

000 001 002 003 004 005 BIRD-INTERACT: RE-IMAGINING TEXT-TO-SQL EVAL- 006 UATION VIA LENS OF DYNAMIC INTERACTIONS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Large language models (LLMs) have demonstrated remarkable performance on single-turn text-to-SQL tasks, but real-world database applications predominantly require multi-turn interactions to handle ambiguous queries, execution errors, and evolving user requirements. Existing multi-turn benchmarks fall short of capturing this complexity, either by treating conversation histories as static context or by limiting evaluation to narrow, read-only (SELECT-ONLY) operations, thereby failing to reflect the challenges encountered in production-grade database assistant. In this work, we introduce BIRD-INTERACT, a benchmark that restores this missing realism through: (1) a *comprehensive interaction environment* that couples each database with a hierarchical knowledge base, metadata files, and a function-driven user simulator, enabling models to solicit clarifications, retrieve knowledge, and recover from execution errors without human supervision; (2) two *evaluation settings* reflecting real-world interaction settings which contain a pre-defined conversational protocol (*c*-Interact) and a more open-ended agentic setting (*a*-Interact) in which the model autonomously decides when to query the user simulator or explore the DB environment; (3) a *challenging task suite* that covers the full CRUD spectrum for both business-intelligence and operational use cases, guarded by executable test cases. Each task features ambiguous and follow-up sub-tasks, requiring LLMs to engage in dynamic interaction. The suite is organized into two sets: a full set (**BIRD-INTERACT-FULL**) of 600 tasks which unfold up to **11,796** dynamic interactions for a comprehensive overview of performance and a lite set (**BIRD-INTERACT-LITE**) of 300 tasks, with simplified databases for detailed behavioral analysis of interactions, and fast development of methods. Our empirical results highlight the difficulty of BIRD-INTERACT: the most recent flagship model GPT-5 completes only **8.67%** of tasks in the *c*-Interact setting and **17.00%** in the *a*-Interact setting on the full task suite. Further analysis via memory grafting and Interaction Test-time Scaling (ITS) validates the importance of effective interaction for achieving success in complex, dynamic text-to-SQL tasks.

1 INTRODUCTION

Data-driven decision-making has become indispensable across modern enterprises, prompting a surge of interest in Natural Language Interfaces to Databases (NLIDB) that empower non-technical users to extract insights from relational databases using natural language (Shi et al., 2024). Motivated by this vision, a wave of methods (Pourreza et al., 2025a;b; Pourreza & Rafiei, 2023; Liu et al., 2025; Qu et al., 2024; Li et al., 2025b; Maamari et al., 2024; Sheng & Xu, 2025; Li et al., 2025a; Talaei et al., 2024; Caferoğlu & Ulusoy, 2024; Cao et al., 2024; Lee et al., 2025) based on large language models (LLMs) has recently achieved impressive *text-to-SQL* performance on popular single-turn benchmarks such as Spider (Yu et al., 2018) and BIRD (Li et al., 2023).

However, real-world data interaction is rarely a single, perfectly-formed query (Li et al., 2025c; Dinan et al., 2019). It is an iterative, stateful dialogue characterized by ambiguity (Chen et al., 2025b) and evolving goals (Wu et al., 2025). The task in Figure 1 exemplifies this complexity. To succeed, the text-to-SQL system must first engage the user to resolve the ambiguity of the term *urgent care*. Only with this clarified context can it generate the correct SQL. If its initial code fails an execution test, LLM must debug and revise its SQL solution based on the error feedback. After the user confirms the SQL is correct, they may proceed with a follow-up question that depends on its

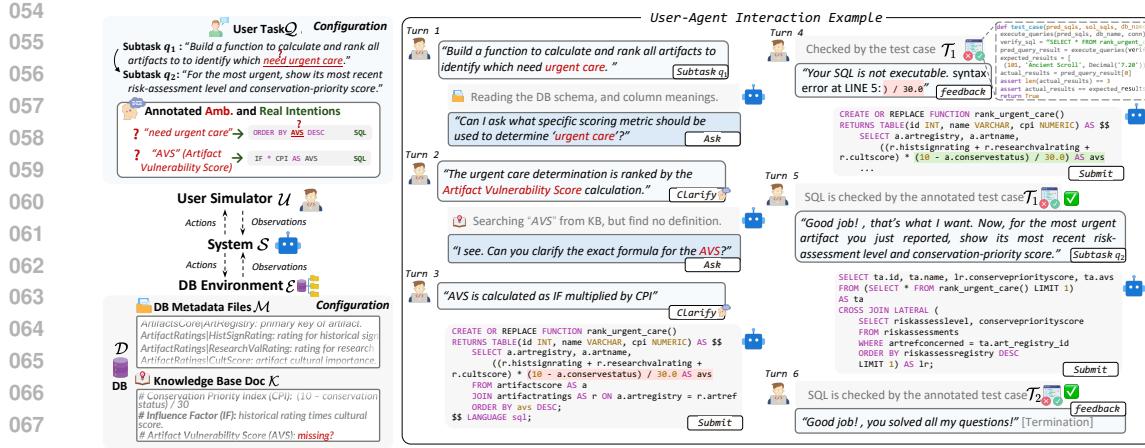


Figure 1: Task overview of BIRD-INTERACT showing the evaluated system interacting with DB Environment and User Simulator to complete the user task with a sequence of sub-tasks.

intermediate results. Therefore, evaluation on true practical utility LLMs with these multi-faceted aspects requires a benchmark containing a complete interactive problem-solving process, rather than isolated, single-turn SQL generation, but the entire interactive problem-solving loop.

Although existing interactive text-to-SQL datasets (Yu et al., 2019b;a; Chen et al., 2025b; Guo et al., 2021; Dahl et al., 1994) have been developed, they inadequately model this reality for two primary reasons. First, most multi-turn text-to-SQL benchmarks rely on **static conversation transcripts** (Yu et al., 2019a; Chen et al., 2025b; Yu et al., 2019b; Guo et al., 2021). They present models with a clean interaction history without recording the failed attempts, digressions, and clarifications that occur in practice. This design introduces a fundamental limitation: every LLM is evaluated against the same predetermined dialogue trajectory, regardless of how it would have naturally guided the interaction. This setup fails to reward intelligent interaction strategies and cannot effectively penalize conversational mess up. Second, existing benchmarks suffer from a **narrow task scope**, overwhelmingly focusing on read-only (SELECT-only) queries typical of business intelligence reporting. This ignores a vast and critical range of database operations, including data manipulation (INSERT, UPDATE, DELETE), schema modifications (ALTER TABLE), and transactional control, which are also common operations in the normal DBA cycle (Chen et al., 2024).

To address these critical limitations, we introduce **BIRD-INTERACT**, a new benchmark designed to evaluate LLMs in a dynamic text-to-SQL environment. Our work makes the following contributions: **(1) A High-Fidelity Interactive Environment:** We develop a comprehensive sandbox upon an open-source project LIVESQLBENCH (BIRD-Team, 2025) for each task, including a hierarchical knowledge base (HKB) with domain-specific facts, metadata files, an executable database environment, and most critically, an interactive user simulator as recent research (Wu et al., 2025; Yao et al., 2025; Wang et al., 2024). This simulator can respond to clarification questions, provide feedback on proposed actions, and guide the model through complex tasks, enabling end-to-end evaluation without human intervention. However, recognizing that traditional simulators, even those powered by advanced models like GPT-4, exhibit unfair behaviors such as ground-truth leakage, we propose a novel two-stage function-driven approach that maps model questions to constrained symbolic actions before generating controlled simulator responses. **(2) Two Evaluation Settings:** We propose two popular evaluation settings. *c*-Interact (protocol-guided) presents tasks with a clear conversational protocol, testing a model’s ability to follow a structured conversation with the user. In contrast, *a*-Interact (agentic) provides only a high-level goal, requiring the model to autonomously plan a strategy, decide when to query the database, consult documentation, or ask the user simulator for help. **(3) A Comprehensive and Challenging Task Suite:** BIRD-INTERACT expands the scope of evaluation to include the full spectrum of CRUD operations. Tasks are drawn from both analytical and operational domains and are accompanied by executable test cases that verify functional correctness. Each task features an ambiguous initial priority sub-task, dynamic clarification requirements, follow-up sub-tasks, and environmental uncertainties, which can only be resolved through dynamic interaction. The suite consists of two parts: a full set (**BIRD-INTERACT-FULL**) of 600 tasks, un-

108 folding up to **11,796** dynamic interactions for a comprehensive evaluation of performance, and a lite
 109 set (**BIRD-INTERACT-LITE**) of 300 tasks with cleaner databases, enabling finer-grained behavioral
 110 analysis and faster deployment.

111 Our experiments show that state-of-the-art models struggle with **BIRD-INTERACT**, with GPT-5
 112 achieving only **8.67%** success in c -Interact and **17%** in a -Interact. We identify distinct challenges
 113 across interaction modes: communication effectiveness often determines success in c -Interact, while
 114 a -Interact suffers from bias toward costly trial-and-error over strategic resource exploration. We
 115 also observe Interaction Test-time Scaling (ITS), where performance improves monotonically with
 116 additional interaction opportunities across multiple models. These findings support our hypothesis
 117 that developing strategic interaction capabilities is key to improving LLM performance on complex
 118 database reasoning.

119

120 2 PROBLEM DEFINITION

121 **Task Definition.** We formalize interactive text-to-SQL as a multi-turn collaboration between a
 122 text-to-SQL system \mathcal{S}_θ and user simulator \mathcal{U}_γ operating over database environment $\mathcal{E} = \{\mathcal{D}, \mathcal{M}, \mathcal{K}\}$,
 123 where \mathcal{D} is the executable database, \mathcal{M} contains schema metadata, and \mathcal{K} represents external
 124 knowledge (Lee et al., 2021; Dou et al., 2022; Li et al., 2023). Given a sequence of related sub-tasks
 125 $\mathcal{Q} = \{q_1, q_2, \dots, q_n\}$, the goal is for \mathcal{S} to generate SQL solutions $\{\sigma_1, \dots, \sigma_n\}$ through interactions.
 126 For each sub-task q_i , the interaction proceeds through interaction turn $t = 1, 2, \dots$ until completion:

$$127 \quad u_i^t = \mathcal{U}_\gamma(h_i^{t-1}, q_i, \mathcal{E}), \quad s_i^t = \mathcal{S}_\theta(h_i^{t-1}, u_i^t, \mathcal{E}), \quad h_i^t = h_i^{t-1} \oplus \langle u_i^t, s_i^t \rangle \quad (1)$$

128 where h_i^t represents the interaction history up to turn t and \oplus denotes text concatenation in prompt.
 129 The user simulator \mathcal{U}_γ manages the interaction by presenting sub-tasks, answering clarification
 130 questions for ambiguous queries, and providing feedback on submitted SQL. Critically, subsequent
 131 sub-tasks are released only after successful completion of first sub-tasks.

132

133 **Metrics.** Each sub-task q_i is annotated with ground-truth SQL σ_i^* and executable test cases \mathcal{T}_i
 134 that define correctness. A predicted solution σ_i is correct if it passes all associated test cases,
 135 ensuring functional equivalence with σ_i^* . In our implementation, each task consists of two related
 136 sub-tasks ($n = 2$): an initial **priority sub-task** q_1 containing ambiguities requiring resolution, and (2)
 137 a subsequent **follow-up sub-task** q_2 . We evaluate system performance using: (1) **Success Rate (SR)**:
 138 The proportion of sub-tasks completed successfully, with each sub-task scored 0 or 1. We report SR
 139 separately for sub-task 1 and sub-task 2 as an online evaluation during interaction. (2) **Normalized
 140 Reward**: Defined as normalized scoring according to priority weighting as designed in Appendix F
 141 to $[0, 1]$ for analyzing system behaviors after interaction (offline evaluation) (Yao et al., 2022).

142

143 3 BENCHMARK CONSTRUCTION

144

145 This section details the methodology for the construction of **BIRD-INTERACT** benchmark. We begin
 146 by outlining the overall benchmark setup (Section 3.1), and then elaborate on how we convert clear
 147 single-turn tasks into ones requiring interactions (Section 3.2).

148

149 3.1 SETUP AND RESOURCES

150 We build our benchmark on the text-to-SQL tasks and infrastructure of **LIVESQLBENCH** (BIRD-
 151 Team, 2025). We selected this foundation due to several key advantages. First, **LIVESQLBENCH**
 152 provides a comprehensive evaluation environment. It supports the full spectrum of SQL operations,
 153 including DML and DDL, which allows for dynamic database states that reflect real-world usage.
 154 Furthermore, its permissive license and ready-to-use artifacts, including an executable database
 155 sandbox and metadata files, facilitate extension and reproducibility. Third, it features a Hierarchical
 156 Knowledge Base (HKB) that organizes external knowledge as nodes in a directed acyclic graph
 157 (DAG) shown in Figure 1. This structure explicitly models dependencies between facts that require
 158 multi-hop reasoning to connect isolated information. Despite these strengths, **LIVESQLBENCH**
 159 is fundamentally a single-turn benchmark. This design fails to capture the interactive and often
 160

162 ambiguous nature of real-world data analysis scenarios. Our primary contribution is to convert this
 163 static benchmark into a dynamic, interactive setting.
 164

165 3.2 INTERACTIVE TASK ANNOTATION

166 To maintain the integrity and quality of our benchmark, we recruit 12 expert annotators through
 167 a rigorous multi-stage selection process detailed in Appendix C. We describe systematically the
 168 conversion from single-turn tasks of LIVESQLBENCH into multi-turn interactive scenarios through
 169 two key annotation strategies: ambiguity injection and follow-up sub-task generation:
 170

171 **Ambiguity Injection.** Ambiguities in daily life require interactions to seek clarification. To make
 172 annotation and evaluation controllable, we design methods to inject ambiguities into single-turn
 173 queries and the environment from LIVESQLBENCH, pairing each with a unique clarification.
 174

175 **(1) Superficial user query ambiguities:** we target surface-level ambiguity in the user request. These
 176 include *intent-level ambiguities*, where the user language is vague (e.g., "elderly people"),
 177 and *implementation-level ambiguities*, where the user's intent is
 178 clear but the implementation details (e.g., decimal precision) are
 179 under-specific. **(2) Knowledge ambiguities:** we inject incom-
 180 pleteness into the external knowledge. This category includes
 181 two subtypes: (i) *one-shot knowledge ambiguity*, where isolated
 182 knowledge entries are removed. (ii) *knowledge chain breaking*,
 183 where intermediate nodes in multi-hop knowledge chains are
 184 masked. For example, consider the chain "urgent care" →
 185 "AVS" → "IF/CPI" in Figure 2. By masking the interme-
 186 diate node, i.e., the fact "AVS" in HKB, we deliberately break the
 187 inferential chain, rendering knowledge ambiguous and requiring
 188 user clarification to proceed. **(3) Environmental ambiguities:**
 189 LIVESQLBENCH databases already contain natural noise, such
 190 as NULL in critical fields, which further introduces uncertainty in how these cases should be handled.
 191

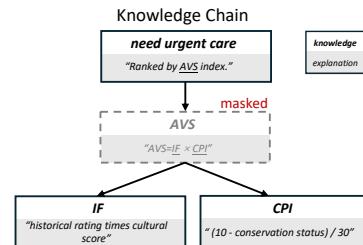
192 Each injected ambiguity is paired with a corresponding SQL snippet from the ground-truth query
 193 as a *clarification source*, which guides our user simulator in generating consistent and contextually
 194 appropriate clarifications. Quality control ensures that ambiguous queries are unsolvable without
 195 clarification yet fully reconstructable once clarifications are provided. Complete details are given in
 196 Appendix H.

197 **Follow-Up Sub-tasks Annotation.** User intents frequently evolve throughout an interactive session
 198 (Taylor, 2015), with users modifying, filtering conditions, or exploring related aspects of their queries.
 199 Therefore, we also extend each initial priority sub-task with one additional follow-up sub-task to
 200 resonate with this scenario.

201 These follow-up sub-tasks are designed carefully using a principled 5-category taxonomy de-
 202 tailed in Appendix H.6. A key contribution of our benchmark is the introduction of **state de-**
 203 **pendency** between sub-tasks, different with other datasets (Yu et al., 2019a;b; Lee et al., 2021;
 204 Zhong et al., 2017; Li et al., 2025d). System models must reason over modified database
 205 states or the newly created tables from preceding queries to write SQLs for Follow-up sub-tasks.
 206

207 3.3 FUNCTION-DRIVEN USER SIMULATOR

208 Evaluating interactive text-to-SQL systems requires user interactions,
 209 such as multi-turn requests and responses to clarification questions.
 210 Conducting such human-in-the-loop evaluations at scale is imprac-
 211 tical. To make large-scale evaluations feasible, recent interactive
 212 benchmarks, such as MINT (Wang et al., 2024), employ LLMs to
 213 simulate human users (Li et al., 2025c; Yu et al., 2019a;b). However,
 214 we observe that there are two major issues among these simulators:
 215 (1) they sometimes leak information from ground-truth SQL query,
 216 and (2) they may deviate from the original task requirements (Barres
 217 et al., 2025; Kazi et al., 2024).



218 Figure 2: Knowledge chain break-
 219 ing ambiguity.

220 Table 1: Data Statistics

STATISTIC	LITE	FULL
Total Tasks	300	600
# BI tasks	195	410
# DM tasks	105	190
# Distinct Test Cases	135	191
# Tokens / User Query	40.22	32.95
# Tokens / SQL	361.52	252.21
# Ambiguities / Task	5.16	3.89
# sub-tasks / Task	2	2
# Interactions / Task	13.04	13.64
Inter-Agreement	93.33	93.50

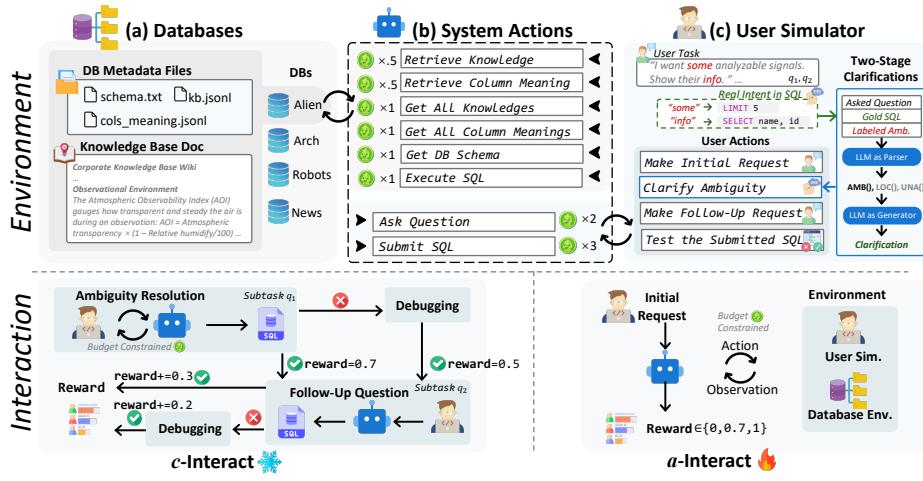


Figure 3: Two evaluation settings for BIRD-INTERACT: *c*-Interact, where the system engages in conversation with the user, and *a*-Interact, where the system interacts flexibly. At the end of the task, the system will receive a reward $r \in [0, 1]$.

Two-Stage Strategy. To ensure a more robust evaluation, we introduce a two-stage **function-driven user simulator**, as illustrated in Figure 3(c). In the first stage, an LLM functions as a semantic parser. It maps the system’s clarification request into one of three predefined allowed actions: `AMB()`, `LOC()`, or `UNA()`. `AMB()` is invoked for queries related to ambiguities that have been pre-annotated with the key SQL snippet. `LOC()` handles reasonable clarification requests that fall outside our pre-annotated ambiguities, such as questions about SQL formatting or specific sub-components. In these cases, the simulator uses an AST-based retrieval step to locate the relevant SQL fragment (detailed in Appendix N). Finally, `UNA()` rejects any inappropriate requests, such as attempts to elicit ground-truth answers. In the second stage, the user simulator generates a final response based on the chosen action and the annotated GT SQL with clarification source. This two-stage approach, ensures the simulator’s behavior remains predictable and controllable, while still permitting diverse and context-aware interactions. Detailed prompts are provided in Appendix T.

3.4 DATA STATISTICS

Table 1 reports key properties of BIRD-INTERACT. The resulting benchmark comprises a total of 900 interactive text-to-SQL tasks, each featuring an ambiguous initial priority sub-task, dynamic clarification requirements, follow-up sub-tasks, and environmental uncertainties covering CRUD spectrums. In Appendix E, we also conduct a comprehensive comparison against other relevant benchmarks, showing that BIRD-INTERACT is among the most open, challenging, and long-horizon interactive benchmarks in text-to-SQL scenarios.

4 EVALUATION SETTINGS

Two Evaluation Settings. The interactive framework of BIRD-INTERACT supports evaluation in two scenarios: LLMs as conversational assistants (***c*-Interact**) (Dinan et al., 2019) and as agents (***a*-Interact**) (Schlutz & Zhang, 2024).

Budget-Constrained Awareness Testing. The application of LLMs is limited by computational resources and user patience (Wen et al., 2025; Li et al., 2025e). We introduce a **budget-constrained awareness** mechanism to both evaluation settings, where interactions are capped by an adaptive budget and systems are informed of the remaining budget. This enables evaluation under varying budgets, including **stress-testing** (Ahmad et al., 2025; Hubinger, 2024) in low-budget conditions to assess the system’s ability to ask the right questions and plan effectively. The specific budget settings are detailed in the following sections.

