at all, or failed to detect the correct ambiguity and
request the appropriate clarification. On average, each task in our benchmark contains around four
ambiguities (Table 1), but systems asked for clarification only about once per task (Figure 12). As a
result, most tasks were attempted with insufficient information, making it difficult to reach the correct
solution. This highlights the current limitations of LLMs in human–AI collaborative ability. The
remaining errors stem from common issues in text-to-SQL generation, such as SQL syntax mistakes,
incorrect column selection, or misunderstanding of database constraints.

N USER SIMULATOR DESIGN DETAILS

The main text describes our function-driven user simulator, which invokes the LOC() action to
handle reasonable clarification questions that are not covered by pre-annotated ambiguities. This
appendix details the Abstract Syntax Tree (AST)-based retrieval mechanism that allows the simulator
to locate the relevant SQL fragment from the ground-truth (GT) query to answer such questions
precisely. And the average cost for our function-driven user simulator is 0.03 USD per data.

The primary challenge for the LOC() action is to find the specific part of the GT SQL that corresponds
to the system’s question without resorting to brittle keyword matching on the raw SQL string. An
AST provides a structured, hierarchical representation of the SQL query that is ideal for this task.
Our retrieval process consists of three main steps: Parsing, Node Matching, and Contextual Snippet
Extraction.

1. SQL Parsing into an AST. As a first step, the ground-truth SQL query is processed by a robust
SQL parser (e.g., based on libraries like ‘sqlglot‘) to generate an AST. As illustrated in Figure 17,
this tree deconstructs the query into its fundamental syntactic components. Each node in the tree
represents a part of the query, such as a clause (SELECT, FROM, WHERE), a function (COUNT(),
AVG()), an identifier (column or table names), an operator (=, >), or a literal value (‘USA’, 2023).
This hierarchical structure makes every component of the query individually addressable.

2. Node Matching via Semantic Search of LLMs. With the AST generated, the next step is to
identify the node(s) most relevant to the system’s clarification question. To achieve this, we flatten
the AST by traversing it and creating a list of all its nodes. This approach is far more robust than
simple keyword matching, as it can capture relationships like "how many" matching COUNT() or
"most recent" matching an ORDER BY ... DESC clause.

This AST-based method ensures that the LOC() function can reliably ground its responses in the GT
SQL, providing accurate and contextually relevant information without leaking the entire query.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

O EVALUATING THE FUNCTION-DRIVEN USER SIMULATOR

To empirically validate the effectiveness of our proposed function-driven user simulator, we conduct
a comprehensive evaluation focused on its robustness and reliability. We first introduce a new
benchmark, UserSim-Guard, specifically designed to challenge user simulators. We then present
our experimental setup and report the results, comparing our approach against a standard baseline.

O.1 USERSIM-GUARD: A BENCHMARK FOR SIMULATOR ROBUSTNESS

To enable a systematic evaluation of simulator performance, we constructed UserSim-Guard, a
manually curated dataset containing 1,989 challenging questions.

Construction Methodology. The construction of UserSim-Guard was carried out by a team of
7 trained annotators with expertise in SQL and natural language. To ensure data quality and diversity,
we implemented a rigorous annotation protocol. The dataset is structured around three categories of
system clarification requests, designed to probe different aspects of a simulator’s capabilities:

• AMB (Annotated Ambiguity): For this category, annotators were tasked with formulating
natural language questions based on the pre-annotated ambiguities present in the Bird-
Interact-Lite benchmark. These questions directly test the simulator’s ability to correctly
leverage the provided ambiguity annotations.

• LOC (Localizable Information): This category contains reasonable clarification questions
that are not covered by the pre-annotated ambiguities. Annotators were instructed to
carefully examine the ground-truth SQL query and identify potential points of confusion
(e.g., specific column choices, formatting preferences, or sub-component logic) and craft
questions accordingly. The answers to these questions can be located and inferred from the
ground-truth SQL.

• UNA (Unanswerable): To test the simulator’s safety and adherence to its role, this category
includes questions that are intentionally inappropriate or attempt to solicit privileged infor-
mation. Annotators were prompted to formulate queries that directly ask for the ground-truth
SQL, the database schema, or step-by-step guidance for solving the problem. A robust
simulator should refuse to answer such questions.

Furthermore, to investigate the simulator’s sensitivity to different interaction styles, we instructed
annotators to phrase each question in three distinct styles: Concise (terse and keyword-focused),
Normal (standard conversational language), and Verbose (descriptive and context-rich).

Quality Control. To ensure the highest data quality, we employed a multi-stage quality control
process. Each question-action pair in UserSim-Guard was annotated using a double-blind, "back-
to-back" annotation scheme. Specifically, each data point was independently created by one annotator
and then validated by a second annotator. Any disagreements between the two annotators were
resolved by a third, senior annotator who made the final adjudication. This process minimizes
individual bias and errors. We measured the inter-annotator agreement (IAA) using Fleiss’ Kappa,
achieving a score of 0.92, which indicates substantial agreement among our annotators and confirms
the reliability of our labels.

O.2 EXPERIMENTAL SETUP

Models and Baselines. We evaluate our function-driven user simulator against a baseline
simulator that directly generates responses using a single-pass LLM prompt. To ensure a fair
comparison, both our method and the baseline are implemented using two state-of-the-art large
language models as backbones: Gemini-2.0-Flash and GPT-4o.

Evaluation Framework. To provide an objective and comprehensive observation of different
user simulator mechanisms, we designed a robust evaluation framework using LLMs-as-Judge.
This approach allows for a nuanced assessment of response quality beyond simple string matching.
To mitigate potential self-enhancement bias, we employed two powerful and independent models,
Qwen-2.5-72B and Llama-3.1-70B, as evaluators.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

For each generated response from a simulator, the LLM judges were asked to perform a multiple-
choice classification task. This format was chosen to mitigate bias of LLM-as-judge (Gu et al., 2024),
reduce ambiguity, and create more differentiated assessments compared to open-ended feedback. The
options were:

• A. Perfect: The response correctly and accurately answers the question without revealing
any inappropriate information. It is helpful and natural.

• B. Acceptable: The response is functionally correct and does not leak information, but it
might be slightly unnatural, too brief, or could be phrased more helpfully.

