
Published as a conference paper at ICLR 2021

WHAT MATTERS FOR ON-POLICY DEEP ACTOR-
CRITIC METHODS? A LARGE-SCALE STUDY

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini,
Sertan Girgin, Raphaël Marinier, Léonard Hussenot, Matthieu Geist,
Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem

Google Research, Brain Team

ABSTRACT

In recent years, reinforcement learning (RL) has been successfully applied to many
different continuous control tasks. While RL algorithms are often conceptually
simple, their state-of-the-art implementations take numerous low- and high-level
design decisions that strongly affect the performance of the resulting agents. Those
choices are usually not extensively discussed in the literature, leading to discrepancy
between published descriptions of algorithms and their implementations. This
makes it hard to attribute progress in RL and slows down overall progress [27].
As a step towards filling that gap, we implement >50 such “choices” in a unified
on-policy deep actor-critic framework, allowing us to investigate their impact in
a large-scale empirical study. We train over 250’000 agents in five continuous
control environments of different complexity and provide insights and practical
recommendations for the training of on-policy deep actor-critic RL agents.

1 INTRODUCTION

Deep reinforcement learning (RL) has seen increased interest in recent years due to its ability to
have neural-network-based agents learn to act in environments through interactions. For continuous
control tasks, on-policy algorithms such as REINFORCE [2], TRPO [10], A3C [14], PPO [17] and
off-policy algorithms such as DDPG [13] and SAC [21] have enabled successful applications such as
quadrupedal locomotion [20], self-driving [30] or dexterous in-hand manipulation [20, 25, 32].

Many of these papers investigate in depth different algorithmic ideas, for example different loss
functions and learning paradigms. Yet, it is less visible that behind successful experiments in deep RL
there are complicated code bases that contain a large number of low- and high-level design decisions
that are usually not discussed in research papers. While one may assume that such “choices” do not
matter, there is evidence that they are in fact crucial for or even driving good performance [27].

While there are open-source implementations available that can be used by practitioners, this is still
unsatisfactory: Research publications often contain one-to-one comparisons of different algorithmic
ideas based on implementations in different code bases. This makes it impossible to assess whether
improvements are due to the underlying algorithmic idea or due to the implementation. In fact, it is
hard to assess the performance of high-level algorithmic ideas without an understanding of lower-level
choices as performance may strongly depend on the tuning of hyperparameters and implementation-
level details. Overall, this makes it hard to attribute progress in reinforcement learning and slows
down further research [15, 22, 27].

Our contributions. Our key goal in this paper is to investigate such lower level choices in depth
and to understand their impact on final agent performance. Hence, as our key contributions, we
(1) implement >50 choices in a unified on-policy deep actor-critic implementation1, (2) conducted
a large-scale (more than 250’000 agents trained) experimental study that covers different aspects
of the training process, and (3) analyze the experimental results to provide practical insights and
recommendations for the training of on-policy deep actor-critic RL agents.

1The implementation is available at https://github.com/google-research/seed_rl.

1



Published as a conference paper at ICLR 2021

Most surprising finding. While many of our experimental findings confirm common RL practices,
some of them are quite surprising, e.g. the policy initialization scheme significantly influences the
performance while it is rarely even mentioned in RL publications. In particular, we have found that
initializing the network so that the initial action distribution has zero mean, a rather low standard
deviation and is independent of the observation significantly improves the training speed (Sec. 3.2).

Paper outline. The rest of of this paper is structured as follows: We describe our experimental setup
and performance metrics used in Sec. 2. Then, in Sec. 3 we present and analyse the experimental
results and finish with related work in Sec. 4 and conclusions in Sec. 5. The appendices contain the
detailed description of all design choices we experiment with (App. B), default hyperparameters
(App. C) and the raw experimental results (App. D - K).

2 STUDY DESIGN

Considered setting. In this paper, we consider the setting of on-policy deep actor-critic reinforce-
ment learning for continuous control. We define on-policy learning in the following loose sense:
We consider policy iteration algorithms that iterate between generating experience using the current
policy and using that experience to improve the policy. This is the standard modus operandi of
algorithms usually considered on-policy such as PPO [17]. However, we note that algorithms often
perform several model updates and thus may operate technically on off-policy data within a single
policy improvement iteration. As benchmark environments, we consider five widely used continuous
control environments from OpenAI Gym [12] of varying complexity: Hopper-v1, Walker2d-v1,
HalfCheetah-v1, Ant-v1, and Humanoid-v1 2.