270 4.1 *c*-INTERACT EVALUATION
271

272 **Interaction Setup.** The *c*-Interact evaluation establishes a multi-turn dialogue between user simu-
273 lator \mathcal{U} and system \mathcal{S} . The session unfolds in two sequential phases of sub-tasks: First, \mathcal{U} presents
274 an underspecified sub-task q_1 alongside database metadata \mathcal{M} and knowledge base \mathcal{K} . System \mathcal{S}
275 may engage in clarification dialogue before generating SQL σ_1 . Upon successful validation against
276 test cases \mathcal{T}_1 , \mathcal{U} issues a contextually coherent follow-up sub-task q_2 , prompting \mathcal{S} to respond with
277 SQL σ_2 . Each sub-task incorporates a single debugging opportunity: following query failure, \mathcal{S}
278 may submit one revised query after receiving execution feedback from \mathcal{U} . The evaluation episode
279 concludes when both sub-tasks are successfully completed or all attempts are exhausted. Notably,
280 failure in the initial priority sub-task immediately terminates the entire session.

281 **Budget Constraints.** The budget is implemented as a constraint on the number of clarification turns.
282 The total allowed turns, τ_{clar} , are calculated as follows: $\tau_{\text{clar}} = m_{\text{amb}} + \lambda_{\text{pat}}$. Here, m_{amb} represents
283 the minimum budget required to resolve the ambiguities, set to the number of annotated ambiguities
284 in the user query. The parameter λ_{pat} simulates user patience, granting the evaluated system extra
285 turns for clarification.

286 4.2 *a*-INTERACT EVALUATION
287

288 **Interaction Setup.** The *a*-Interact provides LLMs with autonomous planning and execution within
289 a pre-defined action space, following REACT paradigm (Yao et al., 2023). We model the complete
290 database environment as a set of callable tools, containing the target database, metadata, HKB, and
291 User Simulator, allowing the agent to determine optimal invocation strategies dynamically. In this
292 work, we summarize and define 6 discrete actions common to text-to-SQL with details in Appendix J.
293

294 **Budget Constraints.** To reflect the varying computational costs of different actions, we implement
295 a budget-constrained evaluation framework where each action consumes a predetermined amount
296 of budget, encouraging cost-effective action sequences. The total budget for each task is $B = B_{\text{base}} + 2m_{\text{amb}} + 2\lambda_{\text{pat}}$, where $B_{\text{base}} = 6$ is the base budget, m_{amb} is the number of annotated
297 ambiguity points, and λ_{pat} is the user patience parameter, maintaining consistency with the *c*-Interact
298 framework. This setting evaluates the agent’s ability to achieve high performance under resource
299 constraints while balancing thoroughness with efficiency. Action-specific costs are detailed in
300 Appendix J.

301 This setting can evaluate agent performance under realistic constraints that present practical database
302 interaction scenarios, where users have limited patience and computational resources are finite.
303

304 5 EXPERIMENT
305

306 We benchmark 7 recent and powerful LLMs (2 open-source, 5 closed-source) as system models
307 via a fresh PostgreSQL 15 Docker instance for more stable evaluation. We set the user patience
308 to 3 by default and *a*-Interact base budget of 6. All models use deterministic decoding (tempera-
309 ture=0, top_p=1) with default reasoning settings, conducting single runs due to cost (full details in
310 Appendix I.1 and I.2).

312 5.1 MAIN RESULTS
313

314 Table 2 summarizes the success rate (SR) and normalized reward (NR) obtained by 7 representative
315 frontier LLMs on BIRD-INTERACT-FULL. The full experimental results of BIRD-INTERACT-LITE
316 can be found in Table 10. We can observe:

317 **BIRD-INTERACT remains challenging, leaving ample room for future improvement.** Even the
318 strongest models in our study, GPT-5 and Gemini-2.5-Pro, capture only 20.92% and 25.52% of
319 the available reward respectively, in the *c*-Interact and *a*-Interact mode. Absolute success rates reveal
320 similar limitations: no more than 16.33% of tasks are solved end-to-end in *c*-Interact and 17.00% in
321 *a*-Interact, with most models falling in substantially lower rates.

322 **Evolving User Intent is a Challenge in Online Assessment.** Follow-up sub-tasks are noticeably
323 more challenging, likely because the longer, concatenated context in these turns remains a bottleneck
for LLMs in interactive text-to-SQL tasks.

324 Table 2: Success Rate and Final Normalized Reward of different models on BIRD-INTERACT-FULL.
 325 The success rate is cumulative; Reward* is the normalized reward (%). The values reported in
 326 *c*-Interact are after debugging phase, and **(+n)** means the performance gained via debugging. Avg.
 327 Cost is the cost for one task on average in USD. Our user simulator has an avg. cost of 0.03 USD.
 328

329 Model	330 Priority Question (Success Rate %) \uparrow			331 Follow Ups (Success Rate %) \uparrow			332 Reward* \uparrow	333 Avg. Cost \downarrow
	334 BI	335 DM	336 Overall	337 BI	338 DM	339 Overall		
<i>c</i> -Interact Text-to-SQL								
GPT-5	9.49 <small>(+0.00)</small>	25.40 <small>(+2.12)</small>	14.50 <small>(+0.67)</small>	5.84 <small>(+0.24)</small>	14.81 <small>(+0.53)</small>	8.67 <small>(+0.33)</small>	12.58	\$ 0.08
Claude-Sonnet-3.7	10.71 <small>(+4.62)</small>	33.86 <small>(+7.41)</small>	18.00 <small>(+5.50)</small>	4.62 <small>(+0.49)</small>	16.40 <small>(+3.17)</small>	8.33 <small>(+1.33)</small>	13.87	\$ 0.29
Deepseek-Chat-V3.1	11.44 <small>(+0.73)</small>	33.86 <small>(+3.17)</small>	18.50 <small>(+1.50)</small>	4.62 <small>(+0.24)</small>	16.93 <small>(+1.06)</small>	8.50 <small>(+0.50)</small>	15.15	\$ 0.12
Qwen-3-Coder-480B	16.30 <small>(+2.68)</small>	34.39 <small>(+5.29)</small>	22.00 <small>(+3.50)</small>	8.03 <small>(+0.97)</small>	16.93 <small>(+4.23)</small>	10.83 <small>(+2.00)</small>	17.75	\$ 0.11
Claude-Sonnet-4	16.06 <small>(+4.87)</small>	35.98 <small>(+10.58)</small>	22.33 <small>(+6.67)</small>	10.46 <small>(+1.22)</small>	22.22 <small>(+3.70)</small>	14.17 <small>(+2.00)</small>	18.35	\$ 0.29
O3-Mini	17.76 <small>(+2.92)</small>	37.57 <small>(+11.11)</small>	24.00 <small>(+5.50)</small>	11.44 <small>(+0.73)</small>	25.40 <small>(+4.23)</small>	15.83 <small>(+1.83)</small>	20.27	\$ 0.07
Gemini-2.5-Pro	18.73 <small>(+4.38)</small>	38.62 <small>(+10.05)</small>	25.00 <small>(+6.17)</small>	12.41 <small>(+1.22)</small>	24.87 <small>(+5.29)</small>	16.33 <small>(+2.50)</small>	20.92	\$ 0.04
<i>a</i> -Interact Text-to-SQL								
Qwen-3-Coder-480B	8.05	24.74	13.33	3.90	4.74	4.17	10.58	\$ 0.07
Deepseek-Chat-V3.1	10.49	31.58	17.17	4.63	5.26	4.83	13.47	\$ 0.06
O3-Mini	12.20	36.32	19.83	5.85	14.21	8.50	16.43	\$ 0.06
Gemini-2.5-Pro	10.49	41.58	20.33	5.85	20.00	10.33	17.33	\$ 0.22
Claude-Sonnet-3.7	11.46	41.58	21.00	5.61	16.84	9.17	17.45	\$ 0.60
Claude-Sonnet-4	15.85	53.68	27.83	8.05	22.63	12.67	23.28	\$ 0.51
GPT-5	15.61	58.42	29.17	10.98	30.00	17.00	25.52	\$ 0.24

344
 345 **Offline Reward v.s. Online SR Evaluation.** Table 2 shows that offline normalized reward (NR)
 346 and online success rate (SR) generally correlate positively, though notable divergences occur due to
 347 the reward structure allocating 70% to the primary sub-task and 30% to follow-up sub-tasks. These
 348 complementary metrics capture different aspects of model performance. Success rate measures
 349 holistic task completion across multi-turn interactions, relevant when users prioritize successful
 350 outcomes regardless of path. Normalized reward assesses performance on users’ critical initial
 351 objectives while crediting challenging follow-up sub-tasks. Together, they provide comprehensive
 352 evaluation of the distinct capabilities required for advanced interactive text-to-SQL systems.
 353

354 **Business Intelligence versus Data Management.** BI queries pose significantly greater challenges
 355 for LLMs compared to data management (DM) tasks since DM operations typically follow stan-
 356 dardized, predictable patterns that LLMs can effectively learn (Li et al., 2025d), whereas BI queries
 357 demand nuanced understanding of complex, domain-specific business logic and analytical reasoning
 358 that varies substantially across contexts.

359 **Interaction Mode Emerged as the Decisive Factor for a Successful Outcome.** Furthermore, we
 360 observe that different models demonstrate varying aptitudes for different interaction paradigms, with
 361 each model showing relative strengths in specific modes. For example, GPT-5 performs poorly in
 362 the constrained, predefined flow designed personally of the *c*-Interact mode by achieving only 14.50%
 363 SR (worst) but excels in the *a*-Interact setting with 29.17% SR (best), which affords more flexible
 364 and exploratory space. This evidence demonstrates the critical importance of matching interaction
 365 modes to model-specific capabilities, which we hypothesize stem from differences in training data
 366 distributions and architectural inductive biases (Liu et al., 2024; Gao et al., 2024b).
 367

5.2 INTERACTION ANALYSIS

368 **The Impact of Communication on Task Success in *c*-Interact.** A notable finding is the under-
 369 performance of the flagship model, GPT-5, on the *c*-Interact, despite its strong performance on
 370 many single-turn tasks (Phan et al., 2025; Glazer et al., 2024; Rein et al., 2024). Therefore, we
 371 hypothesize that this stems from a deficiency in its interactive communication abilities rather than
 372 its core generation capability. To test this hypothesis, we conduct an experiment termed ***Memory***
 373 ***Grafting***. In this setup, we provide GPT-5 with the ambiguity resolution histories from **two other**
 374 **better models**, Qwen-3-Coder and O3-mini, before asking it to generate the final SQL query.
 375 The results, presented in Figure 5, show that GPT-5’s performance improves significantly when
 376 leveraging the interaction history from either model. This finding indicates that while GPT-5 pos-
 377 sses robust SQL generation capabilities, a more effective communication schema is required to
 378 help it achieve satisfactory outcomes for user tasks. We also further analyze the patterns for effective
 379 communication in Appendix Q.

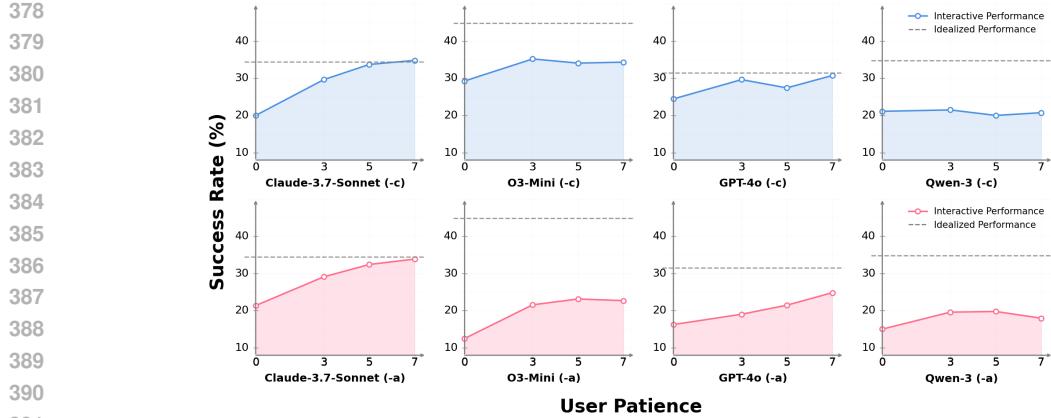


Figure 4: The performance of different LLMs with different user patience on **BIRD-INTERACT-LITE**. The red line denotes *a*-Interact mode (-a); the blue line denotes *c*-Interact mode (-c). And the dotted line (*Idealized* Performance) denotes the performance under ambiguity-free single-turn text-to-SQL.

Interaction Test-Time Scaling. To investigate the relationship between interaction frequency and model performance, we conduct an Interaction Test-Time Scaling (ITS) experiment in **BIRD-INTERACT-LITE** where results are shown in Figure 4. We simulate varying levels of user patience by allowing different numbers of interaction turns for both *c*-Interact and *a*-Interact. As a baseline, we include single-turn task performance for each model, where all necessary context is provided to create self-contained tasks. This single-turn condition represents an *idealized* scenario that, while potentially requiring significant user effort to ensure complete information provided (Li et al., 2025d; BIRD-Team, 2025), eliminates the need for further clarification. As demonstrated in the figure, Claude-3.7-Sonnet exhibits clear scaling behavior with respect to increasing interaction opportunities. This pattern indicates that the model can keep increasing its performance through incremental communication chances of interactions.

ITS Law: A model satisfies this law if, given enough conversational turns, its performance can match or even surpass that of the idealized single-turn task.

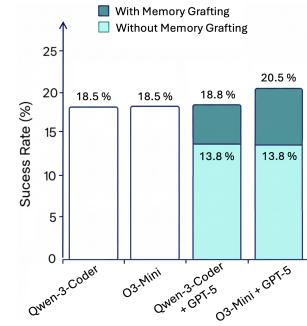


Figure 5: SR of GPT-5 with memory grafting.

Action Distribution Patterns in *a*-Interact. We analyze action distributions across 7 system models and find concentration in two primary actions: `submit` (direct code execution with error feedback) and `ask` (user clarification requests), which together comprise 60.87% of all actions. Despite being the most computationally expensive actions (Figure 3), models favor these over systematic exploration behaviors like knowledge and schema retrieval. This suggests LLMs prefer direct trial-and-error execution over comprehensive environment exploration, likely due to pre-training biases. Future work should incentivize broader tool utilization for complex interactive tasks. Additional analysis on the FULL set appears in Appendix J.

6 USER SIMULATOR ANALYSIS

This section presents a comprehensive evaluation of our function-driven user simulator compared to conventional user simulators and their respective impacts on dynamic interactive text-to-SQL benchmarks through both objective and subjective experiments.

Evaluation on USERSIM-GUARD. To provide an objective and comprehensive observation of different user simulator mechanisms, we construct a static dataset called **USERSIM-GUARD**, compris-

432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 ing 1,989 questions with reference actions labeled by human experts. Detailed information regarding the distribution and annotation procedures can be found in Appendix O. We employed an LLM-as-Judge (Zheng et al., 2023) evaluation framework using *Qwen-2.5-72B* and *Llama-3.1-70B* as independent evaluators to mitigate potential self-enhancement bias. Our analysis reveals significant reliability concerns with conventional user simulator designs. Specifically, as shown in Figure 6, when confronted with Unanswerable (UNA) questions, baseline user simulators consistently fail to implement safeguards, resulting in unfair or inappropriate feedback generation with over 34% failure rate. In contrast, our proposed function-driven approach demonstrates substantially improved reliability, with only 5.9% of responses falling into problematic categories. This represents a significant improvement in user simulator robustness and reliability compared to baseline approaches.

Alignment with Human User. We evaluate alignment between our user simulators and actual human behavior by having human experts interact with 7 system models on 100 randomly sampled tasks across BI and DM domains. We then compute correlations (Ivey et al., 2024; Kong et al., 2024) between success rates (SR) achieved by human users versus our simulators across the same tasks. As shown in Table 3, function-driven simulators demonstrate significantly stronger alignment with human behavior: GPT-4○ with function calling achieves 0.84 Pearson correlation ($p = 0.02$) compared to 0.61 without function calling ($p = 0.14$), while Gemini-2.0-Flash shows similar improvements (0.79 vs. 0.54). These results confirm that incorporating our designed user simulator mechanism produces more realistic user simulators that better reflect actual human-AI interaction patterns (detailed analysis in Appendix O).

7 RELATED WORK

Recent progress in Text-to-SQL is driven by large language models (LLMs) (OpenAI, 2025; Team et al., 2023; Team, 2024; Guo et al., 2025), with single-turn methods ranging from few-shot in-context learning (DIN-SQL (Pourreza & Rafiei, 2023), DAIL-SQL (Gao et al., 2024a)) and curated training (CodeS (Li et al., 2024), DTS-SQL (Pourreza & Rafiei, 2024)) to iterative agent-based frameworks (MAC-SQL (Wang et al., 2025)). However, this body of work focuses on single-turn settings, overlooking conversational interactions. While multi-turn benchmarks like CoSQL (Yu et al., 2019a) and LEARN-TO-CLARIFY (Chen et al., 2025b) exist, their use of static dialogue histories is a key limitation (Yao et al., 2025; Barres et al., 2025), as dynamic interaction is hard to simulate realistically for databases (Zhou et al., 2025; Barres et al., 2025), unlike in other agent benchmarks (Wang et al., 2024). We address this gap by introducing an interactive benchmark with an optimized user simulator to evaluate models in realistic, uncertain conversational text-to-SQL scenarios. Detailed related work can be found in Appendix P.

8 CONCLUSION

We present BIRD-INTERACT, a benchmark for evaluating interactive text-to-SQL systems through dynamic, multi-turn conversations that better reflect real-world usage scenarios. Our benchmark features a function-driven user simulator, dual evaluation settings for conversational and autonomous planning modes, and totally 900 challenging tasks designed to test LLM abilities to handle ambiguities and maintain state across turns. Comprehensive evaluation demonstrates a critical gap between existing SQL generation capabilities and the strategic interaction skills required for effective human-AI collaboration in database querying.

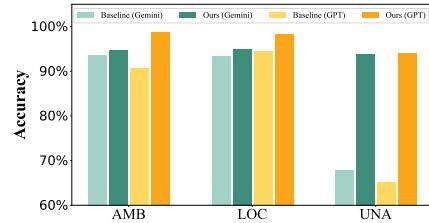


Figure 6: The accuracy of different user simulators on **USERSIM-GUARD**.

Table 3: Correlation analysis between AI and human users.

User Simulator	Pearson (p -value)
GPT-4o	0.84 ($p = 0.02$)
- w/ Func. (<i>Ours</i>)	0.84 ($p = 0.02$)
Gemini-2.0-Flash	0.79 ($p = 0.03$)
- w/ Func. (<i>Ours</i>)	0.79 ($p = 0.03$)
GPT-4o	0.61 ($p = 0.14$)
- Baseline	0.61 ($p = 0.14$)
Gemini-2.0-Flash	0.54 ($p = 0.21$)
- Baseline	0.54 ($p = 0.21$)

486 ETHICS STATEMENT
487488 This research complies with the ICLR Code of Ethics. We have carefully reviewed the guidelines
489 and ensured that our work aligns with the stated ethical standards, including considerations of data
490 privacy, fairness, and responsible use of released datasets and code. Justification: This work does
491 not involve crowdsourcing or research with human subjects. All annotation and task creation were
492 carried out by the authors themselves.493
494 REPRODUCIBILITY STATEMENT
495496 We have taken several steps to ensure the reproducibility of our work. First, for the evaluated systems,
497 all experimental settings, including model parameters, temperature ($= 0$), and budget configurations,
498 are clearly documented in Appendix I, ensuring that our evaluation can be replicated under the
499 same conditions. Each task is executed in a freshly re-initialized PostgreSQL 15 instance (Docker).
500 The Docker image contains the database engine and benchmark code, and is restarted for every
501 run to guarantee a clean and consistent state. This setup makes experiments deterministic, isolated
502 across runs, and easy to reproduce by rebuilding the environment from scratch. Second, for the
503 user simulator, we validate its robustness in Section 6, and detail in Section 3 how we designed
504 and annotated the benchmark to guarantee reliability, uniqueness of clarifications, and consistency
505 of responses from the user simulator. This safeguards reproducibility across different runs and
506 systems. Third, for the benchmark suite, we will publicly release all components under a permissive
507 license, including databases, tasks, hierarchical knowledge bases, documentation, interaction logs,
508 and the source code for both evaluation settings and the user simulator. This full release ensures
509 transparency and faithful replication of our experiments. We also provide the prompts used across
510 the whole experiment, which can be found in Appendix T, from Figure 20 to Figure 27. Due to the
511 dynamic nature of our interaction evaluation, we will also open-source our interaction trajectories
512 upon publication for better reproducibility.513 **Experiment Configuration.** All experiments on BIRD-INTERACT are conducted via API, except
514 for the LLM-as-Judge evaluations of different user simulators, which are run on 4 NVIDIA A100
515 80G GPUs. The estimated cost for each model under BIRD-INTERACT-FULL is shown in Table 2,
516 and the estimated cost for BIRD-INTERACT-LITE is shown in Table 10.517
518 REFERENCES519 Lama Ahmad, Sandhini Agarwal, Michael Lampe, and Pamela Mishkin. Openai’s approach to
520 external red teaming for ai models and systems. *arXiv preprint arXiv:2503.16431*, 2025.521 Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. tau2-bench: Evaluating
522 conversational agents in a dual-control environment. *arXiv preprint arXiv:2506.07982*, 2025.523 Adithya Bhaskar, Tushar Tomar, Ashutosh Sathe, and Sunita Sarawagi. Benchmarking and improving
524 text-to-SQL generation under ambiguity. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
525 *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*,
526 pp. 7053–7074, Singapore, December 2023. Association for Computational Linguistics. doi:
527 10.18653/v1/2023.emnlp-main.436.528 BIRD-Team. Livesqlbench: A dynamic and contamination-free benchmark for evaluating llms
529 on real-world text-to-sql tasks. <https://github.com/bird-bench/livesqlbench>, 2025. Accessed:
530 2025-05-22.531 Hasan Alp Caferoglu and Özgür Ulusoy. E-sql: Direct schema linking via question enrichment in
532 text-to-sql. *arXiv preprint arXiv:2409.16751*, 2024.533 Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin Zhang, Wei Chen, and Xiang Bai. Rsl-sql: Robust
534 schema linking in text-to-sql generation. *arXiv preprint arXiv:2411.00073*, 2024.535 Chongyan Chen, Yu-Yun Tseng, Zhuoheng Li, Anush Venkatesh, and Danna Gurari. Accounting for
536 focus ambiguity in visual questions. *arXiv preprint arXiv:2501.02201*, 2025a.