• C. Incorrect: The response is factually wrong, fails to answer the question, leaks ground-
truth information (especially for UNA questions), or is otherwise inappropriate.

A response is considered a failure only if it is classified as ‘C’. For reporting purposes, we consider
both ‘A’ and ‘B’ as correct. To ensure the reliability of our results, we adopt a strict consistency-based
evaluation: a response is marked as correct only if both LLM judges independently classify it as
either ‘A’ or ‘B’. We report the final Accuracy, which is the proportion of responses deemed correct
under this consistency rule.

O.3 RESULTS AND ANALYSIS

Our analysis reveals significant reliability concerns with conventional user simulator designs, which
are substantially mitigated by our function-driven approach.

As shown in Figure 6, the contrast is most striking when handling UNA (Unanswerable) questions.
Baseline user simulators consistently fail to implement necessary safeguards, often leaking ground-
truth details or providing improper guidance. This leads to a high failure rate of over 34% for both
model backbones. In contrast, our proposed function-driven approach demonstrates substantially
improved reliability. By first classifying the intent of the request and invoking the UNA() function, it
correctly rejects inappropriate questions, with only 5.9% of its responses falling into problematic
categories. This represents a significant improvement in user simulator robustness.

Table 11 presents a more detailed breakdown of accuracy across all question categories. Our
function-driven simulator consistently outperforms the baseline across all categories and for both
backbone models. The performance gap is most pronounced in the UNA category, confirming the
observations from Figure 6. However, our method also shows notable improvements in the AMB
and LOC categories, suggesting that the structured, two-stage process of identifying an action and
then generating a response leads to more precise and reliable answers overall. This design enforces
constraints that prevent the LLM from deviating from the core task, ensuring the simulator’s behavior
remains predictable, controllable, and aligned with the goal of providing fair and realistic user
feedback.

Table 11: Accuracy (%) of user simulators on the UserSim-Guard benchmark. Our function-
driven approach consistently outperforms the baseline across all categories. Accuracy is reported
based on the consistency of two independent LLM judges.

Backbone Simulator AMB Acc. LOC Acc. UNA Acc.

Gemini-2.0-Flash
Baseline 93.57 95.52 66.93
Ours (Function-Driven) 94.76 96.75 93.80

GPT-4o
Baseline 90.72 96.30 63.45
Ours (Function-Driven) 98.81 98.88 94.08

P DETAILED RELATED WORK

Text-to-SQL. Text-to-SQL has emerged as an attractive interface to relational databases because
it frees users from learning intricate schema details and SQL syntax. The advent of large language
models (LLMs) (OpenAI, 2025; Team et al., 2023; Team, 2024; Guo et al., 2025) with strong
reasoning and cross-domain generalization has accelerated this progress. Few-shot systems such as

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Normal Sub-task:

User: For facilities with high Suicide Risk Prevalence over

20%, calculate the Resource-Demand Differential. List the

facility ID, PFIS, FRAI, and RDD scores, ordered by RDD

from highest to lowest, showing the top 100 facilities. This

helps identify resource gaps in critical environments.

Interaction 1:

System: I need to clarify what the Resource-Demand

Differential (RDD) is. Based on the external knowledge, I

don't see a direct definition for RDD. Could you explain how

RDD should be calculated in this context?

User: The Resource-Demand Differential (RDD) is

calculated as the difference between the Patient Functional

Impairment Score (PFIS) and the Facility Resource Adequacy

Index (FRAI)…

Interaction 2:

System: What does "high-risk cases with prevalence over

20%" refer to specifically? Is this referring to the Suicide Risk

Prevalence (SRP) mentioned in the external knowledge?

User: Yes, 'high-risk cases with prevalence over 20%' refers

to the Suicide Risk Prevalence (SRP) as mentioned in the

external knowledge.

Interaction3:

System: How many top facilities should I show in the results?

And how should I order them - by the highest RDD values?

User: The results should show the top 100 facilities, ordered

by the highest RDD values in descending order.

Interaction4:

System: For calculating the Patient Functional Impairment

Score (PFIS) and Facility Resource Adequacy Index (FRAI),

should I use the exact formulas from the external knowledge...

User: The formulas provided for calculating PFIS and FRAI

are correct and should be used as described for this task.

SQL:
SELECT

sr.fac_key AS facility_id, fi.pfis,

ra.frai, (fi.pfis - ra.frai) AS rdd

FROM facility_suicide_risk sr

JOIN facility_functional_impairment fi ON

sr.fac_key = fi.fac_key

JOIN facility_resource_adequacy ra ON

sr.fac_key = ra.fac_key

WHERE fi.pfis IS NOT NULL AND ra.frai IS

NOT NULL

ORDER BY rdd DESC

LIMIT 100;

Figure 18: Case study of effective communication under c-Interact.

DIN-SQL (Pourreza & Rafiei, 2023) and DAIL-SQL (Gao et al., 2024a) exploit in-context learning to
decouple the task into schema-linking and SQL-generation stages, while methods like CodeS (Li et al.,
2024) and DTS-SQL (Pourreza & Rafiei, 2024) improve smaller models through carefully curated,
high-quality training subsets. Concurrently, agent-based frameworks that interleave thought, action,
and observation, which are exemplified by MAC-SQL (Wang et al., 2025), demonstrate that iterative
interaction with the environment can further raise SQL accuracy. Despite these advances, virtually
all existing systems are evaluated only in single-turn settings; their effectiveness in conversational,
multi-turn text-to-SQL scenarios remains an open question.

Multi-turn Text-to-SQL. Multi-turn Text-to-SQL addresses the reality that user queries are often
ambiguous or underspecified; without clarification the system may return incorrect or empty results.
Benchmarks such as COSQL and LEARN-TO-CLARIFY extend the Spider (Yu et al., 2018) dataset
with dialogue turns to probe this challenge (Yu et al., 2019a; Chen et al., 2025b). However, these
resources presuppose a static, noise-free dialogue history shared by all models, ignoring that different
systems might ask different follow-up questions (Yao et al., 2025; Barres et al., 2025). More recent
evaluations of autonomous agents, for example, MINT, introduce dynamic interaction histories (Wang
et al., 2024), yet they have not been adapted to the text-to-SQL setting. Constructing a realistic
user simulator for databases is non-trivial because it must respect complex schema constraints while
keeping the answer space fair and controllable (Zhou et al., 2025; Barres et al., 2025). In this work,
we fill this gap by proposing an interactive benchmark that is implemented with an optimized user
simulator, new databases, and knowledge, and we analyze the behaviour of state-of-the-art reasoning
models rigorously to make contributions for realistic and uncertain text-to-SQL systems.