Unified on-policy deep actor-critic gradient algorithm. We took the following approach to create
a highly configurable unified on-policy deep actor-critic gradient algorithm with as many choices as
possible:

1. We researched prior work and popular code bases to make a list of commonly used choices,
i.e., different loss functions (both for value functions and policies), architectural choices such
as initialization methods, heuristic tricks such as gradient clipping and all their corresponding
hyperparameters.

2. Based on this, we implemented a single, unified on-policy deep actor-critic agent and correspond-
ing training protocol starting from the SEED RL code base [28]. Whenever we were faced with
implementation decisions that required us to take decisions that could not be clearly motivated or
had alternative solutions, we further added such decisions as additional choices.

3. We verified that when all choices are selected as in the PPO implementation from OpenAI
baselines, we obtain similar performance as reported in the PPO paper [17]. We chose PPO
because it is probably the most commonly used on-policy deep actor-critic RL algorithm at the
moment.

The resulting agent implementation is detailed in Appendix B. The key property is that the implemen-
tation exposes all choices as configuration options in an unified manner. For convenience, we mark
each of the choice in this paper with a number (e.g., C1) and a fixed name (e.g. num_envs (C1))
that can be easily used to find a description of the choice in Appendix B.

Difficulty of investigating choices. The primary goal of this paper is to understand how the
different choices affect the final performance of an agent and to derive recommendations for these
choices. There are two key reasons why this is challenging:

First, we are mainly interested in insights on choices for good hyperparameter configurations. Yet, if
all choices are sampled randomly, the performance is very bad and little (if any) training progress is
made. This may be explained by the presence of sub-optimal settings (e.g., hyperparameters of the
wrong scale) that prohibit learning at all. If there are many choices, the probability of such failure
increases exponentially.

2It has been noticed that the version of the Mujoco physics simulator [5] can slightly influence the behaviour
of some of the environments — https://github.com/openai/gym/issues/1541. We used Mujoco
2.0 in our experiments.

2



Published as a conference paper at ICLR 2021

Second, many choices may have strong interactions with other related choices, for example the
learning rate and the minibatch size. This means that such choices need to be tuned together and
experiments where only a single choice is varied but interacting choices are kept fixed may lead to
misleading conclusions.

Basic experimental design. To address these issues, we design a series of experiments as follows:
We create groups of choices around thematic groups where we suspect interactions between different
choices, for example we group together all choices related to neural network architecture. We also
include Adam learning rate (C24) in all of the groups as we suspect that it may interact
with many other choices.

Then, in each experiment, we train a large number of models where we randomly sample the choices
within the corresponding group 3. All other settings (for choices not in the group) are set to settings
of a competitive base configuration (detailed in Appendix C) that is close to the default PPOv2
configuration4 scaled up to 256 parallel environments. This has two effects: First, it ensures that our
set of trained models contains good models (as verified by performance statistics in the corresponding
results). Second, it guarantees that we have models that have different combinations of potentially
interacting choices.

We consider two different analyses for each choice (e.g, for advantage_estimator (C6)):

Conditional 95th percentile: For each potential value of that choice (e.g., advantage_estimator
(C6) = N-Step), we look at the performance distribution of sampled configurations with that value.
We report the 95th percentile of the performance as well as a confidence interval based on a binomial
approximation 5. Intuitively, this corresponds to a robust estimate of the performance one can expect
if all other choices in the group were tuned with random search and a limited budget of roughly 20
hyperparameter configurations.

Distribution of choice within top 5% configurations. We further consider for each choice the
distribution of values among the top 5% configurations trained in that experiment. The reasoning is
as follows: By design of the experiment, values for each choice are distributed uniformly at random.
Thus, if certain values are over-represented in the top models, this indicates that the specific choice is
important in guaranteeing good performance.

Performance measures. We employ the following way to compute performance: For each choice
configuration, we train 3 models with independent random seeds where each model is trained for
one million (Hopper, HalfCheetah, Walker2d) or two million environment steps (Ant, Humanoid).
We evaluate trained policies every hundred thousand steps by freezing the policy and computing the
average undiscounted episode return of 100 episodes (with the stochastic policy). We then average
these score to obtain a single performance score of the seed which is proportional to the area under the
learning curve. This ensures we assign higher scores to agents that learn quickly. The performance
score of a hyperparameter configuration is finally set to the median performance score across the 3
seeds. This reduces the impact of training noise, i.e., that certain seeds of the same configuration may
train much better than others.