540 Maximillian Chen, Ruoxi Sun, Tomas Pfister, and Sercan Ö. Arik. Learning to clarify: Multi-turn
 541 conversations with action-based contrastive self-training. In *ICLR*, 2025b.

542

543 Xi Chen, Jinguo You, Kun Li, and Xiang Li. Beyond read-only: Crafting a comprehensive Chinese
 544 text-to-SQL dataset for database manipulation and query. In Kevin Duh, Helena Gomez, and
 545 Steven Bethard (eds.), *Findings of the Association for Computational Linguistics: NAACL 2024*,
 546 pp. 3383–3393, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi:
 547 10.18653/v1/2024.findings-naacl.214.

548 Deborah A. Dahl, Madeleine Bates, Michael Brown, William Fisher, Kate Hunicke-Smith, David
 549 Pallett, Christine Pao, Alexander Rudnicky, and Elizabeth Shriberg. Expanding the scope of the
 550 ATIS task: The ATIS-3 corpus. In *Human Language Technology: Proceedings of a Workshop held
 551 at Plainsboro, New Jersey, March 8-11, 1994*, 1994.

552 Bryan L. M. de Oliveira, Luana G. B. Martins, Bruno Brandão, and Luckeciano C. Melo. Infoquest:
 553 Evaluating multi-turn dialogue agents for open-ended conversations with hidden context. *arXiv
 554 preprint arXiv:2502.12257*, 2025.

555

556 Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason Weston. Wizard of
 557 wikipedia: Knowledge-powered conversational agents. In *ICLR (Poster)*. OpenReview.net, 2019.

558

559 Longxu Dou, Yan Gao, Xuqi Liu, Mingyang Pan, Dingzirui Wang, Wanxiang Che, Dechen Zhan, Min-
 560 Yen Kan, and Jian-Guang Lou. Towards knowledge-intensive text-to-SQL semantic parsing with
 561 formulaic knowledge. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of
 562 the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 5240–5253, Abu
 563 Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi:
 564 10.18653/v1/2022.emnlp-main.350.

565

566 Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
 567 Text-to-sql empowered by large language models: A benchmark evaluation. *Proc. VLDB Endow.*,
 568 17(5):1132–1145, January 2024a. ISSN 2150-8097. doi: 10.14778/3641204.3641221.

569

570 Jie Gao, Simret Araya Gebreegziabher, Kenny Tsu Wei Choo, Toby Jia-Jun Li, Simon Tangi Perrault,
 571 and Thomas W Malone. A taxonomy for human-llm interaction modes: An initial exploration. In
 572 *Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, CHI EA '24*,
 573 New York, NY, USA, 2024b. Association for Computing Machinery. ISBN 9798400703317. doi:
 574 10.1145/3613905.3650786.

575

576 Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
 577 line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, Olli Järviniemi,
 578 Matthew Barnett, Robert Sandler, Jaime Sevilla, Qiuyu Ren, Elizabeth Pratt, Lionel Levine, Grant
 579 Barkley, Natalie Stewart, Bogdan Grechuk, Tetiana Grechuk, Shreepranav Varma Enugandla, and
 580 Mark Wildon. Frontiermath: A benchmark for evaluating advanced mathematical reasoning in ai.
 581 *arXiv preprint arXiv:2411.04872*, 2024.

582

583 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
 584 Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint arXiv:2411.15594*,
 585 2024.

586

587 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 588 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 589 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

590

591 Jiaqi Guo, Ziliang Si, Yu Wang, Qian Liu, Ming Fan, Jian-Guang Lou, Zijiang Yang, and Ting Liu.
 592 Chase: A large-scale and pragmatic Chinese dataset for cross-database context-dependent text-to-
 593 SQL. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th
 594 Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
 595 Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 2316–2331, Online,
 596 August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.180.

597

598 Moshe Hazoom, Vibhor Malik, and Ben Bogin. Text-to-SQL in the wild: A naturally-occurring dataset
 599 based on stack exchange data. In Royi Lachmy, Ziyu Yao, Greg Durrett, Milos Gligoric, Junyi Jessy

594 Li, Ray Mooney, Graham Neubig, Yu Su, Huan Sun, and Reut Tsarfaty (eds.), *Proceedings of the 1st*
 595 *Workshop on Natural Language Processing for Programming (NLP4Prog 2021)*, pp. 77–87, Online,
 596 August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.nlp4prog-1.9.
 597

598 Evan Hubinger. Introducing alignment stress-testing at anthropic. In *AI Alignment Forum, January*,
 599 2024.

600 Jonathan Ivey, Shivani Kumar, Jiayu Liu, Hua Shen, Sushrita Rakshit, Rohan Raju, Haotian Zhang,
 601 Aparna Ananthasubramaniam, Junghwan Kim, Bowen Yi, et al. Real or robotic? assessing
 602 whether llms accurately simulate qualities of human responses in dialogue. *arXiv preprint*
 603 *arXiv:2409.08330*, 2024.

604

605 Taaha Kazi, Ruiliang Lyu, Sizhe Zhou, Dilek Hakkani-Tür, and Gokhan Tur. Large language models
 606 as user-agents for evaluating task-oriented-dialogue systems. In *SLT*, pp. 913–920. IEEE, 2024.

607

608 Chuyi Kong, Yixin Fan, Xiang Wan, Feng Jiang, and Benyou Wang. Platolm: Teaching llms in
 609 multi-round dialogue via a user simulator. In *Proceedings of the 62nd Annual Meeting of the*
 610 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7841–7863, 2024.

611

612 Maya Larbi, Amal Akli, Mike Papadakis, Rihab Bouyousfi, Maxime Cordy, Federica Sarro, and
 613 Yves Le Traon. When prompts go wrong: Evaluating code model robustness to ambiguous,
 614 contradictory, and incomplete task descriptions. *arXiv preprint arXiv:2507.20439*, 2025. Accessed:
 2025-09-23.

615

616 Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. Kaggledbqa: Realistic evaluation of
 617 text-to-sql parsers. In *Proceedings of the 59th Annual Meeting of the Association for Computational*
 618 *Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume*
 619 *1: Long Papers)*, pp. 2261–2273, 2021.

620

621 Dongjun Lee, Choongwon Park, Jaehyuk Kim, and Heesoo Park. MCS-SQL: leveraging multiple
 622 prompts and multiple-choice selection for text-to-sql generation. In *COLING*, pp. 337–353.
 623 Association for Computational Linguistics, 2025.

624

625 Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, SU Hongjin, ZHAOQING
 626 SUO, Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al. Spider 2.0: Evaluating language models
 627 on real-world enterprise text-to-sql workflows. In *The Thirteenth International Conference on*
 628 *Learning Representations*, 2025.

629

630 Boyan Li, Jiayi Zhang, Ju Fan, Yanwei Xu, Chong Chen, Nan Tang, and Yuyu Luo. Alpha-SQL:
 631 Zero-shot text-to-SQL using monte carlo tree search. In *Forty-second International Conference on*
 632 *Machine Learning*, 2025a.

633

634 Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
 635 Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
 636 text-to-sql. *Proceedings of the ACM on Management of Data (PACMOD)*, 2(3):1–28, 2024. doi:
 10.1145/3654930.

637

638 Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei Huang, Jing Zhang, Fuxin Jiang, Shuai Wang,
 639 Tieying Zhang, Jianjun Chen, Rui Shi, Hong Chen, and Cuiping Li. Omnisql: Synthesizing
 640 high-quality text-to-sql data at scale. *Proc. VLDB Endow.*, 18(11):4695–4709, September 2025b.
 ISSN 2150-8097. doi: 10.14778/3749646.3749723.

641

642 Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhu Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
 643 Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chen-Chuan Chang, Fei Huang,
 644 Reynold Cheng, and Yongbin Li. Can LLM already serve as A database interface? A big bench for
 645 large-scale database grounded text-to-sqls. In *NeurIPS*, 2023.

646

647 Jinyang Li, Nan Huo, Yan Gao, Jiayi Shi, Yingxiu Zhao, Ge Qu, Bowen Qin, Yurong Wu, Xiaodong
 648 Li, Chenhao Ma, Jian-Guang Lou, and Reynold Cheng. Are large language models ready for
 649 multi-turn tabular data analysis? In *Forty-second International Conference on Machine Learning*,
 650 2025c.

648 Jinyang Li, Xiaolong Li, Ge Qu, Per Jacobsson, Bowen Qin, Binyuan Hui, Shuzheng Si, Nan Huo,
 649 Xiaohan Xu, Yue Zhang, et al. Swe-sql: Illuminating llm pathways to solve user sql issues in
 650 real-world applications. *arXiv preprint arXiv:2506.18951*, 2025d.

651 Junyan Li, Wenshuo Zhao, Yang Zhang, and Chuang Gan. Steering llm thinking with budget guidance.
 652 *arXiv preprint arXiv:2506.13752*, 2025e.

654 Zongxi Li, Yang Li, Haoran Xie, and S. Joe Qin. Condambigqa: A benchmark and dataset for
 655 conditional ambiguous question answering. In *Proceedings of the 2025 Conference of the North*
 656 *American Chapter of the Association for Computational Linguistics (NAACL) / EMNLP?*, 2025f.
 657 also arXiv preprint arXiv:2502.01523, revised version 2.

658 Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
 659 Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
 660 Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
 661 Agentbench: Evaluating LLMs as agents. In *The Twelfth International Conference on Learning*
 662 *Representations*, 2024.

663 Yifu Liu, Yin Zhu, Yingqi Gao, Zhiling Luo, Xiaoxia Li, Xiaorong Shi, Yuntao Hong, Jinyang Gao,
 664 Yu Li, Bolin Ding, et al. Xiyuan-sql: A novel multi-generator framework for text-to-sql. *arXiv*
 665 *preprint arXiv:2507.04701*, 2025.

667 Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, and Amine Mhedhbi. The death of schema
 668 linking? text-to-sql in the age of well-reasoned language models. *arXiv preprint arXiv:2408.07702*,
 669 2024.

670 OpenAI. Openai o3 and o4-mini system card, 2025. Accessed: 2025-05-15.

671 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
 672 Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. *arXiv preprint*
 673 *arXiv:2501.14249*, 2025.

675 Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-sql
 676 with self-correction. *Advances in Neural Information Processing Systems*, 36:36339–36348, 2023.

677 Mohammadreza Pourreza and Davood Rafiei. Dts-sql: Decomposed text-to-sql with small large
 678 language models. In *Findings of the Association for Computational Linguistics: EMNLP 2024*,
 679 2024.

681 Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
 682 Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan Ö. Arik. CHASE-SQL: multi-path
 683 reasoning and preference optimized candidate selection in text-to-sql. In *ICLR*. OpenReview.net,
 684 2025a.

685 Mohammadreza Pourreza, Shayan Talaei, Ruoxi Sun, Xingchen Wan, Hailong Li, Azalia Mirhoseini,
 686 Amin Saberi, Sercan Arik, et al. Reasoning-sql: Reinforcement learning with sql tailored partial
 687 rewards for reasoning-enhanced text-to-sql. *arXiv preprint arXiv:2503.23157*, 2025b.

689 Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo, Chenhao Ma, and Reynold Cheng. Before
 690 generation, align it! A novel and effective strategy for mitigating hallucinations in text-to-sql
 691 generation. In *ACL (Findings)*, pp. 5456–5471. Association for Computational Linguistics, 2024.

692 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 693 Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a benchmark.
 694 In *First Conference on Language Modeling*, 2024.

696 Irina Saparina and Mirella Lapata. AMBROSIA: A benchmark for parsing ambiguous questions
 697 into database queries. In *The Thirty-eighth Conference on Neural Information Processing Systems*
 698 *Datasets and Benchmarks Track*, 2024.

699 Erik Schluntz and Barry Zhang. Building effective agents, December 2024. Engineering at Anthropic.

700 Lei Sheng and Shuai-Shuai Xu. Slm-sql: An exploration of small language models for text-to-sql.
 701 *arXiv preprint arXiv:2507.22478*, 2025.

702 Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang, and Zhi Yang. A survey on employing large
 703 language models for text-to-sql tasks. *ACM Computing Surveys*, 2024.

704

705 Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
 706 Chess: Contextual harnessing for efficient sql synthesis. *arXiv preprint arXiv:2405.16755*, 2024.

707

708 Robert S Taylor. Question-negotiation and information seeking in libraries. *College & Research
 709 Libraries*, 76(3):251–267, 2015.

710

711 DeepSeek-AI Team. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024.

712

713 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 714 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 715 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

716

717 Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen
 718 Zhang, Di Yin, Xing Sun, and Zhoujun Li. Mac-sql: A multi-agent collaborative framework for
 719 text-to-sql. In *Proceedings of the 31st International Conference on Computational Linguistics
 (COLING 2025)*, pp. 540–557, 2025.

720

721 Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. Mint:
 722 Evaluating llms in multi-turn interaction with tools and language feedback. In *The Twelfth
 723 International Conference on Learning Representations*, 2024.

724

725 Hao Wen, Xinrui Wu, Yi Sun, Feifei Zhang, Liye Chen, Jie Wang, Yunxin Liu, Ya-Qin Zhang, and
 726 Yuanchun Li. Budgetthinker: Empowering budget-aware llm reasoning with control tokens. *arXiv
 727 preprint arXiv:2508.17196*, 2025.

728

729 Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, Gavin Li, Yao Dou, Weixin Cai, James Zou,
 730 Jure Leskovec, and Jianfeng Gao. Collabllm: From passive responders to active collaborators.
arXiv preprint arXiv:2502.00640, 2025.

731

732 John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing
 733 and benchmarking interactive coding with execution feedback. *Advances in Neural Information
 734 Processing Systems*, 36:23826–23854, 2023.

735

736 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
 737 real-world web interaction with grounded language agents. In S. Koyejo, S. Mohamed, A. Agarwal,
 738 D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*,
 volume 35, pp. 20744–20757. Curran Associates, Inc., 2022.

739

740 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 741 React: Synergizing reasoning and acting in language models. In *International Conference on
 742 Learning Representations (ICLR)*, 2023.

743

744 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik R Narasimhan. $\{\tau\}$ -bench: A benchmark
 745 for tool-agent-user interaction in real-world domains. In *The Thirteenth International Conference on Learning Representations*, 2025.

746

747 Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
 748 Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev. Spider: A large-scale
 749 human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In
 750 *EMNLP*, pp. 3911–3921. Association for Computational Linguistics, 2018.

751

752 Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
 753 Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga, Sungrok Shim, Tao Chen, Alexander R.
 754 Fabbri, Zifan Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vincent Zhang, Caiming Xiong,
 755 Richard Socher, Walter S. Lasecki, and Dragomir R. Radev. Cosql: A conversational text-to-sql
 challenge towards cross-domain natural language interfaces to databases. In *EMNLP/IJCNLP (1)*,
 pp. 1962–1979. Association for Computational Linguistics, 2019a.

756 Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene Li,
757 Bo Pang, Tao Chen, Emily Ji, Shreya Dixit, David Proctor, Sungrok Shim, Jonathan Kraft, Vincent
758 Zhang, Caiming Xiong, Richard Socher, and Dragomir R. Radev. Sparc: Cross-domain semantic
759 parsing in context. In *ACL (1)*, pp. 4511–4523. Association for Computational Linguistics, 2019b.

760 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
761 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
762 chatbot arena. *Advances in neural information processing systems*, 36:46595–46623, 2023.

763
764 Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
765 natural language using reinforcement learning. *arXiv preprint arXiv:1709.00103*, 2017.

766 Yifei Zhou, Song Jiang, Yuandong Tian, Jason Weston, Sergey Levine, Sainbayar Sukhbaatar, and
767 Xian Li. Sweet-rl: Training multi-turn llm agents on collaborative reasoning tasks. *arXiv preprint*
768 *arXiv:2503.15478*, 2025.

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

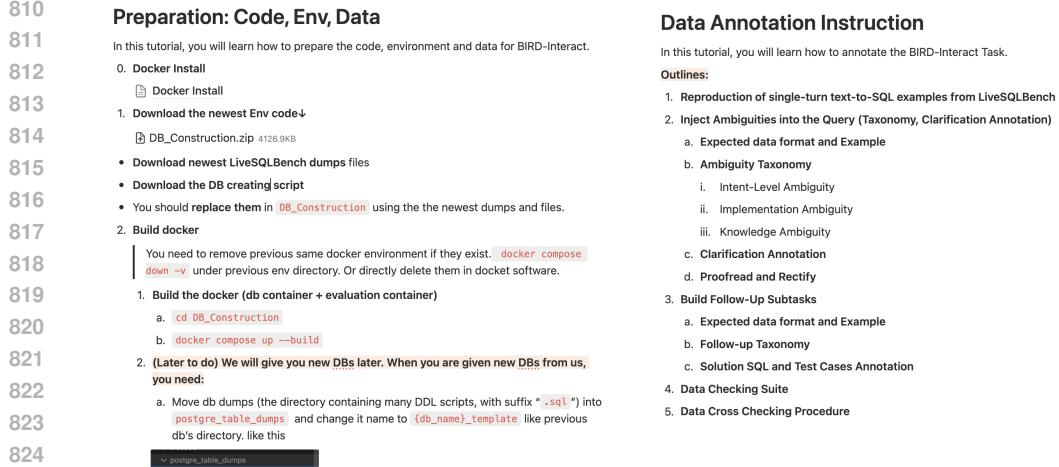


Figure 7: Examples of training materials by screenshots for BIRD-Interact annotators.

A LIMITATIONS.

Our work has centered on the text-to-SQL domain, but we believe our proposed interaction evaluation is not inherently limited to it. Instead, it can cover a generalizable human-AI collaboration. Exploring the adaptation of this framework to other generative domains, such as Python code synthesis or API call generation, is a promising direction for future research. But at this time, we think it's a representative scenario since it also features long-context, hierarchical knowledge, and AI coding problem.

B THE USE OF LLM STATEMENT

Large Language Models (LLMs) were used only for light post-editing of the paper (i.e., reducing syntax errors and performing minor grammar checks). LLMs were not involved in any part of the research discussions, analyses, or idea generation. All insights, contributions, and intellectual content are entirely the authors' own.

C ANNOTATION GROUP DETAILS

To ensure the high quality of annotations for the BIRD-INTERACT benchmark, we designed a rigorous, multi-stage process for annotator selection, training, and qualification. This process aimed to ensure that all annotators possessed strong SQL expertise and followed a consistent, reproducible workflow.

C.1 ANNOTATOR ENTRANCE TEST

All potential annotators were required to complete a structured training program before contributing to the benchmark. We began by recruiting a pool of 33 candidates, including students, engineers, and text-to-SQL researchers with prior database experience. Each candidate underwent a week-long training period consisting of tutorials and guided exercises (detailed below), followed by a qualification exam. This exam tested proficiency in SQL generation, schema understanding, and annotation of interactive tasks. Only candidates who achieved a passing score of at least 90% were admitted as official annotators, resulting in a final team of 12 highly qualified contributors.

C.2 TRAINING TUTORIALS

Candidates participated in an intensive tutorial program covering essential aspects of interactive text-to-SQL, including:

- Database environment setup

- Database schema analysis and comprehension
- Reproduction of single-turn text-to-SQL examples from LIVESQLBENCH
- Ambiguity taxonomy, injection procedures, and clarification annotation
- Follow-up sub-task taxonomy and construction, with solution SQL and test scripts
- Solution validation and evaluation script development

The tutorials contain the DB sandbox, code suite, detailed procedures, examples, and hands-on exercises that mirror the interactive feature of real-world SQL tasks. Some parts of the tutorials are shown in Figure 7. Annotators were introduced to the full annotation workflow required for the creation of the BIRD-INTERACT benchmark.

C.3 QUALIFICATION TEST

Following the tutorial phase, candidates were required to complete a qualification assignment consisting of 20 representative interactive text-to-SQL tasks. For each task, candidates were asked to:

1. Reproduce the environment and baseline single-turn text-to-SQL task.
2. Inject ambiguity into the task and annotate the corresponding unique clarification, ensuring that with clarification the original clear task could be recovered.
3. Create a follow-up sub-task and annotate it with solution SQL and test scripts.
4. Validate that the solution SQLs passed all annotated test scripts in sequence across sub-tasks.
5. Document their approach and provide a validation log.

Only candidates who successfully completed the assignment with satisfactory quality were approved as annotators. This stringent qualification process ensured that all annotators met the high standards required for building a robust and trustworthy benchmark. The overall success rate was approximately 90%, demonstrating the effectiveness of the tutorial materials and training program in preparing candidates for interactive text-to-SQL annotation. All annotators contributing to the final release of BIRD-INTERACT passed this qualification process.

D BENCHMARK DESIGN PRINCIPLES

Our design philosophy for BIRD-INTERACT is guided by two core principles: incorporating realistic interaction challenges and ensuring robust, reproducible evaluation.