Q PATHWAYS TO EFFECTIVE COMMUNICATION

Motivated by the Memory Grafting results, which highlight the importance of communication skills
for interactive text-to-SQL systems, we proceed to a deeper analysis. In this section, we investigate
the specific communication patterns and dialogue strategies that lead to improved task performance.
Through an in-depth analysis of high-quality interaction data, we identify a recurring and highly
effective pattern we term the "funnel effect." This is characterized by a series of progressively

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

deepening inquiries that begin with a user’s relatively broad and ambiguous initial intent, then
gradually narrow the scope and clarify key details, and ultimately converge into a clear and executable
analysis plan. We deconstruct this pattern into three primary phases.

Initial Interaction Phase: Concept Clarification and Scoping. In the initial stage of high-quality
dialogues, the Large Language Model (LLM) tends to pose questions aimed at clarifying core
concepts. This allows it to quickly identify ambiguous areas within the user’s query and proactively
initiate dialogue for disambiguation. Such questions are highly targeted and efficient, for example:

“How would you like to define the "interference score" for each telescope?”, or “Could you clarify
what you mean by “machines that are always breaking down”?”

Concurrently, the model does not passively await precise descriptions from the user. Instead, it
proactively offers specific options to guide the user toward a more explicit definition, thereby
preventing further vague statements from the user, for example: “Should it be based on specific
columns like atmospheric interference, RFI status, or a combination of factors?”

Furthermore, the model can effectively integrate external knowledge to quantify the user’s subjective
descriptions into actionable data criteria, for example: “Could you clarify what criteria should be
used to identify "good quality" scans? Should I use the Premium Quality Scan definition from the
external knowledge (SQS > 7.5, comprehensive coverage with Coverage ≥ 95% and Overlap ≥
30%)?”

Mid-term Interaction Phase: Inquiring about Computational Logic and Implementation Details.
As the dialogue progresses, the model’s focus shifts to implementation details, concentrating on
computational logic and operational steps. Given that user queries often involve complex calculations
or business logic, such clarification is crucial for ensuring analytical accuracy. This includes precise
confirmation of formulas, weight allocation, and the mapping between query variables and specific
data fields, for example: “For the repair cost, should I use the maintenance cost (MaintCost) or the
replacement cost (ReplCost)...?”

The model also demonstrates a forward-looking capability for error detection, anticipating and
mitigating potential data processing errors through questioning, for example: “I notice that ‘recvDay’
and ‘beginDay’ have different formats. Could you confirm how these dates are formatted so I can
correctly calculate the time difference between them?“

A significant finding is the model’s ability to uncover analytical dimensions that the user may not
have considered, effectively asking questions the user didn’t know to ask. This expands the depth and
breadth of the analysis, for example: “Do you want to see the count of collectors for each idol genre,
or do you want to see the distribution of idol genres that collectors interact with (which could include
multiple genres per collector if they interact with different idols)?”

To ensure the accuracy of complex calculations, the model breaks them down into smaller, more
easily verifiable steps and confirms each one with the user, for example: “To calculate Achievement
Density (AD), I need membership duration in days. . . ”

Final Interaction Phase: Formatting and Final Confirmation. In the final stage, the dialogue’s
focus shifts to the formatting and presentation of the results. This typically involves a final confir-
mation of the output fields, sorting rules, and numerical precision (such as the number of decimal
places) to ensure the final deliverable fully aligns with the user’s expectations, for example: ”For the
output format, would you like the results to be ordered in any specific way...? Also, should I round the
average BFR and standard deviation values to a specific number of decimal places?”

The example illustrated in Figure 18 exemplifies this high-quality interaction flow. The process
begins with the clarification of the ambiguous concepts "RDD" and "high-risk cases with prevalence
over 20%". It then delves into inquiries about calculation details and determines the presentation and
sorting method for the results. Finally, by re-confirming the calculation formula, it ensures the rigor
and accuracy of the entire analysis process.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Q.1 HUMAN EVALUATION OF DATASET QUALITY

To rigorously assess the quality and reliability of our BIRD-INTERACT benchmark, we conducted a
thorough human evaluation. We randomly selected 300 data points from the dataset and invited 10
experts with significant experience in SQL and database systems to serve as reviewers. Each data
point, consisting of a user question, a ground-truth SQL query, and its ambiguity annotations, was
evaluated against a set of core quality metrics. The evaluation was performed using a binary scoring
system (1 for Accept, 0 for Reject) for each metric (Li et al., 2025c).

Evaluation Metrics. The metrics were designed to cover the three primary components of our
dataset: the natural language question, the SQL solution, and the ambiguity annotations.

• User Query Quality: This metric assesses if the user’s natural language query is clear,
fluent, and reasonable. The question must be logically sound and fundamentally answerable
given the provided database schema. A question that is vague, unnatural, or impossible to
answer based on the schema would be rejected.

• SQL Correctness and Quality: This evaluates whether the ground-truth SQL query
accurately and efficiently fulfills the user’s request. The query must be both semantically
correct (i.e., it logically answers the question) and syntactically valid. We also encouraged
reviewers to reject queries that were unnecessarily complex or highly inefficient, ensuring a
high standard for the solutions.

• Ambiguity Annotation Quality: This metric checks if the pre-annotated ambiguities are
valid and relevant. A high-quality annotation must represent a genuine point of confusion
that a text-to-SQL system might plausibly encounter (e.g., ambiguity in column selection,
grouping logic, or filter conditions). The associated SQL fragment must also accurately
correspond to the ambiguity it aims to clarify.

• Ethics and Safety: This assesses whether the content of the user question and the data
context are free from any harmful, biased, or unethical content, ensuring the dataset is safe
for use.

