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Abstract: As humanity ventures deeper into space, the demand for autonomous
robotic systems capable of performing complex manipulation sequences is becom-
ing increasingly critical. This work introduces a set of tasks designed to explore
learning-based approaches in the context of space robotics while emphasizing the
need for generalization and adaptability. The benchmark leverages procedural
generation and parallel simulation environments to expose agents to a wide range
of scenarios across different domains of space. Preliminary results highlight the
challenges posed by procedural variability and underscore the importance of eval-
uating generalization capabilities in the design of the benchmark. The source code
is publicly available at github.com/AndrejOrsula/space robotics bench.
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1 Introduction

Robotic manipulation plays a crucial role in the future of space exploration, with applications rang-
ing from planetary outpost construction [1] to orbital assembly and servicing [2, 3]. With the in-
creasing ambition of envisioned space missions, the demand for autonomous robotic systems capa-
ble of executing complex task sequences grows rapidly. However, the domain of space introduces
several unique challenges due to the presence of harsh environmental conditions that are coupled
with significant computational constraints and limited availability of human intervention as a result
of communication delays. Addressing these challenges requires the development of adaptive and
robust control strategies that can generalize across a wide range of scenarios, making space robotics
an attractive domain for exploring learning-based approaches.

Recent advances in robot learning have shown promise in acquiring general-purpose manipulation
skills through high-capacity models trained on large-scale datasets [4]. However, there is a substan-
tial gap between the available terrestrial datasets and the requirements of robots operating in space.
Moreover, the safety-critical nature of space systems and the limited availability of laboratory setups
for training and validation make collecting such datasets infeasible. On the other hand, simulation-
based benchmarks have played a crucial role in advancing robot learning research, particularly in
the field of reinforcement learning (RL) [5, 6]. Although several benchmarks have been introduced
for manipulation, they mainly focus on the table-top setting [7] or assembly of predefined objects in
a controlled environment [8]. Similarly, standalone frameworks for applying RL to space robotics
have been developed for applications such as planetary and orbital navigation [9, 10]. However, the
lack of standardized benchmarks tailored for space robotics has limited the progress in exploring
and developing learning-based approaches for extraterrestrial applications.
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In this work, we introduce the first steps towards benchmarking robotic manipulation in space by
presenting a novel simulation-based framework designed for exploring and evaluating learning al-
gorithms in space-relevant scenarios. The benchmark focuses on key manipulation problems that
are considered to be essential for the future of space exploration and sustainable presence in space
while exposing agents to a wide range of scenarios by leveraging procedural generation and parallel
simulation instances. Consequently, generalization is emphasized with the goal of contributing to
the development of adaptive systems capable of operating under the challenging conditions of space.

2 Structure and Design

This benchmark is an integral part of the Space Robotics Bench initiative, which aims to provide a
standardized framework for evaluating robotic systems in space-relevant scenarios. The initiative is
driven by the need to develop generalizable and robust algorithms that can adapt to the uncertain-
ties and complexities of space environments. The manipulation benchmark focuses on single-arm
scenarios in which agents are required to interact with their surroundings in the SE(3) space using
a general-purpose robotic arm equipped with a mechanical gripper. All tasks are designed to be
robot-agnostic, allowing researchers to experiment with different systems without extensive recon-
figuration. The benchmark is compatible with the Gymnasium API for seamless integration with
learning frameworks while also exposing a ROS 2 interface to simplify interoperability with ex-
ternal systems for their iterative development and validation. Furthermore, a containerized Docker
environment is provided to ensure reproducibility and ease of deployment across different platforms.

2.1 Procedural Generation

Procedural generation is a powerful technique for creating diverse and realistic environments without
relying solely on static datasets that might be difficult to obtain and limited in scope. This approach
allows for the generation of nearly an infinite number of unique environments, which has been
widely adopted in the gaming industry but remains largely underutilized in the fields of robotics and
space exploration. While existing RL benchmarks leverage procedural generation [6], they focus on
2D games rather than realistic 3D scenarios. However, procedural generation also has the advantage
of being able to produce assets of various dimensions at a configurable level of detail, enabling each
asset to be tailored for the specific objective and performance requirements of the task. Furthermore,
this mechanism can contribute towards curriculum learning by gradually increasing the difficulty of
the task through the generation of more complex assets.

We use Blender [11] to generate a wide range of procedural assets showcased in Figure 1. Follow-
ing the workflow established in prior work [12, 13], the mesh geometry of each asset is produced
through Blender’s Geometry Nodes, which is a node-based system that provides parametric control
over the creation, manipulation, and modification of arbitrary geometry and data types. At the same
time, the appearance of the assets is defined using Shader Nodes that enable the creation of com-
plex visual materials that can leverage procedural textures and mapping techniques. By introducing

Figure 1: Examples of procedurally generated terrains, rocks, and peg-in-hole assembly modules.
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randomness and variation within these pipelines, a diverse set of unique assets can be generated by
simply adjusting the initial pseudo-random seed. The geometry of each asset can then be directly
imported into a number of robotics simulators, while the visual material is baked into a set of PBR
textures at a configurable level of detail to ensure a realistic visual appearance and runtime perfor-
mance. Our benchmark fully automates this process to seamlessly generate unique assets for each
environment at runtime. Not only does this approach enhance the diversity of scenarios, but it also
eliminates the need to store large datasets, making the benchmark more accessible and scalable.

2.2 Parallel Environments

The benchmark is built on top of NVIDIA Isaac Sim through the Isaac Lab framework [14] to lever-
age its parallelized physics and rendering capabilities. Therefore, each task can be simulated across
multiple parallel instances, significantly accelerating workflows such as hyperparameter tuning, syn-
thetic data generation, and online learning. Moreover, each environment instance can benefit from
procedural generation to ensure a unique experience that contributes towards overall domain ran-
domization. The interoperability with Isaac Lab also provides compatibility with a wide array of
pre-configured robots and sensors, allowing researchers to experiment with different configurations.