Realistic Interaction Challenges. To mirror the complexity of real-world data analysis, we establish scenarios where interaction is indispensable for task completion. This is achieved through two mechanisms. (1) **Ambiguity:** We deliberately inject different types of ambiguity—spanning user queries, knowledge bases, and database environments—such that tasks cannot be solved correctly without clarification. Resolving these ambiguities often requires multi-turn exchanges, forcing systems to decide when to query the user, consult the HKB, or explore the database. This design captures the iterative, source-dependent nature of ambiguity resolution. (2) **Contextual Follow-ups:** Every task includes a subsequent, related query that requires the system to reason over the preceding conversation, the interaction history, and, critically, a potentially changed database state.

Reliable and Reproducible Evaluation. We ensure the reliability and reproducibility of evaluation from three key aspects. (1) **Unambiguous annotation:** each ambiguity is annotated with a single definitive interpretation. The user simulator resolves ambiguities by referencing key SQL snippets associated with each ambiguity point, rather than natural-language annotations. This enables the simulator to produce fluent, natural responses while keeping clarifications precise and grounded in the underlying logic. (2) **Reference-based disambiguation:** to avoid cases where certain ambiguities lack explicit annotations, the simulator is additionally provided with the reference SQL, allowing it to generate accurate clarifications when necessary. While in real-world scenarios, real users may only have vague initial goals without an answer when making a request, this pragmatic design

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 4: Data statistics of features in BIRD-INTERACT compared to the evaluation set of related benchmarks. **# Avg Interactions**: Number of interactions by unfolding the model’s interaction trajectory. **# Toks./Output**: Average number of tokens in the reference output; “/” indicates benchmarks without reference output. **Dynamic User**: Whether the benchmark supports real-time user interaction (vs. static offline datasets). **Dynamic Env State**: Whether the database or environment state can be modified during interaction. **Amb. Sources**: Sources of ambiguity in user queries or environments. LLM + Guard means LLM as user simulator with Guard mechanism to make actions more controllable.

Category	Dataset	# Tasks	# Avg Interactions	# Toks. / Output	Dynamic User	Dynamic Env State	Amb. Sources	Ext. Knowledge
SQL Generation	KaggleDBQA (Lee et al., 2021)	272	1	24.28	✗	✗	✗	✗
	WikiSQL (Zhong et al., 2017)	15,878	1	15.59	✗	✓	✗	✓
	Spider (Yu et al., 2018)	2,147	1	30.18	✗	✗	✗	✗
	Spider 2.0 (Lei et al., 2025)	632	1	412.37	✗	✓	✗	✓
	BIRD-SQL (Li et al., 2023)	1,534	1	50.01	✗	✗	✗	✓
Ambiguity Handling	BIRD-Critic (Li et al., 2025d)	1,100	1	109.66	✗	✗	✗	✓
	BIRD-Mini-Dev (Li et al., 2023)	500	1	63.56	✗	✗	✗	✓
	AMBROSIA (Saparina & Lapata, 2024)	1,277	1	88.36	✗	✗	User	✗
	AmagiQT (Bhaskar et al., 2023)	3,000	1	31.72	✗	✗	User	✗
	When Prompts Go Wrong (Larbi et al., 2025)	300	1	55.71	✗	✗	Description	✗
Multi-Turn Benchmark	InfoQuest (de Oliveira et al., 2025)	1,000	3.76	/	LLM	✗	User + Persona	✗
	CondAmbigQA (Li et al., 2025f)	200	1	44.94	✗	✗	Query + Docs	✓
	VQ-FocusAmbiguity (Chen et al., 2025a)	5,500	1	1.54	✗	✗	Visual	✗
	SparC (Yu et al., 2019b)	422	1	34.58	Offline	✗	✗	✗
	CoSQL (Yu et al., 2019a)	1300	1	39.34	Offline	✗	✗	✗
Interactive Benchmark	CHASE (Guo et al., 2021)	2,494	1	43.71	✗	✗	✗	✗
	MT-Bench (Zheng et al., 2023)	160	1	37.58	Offline	✗	✗	✗
	MINT (Wang et al., 2024)	586	3.12	64.97	LLM	✓	✗	✗
	InterCode (Yang et al., 2023)	2,208	5.46	40.35	✗	✓	✗	✓
	r-bench (Yao et al., 2025)	165	13.29	/	LLM	✓	✗	✓
Our Benchmark	WebShop (Yao et al., 2022)	500	9.61	/	✓	✗	✓	✓
	BIRD-INTERACT-LITE	300	13.04	365.14	LLM + Guard	✓	User + Env	✓
	BIRD-INTERACT-FULL	600	13.64	252.21	LLM + Guard	✓	User + Env	✓

choice enhances evaluation reliability. (3) **Simulator robustness and reproducibility**: we employ a two-stage function-driven design to safeguard against adversarial manipulation and ground-truth leakage.

Table 5: Comparison of released databases across benchmarks.

Benchmark	# DBs	# Col./DB	KB Doc.	License	Cost
BIRD-SQL (Li et al., 2023)	15	54.2	✓	CC BY-SA 4.0	Free
Spider (Yu et al., 2018)	40	27.1	✗	CC BY-SA 4.0	Free
WikiSQL (Zhong et al., 2017)	5230	6.3	✗	BSD 3-Clause	Free
KaggleDBQA (Lee et al., 2021)	8	23.4	✓	CC BY-SA 4.0	Free
SEDE (Hazoom et al., 2021)	1	212	✗	Apache License	Free
Spider 2.0 (Lei et al., 2025)	632	743.5	✓	Restricted	May incur cost
BIRD-INTERACT-LITE	18	126.9	✓	CC BY-SA 4.0	Free
BIRD-INTERACT-FULL	22	91.4	✓	CC BY-SA 4.0	Free

E COMPARISON WITH RELATED BENCHMARKS

E.1 TASK COMPARISON

Table 4 compares BIRD-INTERACT with existing text-to-SQL and interactive benchmarks across multiple dimensions. We categorize related work into four groups: **SQL Generation**, **Ambiguity Handling**, **Multi-Turn Benchmarks**, and **Interactive Benchmarks**. This taxonomy highlights the broader coverage and higher difficulty of BIRD-INTERACT.

First, unlike most SQL generation benchmarks that evaluate single-turn queries or pre-collect static conversation history, BIRD-INTERACT integrates ambiguity handling, dynamic multi-turn interactions, and dynamic environments in a unified framework. Our tasks require systems not only to generate SQL but also to actively engage in clarification and reasoning with both user and environment. Second, the **# Avg Interactions** of BIRD-INTERACT is around 13 per task, significantly higher than prior benchmarks which typically unfold into one or a few turns. This reflects the increased difficulty of our benchmark: solving a task demands repeated clarification and tool use across multiple rounds of interaction. Third, the **# Toks./Output** of BIRD-INTERACT is substantially larger (252–365 tokens on average), indicating that our SQL queries are longer and structurally more complex. Fourth, unlike static multi-turn benchmarks with offline conversation transcripts, BIRD-INTERACT features a

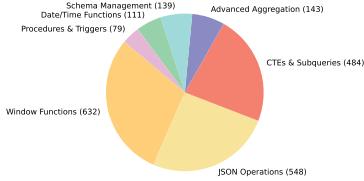


Figure 8: Distribution of advanced SQL features in BIRD-INTERACT.

972 **Dynamic User** during evaluation. Our two-stage function-driven user simulator ensures robustness
 973 by mapping clarification requests into symbolic actions before generating responses. This design
 974 reduces ground-truth leakage and adversarial manipulation, while preserving naturalness and diversity
 975 of interaction. Fifth, BIRD-INTERACT introduces multiple **ambiguity sources**. Whereas most prior
 976 datasets only consider ambiguity at the user query level, we additionally inject knowledge and
 977 environmental ambiguities. This requires systems to strategically alternate between user clarification
 978 and environment exploration to recover the true intent.

979 Taken together, these characteristics establish BIRD-INTERACT as the first benchmark that jointly
 980 stresses SQL generation, ambiguity resolution, and dynamic interaction with both users and envi-
 981 ronments. Compared to existing work, it sets a higher bar for evaluating interactive text-to-SQL
 982 systems.

983

984 E.2 DATABASE COMPARISON

985

986 Table 5 compares the databases used in BIRD-INTERACT with those of other widely used text-to-SQL
 987 benchmarks. Compared to most prior benchmarks, our databases span diverse domains (around
 988 20 DBs in different domains), contain more columns per database, resulting in more complex and
 989 richer schemas. All databases are paired with knowledge base documents. In terms of licensing,
 990 BIRD-INTERACT builds on the open-source LIVESQLBENCH (BIRD-Team, 2025) datasets released
 991 under CC BY-SA 4.0, ensuring unrestricted academic and industrial use. This licensing framework
 992 ensures unrestricted accessibility for both academic research and industrial applications. Spider 2.0
 993 represents another high-quality benchmark with large data resources, but its reliance on data primarily
 994 sourced from BigQuery and Snowflake Marketplace introduces licensing complexities that may limit
 995 direct further academic adaptation and potentially incur usage costs for researchers.

996

997 F EVALUATION METRICS

998

999 F.1 SUCCESS RATE (SR)

1000

1001 The **Success Rate (SR)** is our primary online evaluation metric, measuring whether each sub-task
 1002 is solved correctly during interaction. Let N denote the total number of tasks, where each task i
 1003 in BIRD-INTERACT consists of exactly two sub-tasks, denoted $q_{i,1}$ and $q_{i,2}$. Each sub-task $q_{i,j}$ is
 1004 annotated with a ground-truth SQL solution $\sigma_{i,j}^*$ and a set of executable test cases $\mathcal{T}_{i,j}$. A predicted
 1005 SQL $\sigma_{i,j}$ is considered correct if it passes all test cases in $\mathcal{T}_{i,j}$. The success rate for the j -th sub-task
 1006 across all tasks is defined as:

1006

1007

$$1008 \text{SR}_j = \frac{1}{N} \sum_{i=1}^N \mathbb{I}[\mathcal{T}_{i,j}(\sigma_{i,j}) = \text{True}], \quad (2)$$

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1012 where $\mathbb{I}[\cdot]$ is the indicator function that equals 1 if the prediction is correct and 0 otherwise. In
 1013 reporting, we provide SR separately for the two sub-tasks: (1) $q_{i,1}$, the ambiguous *priority sub-task*,
 1014 and (2) $q_{i,2}$, the *follow-up sub-task*. To assess functional correctness, we rely on executable test
 1015 scripts that validate predicted SQL against the annotated ground truth. Details of the test scripts are
 1016 provided in Appendix G.

1017 F.2 NORMALIZED REWARD

1018 To capture the relative importance of different sub-tasks (e.g., success on the initial ambiguous sub-
 1019 task is critical for continuing the interaction) and to distinguish system behaviors such as first-attempt
 1020 success versus post-debugging success, we propose a **Normalized Reward** metric. It is calculated by
 1021 the average reward across all tasks. This metric is reported in addition to the sub-task-level success
 1022 rates described in Section 2. Formally, with N total tasks, the normalized reward is calculated as

$$1023 R = \frac{\sum_i r_i}{N} = \frac{\sum_i \sum_{j \in \{1,2\}} r_{i,j}}{N},$$

1024

1025

1026 where the r_i , $r_{i,j}$ is the reward of the task i and the sub-task j of task i . In the c -Interact setting, to
 1027 distinguish first-attempt and post-debugging solutions, the reward is defined by:

$$r_{i,1} = \begin{cases} 0.7 & \text{if 1st sub-task is solved without debugging} \\ 0.5 & \text{if 1st sub-task is solved with debugging} \\ 0 & \text{otherwise} \end{cases}$$

$$r_{i,2} = \begin{cases} 0.3 & \text{if 2nd sub-task is solved without debugging} \\ 0.2 & \text{if 2nd sub-task is solved with debugging} \\ 0 & \text{otherwise} \end{cases}$$

In the *a*-Interact setting, since the interaction flow is not fixed, e.g. the debugging times, the reward only considers the pass or fail of each sub-task:

$$r_i = \begin{cases} 1.0 & \text{if both sub-tasks are passed} \\ 0.7 & \text{if only the 1st sub-task is passed} \\ 0 & \text{otherwise} \end{cases}$$

G TEST SCRIPTS

We check sub-task correctness using executable test scripts. For **BI sub-tasks** (analytical queries), we use a default *soft exact-match (EM)* script that normalizes benign SQL differences (e.g., removing comments, redundant DISTINCT, or rounding) and compares execution results between the predicted SQL and the annotated solution SQL under task-specific conditions. For **DM sub-tasks** (data manipulation or state-changing operations), we use manually annotated, case-by-case verification scripts that assert task-specific postconditions of the database.

G.1 BI QUERIES

The default test script cleans predictions/solutions (e.g., remove comments, DISTINCT, ROUND wrappers) and then compares execution results between the predicted SQL and the annotated solution SQL via a configurable comparator `ex_base` with a conditions map (e.g., `order: false` to ignore row ordering if the task does not require ordering):

```
1057 def test_case_default(pred_sqls, sol_sqls, db_name, conn,
1058 conditions=None):
1059     """Default test_case: pytest-style assertion."""
1060     pred_sqls = remove_comments(pred_sqls)
1061     sol_sqls = remove_comments(sol_sqls)
1062     pred_sqls = remove_distinct(pred_sqls)
1063     pred_sqls = remove_round(pred_sqls)
1064     sol_sqls = remove_distinct(sol_sqls)
1065     sol_sqls = remove_round(sol_sqls)
1066
1067     result = ex_base(pred_sqls, sol_sqls, db_name, conn, conditions)
1068     assert result == 1, f"ex_base returned {result} but expected 1."
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
```

G.2 DM QUERIES

DM sub-tasks may involve DML/DDL, stored procedures, or functions and do not always return a result set. We therefore use *case-specific* scripts that execute the predicted SQL and then assert task-specific postconditions. Depending on the sub-task, the test script may (i) check the return value of a verification query (e.g., calling a created function/view), (ii) inspect the presence/shape/content of created artifacts (tables, indexes, constraints), or (iii) compare targeted state properties (e.g., row counts, key invariants). For example, this is one test case for the user sub-task in Figure 1:

```
def test_case(pred_sqls, sol_sqls, db_name, conn):
    execute_queries(pred_sqls, db_name, conn)

    verify_sql = "SELECT * FROM rank_urgent_care()"
```

```

1080     pred_query_result = execute_queries(verify_sql, db_name, conn)
1081     actual = pred_query_result[0]
1082
1083     expected = [
1084         (101, 'Ancient Scroll', Decimal('7.20')),
1085         (102, 'Bronze Vase', Decimal('6.85')),
1086         (103, 'Stone Tablet', Decimal('6.50')),
1087     ]
1088     assert len(actual) == len(expected)
1089     assert actual == expected
1090     return True

```

1091 H AMBIGUITY AND FOLLOW-UP ANNOTATION DETAILS

1093 H.1 USER QUERY AMBIGUITY ANNOTATION

1095 A central step in constructing interactive scenarios is the deliberate introduction of ambiguity into
 1096 originally unambiguous single-turn queries. Our annotation process ensures that systems cannot
 1097 succeed without active clarification, thereby reflecting the uncertainties inherent in real-world human-
 1098 database interactions. Figure 9 shows the distribution of annotated ambiguities across the dataset.

1099 **Two basic ambiguity categories.** We distinguish between two fundamental categories that guide
 1100 annotation:

- 1102 • *Intent-level ambiguity* arises directly from user language, where the request is vague, un-
 1103 underspecified, or missing critical details (e.g., “find elderly people” without defining the age
 1104 threshold). If not resolved, intent-level ambiguity can severely degrade user experience and
 1105 lead to erroneous SQL. Clarifying such ambiguities is the primary requirement for an LLM
 1106 to faithfully capture user intent.
- 1107 • *Implementation-level ambiguity* occurs when the user’s high-level intent is clear, but the SQL
 1108 execution admits multiple valid formulations, such as numeric precision, ranking direction,
 1109 or null handling. While less disruptive to comprehension, resolving these cases improves
 1110 SQL precision and alignment with user expectations.

1111 For each category, we provide annotators with a structured taxonomy including type definitions,
 1112 annotation conditions, and examples, ensuring systematic and consistent ambiguity injection, as
 1113 outlined in Appendix H.4.

1114 **Ambiguity and clarification sources.** Each injected ambiguity is paired with a unique clarification
 1115 represented by a *key SQL snippet* from the ground-truth SQL rather than natural language text. For
 1116 instance, the ambiguous query “find elderly people” is linked to the clarification snippet `WHERE age`
 1117 `> 80`. This design guarantees reproducibility: the user simulator can reliably ground clarifications in
 1118 SQL semantics, while still generating diverse natural-language paraphrases during interaction.

1119 **Quality control.** To maintain benchmark reliability, annotators follow a strict checklist: (1) *Necessity*
 1120 of *clarification*: each ambiguous query must be unsolvable without clarification, ensuring genuine
 1121 reliance on interaction. (2) *Completeness after clarification*: once clarification is provided, the
 1122 information must suffice for an expert to reconstruct the exact solution SQL. This guarantees that
 1123 injected ambiguities are both necessary and recoverable, enabling reproducible evaluation.

1125 H.2 KNOWLEDGE AND ENVIRONMENTAL AMBIGUITY ANNOTATION

1127 In addition to user query modifications, we also introduce ambiguities that arise from missing or
 1128 noisy external resources. These require systems to reason dynamically with both knowledge bases
 1129 and database environments. We annotate them in two categories: **knowledge ambiguities** and
 1130 **environmental ambiguities**.

1132 **Knowledge Ambiguities.** We introduce incompleteness into the hierarchical knowledge base
 1133 (HKB) to simulate the deployment conditions where documentation is often partial or fragmented.
 We distinguish two subtypes:

- *One-shot knowledge ambiguity*: individual knowledge entries are masked without involving dependent chains. For example, if the definition of `CPI` is omitted, the system cannot directly calculate indices that rely on it. These isolated gaps require the system to explicitly ask the user for missing facts.
- *Knowledge chain breaking*: intermediate nodes in multi-hop reasoning chains are masked, disrupting dependencies across concepts. Consider the chain "`urgent care`" → "`AVS`" → "`IF/CPI`" shown in Figure 2. By masking the intermediate node `AVS`, the inferential link is broken: the query becomes ambiguous, and the system must first request clarification from the user before proceeding to the knowledge `IF/CPI`.

Database Inconsistencies. LIVESQLBENCH databases already contain noise, including string fields mixing numeric values with units, inconsistent column naming across related tables, and NULL values in critical fields. Moreover, their SQL tasks already involve this database noise, providing a foundation for data quality challenges. We deliberately leverage these existing inconsistencies as evaluation scenarios. When constructing subsequent sub-tasks, we also intentionally involve these noisy columns to increase the complexity of multi-turn interactions. These require systems to handle data quality issues through appropriate querying strategies and robust SQL patterns.

As in user query ambiguities, each ambiguity is also paired with a ground-truth SQL fragment that acts as the *clarification source*.

H.3 AMBIGUITY CHAIN

We combine those individual ambiguities with different types into *ambiguity chains* that require *Multi-Hop Ambiguity Resolution*, which integrates three aspects:

1. *Nested ambiguities*. Clarification itself may introduce further uncertainty, requiring multi-stage resolution. Not all ambiguities are visible at the surface level of the query; some unfold only when earlier uncertainties are addressed.
2. *Multiple clarification sources*. Each ambiguity may require information from different sources. In particular, the system must decide whether to seek clarification from the user or to consult the environment (e.g., knowledge base, schema, or documentation).
3. *Clarification flows*. We define three canonical transition types that characterize how clarification flows across sources:
 - **User → User**: an initial user clarification is itself ambiguous and requires further follow-up with the user.
 - **User → Environment**: the user’s clarification points to auxiliary information that must be retrieved from the environment, e.g. KB.
 - **Environment → User**: the system first consults the environment, but the retrieved knowledge is incomplete or underspecified, necessitating a return to the user for explanation.

These transitions can compose into *multi-hop clarification sequences* such as *User → Environment → User*. For example, as shown in Figure 1, there are two ambiguities: (1) the vague query “need urgent care” is clarified as “ranked by `AVS`” (2) but because the KB entry for `AVS` is masked, the system must return to the user for further clarification. To implement such cases, (1) annotated clarification snippets are intentionally underspecified, leaving residual ambiguity, and (2) some KB nodes in HKB are masked to simulate missing documentation. Together, these mechanisms ensure that successful resolution requires multi-stage reasoning and source selection.

H.4 USER QUERY AMBIGUITY TAXONOMY

We distinguish between two fundamental categories of user query ambiguity that guide annotation:

Intent-Level Ambiguity Types. Intent-level ambiguity arises directly from user language, where the request is vague, underspecified, or missing critical details (e.g., “find elderly people” without defining the age threshold). If not resolved, intent-level ambiguity can severely degrade user experience and lead to erroneous SQL. We summarize six types of user query ambiguity (Table 6) and

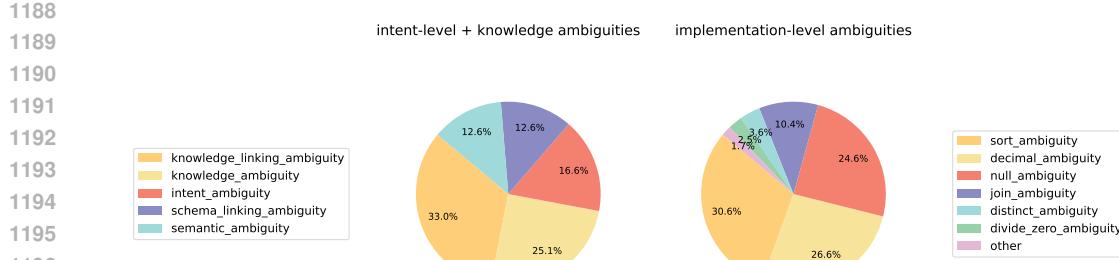


Figure 9: Ambiguity types distribution.

guide the annotators to inject them into unambiguous user queries: (1) **Lexical Ambiguity** from tokens with multiple meanings, (2) **Syntactic Ambiguity** from multiple valid grammatical structures, (3) **Semantic Ambiguity** from vague phrasing (e.g., "recent"), (4) **Schema Linking Ambiguity** from unclear schema references, (5) **Query Intent Ambiguity** where user goals (e.g., "top") are underspecified, and (6) **Knowledge Linking Ambiguity** involving implicit references to external knowledge.