Evaluation Results. The human evaluation process confirmed the high quality of our dataset.
Across all evaluated samples, we achieved an overall acceptance rate of 97.3%, indicating strong
agreement from the experts on the dataset’s validity. In particular, the SQL Correctness and Quality
metric received an acceptance rate of 98.7%, underscoring the technical reliability of our benchmark.
The Ambiguity Annotation Quality was also highly rated at 95.3%, confirming that our annotations
capture meaningful and realistic interaction challenges. These strong results validate that BIRD-
INTERACT is a robust and high-quality resource for developing and evaluating interactive text-to-SQL
systems.

R PERFORMANCE OF ENTRY-LEVEL MODELS

Table 12 details the performance of entry-level open-weight models. Qwen3-Coder-30B demon-
strates superior performance, notably outperforming the significantly larger Llama-3.1-70B across
both c-Interact and a-Interact. This result suggests that for interactive text-to-SQL tasks, domain-
specific coding optimization yields better returns than raw parameter scaling. However, when
compared to the state-of-the-art models in Table 2, a distinct capability gap is evident, not just in
absolute success rates, but in self-correction potential. While top-tier models like Gemini-2.5-Pro
and Claude-Sonnet-4 achieve substantial performance gains through the debugging phase, entry-level
models show minimal improvement (typically < 2%). This indicates that while smaller models can
follow basic instructions, they currently lack the sufficient reasoning depth to effectively diagnose
and resolve their own errors during interaction.

S ANALYSIS OF PERFORMANCE BY DM OPERATION

Figure 19 illustrates the fine-grained performance across different DM operations. We observe a
significant disparity in model capability depending on the operation type: destructive and modification

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 12: Success Rate and Final Normalized Reward of entry-level models on BIRD-INTERACT-
FULL. The success rate is cumulative; Reward* is the normalized reward (%). The values reported in
c-Interact are after debugging phase, and (+n) means the performance gained via debugging.

Model Priority Question (Success Rate %) ↑ Follow Ups (Success Rate %) ↑ Reward* ↑
BI DM Overall BI DM Overall

c-Interact Text-to-SQL

Llama-3.1-8B 2.92 (+0.73) 6.35 (+0.00) 4.00 (+0.50) 1.22 (+0.97) 1.59 (+0.53) 1.33 (+0.83) 3.02
Qwen3-8B 6.33 (+0.49) 13.76 (+1.06) 8.67 (+0.67) 2.92 (+0.00) 9.52 (+2.12) 5.00 (+0.67) 7.37
Qwen3-32B 6.81 (+1.95) 13.76 (+1.59) 9.00 (+1.83) 5.60 (+0.24) 6.88 (+1.06) 6.00 (+0.50) 7.68
Qwen3-14B 9.49 (+1.46) 13.76 (+0.53) 10.83 (+1.17) 6.08 (+0.00) 7.94 (+0.53) 6.67 (+0.17) 9.33
Llama-3.1-70B 12.41 (+2.43) 14.81 (+2.12) 13.17 (+2.33) 7.30 (+1.22) 7.41 (+1.59) 7.33 (+1.33) 10.82
Qwen3-Coder-30B 14.60 (+1.70) 19.05 (+1.06) 16.00 (+1.50) 7.30 (+0.00) 9.52 (+0.00) 8.00 (+0.00) 13.30

a-Interact Text-to-SQL

Llama-3.1-8B 0.25 8.70 2.94 0.25 1.63 0.69 2.27
Qwen3-32B 4.88 24.74 11.17 1.71 6.32 3.17 8.77
Llama-3.1-70B 6.10 34.74 15.17 2.68 7.37 4.17 11.87
Qwen3-8B 6.83 31.05 14.50 2.93 8.95 4.83 11.60
Qwen3-Coder-30B 8.78 38.42 18.17 4.39 8.95 5.83 14.47
Qwen3-14B 5.61 31.58 13.83 3.17 15.79 7.17 11.83

INSERT CREATE UPDATE DELETE ALTER TABLE

Claude-3.7-Sonnet (c-interact)

Claude-3.7-Sonnet (a-interact)

Claude-Sonnet-4 (c-interact)

Claude-Sonnet-4 (a-interact)

Deepseek-Chat-V3.1 (c-interact)

Deepseek-Chat-V3.1 (a-interact)

GPT-5 (c-interact)

GPT-5 (a-interact)

Gemini-2.5-Pro (c-interact)

Gemini-2.5-Pro (a-interact)

O3-Mini (c-interact)

O3-Mini (a-interact)

Qwen-3-Coder-480B (c-interact)

Qwen-3-Coder-480B (a-interact)

18.5 25.6 50.0 66.7 33.3

25.9 34.4 47.7 77.8 46.7

25.9 24.8 56.8 66.7 33.3

22.2 42.4 72.7 88.9 60.0

25.9 25.6 50.0 77.8 33.3

29.6 24.0 38.6 66.7 46.7

11.1 17.6 40.9 44.4 20.0

29.6 45.6 75.0 100.0 66.7

29.6 24.8 59.1 77.8 26.7

25.9 38.4 40.9 66.7 60.0

29.6 24.8 56.8 77.8 26.7

7.4 26.4 50.0 66.7 60.0

22.2 24.0 50.0 55.6 33.3

18.5 20.8 25.0 44.4 20.0

Priority Question SR (%)

INSERT CREATE UPDATE DELETE ALTER TABLE

11.1 12.8 20.4 44.4 20.0

7.4 12.8 15.9 55.6 33.3

14.8 14.4 34.1 55.6 33.3

7.4 14.4 36.4 44.4 33.3

7.4 11.2 22.7 44.4 33.3

7.4 4.8 2.3 11.1 6.7

7.4 9.6 27.3 11.1 13.3

14.8 22.4 38.6 66.7 46.7

25.9 15.2 34.1 66.7 13.3

7.4 17.6 18.2 44.4 33.3

18.5 15.2 38.6 55.6 26.7

3.7 9.6 22.7 22.2 13.3

0.0 8.8 31.8 44.4 33.3

0.0 4.0 2.3 11.1 6.7

Follow Ups SR (%)

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

0

10

20

30

40

50

60

S
uc

ce
ss

 R
at

e
(%

)

Figure 19: Success Rate breakdown on CRUD of LLMs over c and a-Interact Modes.

tasks (e.g., DELETE, UPDATE) consistently yield higher success rates compared to generative tasks
(INSERT, CREATE). For instance, while GPT-5 achieves a perfect 100% SR on DELETE priority
questions in a-interact, its performance drops sharply for INSERT operations. This trend suggests
that models struggle more with the precise schema constraints and value formatting required for
data creation than with identifying and removing existing records. Furthermore, the performance
degradation from Priority Questions to Follow-ups is most severe in these generative categories,
indicating that maintaining complex schema context over interactions remains a critical bottleneck.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

}

"""You are a good data scientist with great PostgreSQL writing ability. You have a DB called "[[DB_name]]". You are given a Text-to-
SQL task.

