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Abstract

In this paper, we propose a multimodal contrastive learning framework that integrates
AV45 PET and 3T MRI data from 511 baseline participants in the OASIS-3 cohort.
Built on BiomedCLIP, our model incorporates cross-modal attention and a soft triplet
loss with adaptive margin to align PET–MRI embeddings. After contrastive pretraining, a
lightweight MLP predicts amyloid positivity using PET-guided MRI representations. Re-
sults show our approach learns robust MRI features that capture PET-derived signals for
reliable beta-amyloid prediction.
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1. Introduction

Alzheimer’s Disease is among the most common types of dementia and affects more than
55 million individuals, with the number expected to reach 78 million by the year 2030
(Chattopadhyay et al., 2024; World Health Organization, 2025). The accumulation of beta-
amyloid is considered the initial neuropathological event in the brain during the course
of Alzheimer’s Disease. The presence of beta-amyloid deposits can be identified through
Positron Emission Tomography (PET) utilizing radiotracers (Bao et al., 2024). However,
structural MRI is more widely available, and some studies, such as (Lyu et al., 2024; Ou
et al., 2025), synthesize PET data from MRI. Contrary to existing works (Chattopadhyay
et al., 2024), we propose a PET-guided cross-attention approach to enhance MRI embed-
dings through contrastive learning for beta-amyloid detection.
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2. Methods

This study used the OASIS-3 dataset (LaMontagne et al., 2019), including AV45 scans and
the corresponding T1-weighted MRI scans aligned within ±365 days, with a total of 511
matched pairs after preprocessing. All T1-weighted MRIs underwent N4 bias correction
(Kanakaraj et al., 2023), HD-BET skull-stripping (Isensee et al., 2019) and intensity nor-
malization (clipping [0.5-99.5 percentile], scaling to [0,1], gamma=0.9) (Dang et al., 2022).
Volumes were reoriented to RAS. Standardized Uptake Value Ratio (SUVR) maps
(50–70 min post-injection) were processed using the PUP pipeline and, with MRI volumes,
registered to MNI152 space using ANTsPy (Developers, 2025; Vega et al., 2024). Infor-
mative sagittal slices were selected by removing low-intensity regions.

2.1. Model Architecture and Training

The training involves: (1) contrastive pretraining to align MRI and PET in a shared embed-
ding space, and (2) supervised classification based on PET-guided MRI embeddings. All
experiments were conducted on a workstation with an NVIDIA GeForce RTX 4090 GPU.

Multimodal Contrastive Pretraining A multimodal contrastive learning frame-
work was implemented to align MRI and PET embeddings through a slice-level Transformer
architecture. The visual encoder from BiomedCLIP (Zhang et al., 2025) was adapted to
the neuroimaging domain using Low-Rank Adaptation (LoRA) with rank 10, scale 16
and dropout 0.2 (Hu et al., 2021), applied to the query, key, and value projections across
all 12 self-attention layers of the vision Transformer. The first 6 Transformer blocks were
frozen. The model encodes 15 uniformly sampled 2D sagittal slices (224×224) from each
modality. A projection head (LayerNorm, GELU, dropout) maps each slice embedding to 128-
dimensional space. Two attention modules were used: self-attention for intra-modality
aggregation, and cross-modal attention to guide MRI features using PET queries.

A soft triplet loss with an adaptive margin aligned embeddings using anchor (PET-
guided MRI), positive (matched PET) and negative (PET differing in Centiloid SUVR
by 5 units). The margin scaled with the average batch-wise inter-modality distance. L2
regularization was applied and the model was trained using AdamW (lr: 5 · 10−6 encoder,
2 · 10−5 projection head), weight decay of 10−2, cosine annealing learning rate, AMP, and
gradient accumulation. The model was trained for 40 epochs with early stopping (patience
5) based on triplet loss and total loss. Data augmentation was applied, and images were
normalized using CLIP statistics. At the end of training, PET-guided MRI embeddings
were extracted via cross-modal attention using PET as query and MRI as key/value.

MRI-based Classification from PET-guided Embeddings A feedforward neural
network was trained to predict amyloid positivity from PET-guided MRI embeddings. The
architecture included three fully connected layers (128, 64, 1 units) with batch normal-
ization, ReLU activations, and dropout (0.6, 0.5). The BCEWithLogitsLoss function was
used for binary classification, incorporating class imbalance through a dynamic pos weight

ratio. Optimization used Adam (learning rate of 1 · 10−4 and a weight decay of 1 · 10−3).
Training was conducted for up to 500 epochs with early stopping (patience = 30), based
on the validation F1 score. The optimal classification threshold (θ) was selected at each
epoch to maximize the F1 score over a range of candidate thresholds.
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3. Results

Contrastive Pretraining Performance During the contrastive training phase, the soft
triplet loss enforced alignment between MRI and PET embeddings. The mean anchor–
positive distance progressively decreased (from 4.9243 to 2.5767), while the anchor–negative
distance increased (from 8.0486 to 16.4347), also resulting in an increase in cosine similarity
between anchor and positive (from 0.8868 to 0.9292) and a decrease in similarity between
anchor and negative (from 0.7184 to -0.6840).

MRI-based Classification of Amyloid Positivity Using the fixed threshold (0.5), the
model achieved high precision (0.909) and good overall balance. Optimizing the threshold
led to an increase in recall (from 0.833 to 0.889) and Negative Predictive Value (NPV) (from
0.913 to 0.934), but at the cost of lower precision, resulting in a decrease in the F1 score.

Model Interpretability via GradCAM As shown in Figure 1, during training epochs,
the model progressively focuses its attention on more localized and clinically relevant regions
(Palmqvist et al., 2017; Zhou et al., 2022).

Metric θ = 0.5 Opt θ

Accuracy 0.912 0.873

Precision 0.909 0.780

Recall 0.833 0.889

F1 Score 0.870 0.831

Specificity 0.955 0.864

NPV 0.913 0.934
(a) Epoch 1 (b) Final Epoch

Figure 1: Metrics (left) and GradCAM attention shift over training (right).

4. Conclusion

Our cross-modal attention framework for beta-amyloid detection demonstrates high preci-
sion (0.909) and strong F1 score (0.870) on 511 OASIS-3 patients. GradCAM visualizations
show the model focusing on brain regions linked to amyloid deposition, confirming that con-
trastive learning effectively aligns MRI and PET embeddings. This alignment enables the
extraction of clinically relevant features. Future work will expand cohort diversity, explore
alternative tracers, and develop methods that use cross-modal knowledge during training
but rely only on MRI at inference, enhancing clinical applicability and early detection.
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