Table 6: Intent-Level User Query Ambiguity Taxonomy in BIRD-INTERACT

Ambiguity Type	Definition	Example
Lexical Ambiguity	A token has multiple meanings or senses within the query context.	<i>Show bills</i> — “Bills” could mean invoices, legislation, or billing records.
Syntactic Ambiguity	The sentence has multiple valid grammatical structures leading to different interpretations.	<i>Get orders for customers from 2020</i> — Are we filtering orders or customers by year?
Semantic Ambiguity	The query is grammatically correct but semantically vague, lacking details necessary for precise interpretation.	<i>Recent transactions</i> — The time frame for “recent” is unspecified.
Schema Linking Ambiguity	Ambiguity in mapping a query term to the correct schema element due to multiple plausible candidates.	<i>List users by status</i> — “Status” could refer to <code>account_status</code> , <code>login_status</code> , etc.
Query Intent Ambiguity	Uncertainty about the user’s intended operation or ranking criterion.	<i>Show the top customers</i> — “Top” may refer to revenue, number of orders, or frequency.
Knowledge Linking Ambiguity	A referenced concept exists in the external knowledge base, but the query’s link to the knowledge is implicit or unclear.	<i>Get Impact Score</i> — “Impact Score” refers to “Artist Impact Score” in the KB.

Implementation-Level Ambiguity Types. Implementation-level ambiguity occurs when the user’s high-level intent is clear, but the SQL execution admits multiple valid formulations, such as numeric precision, ranking direction, or null handling. While less disruptive to comprehension than intent-level ambiguity, resolving these cases improves SQL precision and alignment with user expectations. These ambiguities are annotated conditionally, i.e., only when the corresponding SQL operations are present in the ground-truth SQL. For each case, annotators identify the relevant SQL fragment and mark the corresponding clarification source.

- **Decimal ambiguity.** Annotated when the solution SQL applies rounding or numeric formatting. Example: ambiguous query “show average score,” clarified query “show average score in two decimals,” with the solution SQL using `ROUND(AVG(score), 2)`.
- **Join ambiguity.** Annotated when the solution SQL requires non-default join semantics (e.g., `LEFT JOIN`, `FULL OUTER JOIN`). Example: ambiguous query “list all customers

1242 and their orders,” clarified query “list all customers and their orders, even if they have no
 1243 records,” with the solution SQL using `LEFT JOIN`.
 1244

- **Distinct ambiguity.** Annotated when the SQL solution contains the `DISTINCT` keyword. Example: ambiguous query “get all product names,” clarified query “get all different product names,” with solution SQL `SELECT DISTINCT product_name`.
- **Sort ambiguity.** Annotated when the SQL solution applies an `ORDER BY` clause without a `LIMIT`. Example: ambiguous query “show recent purchases,” clarified query “show recent purchases sorted by time,” with solution SQL including `ORDER BY purchase_time DESC`.
- **Null ambiguity.** Annotated when the SQL solution contains null-handling operations (e.g., `COALESCE`, `ISNULL`). Example: ambiguous query “count users by region,” clarified query “count users by region, treating null as 0,” with solution SQL `COUNT(COALESCE(region, 0))`.
- **Rank ambiguity.** Annotated when ranking functions are applied in the solution SQL (e.g., `ROW_NUMBER`, `DENSE_RANK`). Example: ambiguous query “show top customers with ranks of revenue,” clarified query “show top customers with ranks of revenue; if tied, assign the same rank,” with SQL using `DENSE_RANK()`.
- **Divide-by-zero ambiguity.** Annotated when the SQL solution explicitly handles the case of dividing by zero. Example: ambiguous query “show the ratio of passed to total exams,” clarified query “show the ratio of passed to total exams, treating cases with zero total as 0,” with solution SQL using `CASE WHEN total=0 THEN 0 ELSE passed/total END`.

1264 These annotations ensure that implementation-level ambiguities are reproducible and systematically
 1265 linked to concrete SQL constructs. By marking such cases only when relevant SQL operations are
 1266 present, we preserve annotation consistency while enriching the benchmark with the challenges of
 1267 SQL details in implementation.
 1268

1269 Table 7: Implementation-Level User Query Ambiguity Types in BIRD-INTERACT
 1270

Ambiguity Type	Annotation Condition	Example Transformation
Decimal Ambiguity	ROUND function is used in solution SQL	<i>“Show average score in 2 decimal”</i> → <i>“Show average score”</i>
Join Ambiguity	Non-default join (e.g., <code>LEFT JOIN</code>) is used in solution SQL	<i>“Show all customers and their orders even though they don’t have records”</i> → <i>“Show all customers and their orders”</i>
Distinct Ambiguity	<code>DISTINCT</code> keyword is used in solution SQL	<i>“Get all different product names”</i> → <i>“Get all product names”</i>
Sort Ambiguity	<code>ORDER BY</code> is used without <code>LIMIT</code> in solution SQL	<i>“Show recent purchases sorted by time”</i> → <i>“Show recent purchases”</i>
Null Ambiguity	Solution SQL contains null handling operations (e.g., <code>COALESCE</code> , <code>ISNULL</code>)	<i>“Count users by region, treat null as 0”</i> → <i>“Count users by region”</i>
Rank Ambiguity	Solution SQL uses ranking functions (e.g., <code>ROW_NUMBER</code> , <code>RANK</code> , <code>DENSE_RANK</code>)	<i>“Show top customers with ranks of revenue. If they are tied, give them the same rank number.”</i> → <i>“Show top customers with ranks of revenue.”</i>
Divide-by-zero Ambiguity	Solution SQL must handle division by zero explicitly	<i>“Show the ratio of passed to total exams, treating cases with zero total as 0”</i> → <i>“Show the ratio of passed to total exams”</i>

1291
 1292 **H.5 ENVIRONMENTAL KNOWLEDGE AMBIGUITY**
 1293

1294 Beyond user query ambiguities, our benchmark also incorporates environmental uncertainties that
 1295 arise from incomplete or missing knowledge bases. In such cases, systems must return to the user for
 clarification when the environment alone provides insufficient information.

1296 **Knowledge Ambiguity Injection.** We systematically remove or obscure nodes in the Hierarchical
 1297 Knowledge Base (HKB) to simulate the scenario of information missing. When essential domain
 1298 knowledge is missing, systems must recognize the knowledge gap and explicitly request clarification
 1299 from users about entity relationships, domain-specific conventions, or missing context.
 1300

1301 **Examples of Knowledge Ambiguity:**

1302

- 1303 • **Missing Definitions:** The query asks for "Artist Impact Score" but the KB lacks a definition
 1304 for this metric, forcing the system to ask the user for clarification about calculation methods.
- 1305 • **Incomplete Hierarchies:** Domain concepts exist in the KB but their relationships are
 1306 incomplete, requiring systems to seek additional context about entity connections.
- 1307 • **Outdated Information:** Knowledge base entries may not reflect current database schema
 1308 or business logic, necessitating clarification about current practices.

1310 This environmental knowledge ambiguity complements user query ambiguities by testing systems'
 1311 ability to recognize information gaps and strategically gather missing context through user interaction.
 1312

1313 **H.6 FOLLOW-UP SUB-TASK TAXONOMY**

1314 In addition to initial ambiguities, interactive scenarios require systems to handle diverse follow-up
 1315 requests that extend or refine the analytical chain. We categorize follow-ups into six types (Table 8),
 1316 covering constraint adjustments, topic pivots, attribute modifications, result-driven drill-downs,
 1317 aggregation-based summarizations, and state-dependent follow-ups based on newly created objects.
 1318 These follow-ups test whether evaluated systems can maintain context, adapt to evolving user needs
 1319 and database, and produce coherent SQL across multiple turns.
 1320

1321 Table 8: Follow-up Sub-Task Taxonomy in BIRD-INTERACT
 1322

Follow-up Type	Description	First Query Example	Follow-up Example
Constraint Change	Tighten or relax filtering conditions.	"List employees hired in 2024."	"Only engineers." / "Include 2023 as well."
Topic Pivot	Compare or switch entity values to explore alternatives.	"Sales of Product A in 2023."	"What about Product B?"
Attribute Change	Modify the requested attributes, metrics, or columns.	"Departments with >50 staff."	"Give their average salary."
Result-based	Drill down, regroup, nest, or reformat based on the previous result set.	"List projects finished in 2023."	"For Apollo, show its budget."
Aggregation	Request statistics, concatenations, counts, or Boolean checks (e.g., AVG, STRING_AGG, MAX FILTER, ARRAY_AGG+LIMIT, EXISTS). Final output is typically a scalar, single row, or compact table.	"Show the top-10 artists by track count."	"Give me their names joined into a single comma-separated string."
Object-Dependent	First query creates or modifies a database object (e.g., table, view), and the follow-up query operates on it.	"Create a table of employees with salary above 100k."	"From that table, list only engineers."

1337 **I EXPERIMENT DETAILS**

1338 **I.1 MODEL ALIAS**

1340 The following aliases are used for the models in this work:
 1341

1342

- 1343 • Gemini-2.0-Flash: gemini-2-0-flash-001
- 1344 • DeepSeek-R1: deepseek-r1
- 1345 • GPT-4o: gpt-4o-2024-11-20
- 1346 • DeepSeek-V3: deepseek-chat
- 1347 • O3-Mini: o3-mini-2025-01-31

1350 • Claude-Sonnet-3.7: `claude-3-7-sonnet-20250219`
 1351 • Qwen-3-Coder-480B: `Qwen3 Coder 480B A35B`
 1352 • DeepSeek-Chat-V3.1: `deepseek-chat-v3.1`
 1353 • Gemini-2.5-Pro: `gemini-2-5-pro`
 1354 • Claude-Sonnet-4: `claude-sonnet-4-20250514`
 1355 • GPT-5: `gpt-5`
 1356
 1357
 1358

1359 **I.2 EXPERIMENT SETUP**
 1360

1361 All experiments were conducted under deterministic decoding to ensure reproducibility. Specifically,
 1362 we set `temperature=0` and `top_p=1` for all models. Each experiment was executed a single time
 1363 due to the high cost of commercial API calls and the deterministic nature of the outputs under these
 1364 settings. For both c -Interact and a -Interact, the default user patience budget was set to 3, in addition to
 1365 the required turns for ambiguity resolution, which equals the number of annotated ambiguities. In the
 1366 Interaction Test-Time Scaling experiments, we considered patience values of 0, 3, 5, and 7 to evaluate
 1367 robustness under varying interaction budgets. For a -Interact, the base budget was set to 6 to allow
 1368 systems sufficient capacity to explore the environment and execute SQL queries before submitting.
 1369 All model inferences were obtained directly from their official APIs or released checkpoints to ensure
 1370 authenticity and consistency. For those models with reasoning capabilities, we set reasoning effort as
 1371 default "medium".
 1372

1373 **J ACTION SPACE AND SELECTION PATTERNS IN a -INTERACT**
 1374

1375 Table 9: Action space for the agent showing available actions, their environments, arguments, return
 1376 values (as observation), and associated costs.
 1377

Action	Env.	Arguments	Return Value	Cost
<code>execute</code>	DB	<code>sql</code>	Query Result	1
<code>get_schema</code>	DB	-	Database Schema	1
<code>get_all_column_meanings</code>	DB	-	All Columns' Meanings	1
<code>get_column_meaning</code>	DB	<code>table, column</code>	Column Meaning	0.5
<code>get_all_external_knowledge_names</code>	DB	-	All Knowledge Names	0.5
<code>get_knowledge_definition</code>	DB	<code>knowledge</code>	Knowledge Definition	0.5
<code>get_all_knowledge_definitions</code>	DB	-	All Knowledge Definitions	1
<code>ask</code>	User	<code>question</code>	User Clarification	2
<code>submit</code>	User	<code>sql</code>	User Feedback	3

1387
 1388 **J.1 ACTION SPACE IN a -INTERACT**
 1389

1390 Table 9 lists the nine actions an agent may invoke during the a -Interact evaluation. They naturally
 1391 cluster into two families:
 1392

1393 **Environment-only probes (cost ≤ 1).** Seven low-cost calls let the agent inspect the database and
 1394 hierarchical knowledge base (HKB) without engaging the user:
 1395

1396 • `execute`: run a candidate SQL statement and receive the result set;
 1397 • `get_schema`, `get_all_column_meanings`, `get_column_meaning`: expose
 1398 structural and semantic metadata;
 1399 • `get_all_external_knowledge_names`, `get_knowledge_definition`,
 1400 `get_all_knowledge_definitions`: retrieve business concepts from the HKB.
 1401

1402 Graduated costs (0.5–1) discourage brute-force enumeration yet remain low enough to support
 1403 iterative exploration.

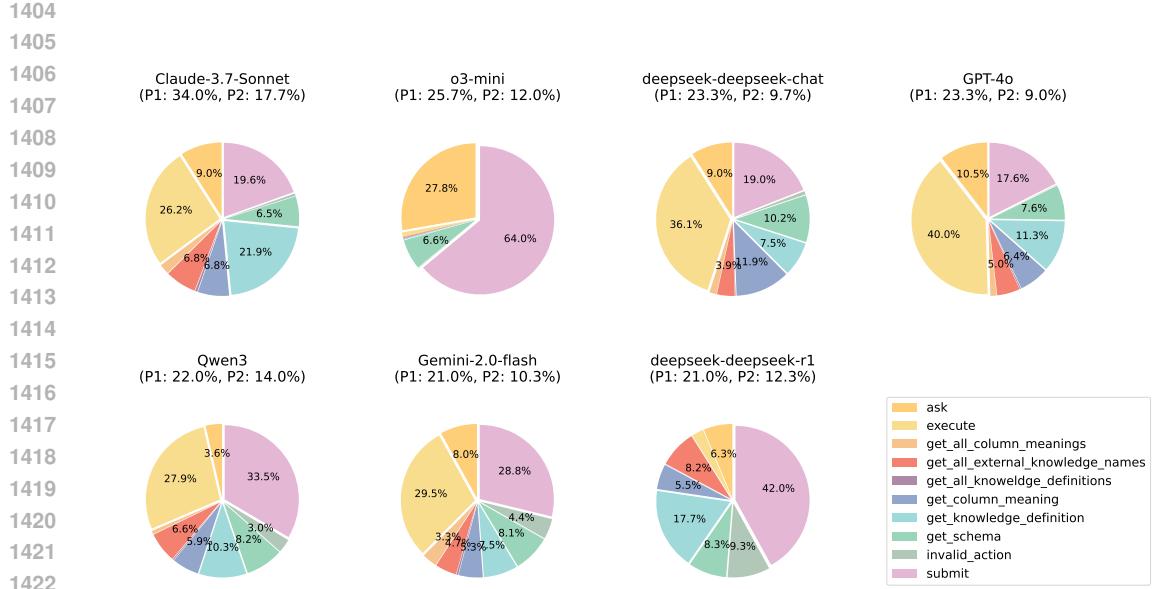


Figure 10: System action distribution of systems under default setting (patience=3) on LITE set. P1 and P2 indicate the success rate for the first sub-task and the second sub-task.

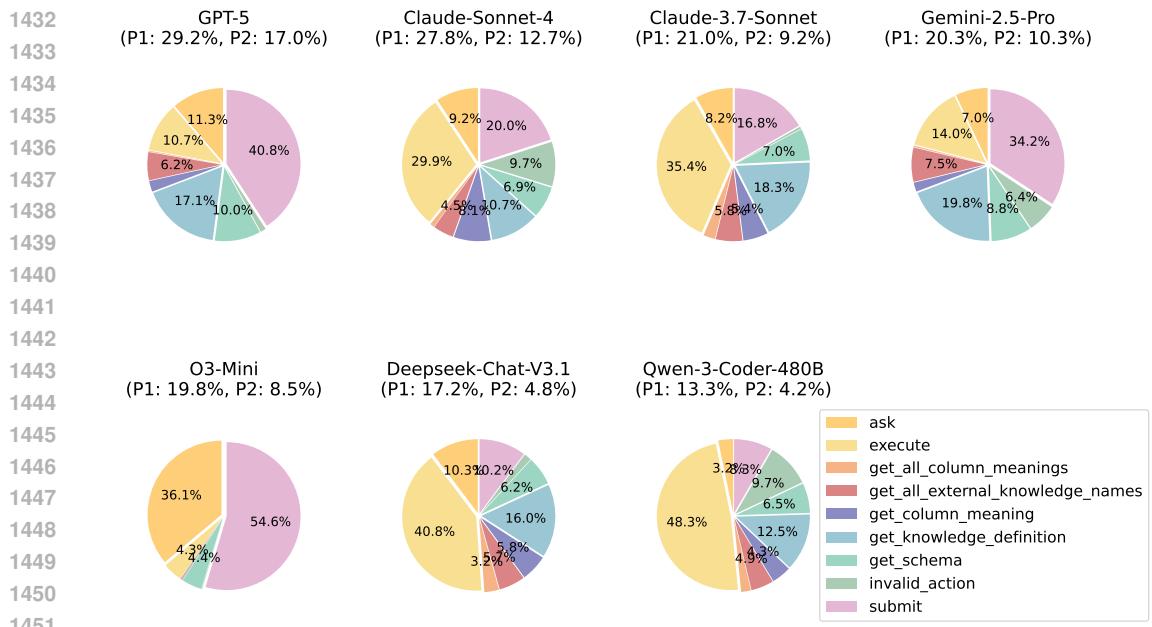
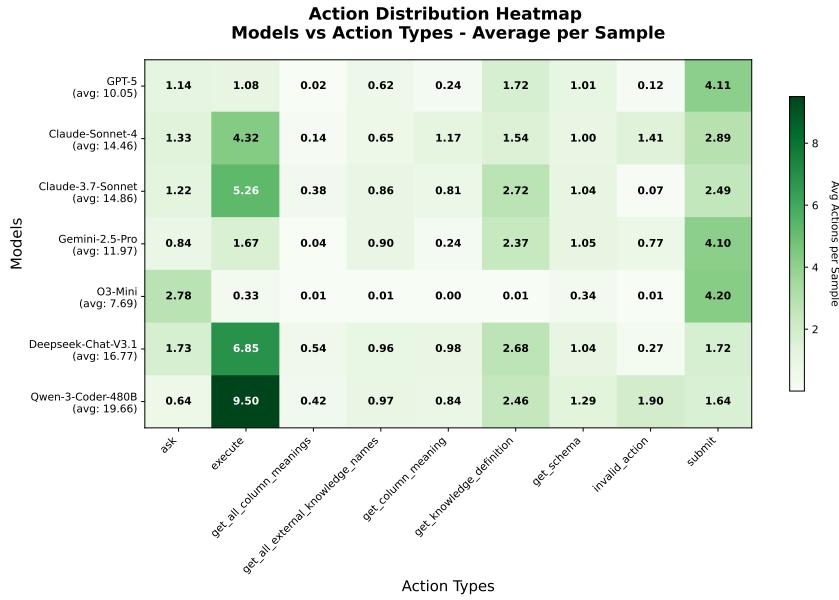


Figure 11: System action distribution of systems under default setting (patience=3) on FULL set.. P1 and P2 indicate the success rate for the first sub-task and the second sub-task.

1458

1459

1460



1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

Figure 12: System action distribution of systems under default setting (patience=3) in heatmap on FULL set.

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

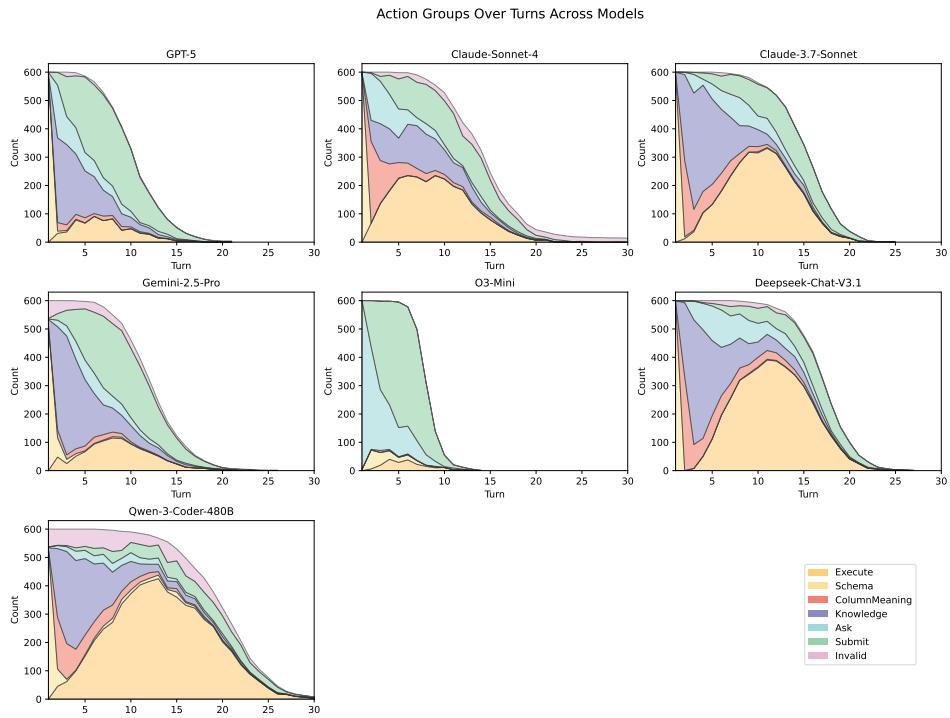


Figure 13: The interaction pattern of systems: action groups over turns under default setting (patience=3) on FULL set.