Input Information:
You will be provided with:
- Task Description: The type of task you are trying to accomplish.
- DB Schema Informaion: The detailed DB schema with data examples.
- DB Column Meanings: The detailed DB column meanings explanation.
- External Knowledges: All related External Knowledges about this Text-to-SQL task.
- Text-to-SQL Question: The Text-to-SQL question of this Text-to-SQL task.

Inputs:
<|The Start of Task Description|>
You are a good data scientist who is tasked with generating PostgreSQL to solve the user query. However, the user’s query may
not be clear enough. Then you need to ask for clarification about these ambiguity in user query. You only have [[max_turn]] turns
to ask for clarification, each turn you can only ask one question with few sentences. After using up all turns or if you are clear
enough, you can provide the final PostgreSQL.

You have the following choice at each turn:
1. **Ask for Clarification***: You can only ask **ONE** question each time! Then you MUST enclose your question between
"<s>" and "</s>", for example "<s>[FILL-YOUR-QUESTION]</s>".
2. **Generate Final SQL**: Then you MUST enclose your final PostgreSQL between "<t>```postgresql" and "```</t>", for example
"<t>```postgresql [FILL-YOUR-SQL] ```</t>".

NOTE: If think you have asked enough questions or used up all turns, you MUST provide the final PostgreSQL about the Text-to-
SQL task!
<|The End of Task Description|>

<|The Start of DB Schema Information|>
[[DB_schema]]
<|The End of DB Schema Information|>

<|The Start of DB Column Meanings|>
```json
[[column_meanings]]
```
<|The End of DB Column Meanings|>

<|The Start of External Knowledge|>
```json
[[external_kg]]
```
<|The End of External Knowledge|>

<|The Start of Text-to-SQL Question|>
[[user_query]]
<|The End of Text-to-SQL Question|>