In addition to facilitating online learning and iterative development, the framework also supports
teleoperation for the collection of human demonstrations through various interfaces. This feature
is targeted towards imitation learning and offline RL, where diverse demonstrations in procedural
environments can be used to bootstrap the learning. However, no dataset is currently available while
the benchmark is under active development and feedback from the community is being collected.

2.3 Task Formulation

We formulate all tasks as a partially observable Markov decision process to encapsulate the se-
quential decision-making under uncertainty. To encourage generalization across different robotic
platforms, we do not make any assumptions about the specific kinematic configuration of the robot.
Instead, the agent interacts with the environment through the motion of the end-effector in the form
of desired linear and angular velocities, which are mapped to joint commands via differential inverse
kinematics. Similarly, the state of the gripper is controlled through a robot-agnostic binary action.

Multi-modal observations are often required to provide the agent with a comprehensive understand-
ing of the environment. All tasks have access to proprioceptive observations in the form of end-
effector pose, using 6D rotation encoding [15], and a normalized gripper state. Visual observations
are provided in the form of RGB and depth images captured by two cameras, one of which is wrist-
mounted, and the other perceives the scene from the base of the robot. Methods that exploit the
availability of privileged information are supported by separately providing access to the ground
truth state of the environment, which contains task-specific information such as the relative position
of objects and targets. Additional sensory inputs, such as force-torque readings, are also included as
part of the state because not all robotic systems are equipped with such sensors. Furthermore, ob-
servations whose dimensionality changes based on the specific setup, such as the number of joints,
are also available but exposed separately due to their dynamic nature.

3 Domains and Tasks

The benchmark introduces four initial tasks that are designed to represent various aspects of robotic
manipulation in space, including visuomotor coordination, fine motor skills, adaptability to dynamic
environments, and long-horizon planning. Meanwhile, the challenges posed by each task are tailored
to reflect a specific domain of space by configuring the dynamics, such as gravity, and visual appear-
ance, such as skybox, to represent the characteristics of either the Moon, Mars or an orbital space
station. Finally, all tasks implement a composite reward function as a weighted sum of task-specific
sub-goals, which are designed to guide the agent towards the final objective through intermediate
steps, such as reducing the proximity to the target and successful grasping.
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The tasks are as follows:
Debris Capture represents the task of stabilizing and capturing free-
floating debris that is tumbling toward a robotic arm mounted on a space sta-
tion. The debris can originate either from a dataset or a procedural pipeline,
and the agent must stabilize it to prevent further orbital drift.
Sample Collection simulates the process of gathering physical materials
from planetary surfaces. The agent is required to grasp objects and place
them into a cargo bin of a rover on which the robotic arm is mounted. The
objects can be either procedurally generated rocks or sample return tubes.
Peg-in-Hole Assembly poses the essential challenge of inserting a peg into
a hole with a high degree of precision. The agent must grasp each peg, align
it with its corresponding hole, and successfully insert it. Every peg-in-hole
pair can be either from a dataset or procedurally generated.
Solar Panel Assembly extends the peg-in-hole task into a challenging
long-horizon assembly sequence. The agent is required to assemble a solar
panel by inserting four pegs of varying lengths into their holes, which is
followed by attaching a solar cell to the assembled support structure.

4 Preliminary Benchmarking Results

We conduct a preliminary benchmarking study to evaluate the performance of RL agents on the
introduced tasks. Model-based DreamerV3 by Hafner et al. [16] was selected due to its promis-
ing results with high-dimensional inputs and general robustness to hyperparameters across various
domains, while its learned world model is suitable for providing insights about the design of the
benchmark. It is configured to encode both proprioceptive and visual observations (64×64 px) us-
ing a model with a total capacity of 43M parameters. The agents were trained across the tasks in 128
parallel environments for 10M steps with a training ratio of 64. Furthermore, the sample collection
and peg-in-hole assembly tasks are analyzed using both dataset-based and procedurally generated
assets to evaluate the impact of diversity on the generalization capabilities.

Once trained, the agents were evaluated over 200 episodes in their corresponding tasks. Sample
collection using static assets in the form of sample return tubes achieved a success rate of 98.5%,
while the peg-in-hole assembly task reached 92.0%. However, the success rate dropped to 43.5% for
collecting procedural rock samples, and the peg-in-hole assembly task with procedurally generated
modules remained unsolved. Similarly, success in the solar panel assembly task was never achieved
as the agent struggled to insert more than one peg of the support structure. These preliminary results
suggest that the diversity introduced by procedural generation poses a significant challenge for the
agents, highlighting the importance of generalization in the design of the benchmark. Furthermore,
the complexity of long-horizon tasks requires additional exploration of the training dynamics, model
capacity, and reward shaping to facilitate the process of learning.

5 Conclusion and Future Work

The benchmark introduced in this work aims to provide a standardized framework for exploring
learning-based approaches in the domain of space robotics. By focusing on key manipulation chal-
lenges, this benchmark introduces a set of tasks that are essential for future space missions. The
preliminary results highlight the importance of evaluating generalization capabilities in the design
of the benchmark, as the diversity introduced by procedural generation poses a significant challenge
for the agents. Future work will focus on addressing the current limitations by expanding the avail-
able tasks with more complex scenarios while emphasizing mobile manipulation that would explore
the peculiarities of dynamic space environments. Parametric robot configurations will be introduced
to evaluate robustness and generalization capabilities across various systems. Furthermore, elaborate
evaluation metrics shall be defined to provide a comprehensive understanding of the performance
across different tasks and domains before establishing thorough benchmarking baselines.
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