1512 **User-mediated interactions (cost ≥ 2).** When autonomous reasoning is insufficient, the agent can
 1513
 1514 • ask (cost 2): pose a clarifying question to the user simulator;
 1515
 1516 • submit (cost 3): submit a full SQL candidate to the user. The user will conduct the
 1517 test-case evaluation and give the feedback to the agent.

1518 The higher penalties reflect the real-world expense of analyst involvement and encourage systems
 1519 to reserve these calls for genuinely ambiguous scenarios or final validation. Overall, this action
 1520 design balances expressive power with explicit cost signals, promoting strategic tool use, efficient
 1521 information gathering, and minimal reliance on the user simulator.

1522 **J.2 ACTION SELECTION PATTERNS AND THEIR IMPACT (FULL SET)**

1523 Figure 11 and Figure 12 show how seven systems distribute their calls across the nine available
 1524 actions (Table 9) on the FULL set. We summarize three observations:

1525 **1. Balanced strategies outperform extremes.** The strongest performers, GPT-5 (29.2%) and
 1526 Claude-Sonnet-4 (27.8%), adopt relatively balanced strategies. GPT-5 splits its budget almost evenly
 1527 between environment probes (47%) and user involvement (ask+submit: 52%). Claude-Sonnet-4
 1528 follows a similar pattern, but with heavier emphasis on execute (29.9%) and lighter use of submit
 1529 (20.0%). By contrast, O3-Mini expends an extreme **91%** of its budget on user calls (36% ask,
 1530 55% submit) and allocates only 4% to execute, passing fewer than one-fifth of the first sub-
 1531 tasks. On the other side, Qwen-3-Coder (48% execute) and DeepSeek-Chat (41% execute) are
 1532 strongly execution-heavy and likewise underperform (P1 13.3% and 17.2%). This contrast suggests
 1533 that successful agents must strike a balance between exploring the environment and committing to
 1534 user-facing actions, rather than over-investing in either extreme.

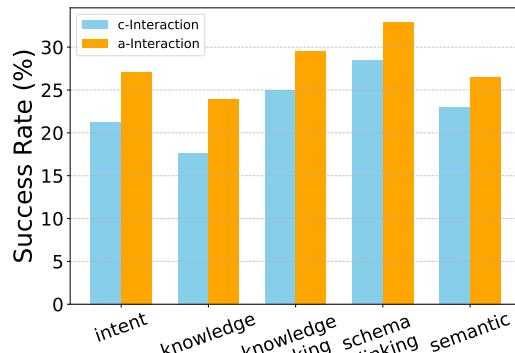
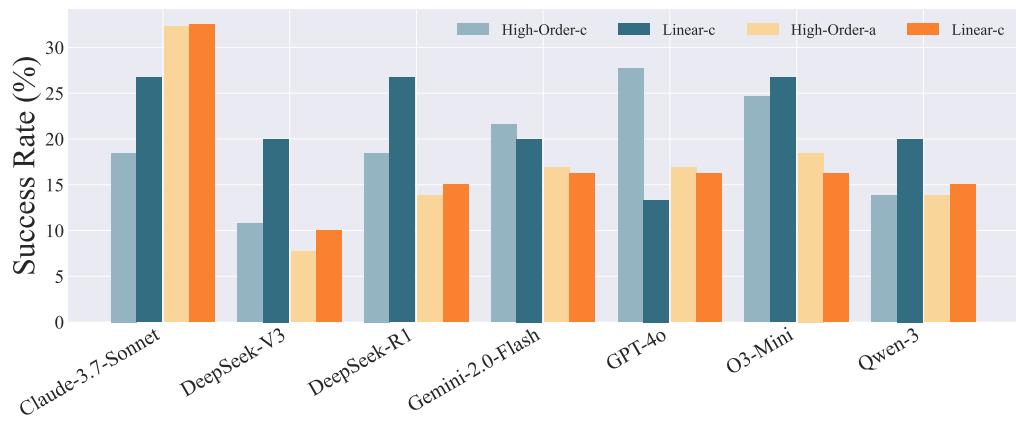
1535 **2. Submitting selectively helps, brute execution hurts.** Across systems, the proportion of submit
 1536 calls correlates positively with P1 (Pearson $r \approx 0.41$, Spearman $\rho \approx 0.54$), while the proportion of
 1537 execute calls correlates negatively (Pearson $r \approx -0.52$, Spearman $\rho \approx -0.54$). In practice, this
 1538 means that repeatedly probing the database with tentative execute calls without consolidation
 1539 tends to waste budget, whereas converging on a grounded hypothesis and committing to submit
 1540 improves success rates by getting the feedback from the user. For example, Claude-3.7-Sonnet and
 1541 DeepSeek-Chat each keep submit usage below 17% and 11%, instead relying heavily on execute.
 1542 At the other extreme, O3-Mini’s indiscriminate strategy of submitting more than half of all turns also
 1543 underperforms, confirming that it is not the absolute amount of submission that matters if ignoring
 1544 the information from the user and environment.

1545 **3. Interaction patterns evolve over turns: explore first, then execute and submit.** As shown in
 1546 Figure 13, stronger systems (e.g., GPT-5, Claude-Sonnet-4) follow a clear turn-by-turn strategy: in
 1547 early turns they combine environment exploration with user clarifications to gather information, while
 1548 in mid and later turns, they increase execute and submit calls to test and refine SQL. In contrast,
 1549 weaker systems either submit too early (O3-Mini) or overuse execution without consolidation (Qwen-
 1550 3-Coder), leading to poorer performance. This demonstrates that performance depends not only on
 1551 overall action mix but also on how actions are sequenced across interaction turns.

1552 Taken together, these results indicate that in the agentic *c*-Interact setting, performance depends less
 1553 on sheer interaction times and more on how well a system balances environment exploration with
 1554 user interaction, commits to submissions at the right time, and avoids wasted budget.

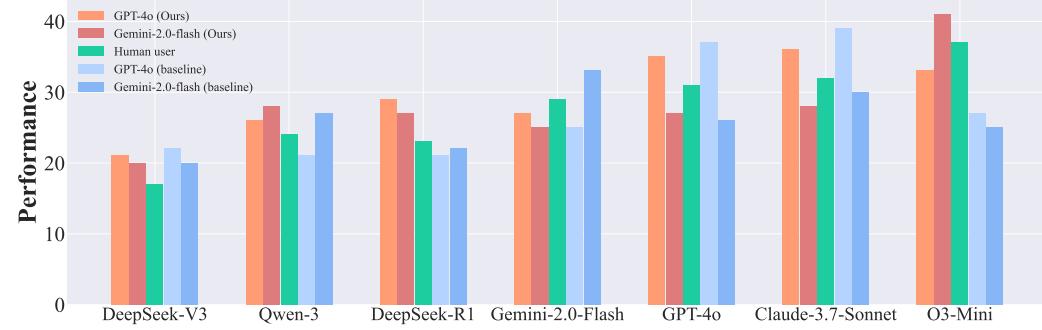
1555 **K PERFORMANCE ON DIFFERENT AMBIGUITY TYPES**

1556 **Which knowledge missing type lead to more ambiguity? Linear or High-order?** Figure 15
 1557 compares tasks where (1) the missing fact lies on a simple, “linear” chain of the hierarchy with (2)
 1558 those where the gap occurs *within* the chain—what we term a higher-order ambiguity. Linear cases
 1559 correspond to *one-shot knowledge gaps*, while higher-order cases correspond to *knowledge chain
 1560 breaking* in Section 3.2. In the scripted *c*-Interact setting, every model finds linear gaps easier: once

Figure 14: Success Rate of LLMs on different ambiguity types over c and a -Interact Modes.Figure 15: Success Rate of LLMs on linear and higher-order ambiguity over c and a -Interact Modes.

1620 Table 10: Success Rate and Final Normalized Reward of different models on BIRD-INTERACT-LITE.
1621 The success rate is cumulative; Reward* is the normalized reward (%). The values reported in
1622 *c*-Interact are after the debugging phase, and (±n) means the performance gained via debugging. Avg.
1623 Cost is the cost for one task on average in USD.

Model	Priority Question (Success Rate %) ↑			Follow Ups (Success Rate %) ↑			Reward* ↑	Avg. Cost ↓
	BI	DM	Overall	BI	DM	Overall		
<i>c</i> -Interact Text-to-SQL								
DeepSeek-V3	9.23 (±1.54)	40.95 (±6.67)	20.33 (±3.33)	5.13 (±1.54)	24.76 (±1.90)	12.00 (±1.67)	17.00	\$ 0.01
Qwen-3	14.36 (±2.56)	44.76 (±2.86)	25.00 (±2.67)	7.18 (±0.51)	28.57 (±4.76)	14.67 (±2.00)	21.17	\$ 0.03
DeepSeek-R1	16.92 (±3.08)	43.81 (±6.67)	26.33 (±4.33)	9.74 (±2.05)	27.62 (±3.81)	16.00 (±2.67)	22.10	\$ 0.08
Claude-Sonnet-3.7	17.44 (±3.59)	59.05 (±1.90)	32.00 (±3.00)	9.23 (±2.05)	27.62 (±7.62)	15.67 (±4.00)	26.10	\$ 0.32
Gemini-2.0-Flash	16.92 (±3.59)	60.95 (±7.62)	32.33 (±5.00)	9.74 (±1.03)	40.95 (±3.81)	20.67 (±2.00)	27.63	\$ 0.04
GPT-4o	26.15 (±7.18)	54.29 (±6.67)	36.00 (±7.00)	14.36 (±1.03)	30.48 (±1.90)	20.00 (±1.33)	29.67	\$ 0.32
O3-Mini	22.56 (±1.54)	64.76 (±3.81)	37.33 (±2.33)	12.31 (±0.00)	46.67 (±0.95)	24.33 (±0.33)	32.93	\$ 0.09
<i>a</i> -Interact Text-to-SQL								
Gemini-2.0-Flash	8.21	44.76	21.00	4.10	21.90	10.33	17.80	0.03 \$
DeepSeek-R1	6.67	47.62	21.00	3.59	28.57	12.33	18.40	0.09 \$
GPT-4o	12.31	43.81	23.33	4.62	17.14	9.00	19.03	0.46 \$
DeepSeek-V3	11.79	44.76	23.33	6.15	16.19	9.67	19.23	0.06 \$
Qwen-3	7.18	49.52	22.00	5.64	29.52	14.00	19.60	0.03 \$
O3-Mini	14.87	45.71	25.67	6.67	21.90	12.00	21.57	0.08 \$
Claude-Sonnet-3.7	22.05	56.19	34.00	10.77	30.48	17.67	29.10	0.67 \$



1653 Figure 16: The performance under our proposed two-stage user simulator and baseline user simulator
1654 compared with human users on 100 sampled tasks.

1656 the prerequisite nodes are supplied, the remaining hop is almost mechanical. Insert a break *within*
1657 the chain, however, and success drops sharply because the model must now infer *which* intermediate
1658 concept is still unknown before it can even formulate a clarification. When we switch to the agentic
1659 *a*-Interact the story changes only for Claude-Sonnet-3.7, whose planning policy manages to erase the
1660 gap between the two categories; O3-Mini and Qwen-3 still stumble on higher-order cases. The trend
1661 suggests that the fundamental obstacle is not retrieval per se but the metacognitive step of localising
1662 the missing link in a multi-step reasoning path—something only the most disciplined agent manages
1663 to do reliably.

L EXPERIMENTS ON BIRD-INTERACT-LITE

1668 Table 10 reports results on BIRD-INTERACT-LITE. We observe patterns consistent with those on
1669 the Full set: overall success rates and normalized rewards remain low, confirming the difficulty
1670 of interactive text-to-SQL even with simpler databases. Models that balance clarification with
1671 environment exploration, such as Claude-Sonnet-3.7, achieve higher SR and NR, while those relying
1672 too heavily on either execution or submission lag behind. Follow-up sub-tasks continue to pose
1673 a greater challenge than priority queries, highlighting the difficulty of maintaining context across
interactions.

```

1674
1675
1676
1677   SELECT name
1678   FROM employee
1679   WHERE age > 30
1680
1681
1682
1683
1684
1685
1686
1687 M ERROR ANALYSIS
1688
1689 We conducted an error analysis by sampling 50 failed cases from our evaluation. We found that over
1690 80% of the errors were caused by incomplete ambiguity resolution. In many cases, systems either
1691 asked too few clarification questions, asked none at all, or failed to detect the correct ambiguity and
1692 request the appropriate clarification. On average, each task in our benchmark contains around four
1693 ambiguities (Table 1), but systems asked for clarification only about once per task (Figure 12). As a
1694 result, most tasks were attempted with insufficient information, making it difficult to reach the correct
1695 solution. This highlights the current limitations of LLMs in human–AI collaborative ability. The
1696 remaining errors stem from common issues in text-to-SQL generation, such as SQL syntax mistakes,
1697 incorrect column selection, or misunderstanding of database constraints.
1698
1699
1700 N USER SIMULATOR DESIGN DETAILS
1701
1702 The main text describes our function-driven user simulator, which invokes the LOC() action to
1703 handle reasonable clarification questions that are not covered by pre-annotated ambiguities. This
1704 appendix details the Abstract Syntax Tree (AST)-based retrieval mechanism that allows the simulator
1705 to locate the relevant SQL fragment from the ground-truth (GT) query to answer such questions
1706 precisely. And the average cost for our function-driven user simulator is 0.03 USD per data.
1707
1708 The primary challenge for the LOC() action is to find the specific part of the GT SQL that corresponds
1709 to the system’s question without resorting to brittle keyword matching on the raw SQL string. An
1710 AST provides a structured, hierarchical representation of the SQL query that is ideal for this task.
1711 Our retrieval process consists of three main steps: Parsing, Node Matching, and Contextual Snippet
1712 Extraction.
1713
1714 1. SQL Parsing into an AST. As a first step, the ground-truth SQL query is processed by a robust
1715 SQL parser (e.g., based on libraries like ‘sqlglot’) to generate an AST. As illustrated in Figure 17,
1716 this tree deconstructs the query into its fundamental syntactic components. Each node in the tree
1717 represents a part of the query, such as a clause (SELECT, FROM, WHERE), a function (COUNT(),  

1718 AVG()), an identifier (column or table names), an operator (=, >), or a literal value ('USA', 2023).
1719 This hierarchical structure makes every component of the query individually addressable.
1720
1721 2. Node Matching via Semantic Search of LLMs. With the AST generated, the next step is to
1722 identify the node(s) most relevant to the system’s clarification question. To achieve this, we flatten
1723 the AST by traversing it and creating a list of all its nodes. This approach is far more robust than
1724 simple keyword matching, as it can capture relationships like “how many” matching COUNT() or
1725 “most recent” matching an ORDER BY ... DESC clause.
1726
1727 This AST-based method ensures that the LOC() function can reliably ground its responses in the GT
SQL, providing accurate and contextually relevant information without leaking the entire query.

```

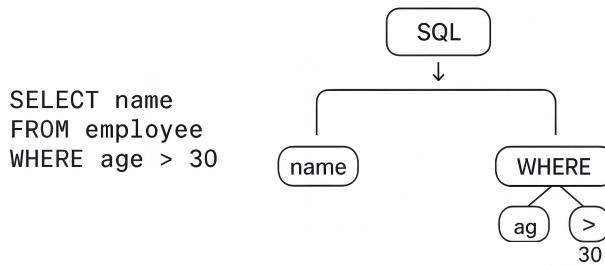


Figure 17: An example of an Abstract Syntax Tree (AST) for a SQL query.

1728 O EVALUATING THE FUNCTION-DRIVEN USER SIMULATOR

1729
 1730 To empirically validate the effectiveness of our proposed function-driven user simulator, we conduct
 1731 a comprehensive evaluation focused on its robustness and reliability. We first introduce a new
 1732 benchmark, `UserSim-Guard`, specifically designed to challenge user simulators. We then present
 1733 our experimental setup and report the results, comparing our approach against a standard baseline.
 1734

1735 O.1 USERSIM-GUARD: A BENCHMARK FOR SIMULATOR ROBUSTNESS

1736
 1737 To enable a systematic evaluation of simulator performance, we constructed `UserSim-Guard`, a
 1738 manually curated dataset containing 1,989 challenging questions.
 1739

1740 **Construction Methodology.** The construction of `UserSim-Guard` was carried out by a team of
 1741 7 trained annotators with expertise in SQL and natural language. To ensure data quality and diversity,
 1742 we implemented a rigorous annotation protocol. The dataset is structured around three categories of
 1743 system clarification requests, designed to probe different aspects of a simulator’s capabilities:
 1744

- 1745 • **AMB (Annotated Ambiguity):** For this category, annotators were tasked with formulating
 1746 natural language questions based on the pre-annotated ambiguities present in the Bird-
 1747 Interact-Lite benchmark. These questions directly test the simulator’s ability to correctly
 1748 leverage the provided ambiguity annotations.
 1749
- 1750 • **LOC (Localizable Information):** This category contains reasonable clarification questions
 1751 that are not covered by the pre-annotated ambiguities. Annotators were instructed to
 1752 carefully examine the ground-truth SQL query and identify potential points of confusion
 1753 (e.g., specific column choices, formatting preferences, or sub-component logic) and craft
 1754 questions accordingly. The answers to these questions can be located and inferred from the
 1755 ground-truth SQL.
 1756
- 1757 • **UNA (Unanswerable):** To test the simulator’s safety and adherence to its role, this category
 1758 includes questions that are intentionally inappropriate or attempt to solicit privileged infor-
 1759 mation. Annotators were prompted to formulate queries that directly ask for the ground-truth
 1760 SQL, the database schema, or step-by-step guidance for solving the problem. A robust
 1761 simulator should refuse to answer such questions.
 1762

1763 Furthermore, to investigate the simulator’s sensitivity to different interaction styles, we instructed
 1764 annotators to phrase each question in three distinct styles: **Concise** (terse and keyword-focused),
 1765 **Normal** (standard conversational language), and **Verbose** (descriptive and context-rich).
 1766

1767 **Quality Control.** To ensure the highest data quality, we employed a multi-stage quality control
 1768 process. Each question-action pair in `UserSim-Guard` was annotated using a double-blind, "back-
 1769 to-back" annotation scheme. Specifically, each data point was independently created by one annotator
 1770 and then validated by a second annotator. Any disagreements between the two annotators were
 1771 resolved by a third, senior annotator who made the final adjudication. This process minimizes
 1772 individual bias and errors. We measured the inter-annotator agreement (IAA) using Fleiss’ Kappa,
 1773 achieving a score of 0.92, which indicates substantial agreement among our annotators and confirms
 1774 the reliability of our labels.
 1775

1776 O.2 EXPERIMENTAL SETUP

1777 **Models and Baselines.** We evaluate our **function-driven user simulator** against a **baseline**
 1778 **simulator** that directly generates responses using a single-pass LLM prompt. To ensure a fair
 1779 comparison, both our method and the baseline are implemented using two state-of-the-art large
 1780 language models as backbones: Gemini-2.0-Flash and GPT-4○.
 1781

1782 **Evaluation Framework.** To provide an objective and comprehensive observation of different
 1783 user simulator mechanisms, we designed a robust evaluation framework using LLMs-as-Judge.
 1784 This approach allows for a nuanced assessment of response quality beyond simple string matching.
 1785 To mitigate potential self-enhancement bias, we employed two powerful and independent models,
 1786 Qwen-2.5-72B and Llama-3.1-70B, as evaluators.
 1787

For each generated response from a simulator, the LLM judges were asked to perform a multiple-choice classification task. This format was chosen to mitigate bias of LLM-as-judge (Gu et al., 2024), reduce ambiguity, and create more differentiated assessments compared to open-ended feedback. The options were:

- **A. Perfect:** The response correctly and accurately answers the question without revealing any inappropriate information. It is helpful and natural.
- **B. Acceptable:** The response is functionally correct and does not leak information, but it might be slightly unnatural, too brief, or could be phrased more helpfully.
- **C. Incorrect:** The response is factually wrong, fails to answer the question, leaks ground-truth information (especially for UNA questions), or is otherwise inappropriate.

A response is considered a failure only if it is classified as ‘C’. For reporting purposes, we consider both ‘A’ and ‘B’ as correct. To ensure the reliability of our results, we adopt a strict **consistency-based evaluation**: a response is marked as correct only if *both* LLM judges independently classify it as either ‘A’ or ‘B’. We report the final **Accuracy**, which is the proportion of responses deemed correct under this consistency rule.

O.3 RESULTS AND ANALYSIS

Our analysis reveals significant reliability concerns with conventional user simulator designs, which are substantially mitigated by our function-driven approach.

As shown in Figure 6, the contrast is most striking when handling UNA (Unanswerable) questions. Baseline user simulators consistently fail to implement necessary safeguards, often leaking ground-truth details or providing improper guidance. This leads to a high failure rate of over 34% for both model backbones. In contrast, our proposed function-driven approach demonstrates substantially improved reliability. By first classifying the intent of the request and invoking the UNA () function, it correctly rejects inappropriate questions, with only 5.9% of its responses falling into problematic categories. This represents a significant improvement in user simulator robustness.

Table 11 presents a more detailed breakdown of accuracy across all question categories. Our function-driven simulator consistently outperforms the baseline across all categories and for both backbone models. The performance gap is most pronounced in the UNA category, confirming the observations from Figure 6. However, our method also shows notable improvements in the AMB and LOC categories, suggesting that the structured, two-stage process of identifying an action and then generating a response leads to more precise and reliable answers overall. This design enforces constraints that prevent the LLM from deviating from the core task, ensuring the simulator’s behavior remains predictable, controllable, and aligned with the goal of providing fair and realistic user feedback.