Turn 1 ([[max_turn]] turns left):
Format: "<s>[YOUR-ONLY-ONE-QUESTION]</s>" if you choose to ask for clarification; or "<t>```postgresql [FILL-YOUR-SQL]
```</t>" if you choose to generate final SQL.
- You: """

The prompt of system under c-Interact

Figure 20: System prompt under c-Interact.

T PROMPTS

T.1 SYSTEM PROMPTS

Figure 20 shows the system prompt used under the c-Interact (conversational) setting, and Fig-
ures 21–23 show the system prompts used under the a-Interact (agentic) setting.

T.2 USER SIMULATOR PROMPTS

Figure 24 shows the baseline user simulator, and Figure 25-26 show the our proposed two-stage
function driven user simulator, containing an encoder and a decoder.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

}

"""You are a helpful PostgreSQL agent that interacts with a user and a database to solve the user's question.
# Task Description
Your goal is to understand the user's ambiguous question involving the external knowledge retrieval and generate the correct SQL
query to solve it. You can:
1. Interact with the user to ask clarifying questions to understand their request better or submit the SQL query to the user. The 
user will test your SQL correctness and give you feedback. 
2. Interact with the {self.setting} environment (postgresql db, column meaning file, external knowledge, and so on) to explore the 
database and get db relevant information.
- Termination condition: The interaction will end when you submit the correct SQL query or the user patience runs out.
- Cost of your action: each your action will cost a certain amount of user patience. 
# You are a ReAct (Reasoning and then Acting) agent
This means you will first think about what to do next according to current observation, then take an action, and then get an 
observation from the environment or user. You can repeat this process, like "Observation" -> "Thought" -> "Action" -> 
"Observation" -> "Thought" -> "Action" -> "Observation" -> ...
## Interaction Format (Response Format)
Given previous interaction history, and current observation (from the your previous interaction (env or user) or the user's request 
at the beginning), you should respond using the following format:
```
<thought> the agent's thought about the current state </thought>
<interaction_object> interaction_object </interaction_object>
<action> action </action>
```
## The interaction object and action space with cost
- interaction_object: `Environment`

- action: `execute(sql)` to interact with PostgreSQL database. 
- inputs: 

- sql: string, PSQL command to execute. Could contain multiple commands separated by semicolon. MUST BE IN 
ONE STRING, ENCLOSED BY TWO QUOTES OR \"\"\"YOUR SQL HERE\"\"\".

- output: fetched result from PostgreSQL database.
- cost: 1 cost

- action: `get_schema()` to get the schema of the database.
- output: string of database schema in DDL format with demo data.
- cost: 1 cost

- action: `get_all_column_meanings()` to get the meaning of all columns in the database.
- output: string of all column meanings.
- cost: 1 cost

- action: `get_column_meaning(table_name, column_name)` to get the meaning of a column.
- inputs: 

- table_name: string, name of the table to get column meaning.
- column_name: string, name of the column to get meaning.

- output: string of column meaning.
- cost: 0.5 cost

- action: `get_all_external_knowledge_names()` to get all external knowledge names.
- output: list of string of external knowledge names.
- cost: 0.5 cost

- action: `get_knowledge_definition(knowledge_name)` to get external knowledge by name.
- inputs: 

- knowledge_name: string, name of the external knowledge to get definition.
- output: string of external knowledge definition.
- cost: 0.5 cost

- action: `get_all_knoweldge_definitions()` to get all external knowledge names with definitions.
- output: string of all external knowledge names with definitions.
- cost: 1 cost

- interaction_object: `User`
- action: `ask(question)` to ask user for clarification. If you find the user's question is ambiguous, you should ask user for 
clarification to figure out the user's real intent. TO REDUCE COST, YOU ARE ONLY ALLOWED TO ASK ONE QUESTION AT A TIME.

- inputs: 
- question: string, question to ask user for clarification.

- output: string of user's reply, to clarify the ambiguties in his/her question.
- cost: 2 cost

- action: `submit(sql)` to submit the SQL to the user. The user will test the SQL and give feedback.
- inputs: 

- sql: string, SQL to submit to the user. Could contain multiple commands separated by semicolon. MUST BE IN ONE 
STRING, ENCLOSED BY TWO QUOTES OR \"\"\"YOUR SQL HERE\"\"\".

- output: feedback from user about the submitted SQL.
- cost: 3 cost

After each action, you'll see a [SYSTEM NOTE] showing how much patience remains (e.g. "[SYSTEM NOTE: Remaining user 
patience: 7/10]"). Pay close attention to this note as it indicates how many more interactions you can make. If patience runs out, 
the task ends and you'll need to submit your final answer.

The prompt of system under a-Interact (1/3)

Figure 21: System prompt under a-Interact (part 1).

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

}

# Important Strategy Tips
- First explore the database schema, column meaning and external knowledge to understand available tables, columns and user 
query's involved external knowledge.
- FIGURE OUT THE USER'S REAL INTENT BY ASKING CLARIFYING QUESTIONS! IF YOU CANNOT FIGURE OUT THE USER'S REAL 
INTENT, YOU WILL PRODUCE WRONG SQL AND CAUSE MILLION DOLLARS LOSS TO OUR COMPANY, THEN YOU WILL BE FIRED!!! 
(TO REDUCE COST OF USER PATIENCE, YOU ARE ONLY ALLOWED TO ASK ONE QUESTION AT A TIME.)
- FIGURE OUT THE USER'S REAL INTENT BY ASKING CLARIFYING QUESTIONS! IF YOU CANNOT FIGURE OUT THE USER'S REAL 
INTENT, YOU WILL PRODUCE WRONG SQL AND CAUSE MILLION DOLLARS LOSS TO OUR COMPANY, THEN YOU WILL BE FIRED!!! 
(TO REDUCE COST OF USER PATIENCE, YOU ARE ONLY ALLOWED TO ASK ONE QUESTION AT A TIME.)
- Be efficient with your actions to conserve user patience
- Make sure your submitted SQL is valid and addresses all aspects of the question
- Keep track of your remaining user patience and prioritize your actions accordingly
- Be careful with the action of frequently get all column meanings and external knowledge definitions. It will return a long context 
to you.
### A TOY Example Interaction ###

User's Question: Find several calibrated alien signals detected by the observatory during the full moon phase. Show their 
information.
<thought>
This query seems ambiguous. I need to understand:
1. Which database tables contain information about alien signals and observatories
2. How "full moon phase" is represented in the data
3. What "calibrated alien signals" means and how to measure their strength
4. What does "several" mean, 3 or more? and what information should I show?
Let me first check the database schema.
</thought>
<interaction_object>
Environment
</interaction_object>
<action>
get_schema()
</action>
Observation: Database schema showing tables: Observatories(ObservID, ObservStation, ObservDate, LunarStage, Signal), 
Signals(SignalID, SignalType, SignalStrength)...

<thought>
Now I can see there's an Observatories table with LunarStage field and a Signal field. There's also a Signals table with more details 
about signal strength. I need to understand what values the LunarStage field contains and how to identify a "full moon" phase.
</thought>
<interaction_object>
Environment
</interaction_object>
<action>
get_column_meaning('Observatories', 'LunarStage')
</action>
Observation: Full name: 'Lunar Stage'. Explanation: Current lunar phase during observation. Values include: 'New', 'Waxing 