Table 11: Accuracy (%) of user simulators on the UserSim-Guard benchmark. Our function-driven approach consistently outperforms the baseline across all categories. Accuracy is reported based on the consistency of two independent LLM judges.

Backbone	Simulator	AMB Acc.	LOC Acc.	UNA Acc.
Gemini-2.0-Flash	Baseline	93.57	95.52	66.93
	Ours (Function-Driven)	94.76	96.75	93.80
GPT-4o	Baseline	90.72	96.30	63.45
	Ours (Function-Driven)	98.81	98.88	94.08

P DETAILED RELATED WORK

Text-to-SQL. Text-to-SQL has emerged as an attractive interface to relational databases because it frees users from learning intricate schema details and SQL syntax. The advent of large language models (LLMs) (OpenAI, 2025; Team et al., 2023; Team, 2024; Guo et al., 2025) with strong reasoning and cross-domain generalization has accelerated this progress. Few-shot systems such as

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861

Normal Sub-task:

User: For facilities with high Suicide Risk Prevalence over 20%, calculate the Resource-Demand Differential. List the facility ID, PFIS, FRAI, and RDD scores, ordered by RDD from highest to lowest, showing the top 100 facilities. This helps identify resource gaps in critical environments.

Interaction 1:

System: I need to clarify what the Resource-Demand Differential (RDD) is. Based on the external knowledge, I don't see a direct definition for RDD. Could you explain how RDD should be calculated in this context?

User: The Resource-Demand Differential (RDD) is calculated as the difference between the Patient Functional Impairment Score (PFIS) and the Facility Resource Adequacy Index (FRAI)...

Interaction 2:

System: What does "high-risk cases with prevalence over 20%" refer to specifically? Is this referring to the Suicide Risk Prevalence (SRP) mentioned in the external knowledge?

User: Yes, 'high-risk cases with prevalence over 20%' refers to the Suicide Risk Prevalence (SRP) as mentioned in the external knowledge.

Interaction3:

System: How many top facilities should I show in the results? And how should I order them - by the highest RDD values?

User: The results should show the top 100 facilities, ordered by the highest RDD values in descending order.

Interaction4:

System: For calculating the Patient Functional Impairment Score (PFIS) and Facility Resource Adequacy Index (FRAI), should I use the exact formulas from the external knowledge...

User: The formulas provided for calculating PFIS and FRAI are correct and should be used as described for this task.

SQL:

```
SELECT
    sr.fac_key AS facility_id, fi.pfis,
    ra.frai, (fi.pfis - ra.frai) AS rdd
FROM facility_suicide_risk sr
JOIN facility_functional_impairment fi ON
    sr.fac_key = fi.fac_key
JOIN facility_resource_adequacy ra ON
    sr.fac_key = ra.fac_key
WHERE fi.pfis IS NOT NULL AND ra.frai IS
    NOT NULL
ORDER BY rdd DESC
LIMIT 100;
```

Figure 18: Case study of effective communication under *c*-Interact.

1862 DIN-SQL (Pourreza & Rafiei, 2023) and DAIL-SQL (Gao et al., 2024a) exploit in-context learning to
1863 decouple the task into schema-linking and SQL-generation stages, while methods like CodeS (Li et al.,
1864 2024) and DTS-SQL (Pourreza & Rafiei, 2024) improve smaller models through carefully curated,
1865 high-quality training subsets. Concurrently, agent-based frameworks that interleave thought, action,
1866 and observation, which are exemplified by MAC-SQL (Wang et al., 2025), demonstrate that iterative
1867 interaction with the environment can further raise SQL accuracy. Despite these advances, virtually
1868 all existing systems are evaluated only in single-turn settings; their effectiveness in conversational,
1869 multi-turn text-to-SQL scenarios remains an open question.

1870 **Multi-turn Text-to-SQL.** Multi-turn Text-to-SQL addresses the reality that user queries are often
1871 ambiguous or underspecified; without clarification the system may return incorrect or empty results.
1872 Benchmarks such as CoSQL and LEARN-TO-CLARIFY extend the Spider (Yu et al., 2018) dataset
1873 with dialogue turns to probe this challenge (Yu et al., 2019a; Chen et al., 2025b). However, these
1874 resources presuppose a static, noise-free dialogue history shared by all models, ignoring that different
1875 systems might ask different follow-up questions (Yao et al., 2025; Barres et al., 2025). More recent
1876 evaluations of autonomous agents, for example, MINT, introduce dynamic interaction histories (Wang
1877 et al., 2024), yet they have not been adapted to the text-to-SQL setting. Constructing a realistic
1878 user simulator for databases is non-trivial because it must respect complex schema constraints while
1879 keeping the answer space fair and controllable (Zhou et al., 2025; Barres et al., 2025). In this work,
1880 we fill this gap by proposing an interactive benchmark that is implemented with an optimized user
1881 simulator, new databases, and knowledge, and we analyze the behaviour of state-of-the-art reasoning
1882 models rigorously to make contributions for realistic and uncertain text-to-SQL systems.

Q PATHWAYS TO EFFECTIVE COMMUNICATION

1886 Motivated by the Memory Grafting results, which highlight the importance of communication skills
1887 for interactive text-to-SQL systems, we proceed to a deeper analysis. In this section, we investigate
1888 the specific communication patterns and dialogue strategies that lead to improved task performance.
1889 Through an in-depth analysis of high-quality interaction data, we identify a recurring and highly
effective pattern we term the "funnel effect." This is characterized by a series of progressively

1890
 1891 deepening inquiries that begin with a user’s relatively broad and ambiguous initial intent, then
 1892 gradually narrow the scope and clarify key details, and ultimately converge into a clear and executable
 1893 analysis plan. We deconstruct this pattern into three primary phases.

1894
 1895 **Initial Interaction Phase: Concept Clarification and Scoping.** In the initial stage of high-quality
 1896 dialogues, the Large Language Model (LLM) tends to pose questions aimed at clarifying core
 1897 concepts. This allows it to quickly identify ambiguous areas within the user’s query and proactively
 1898 initiate dialogue for disambiguation. Such questions are highly targeted and efficient, for example:
 1899 *“How would you like to define the “interference score” for each telescope?”, or “Could you clarify
 1900 what you mean by “machines that are always breaking down”?“*

1901 Concurrently, the model does not passively await precise descriptions from the user. Instead, it
 1902 proactively offers specific options to guide the user toward a more explicit definition, thereby
 1903 preventing further vague statements from the user, for example: *“Should it be based on specific
 1904 columns like atmospheric interference, RFI status, or a combination of factors?“*

1905 Furthermore, the model can effectively integrate external knowledge to quantify the user’s subjective
 1906 descriptions into actionable data criteria, for example: *“Could you clarify what criteria should be
 1907 used to identify “good quality” scans? Should I use the Premium Quality Scan definition from the
 1908 external knowledge (SQS > 7.5, comprehensive coverage with Coverage ≥ 95% and Overlap ≥
 1909 30%)?“*

1910
 1911
 1912 **Mid-term Interaction Phase: Inquiring about Computational Logic and Implementation Details.**
 1913 As the dialogue progresses, the model’s focus shifts to implementation details, concentrating on
 1914 computational logic and operational steps. Given that user queries often involve complex calculations
 1915 or business logic, such clarification is crucial for ensuring analytical accuracy. This includes precise
 1916 confirmation of formulas, weight allocation, and the mapping between query variables and specific
 1917 data fields, for example: *“For the repair cost, should I use the maintenance cost (MaintCost) or the
 1918 replacement cost (ReplCost)...?“*

1919 The model also demonstrates a forward-looking capability for error detection, anticipating and
 1920 mitigating potential data processing errors through questioning, for example: *“I notice that ‘recvDay’
 1921 and ‘beginDay’ have different formats. Could you confirm how these dates are formatted so I can
 1922 correctly calculate the time difference between them?“*

1923 A significant finding is the model’s ability to uncover analytical dimensions that the user may not
 1924 have considered, effectively asking questions the user didn’t know to ask. This expands the depth and
 1925 breadth of the analysis, for example: *“Do you want to see the count of collectors for each idol genre,
 1926 or do you want to see the distribution of idol genres that collectors interact with (which could include
 1927 multiple genres per collector if they interact with different idols)?“*

1928 To ensure the accuracy of complex calculations, the model breaks them down into smaller, more
 1929 easily verifiable steps and confirms each one with the user, for example: *“To calculate Achievement
 1930 Density (AD), I need membership duration in days...“*

1931
 1932
 1933 **Final Interaction Phase: Formatting and Final Confirmation.** In the final stage, the dialogue’s
 1934 focus shifts to the formatting and presentation of the results. This typically involves a final confir-
 1935 mation of the output fields, sorting rules, and numerical precision (such as the number of decimal
 1936 places) to ensure the final deliverable fully aligns with the user’s expectations, for example: *“For the
 1937 output format, would you like the results to be ordered in any specific way...? Also, should I round the
 1938 average BFR and standard deviation values to a specific number of decimal places?“*

1939 The example illustrated in Figure 18 exemplifies this high-quality interaction flow. The process
 1940 begins with the clarification of the ambiguous concepts “RDD” and “high-risk cases with prevalence
 1941 over 20%”. It then delves into inquiries about calculation details and determines the presentation and
 1942 sorting method for the results. Finally, by re-confirming the calculation formula, it ensures the rigor
 1943 and accuracy of the entire analysis process.

1944
1945

Q.1 HUMAN EVALUATION OF DATASET QUALITY

1946 To rigorously assess the quality and reliability of our BIRD-INTERACT benchmark, we conducted a
 1947 thorough human evaluation. We randomly selected 300 data points from the dataset and invited 10
 1948 experts with significant experience in SQL and database systems to serve as reviewers. Each data
 1949 point, consisting of a user question, a ground-truth SQL query, and its ambiguity annotations, was
 1950 evaluated against a set of core quality metrics. The evaluation was performed using a binary scoring
 1951 system (1 for Accept, 0 for Reject) for each metric (Li et al., 2025c).

1952
1953
1954

Evaluation Metrics. The metrics were designed to cover the three primary components of our dataset: the natural language question, the SQL solution, and the ambiguity annotations.

1955
1956
1957
1958
1959
1960
1961
1962
1963

- **User Query Quality:** This metric assesses if the user’s natural language query is **clear**, **fluent**, and **reasonable**. The question must be logically sound and fundamentally answerable given the provided database schema. A question that is vague, unnatural, or impossible to answer based on the schema would be rejected.
- **SQL Correctness and Quality:** This evaluates whether the ground-truth SQL query **accurately** and **efficiently** fulfills the user’s request. The query must be both semantically correct (i.e., it logically answers the question) and syntactically valid. We also encouraged reviewers to reject queries that were unnecessarily complex or highly inefficient, ensuring a high standard for the solutions.
- **Ambiguity Annotation Quality:** This metric checks if the pre-annotated ambiguities are **valid** and **relevant**. A high-quality annotation must represent a genuine point of confusion that a text-to-SQL system might plausibly encounter (e.g., ambiguity in column selection, grouping logic, or filter conditions). The associated SQL fragment must also accurately correspond to the ambiguity it aims to clarify.
- **Ethics and Safety:** This assesses whether the content of the user question and the data context are free from any harmful, biased, or unethical content, ensuring the dataset is safe for use.

1964
1965
1966
1967
1968
1969
1970
1971
1972

Evaluation Results. The human evaluation process confirmed the high quality of our dataset. Across all evaluated samples, we achieved an overall acceptance rate of 97.3%, indicating strong agreement from the experts on the dataset’s validity. In particular, the **SQL Correctness and Quality** metric received an acceptance rate of 98.7%, underscoring the technical reliability of our benchmark. The **Ambiguity Annotation Quality** was also highly rated at 95.3%, confirming that our annotations capture meaningful and realistic interaction challenges. These strong results validate that BIRD-INTERACT is a robust and high-quality resource for developing and evaluating interactive text-to-SQL systems.

1981
1982
1983

R PERFORMANCE OF ENTRY-LEVEL MODELS

1984
1985
1986
1987
1988
1989
1990
1991
1992
1993

Table 12 details the performance of entry-level open-weight models. **Qwen3-Coder-30B** demonstrates superior performance, notably outperforming the significantly larger Llama-3.1-70B across both *c*-Interact and *a*-Interact. This result suggests that for interactive text-to-SQL tasks, domain-specific coding optimization yields better returns than raw parameter scaling. However, when compared to the state-of-the-art models in Table 2, a distinct capability gap is evident, not just in absolute success rates, but in self-correction potential. While top-tier models like Gemini-2.5-Pro and Claude-Sonnet-4 achieve substantial performance gains through the debugging phase, entry-level models show minimal improvement (typically < 2%). This indicates that while smaller models can follow basic instructions, they currently lack the sufficient reasoning depth to effectively diagnose and resolve their own errors during interaction.

1994
1995
1996
1997

S ANALYSIS OF PERFORMANCE BY DM OPERATION

Figure 19 illustrates the fine-grained performance across different DM operations. We observe a significant disparity in model capability depending on the operation type: destructive and modification

1998 Table 12: Success Rate and Final Normalized Reward of entry-level models on BIRD-INTERACT-
 1999 FULL. The success rate is cumulative; Reward* is the normalized reward (%). The values reported in
 2000 *c*-Interact are after debugging phase, and (+n) means the performance gained via debugging.
 2001

2002 Model	Priority Question (Success Rate %) ↑			Follow Ups (Success Rate %) ↑			Reward* ↑
	2003 BI	2003 DM	2003 Overall	2003 BI	2003 DM	2003 Overall	
<i>c</i>-Interact Text-to-SQL							
Llama-3.1-8B	2.92 (+0.73)	6.35 (+0.00)	4.00 (+0.50)	1.22 (+0.97)	1.59 (+0.53)	1.33 (+0.83)	3.02
Qwen3-8B	6.33 (+0.49)	13.76 (+1.06)	8.67 (+0.67)	2.92 (+0.00)	9.52 (+2.12)	5.00 (+0.67)	7.37
Qwen3-32B	6.81 (+1.95)	13.76 (+1.59)	9.00 (+1.83)	5.60 (+0.24)	6.88 (+1.06)	6.00 (+0.50)	7.68
Qwen3-14B	9.49 (+1.46)	13.76 (+0.53)	10.83 (+1.17)	6.08 (+0.00)	7.94 (+0.53)	6.67 (+0.17)	9.33
Llama-3.1-70B	12.41 (+2.43)	14.81 (+2.12)	13.17 (+2.33)	7.30 (+1.22)	7.41 (+1.59)	7.33 (+1.33)	10.82
Qwen3-Coder-30B	14.60 (+1.70)	19.05 (+1.06)	16.00 (+1.50)	7.30 (+0.00)	9.52 (+0.00)	8.00 (+0.00)	13.30
<i>a</i>-Interact Text-to-SQL							
Llama-3.1-8B	0.25	8.70	2.94	0.25	1.63	0.69	2.27
Qwen3-32B	4.88	24.74	11.17	1.71	6.32	3.17	8.77
Llama-3.1-70B	6.10	<u>34.74</u>	<u>15.17</u>	2.68	7.37	4.17	<u>11.87</u>
Qwen3-8B	<u>6.83</u>	31.05	14.50	2.93	<u>8.95</u>	4.83	11.60
Qwen3-Coder-30B	8.78	38.42	18.17	4.39	<u>8.95</u>	<u>5.83</u>	14.47
Qwen3-14B	5.61	31.58	13.83	<u>3.17</u>	15.79	7.17	11.83
Priority Question SR (%)							
Follow Ups SR (%)							
Claude-3.7-Sonnet (c-interact)	18.5	25.6	50.0	66.7	33.3		
Claude-3.7-Sonnet (a-interact)	25.9	34.4	47.7	77.8	46.7		
Claude-Sonnet-4 (c-interact)	25.9	24.8	56.8	66.7	33.3		
Claude-Sonnet-4 (a-interact)	22.2	42.4	72.7	88.9	60.0		
Deepseek-Chat-V3.1 (c-interact)	25.9	25.6	50.0	77.8	33.3		
Deepseek-Chat-V3.1 (a-interact)	29.6	24.0	38.6	66.7	46.7		
GPT-5 (c-interact)	11.1	17.6	40.9	44.4	20.0		
GPT-5 (a-interact)	29.6	45.6	75.0	100.0	66.7		
Gemini-2.5-Pro (c-interact)	29.6	24.8	59.1	77.8	26.7		
Gemini-2.5-Pro (a-interact)	25.9	38.4	40.9	66.7	60.0		
O3-Mini (c-interact)	29.6	24.8	56.8	77.8	26.7		
O3-Mini (a-interact)	7.4	26.4	50.0	66.7	60.0		
Qwen-3-Coder-480B (c-interact)	22.2	24.0	50.0	55.6	33.3		
Qwen-3-Coder-480B (a-interact)	18.5	20.8	25.0	44.4	20.0		
Success rate (%)							
Success rate (%)							
INSERT	CREATE	UPDATE	DELETE	ALTER TABLE	INSERT	CREATE	UPDATE

Figure 19: Success Rate breakdown on CRUD of LLMs over *c* and *a*-Interact Modes.

2046 tasks (e.g., DELETE, UPDATE) consistently yield higher success rates compared to generative tasks
 2047 (INSERT, CREATE). For instance, while GPT-5 achieves a perfect 100% SR on DELETE priority
 2048 questions in *a*-interact, its performance drops sharply for INSERT operations. This trend suggests
 2049 that models struggle more with the precise schema constraints and value formatting required for
 2050 data creation than with identifying and removing existing records. Furthermore, the performance
 2051 degradation from Priority Questions to Follow-ups is most severe in these generative categories,
 indicating that maintaining complex schema context over interactions remains a critical bottleneck.

```

2052 The prompt of system under c-Interact
2053     """You are a good data scientist with great PostgreSQL writing ability. You have a DB called "[[DB_name]]". You are given a Text-to-
2054     SQL task.
2055
2056     ## Input Information:
2057     You will be provided with:
2058     - Task Description: The type of task you are trying to accomplish.
2059     - DB Schema Information: The detailed DB schema with data examples.
2060     - DB Column Meanings: The detailed DB column meanings explanation.
2061     - External Knowledges: All related External Knowledges about this Text-to-SQL task.
2062     - Text-to-SQL Question: The Text-to-SQL question of this Text-to-SQL task.
2063
2064     Inputs:
2065     <|The Start of Task Description|>
2066     You are a good data scientist who is tasked with generating PostgreSQL to solve the user query. However, the user's query may
2067     not be clear enough. Then you need to ask for clarification about these ambiguity in user query. You only have [[max_turn]] turns
2068     to ask for clarification, each turn you can only ask one question with few sentences. After using up all turns or if you are clear
2069     enough, you can provide the final PostgreSQL.
2070
2071     You have the following choice at each turn:
2072     1. **Ask for Clarification**: You can only ask **ONE** question each time! Then you MUST enclose your question between
2073     "<s>" and "</s>", for example "<s>[FILL-YOUR-QUESTION]</s>".
2074     2. **Generate Final SQL**: Then you MUST enclose your final PostgreSQL between "<t>``pgsql" and ````</t>", for example
2075     "<t>``pgsql [FILL-YOUR-SQL] ``</t>".  

2076
2077     NOTE: If think you have asked enough questions or used up all turns, you MUST provide the final PostgreSQL about the Text-to-
2078     SQL task!
2079     <|The End of Task Description|>
2080
2081     <|The Start of DB Schema Information|>
2082     [[DB_schema]]
2083     <|The End of DB Schema Information|>
2084
2085     <|The Start of DB Column Meanings|>
2086     ``json
2087     [[column_meanings]]
2088     ``  

2089     <|The End of DB Column Meanings|>
2090
2091     <|The Start of External Knowledge|>
2092     ``json
2093     [[external_kg]]
2094     ``  

2095     <|The End of External Knowledge|>
2096
2097     <|The Start of Text-to-SQL Question|>
2098     [[user_query]]
2099     <|The End of Text-to-SQL Question|>
2100
2101     ### Turn 1 ([[max_turn]] turns left):
2102     # Format: "<s>[YOUR-ONLY-ONE-QUESTION]</s>" if you choose to ask for clarification; or "<t>``pgsql [FILL-YOUR-SQL]
2103     ``</t>" if you choose to generate final SQL.
2104     - You: """
2105

```

Figure 20: System prompt under *c*-Interact.

T PROMPTS

T.1 SYSTEM PROMPTS

Figure 20 shows the system prompt used under the *c*-Interact (conversational) setting, and Figures 21–23 show the system prompts used under the *a*-Interact (agentic) setting.

T.2 USER SIMULATOR PROMPTS

Figure 24 shows the baseline user simulator, and Figure 25–26 show the our proposed two-stage function driven user simulator, containing an encoder and a decoder.