Crescent', 'First Quarter', 'Waxing Gibbous', 'Full', 'Waning Gibbous', 'Last Quarter', 'Waning Crescent'.

<thought>
Great, I now know "Full" represents the full moon phase in the LunarStage column. Now I need to understand what "calibrated 
alien signals" means and how their strength is measured. Let me check if there's any external knowledge that could help.
</thought>
<interaction_object>
Environment
</interaction_object>
<action>
get_all_external_knowledge_names()
</action>
Observation: ["Alien Signal Classification", "Lunar Phase Effects", "Calibrated Signal"]

<thought>
There's knowledge about "Calibrated Signal" that seems directly relevant to the user's question about "calibrated alien signals". 
Let me check that information.
</thought>
<interaction_object>
Environment
</interaction_object>
<action>
get_knowledge_definition('Calibrated Signal')
</action>
Observation: {
"id": 3,
"knowledge": "Calibrated Signal",
"description": "Definition of calibrated signal",
"definition": "Those signal with strength > 10."
}

The prompt of system under a-Interact (2/3)

Figure 22: System prompt under a-Interact (part 2).

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

}

<thought>
Now I understand that "calibrated alien signals" refers to signals with strength > 10. But I am not sure how many results does the 
user want. I need to ask the user for clarification.
</thought>
<interaction_object>
User
</interaction_object>
<action>
ask('How many results do you want? What do you mean about "several"?')
</action>
Observation: User's Response: I want three results sorted by signal strength.

<thought>
What output field should I show? I need to ask the user for clarification.
</thought>
<interaction_object>
User
</interaction_object>
<action>
ask('Do you want to get the signal name and signal strength?')
</action>
Observation: User's Response: I just want the signal id.

<thought>
Now I have all the information needed to write the SQL query. I need to:
1. Join the Observatories and Signals tables
2. Filter for observations during the Full moon phase
3. Filter for signals with strength > 10
4. Sort by signal strength
5. The user want the top 3 results with just the signal id
</thought>
<interaction_object>
Environment
</interaction_object>
<action>
execute("SELECT s.SignalID FROM Observatories o JOIN Signals\n s ON o.Signal = s.SignalID WHERE o.LunarStage = \'Full\' AND 
s.SignalStrength > 10 ORDER BY s.SignalStrength DESC LIMIT 3")
</action>
Observation: [(12,), (11,), (10,)]

<thought>
I found the signal ids of the top 3 calibrated alien signals detected during full moon phases. Let me submit this SQL to the user.
</thought>
<interaction_object>
User
</interaction_object>
<action>
submit('SELECT s.SignalID FROM Observatories o JOIN Signals s ON o.Signal = s.SignalID WHERE o.LunarStage = \'Full\' AND 
s.SignalStrength > 10 ORDER BY s.SignalStrength DESC LIMIT 3')
</action>
Observation: Your SQL is correct! Now, here's a follow-up question from user: Can you also count how many distinct calibrated 
signals were detected during full moon phases?
...

### END OF TOY EXAMPLE INTERACTION ###
# -----TASK START-----
Now, let's start with the user's question that may exist ambiguities and require external knowledge understanding to solve. (EACH 
TIME GIVE ONE ROUND RESPONSE, END YOUR RESPONSE AT ... '</action>' OTHERWISE YOU WILL BE FIRED!!!) 
User's Question: {query}:
[[user_query]]
[SYSTEM NOTE: You have a total action budget of [[total_budget]] units. Each action consumes budget. If the budget runs out, you 
must submit.]
[[interaction_history]]
"""

The prompt of system under a-Interact (3/3)

Figure 23: System prompt under a-Interact (part 3).

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

}

You are a good data scientist with great SQL writing ability. You have a DB called "[[DB_name]]". You are given the DB schema 
creation information below:

Here is the DB schema information about this Text-to-SQL task:
--- DB Schema Info: ---
[[DB_schema]]
---

--- User Question: ---
[[user_query]]

--- Ambiguity points: ---
```json
[[ambiguities_json]]
```

--- Correct SQL: ---
```sql
[[correct_sql]]
```

--- Task Instructions: ---
You are the user from a company who asked the question above. And an AI assistant is not very clear about your question. So it 
asks for clarification below. You have to answer those qustions mentioned in the "Ambiguity points:" section above. If the 
question is not mentioned above, you MUST tell AI that you can not answer. You can refer to the correct SQL above to help your 
answer. If you answer any unanswerable questions, your task will be failed and you will be fired by your company!

NOTE: 
1. Only your "Your Answer" part is visible to the AI, not the front part (AI Ask for Clarification, Your query mentions, etc.)
2. For each AI's question, you should only focus on it rather than leaking information about other clarifications.

--- Interaction Process Starts: ---

Turn 1: You should enclose your answer between "<s>" and "</s>"
AI Asks for Clarification: [[asked_question]]
Your answer to AI: <s>

User Simulator Base prompt

Figure 24: The prompt of baseline user simulator.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

}

"""You are role-playing as a human USER interacting with an AI collaborator to complete a Text-to-SQL task. The AI collaborator 
may ask one question about this task. Your goal is to generate one realistic, natural response that a user might give in this 
scenario.

## Input Information:
You will be provided with:
- Task Description: The type of task you are trying to accomplish.
- Labeled Ambiguity Points: All labeled ambiguity points about the user’s question for the Text-to-SQL task.
- Ground-truth SQL Segments: All ground-truth SQL segments.
- Question from AI Collaborator: The question from AI collaborator to ask for clarification on the ambiguity in the Text-to-SQL task.

Inputs:
<|The Start of Task Description (Not visible to the AI)|>
The question from AI collaborator maybe related to existing Labeled Ambiguity Points or related to unlabeled ambiguity or even 
irrelevant. So, you should choose one action at this turn.

Action Choices:
1. **labeled(term: str)**: When the question is about existing labeled Ambiguity Points, use this action and fill in the relevant 
term of that ambiguity. Format: **labeled("Amb")**.
2. **unlabeled(segment: str)**: When the question is NOT about existing labeled Ambiguity Points BUT is still a valuable and 
important ambiguity that needs to be addressed, use this action and fill in the relevant SQL segment. Format: 
**unlabeled("ALTER")**.
3. **unanswerable()**: When you think this question is neither related to labeled Ambiguity Points nor necessary to address, use 
this action. Format: **unanswerable()**.
<|The End of Task Description|>

<|The Start of All Labeled Ambiguity Points (Not visible to the AI)|> 
```json
[[amb_json]]
``` 
<|The End of All Labeled Ambiguity Points|>

<|The Start of Ground-truth SQL Segments (Not visible to the AI)|> 
[[SQL_Glot]]
<|The End of Ground-truth SQL Segments|>

<|The Start of Question from AI Collaborator|> 
[[clarification_Q]]
<|The End of Question from AI Collaborator|>

## Guidelines:
- You MUST choose only **one action** listed above. 
- You should NOT tell any thoughts about solution nor any ground-truth SQL information. 
- If you can do it well, you will get 10 thousand USD bonus!

## Output Format:
You should enclose your step-by-step thought between "<think>" and "</think>", and action chosen between "<s>" and "</s>". 
Format example:
```
- Thought:
<think>[Step-by-Step Thought]</think>

- Action:
<s>[Your Action]</s>
```

## Your Response:
- Thought:
<think>"""

LLM as Parser prompt

Figure 25: Our proposed two-stage function-driven User Simulator: the prompt of User Simulator
stage 1, LLM as parser.

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

}

"""You are role-playing as a human USER interacting with an AI collaborator to complete a Text-to-SQL task. The AI collaborator 
may ask one question about this task. Your goal is to generate one realistic, natural response that a user might give in this 
scenario.

## Input Information:
You will be provided with:
- Task Description: The type of task you are trying to accomplish.
- DB Schema Informaion: The detailed DB schema with data examples.
- Labeled Ambiguity Points: All labeled ambiguity points about the user’s question for the Text-to-SQL task.
- Original Text-to-SQL Question: The original Text-to-SQL question of this Text-to-SQL task. 
- Ground-truth SQL: The whole ground-truth SQL of this Text-to-SQL task.
- Ground-truth SQL Segments: All ground-truth SQL segments of this Text-to-SQL task.
- Question from AI Collaborator: The question from AI collaborator to ask for clarification on the ambiguity in the Text-to-SQL task.
- Action Used: The selected action from given action space, where you should generate response based on this action!

Inputs:
<|The Start of Task Description (Not visible to the AI)|>
The question from AI collaborator maybe related to existing Labeled Ambiguity Points or related to unlabeled ambiguity or even 
irrelevant. So, one action was chosen at previous turn.

Action Space:
1. **labeled(term: str)**: When the question is about existing labeled Ambiguity Points, use this action and fill in the relevant 
term of that ambiguity. Format: **labeled("Amb")**.
2. **unlabeled(segment: str)**: When the question is NOT about existing labeled Ambiguity Points BUT is still a valuable and 
important ambiguity that needs to be addressed, use this action and fill in the relevant SQL segment. Format: 
**unlabeled("ALTER")**.
3. **unanswerable()**: When you think this question is neither related to labeled Ambiguity Points nor necessary to address, use 
this action. Format: **unanswerable()**.

Your Task: You should generate response to answer the AI Collaborator's question based on the action used and original clear 
text-to-SQL question below. You can NOT directly give the original clear text-to-SQL question but can help you to answer question 
when you not sure. 
<|The End of Task Description|>

<|The Start of DB Schema Information|> 
[[DB_schema]]
<|The End of DB Schema Information|> 

<|The Start of All Labeled Ambiguity Points (Not visible to the AI)|> 
```json
[[amb_json]]
``` 
<|The End of All Labeled Ambiguity Points|>

<|The Start of Original Text-to-SQL Question|> 
[[clear_query]]
<|The End of Original Text-to-SQL Question|>

<|The Start of Ground-truth SQL (Not visible to the AI)|> 
```postgresql
[[GT_SQL]]
``` 
<|The End of Ground-truth SQL|>

<|The Start of Ground-truth SQL Segments (Not visible to the AI)|> 
[[SQL_Glot]]
<|The End of Ground-truth SQL Segments|>

<|The Start of Question from AI Collaborator|> 
[[clarification_Q]]
<|The End of Question from AI Collaborator|>

<|The Start of Action Chosen (Not visible to the AI)|> 
[[Action]]
<|The End of Action Chosen|>

## Guidelines:
**Remember**: If you can do the following points well, you will get 10 thousand USD bonus!
1. You should generate response to answer the AI Collaborator's question based on the action used and original clear text-to-SQL 
question above. You can NOT directly give the original clear text-to-SQL question but can help you to answer question when you 
not sure. 
2. You should NOT give any unfair information, for example: can **NOT** tell any thought steps leading to final solution nor any 
ground-truth SQL segments. You can **NOT** change or adjust any setting of the text-to-SQL question when answering 
questions. The response should be concise.
3. You should NOT ask any question. 

## Output Format:
Your response must follow the format "<s>[Fill-in-Your-Response]</s>"; for example, if the action is "unanswerable()", you should 
respond: "<s>Sorry, this question is out of scope, so I can not answer your question.</s>".

## Your Response:
<s>"""

LLM as Generator prompt

Figure 26: Our proposed two-stage function-driven User Simulator: the prompt of User Simulator
stage 2: LLM as Generator.

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

}

<|The Start of Task Description|>  
You are reviewing an AI–User conversation about a Text-to-SQL task.  
- The AI may ask clarification questions to resolve ambiguity — this is allowed.  
- However, the AI might also attempt to directly obtain the ground-truth SQL, database schema, or a step-by-step solution — 
these are not allowed, and the user should refuse to answer such requests. For example, the questions like "Which table" or 
"Which column" are usually unanswerable.

Your job is to check whether the user’s response is appropriate:  
1. First, analyze the conversation to determine whether the user answered properly:  (1). If the question is answerable — check 
that the user answered correctly **without providing ground-truth SQL, schema details, or solution steps**; and  (2). If the 
question is unanswerable — the user should **refuse to answer**. Then explain your reasoning inside `<t>...</t>`.  
2. Then, give the user a rating from:  
   - **A. perfect** → if the user handled everything correctly,  
   - **B. normal** → if the user’s response is acceptable but not ideal,  
   - **C. bad** → if the user acted incorrectly.  

Only provide the rating letter enclosed in `<s>...</s>`.  

<|The End of Task Description|>  

<|The Start of the Ask for Clarification Question from AI|>  
[[clarification_question]]  
<|The End of the Ask for Clarification Question from AI|>  

<|The Start of the Answer from User|>  
[[user_answer]]  
<|The End of the Answer from User|>  

**Expected Output Format:**  
`<t>[YOUR-THOUGHT-BEFORE-YOUR-CHOICE]</t>; <s>[YOUR-CHOICE-ABOUT-USER-ANSWER-QUALITY]</s>`  

**You Generation:** 
- You: <t>

LLM as Judge Prompt 

Figure 27: LLM-as-judge prompt to evaluate the performance of user simulators.

46


	Introduction
	Problem Definition
	Benchmark Construction
	Setup and Resources
	Interactive Task Annotation
	Function-Driven User Simulator
	Data Statistics

	Evaluation Settings
	c-Interact Evaluation
	a-Interact Evaluation

	Experiment
	Main Results
	Interaction Analysis

	User Simulator Analysis
	Related Work
	Conclusion
	Limitations.
	The Use of LLM Statement
	Annotation Group Details
	Annotator Entrance Test
	Training Tutorials
	Qualification Test

	Benchmark Design Principles
	Comparison with Related Benchmarks
	Task Comparison
	Database Comparison

	Evaluation Metrics
	Success Rate (SR)
	Normalized Reward

	Test Scripts
	BI Queries
	DM Queries

	Ambiguity and Follow-up Annotation Details
	User Query Ambiguity Annotation
	Knowledge and Environmental Ambiguity Annotation
	Ambiguity Chain
	User Query Ambiguity Taxonomy
	Environmental Knowledge Ambiguity
	Follow-up Sub-Task Taxonomy

	Experiment Details
	Model alias
	Experiment Setup

	Action Space and Selection Patterns in a-Interact
	Action Space in a-Interact
	Action Selection Patterns and Their Impact (Full Set)

	Performance on Different Ambiguity Types
	Experiments on Bird-Interact-Lite
	Error Analysis
	User Simulator Design Details
	Evaluating the Function-Driven User Simulator
	UserSim-Guard: A Benchmark for Simulator Robustness
	Experimental Setup
	Results and Analysis

	Detailed Related Work
	Pathways to Effective Communication
	Human Evaluation of Dataset Quality

	Performance of Entry-Level Models
	Analysis of Performance by DM Operation
	Prompts
	System Prompts
	User Simulator Prompts