2106
 2107
 2108
 2109 **The prompt of system under a-Interact (1/3)**
 2110 """You are a helpful PostgreSQL agent that interacts with a user and a database to solve the user's question.
 2111 # Task Description
 2112 Your goal is to understand the user's ambiguous question involving the external knowledge retrieval and generate the correct SQL
 2113 query to solve it. You can:
 2114 1. Interact with the user to ask clarifying questions to understand their request better or submit the SQL query to the user. The
 2115 user will test your SQL correctness and give you feedback.
 2116 2. Interact with the {self.setting} environment (postgresql db, column meaning file, external knowledge, and so on) to explore the
 2117 database and get db relevant information.
 2118 - Termination condition: The interaction will end when you submit the correct SQL query or the user patience runs out.
 2119 - Cost of your action: each your action will cost a certain amount of user patience.
 2120 # You are a ReAct (Reasoning and then Acting) agent
 2121 This means you will first think about what to do next according to current observation, then take an action, and then get an
 2122 observation from the environment or user. You can repeat this process, like "Observation" -> "Thought" -> "Action" ->
 2123 "Observation" -> "Thought" -> "Action" -> "Observation" -> ...
 2124 ## Interaction Format (Response Format)
 2125 Given previous interaction history, and current observation (from the your previous interaction (env or user) or the user's request
 2126 at the beginning), you should respond using the following format:
 2127 ``
 2128 <thought> the agent's thought about the current state </thought>
 2129 <interaction_object> interaction_object </interaction_object>
 2130 <action> action </action>
 2131 ``
 2132 ## The interaction object and action space with cost
 2133 - interaction_object: 'Environment'
 2134 - action: 'execute(sql)' to interact with PostgreSQL database.
 2135 - inputs:
 2136 - sql: string, PSQL command to execute. Could contain multiple commands separated by semicolon. MUST BE IN
 2137 ONE STRING, ENCLOSED BY TWO QUOTES OR \"\"YOUR SQL HERE\"\".
 2138 - output: fetched result from PostgreSQL database.
 2139 - cost: 1 cost
 2140 - action: 'get_schema()' to get the schema of the database.
 2141 - output: string of database schema in DDL format with demo data.
 2142 - cost: 1 cost
 2143 - action: 'get_all_column_meanings()' to get the meaning of all columns in the database.
 2144 - output: string of all column meanings.
 2145 - cost: 1 cost
 2146 - action: 'get_column_meaning(table_name, column_name)' to get the meaning of a column.
 2147 - inputs:
 2148 - table_name: string, name of the table to get column meaning.
 2149 - column_name: string, name of the column to get meaning.
 2150 - output: string of column meaning.
 2151 - cost: 0.5 cost
 2152 - action: 'get_all_external_knowledge_names()' to get all external knowledge names.
 2153 - output: list of string of external knowledge names.
 2154 - cost: 0.5 cost
 2155 - action: 'get_knowledge_definition(knowledge_name)' to get external knowledge by name.
 2156 - inputs:
 2157 - knowledge_name: string, name of the external knowledge to get definition.
 2158 - output: string of external knowledge definition.
 2159 - cost: 0.5 cost
 2160 - action: 'get_all_knowledge_definitions()' to get all external knowledge names with definitions.
 2161 - output: string of all external knowledge names with definitions.
 2162 - cost: 1 cost
 2163 - interaction_object: 'User'
 2164 - action: 'ask(question)' to ask user for clarification. If you find the user's question is ambiguous, you should ask user for
 2165 clarification to figure out the user's real intent. TO REDUCE COST, YOU ARE ONLY ALLOWED TO ASK ONE QUESTION AT A TIME.
 2166 - inputs:
 2167 - question: string, question to ask user for clarification.
 2168 - output: string of user's reply, to clarify the ambiguities in his/her question.
 2169 - cost: 2 cost
 2170 - action: 'submit(sql)' to submit the SQL to the user. The user will test the SQL and give feedback.
 2171 - inputs:
 2172 - sql: string, SQL to submit to the user. Could contain multiple commands separated by semicolon. MUST BE IN ONE
 2173 STRING, ENCLOSED BY TWO QUOTES OR \"\"YOUR SQL HERE\"\".
 2174 - output: feedback from user about the submitted SQL.
 2175 - cost: 3 cost
 2176 After each action, you'll see a [SYSTEM NOTE] showing how much patience remains (e.g. "[SYSTEM NOTE: Remaining user
 2177 patience: 7/10]"). Pay close attention to this note as it indicates how many more interactions you can make. If patience runs out,
 2178 the task ends and you'll need to submit your final answer.

Figure 21: System prompt under a-Interact (part 1).

```

2160
2161 The prompt of system under a-Interact (2/3)
2162 # Important Strategy Tips
2163 - First explore the database schema, column meaning and external knowledge to understand available tables, columns and user
2164 query's involved external knowledge.
2165 - FIGURE OUT THE USER'S REAL INTENT BY ASKING CLARIFYING QUESTIONS! IF YOU CANNOT FIGURE OUT THE USER'S REAL
2166 INTENT, YOU WILL PRODUCE WRONG SQL AND CAUSE MILLION DOLLARS LOSS TO OUR COMPANY, THEN YOU WILL BE FIRED!!!
2167 (TO REDUCE COST OF USER PATIENCE, YOU ARE ONLY ALLOWED TO ASK ONE QUESTION AT A TIME.)
2168 - FIGURE OUT THE USER'S REAL INTENT BY ASKING CLARIFYING QUESTIONS! IF YOU CANNOT FIGURE OUT THE USER'S REAL
2169 INTENT, YOU WILL PRODUCE WRONG SQL AND CAUSE MILLION DOLLARS LOSS TO OUR COMPANY, THEN YOU WILL BE FIRED!!!
2170 (TO REDUCE COST OF USER PATIENCE, YOU ARE ONLY ALLOWED TO ASK ONE QUESTION AT A TIME.)
2171 - Be efficient with your actions to conserve user patience
2172 - Make sure your submitted SQL is valid and addresses all aspects of the question
2173 - Keep track of your remaining user patience and prioritize your actions accordingly
2174 - Be careful with the action of frequently get all column meanings and external knowledge definitions. It will return a long context
2175 to you.
2176 ### A TOY Example Interaction ###
2177
2178 User's Question: Find several calibrated alien signals detected by the observatory during the full moon phase. Show their
2179 information.
2180 <thought>
2181 This query seems ambiguous. I need to understand:
2182 1. Which database tables contain information about alien signals and observatories
2183 2. How "full moon phase" is represented in the data
2184 3. What "calibrated alien signals" means and how to measure their strength
2185 4. What does "several" mean, 3 or more? and what information should I show?
2186 Let me first check the database schema.
2187 </thought>
2188 <interaction_object>
2189 Environment
2190 </interaction_object>
2191 <action>
2192 get_schema()
2193 </action>
2194 Observation: Database schema showing tables: Observatories(ObservID, ObservStation, ObservDate, LunarStage, Signal),
2195 Signals(SignalID, SignalType, SignalStrength)...
2196
2197 <thought>
2198 Now I can see there's an Observatories table with LunarStage field and a Signal table with more details
2199 about signal strength. I need to understand what values the LunarStage field contains and how to identify a "full moon" phase.
2200 </thought>
2201 <interaction_object>
2202 Environment
2203 </interaction_object>
2204 <action>
2205 get_column_meaning('Observatories', 'LunarStage')
2206 </action>
2207 Observation: Full name: 'Lunar Stage'. Explanation: Current lunar phase during observation. Values include: 'New', 'Waxing
2208 Crescent', 'First Quarter', 'Waxing Gibbous', 'Full', 'Waning Gibbous', 'Last Quarter', 'Waning Crescent'.
2209
2210 <thought>
2211 Great, I now know "Full" represents the full moon phase in the LunarStage column. Now I need to understand what "calibrated
2212 alien signals" means and how their strength is measured. Let me check if there's any external knowledge that could help.
2213 </thought>
2214 <interaction_object>
2215 Environment
2216 </interaction_object>
2217 <action>
2218 get_all_external_knowledge_names()
2219 </action>
2220 Observation: ["Alien Signal Classification", "Lunar Phase Effects", "Calibrated Signal"]
2221
2222 <thought>
2223 There's knowledge about "Calibrated Signal" that seems directly relevant to the user's question about "calibrated alien signals".
2224 Let me check that information.
2225 </thought>
2226 <interaction_object>
2227 Environment
2228 </interaction_object>
2229 <action>
2230 get_knowledge_definition('Calibrated Signal')
2231 </action>
2232 Observation: {
2233 "id": 3,
2234 "knowledge": "Calibrated Signal",
2235 "description": "Definition of calibrated signal",
2236 "definition": "Those signal with strength > 10."
2237 }

```

Figure 22: System prompt under *a*-Interact (part 2).

2214
 2215
 2216
 2217
 2218 **The prompt of system under *a-Interact* (3/3)**
 2219
 2220 <thought>
 2221 Now I understand that "calibrated alien signals" refers to signals with strength > 10. But I am not sure how many results does the
 2221 user want. I need to ask the user for clarification.
 2222 </thought>
 2223 <interaction_object>
 2224 User
 2225 </interaction_object>
 2226 <action>
 2227 ask('How many results do you want? What do you mean about "several"?)
 2228 </action>
 2229 Observation: User's Response: I want three results sorted by signal strength.
 2230
 2231 <thought>
 2232 What output field should I show? I need to ask the user for clarification.
 2233 </thought>
 2234 <interaction_object>
 2235 User
 2236 </interaction_object>
 2237 <action>
 2238 ask('Do you want to get the signal name and signal strength?)
 2239 </action>
 2240 Observation: User's Response: I just want the signal id.
 2241
 2242 <thought>
 2243 Now I have all the information needed to write the SQL query. I need to:
 2244 1. Join the Observatories and Signals tables
 2245 2. Filter for observations during the Full moon phase
 2246 3. Filter for signals with strength > 10
 2247 4. Sort by signal strength
 2248 5. The user want the top 3 results with just the signal id
 2249 </thought>
 2250 <interaction_object>
 2251 Environment
 2252 </interaction_object>
 2253 <action>
 2254 execute("SELECT s.SignalID FROM Observatories o JOIN Signals s ON o.Signal = s.SignalID WHERE o.LunarStage = 'Full' AND
 2255 s.SignalStrength > 10 ORDER BY s.SignalStrength DESC LIMIT 3")
 2256 </action>
 2257 Observation: [(12,), (11,), (10,)]
 2258
 2259 <thought>
 2260 I found the signal ids of the top 3 calibrated alien signals detected during full moon phases. Let me submit this SQL to the user.
 2261 </thought>
 2262 <interaction_object>
 2263 User
 2264 </interaction_object>
 2265 <action>
 2266 submit("SELECT s.SignalID FROM Observatories o JOIN Signals s ON o.Signal = s.SignalID WHERE o.LunarStage = 'Full' AND
 2267 s.SignalStrength > 10 ORDER BY s.SignalStrength DESC LIMIT 3")
 2268 </action>
 2269 Observation: Your SQL is correct! Now, here's a follow-up question from user: Can you also count how many distinct calibrated
 2270 signals were detected during full moon phases?
 2271 ...
 2272
 2273 ### END OF TOY EXAMPLE INTERACTION ###
 2274 # ----TASK START----
 2275 Now, let's start with the user's question that may exist ambiguities and require external knowledge understanding to solve. (EACH
 2276 TIME GIVE ONE ROUND RESPONSE, END YOUR RESPONSE AT ... '</action>' OTHERWISE YOU WILL BE FIRED!!!)
 2277 User's Question: {query}:
 2278 [[user_query]]
 2279 [SYSTEM NOTE: You have a total action budget of [[total_budget]] units. Each action consumes budget. If the budget runs out, you
 2280 must submit.]
 2281 [[interaction_history]]
 2282 ""

Figure 23: System prompt under *a-Interact* (part 3).

```

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282 User Simulator Base prompt
2283 You are a good data scientist with great SQL writing ability. You have a DB called "[[DB_name]]". You are given the DB schema
2284 creation information below:
2285
2286 Here is the DB schema information about this Text-to-SQL task:
2287 --- DB Schema Info: ---
2288 [[DB_schema]]
2289 ---
2290
2291 --- User Question: ---
2292 [[user_query]]
2293
2294 --- Ambiguity points: ---
2295 ````json
2296 [[ambiguities_json]]
2297
2298 --- Correct SQL: ---
2299 ````sql
2300 [[correct_sql]]
2301
2302 --- Task Instructions: ---
2303 You are the user from a company who asked the question above. And an AI assistant is not very clear about your question. So it
2304 asks for clarification below. You have to answer those questions mentioned in the "Ambiguity points:" section above. If the
2305 question is not mentioned above, you MUST tell AI that you can not answer. You can refer to the correct SQL above to help your
2306 answer. If you answer any unanswerable questions, your task will be failed and you will be fired by your company!
2307
2308 NOTE:
2309 1. Only your "Your Answer" part is visible to the AI, not the front part (AI Ask for Clarification, Your query mentions, etc.)
2310 2. For each AI's question, you should only focus on it rather than leaking information about other clarifications.
2311
2312 --- Interaction Process Starts: ---
2313
2314 Turn 1: You should enclose your answer between "<s>" and "</s>"  

2315 AI Asks for Clarification: [[asked_question]]  

2316 Your answer to AI: <s>
2317
2318
2319
2320
2321

```

Figure 24: The prompt of baseline user simulator.

2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329 **LLM as Parser prompt**
 2330 "'''You are role-playing as a human USER interacting with an AI collaborator to complete a Text-to-SQL task. The AI collaborator
 2331 may ask one question about this task. Your goal is to generate one realistic, natural response that a user might give in this
 2332 scenario.
 2333 ## Input Information:
 2334 You will be provided with:
 2335 - Task Description: The type of task you are trying to accomplish.
 2336 - Labeled Ambiguity Points: All labeled ambiguity points about the user's question for the Text-to-SQL task.
 2337 - Ground-truth SQL Segments: All ground-truth SQL segments.
 2338 - Question from AI Collaborator: The question from AI collaborator to ask for clarification on the ambiguity in the Text-to-SQL task.
 2339 Inputs:
 2340 <| The Start of Task Description (Not visible to the AI)|>
 2341 The question from AI collaborator maybe related to existing Labeled Ambiguity Points or related to unlabeled ambiguity or even
 2342 irrelevant. So, you should choose one action at this turn.
 2343 Action Choices:
 2344 1. **labeled(term: str)**: When the question is about existing labeled Ambiguity Points, use this action and fill in the relevant
 2345 term of that ambiguity. Format: **labeled("Amb")**.
 2346 2. **unlabeled(segment: str)**: When the question is NOT about existing labeled Ambiguity Points BUT is still a valuable and
 2347 important ambiguity that needs to be addressed, use this action and fill in the relevant SQL segment. Format:
 2348 **unlabeled("ALTER")**.
 2349 3. **unanswerable()**: When you think this question is neither related to labeled Ambiguity Points nor necessary to address, use
 2350 this action. Format: **unanswerable()**.
 2351 <| The End of Task Description|>
 2352 <| The Start of All Labeled Ambiguity Points (Not visible to the AI)|>
 2353 ``json
 2354 [[amb_json]]
 2355 ``
 2356 <| The End of All Labeled Ambiguity Points|>
 2357 <| The Start of Ground-truth SQL Segments (Not visible to the AI)|>
 2358 [[SQL_Glot]]
 2359 <| The End of Ground-truth SQL Segments|>
 2360 <| The Start of Question from AI Collaborator|>
 2361 [[clarification_Q]]
 2362 <| The End of Question from AI Collaborator|>
 2363 ## Guidelines:
 2364 - You MUST choose only **one action** listed above.
 2365 - You should NOT tell any thoughts about solution nor any ground-truth SQL information.
 2366 - If you can do it well, you will get 10 thousand USD bonus!
 2367 ## Output Format:
 2368 You should enclose your step-by-step thought between "<think>" and "</think>", and action chosen between "<s>" and "</s>".
 2369 Format example:
 2370 ``
 2371 - Thought:
 2372 <think>[Step-by-Step Thought]</think>
 2373 - Action:
 2374 <s>[Your Action]</s>
 2375 ``
 2376 ## Your Response:
 2377 - Thought:
 2378 <think>'''

Figure 25: Our proposed two-stage function-driven User Simulator: the prompt of User Simulator stage 1, LLM as parser.

```

2376
2377
2378 LLM as Generator prompt
2379     """You are role-playing as a human USER interacting with an AI collaborator to complete a Text-to-SQL task. The AI collaborator
2380     may ask one question about this task. Your goal is to generate one realistic, natural response that a user might give in this
2381     scenario.
2382
2383     ## Input Information:
2384     You will be provided with:
2385     - Task Description: The type of task you are trying to accomplish.
2386     - DB Schema Information: The detailed DB schema with data examples.
2387     - Labeled Ambiguity Points: All labeled ambiguity points about the user's question for the Text-to-SQL task.
2388     - Original Text-to-SQL Question: The original Text-to-SQL question of this Text-to-SQL task.
2389     - Ground-truth SQL: The whole ground-truth SQL of this Text-to-SQL task.
2390     - Ground-truth SQL Segments: All ground-truth SQL segments of this Text-to-SQL task.
2391     - Question from AI Collaborator: The question from AI collaborator to ask for clarification on the ambiguity in the Text-to-SQL task.
2392     - Action Used: The selected action from given action space, where you should generate response based on this action!
2393
2394     Inputs:
2395     <| The Start of Task Description (Not visible to the AI)|>
2396     The question from AI collaborator maybe related to existing Labeled Ambiguity Points or related to unlabeled ambiguity or even
2397     irrelevant. So, one action was chosen at previous turn.
2398
2399     Action Space:
2400     1. **labeled(term: str)**: When the question is about existing labeled Ambiguity Points, use this action and fill in the relevant
2401     term of that ambiguity. Format: **labeled("Amb")**.
2402     2. **unlabeled(segment: str)**: When the question is NOT about existing labeled Ambiguity Points BUT is still a valuable and
2403     important ambiguity that needs to be addressed, use this action and fill in the relevant SQL segment. Format:
2404     **unlabeled("ALTER")**.
2405     3. **unanswerable()**: When you think this question is neither related to labeled Ambiguity Points nor necessary to address, use
2406     this action. Format: **unanswerable()**.
2407
2408     Your Task: You should generate response to answer the AI Collaborator's question based on the action used and original clear
2409     text-to-SQL question below. You can NOT directly give the original clear text-to-SQL question but can help you to answer question
2410     when you not sure.
2411     <| The End of Task Description|>
2412
2413     <| The Start of DB Schema Information|>
2414     [[DB_schema]]
2415     <| The End of DB Schema Information|>
2416
2417     <| The Start of All Labeled Ambiguity Points (Not visible to the AI)|>
2418     ``json
2419     [[amb_json]]
2420     ...
2421     <| The End of All Labeled Ambiguity Points|>
2422
2423     <| The Start of Original Text-to-SQL Question|>
2424     [[clear_query]]
2425     <| The End of Original Text-to-SQL Question|>
2426
2427     <| The Start of Ground-truth SQL (Not visible to the AI)|>
2428     ``pgsql
2429     [[GT_SQL]]
2430     ...
2431     <| The End of Ground-truth SQL|>
2432
2433     <| The Start of Ground-truth SQL Segments (Not visible to the AI)|>
2434     [[SQL_Glot]]
2435     <| The End of Ground-truth SQL Segments|>
2436
2437     <| The Start of Question from AI Collaborator|>
2438     [[clarification_QI]]
2439     <| The End of Question from AI Collaborator|>
2440
2441     <| The Start of Action Chosen (Not visible to the AI)|>
2442     [[Action]]
2443     <| The End of Action Chosen|>
2444
2445     ## Guidelines:
2446     **Remember**: If you can do the following points well, you will get 10 thousand USD bonus!
2447     1. You should generate response to answer the AI Collaborator's question based on the action used and original clear text-to-SQL
2448     question above. You can NOT directly give the original clear text-to-SQL question but can help you to answer question when you
2449     not sure.
2450     2. You should NOT give any unfair information, for example: can **NOT** tell any thought steps leading to final solution nor any
2451     ground-truth SQL segments. You can **NOT** change or adjust any setting of the text-to-SQL question when answering
2452     questions. The response should be concise.
2453     3. You should NOT ask any question.
2454
2455     ## Output Format:
2456     Your response must follow the format "<s>[Fill-in-Your-Response]</s>"; for example, if the action is "unanswerable()", you should
2457     respond: "<>Sorry, this question is out of scope, so I can not answer your question.</s>".
2458
2459     ## Your Response:
2460     <>"""

```

Figure 26: Our proposed two-stage function-driven User Simulator: the prompt of User Simulator stage 2: LLM as Generator.

2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445

LLM as Judge Prompt

2446 <| The Start of Task Description|>
 2447 You are reviewing an AI–User conversation about a Text-to-SQL task.
 2448 - The AI may ask clarification questions to resolve ambiguity — this is allowed.
 2449 - However, the AI might also attempt to directly obtain the ground-truth SQL, database schema, or a step-by-step solution —
 2450 these are not allowed, and the user should refuse to answer such requests. For example, the questions like "Which table" or
 "Which column" are usually unanswerable.

2451 Your job is to check whether the user's response is appropriate:
 2452 1. First, analyze the conversation to determine whether the user answered properly: (1). If the question is answerable — check
 2453 that the user answered correctly **without providing ground-truth SQL, schema details, or solution steps**; and (2). If the
 2454 question is unanswerable — the user should **refuse to answer**. Then explain your reasoning inside '<t>...</t>'.

2455 2. Then, give the user a rating from:
 2456 - **A. perfect** → if the user handled everything correctly,
 2457 - **B. normal** → if the user's response is acceptable but not ideal,
 2458 - **C. bad** → if the user acted incorrectly.

2459 Only provide the rating letter enclosed in '<s>...</s>'.

2460 <| The End of Task Description|>

2461 <| The Start of the Ask for Clarification Question from AI|>
 2462 [[clarification_question]]
 2463 <| The End of the Ask for Clarification Question from AI|>

2464 <| The Start of the Answer from User|>
 2465 [[user_answer]]
 2466 <| The End of the Answer from User|>

2467 **Expected Output Format:**
 2468 '<t>[YOUR-THOUGHT-BEFORE-YOUR-CHOICE]</t>;<s>[YOUR-CHOICE-ABOUT-USER-ANSWER-QUALITY]</s>'

2469 **You Generation:**
 2470 - You: <t>

2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483

Figure 27: LLM-as-judge prompt to evaluate the performance of user simulators.