Robustness of results. While we take 3 random seeds to compute the performance measure for
a single choice configuration, it is important to note that all the experimental results reported in
this paper are based on more than 3 random seeds: The reported conditional 95th percentile and
distribution of choice within top 5% configurations are computed based upon the performance
of hundreds of choice configurations. Furthermore, we also report confidence intervals for the
conditional 95th percentile.

3Exact details for the different experiments are provided in Appendices D - K.
4https://github.com/openai/baselines/blob/master/baselines/ppo2/

defaults.py
5We compute confidence intervals with a significance level of α = 5% as follows: We find il = icdf

(
α
2

)
and ih = icdf

(
1− α

2

)
where icdf is the inverse cumulative density function of a binomial distribution with

p = 0.95 (as we consider the 95th percentile) and the number of draws equals the number of samples. We then
report the ilth and ihth highest scores as the confidence interval.

3



Published as a conference paper at ICLR 2021

3 EXPERIMENTS

We run experiments for eight thematic groups: Policy Losses (Sec. 3.1), Networks architecture
(Sec. 3.2), Normalization and clipping (Sec. 3.3), Advantage Estimation (Sec. 3.4), Training setup
(Sec. 3.5), Timesteps handling (Sec. 3.6), Optimizers (Sec. 3.7), and Regularization (Sec. 3.8). For
each group, we provide a full experimental design and full experimental plots in Appendices D - K
so that the reader can draw their own conclusions from the experimental results. Moreover, the raw
data from all training runs and a script used to generate all plots for this paper can be found online6.
In the following sections, we provide short descriptions of the experiments, our interpretation of the
results, as well as practical recommendations for agent training for continuous control.

3.1 POLICY LOSSES (BASED ON THE RESULTS IN APPENDIX D)

Study description. We investigate different policy losses (C14): vanilla policy gradient (PG), V-
trace [19], PPO [17], AWR [33], V-MPO7 [34] and the limiting case of AWR (β → 0) and V-MPO
(εn → 0) which we call Repeat Positive Advantages (RPA) as it is equivalent to the negative log-
probability of actions with positive advantages. See App. B.3 for a detailed description of the different
losses. We further sweep the hyperparameters of each of the losses (C15, C16, C18, C17, C19), the
learning rate (C24) and the number of passes over the data (C3).

The goal of this study is to better understand the importance of the policy loss function in the on-policy
deep actor-critic setting considered in this paper. The goal is not to provide a general statement that
one of the losses is better than the others as some of them were specifically designed for other settings
(e.g., the V-trace loss is targeted at near-on-policy data in a distributed setting).

AW
R PG PP
O

RP
A

V-
M

PO
V-

Tr
ac

e

0

250

500

750

1000

1250

1500

1750
Hopper-v1

AW
R PG PP
O

RP
A

V-
M

PO
V-

Tr
ac

e

0

500

1000

1500

2000

2500

3000
Humanoid-v1

AW
R PG PP
O

RP
A

V-
M

PO
V-

Tr
ac

e

0

200

400

600

800

1000
Walker2d-v1

AW
R PG PP
O

RP
A

V-
M

PO
V-

Tr
ac

e

0

200

400

600

800

1000

1200

HalfCheetah-v1

AW
R PG PP
O

RP
A

V-
M

PO
V-

Tr
ac

e

0

500

1000

1500

2000

2500
Ant-v1

Figure 1: Comparison of different policy losses (C14).

Interpretation. Fig. 1 shows the 95-th percentile of the average policy score during training for
different policy losses (C14). We observe that PPO performs better than the other losses on 4 out of
5 environments and is one of the top performing losses on HalfCheetah. As we randomly sample the
loss specific hyperparameters in this analysis, one might argue that our approach favours choices that
are not too sensitive to hyperparameters. At the same time, there might be losses that are sensitive
to their hyperparameters but for which good settings may be easily found. Fig. 5 shows that even
if we condition on choosing the optimal loss hyperparameters for each loss8, PPO still outperforms
the other losses on the two hardest tasks — Humanoid and Ant9 and is one of the top performing
losses on the other 3 tasks. Moreover, we show the empirical cumulative density functions of agent
performance conditioned on the policy loss used in Fig. 4.

Perhaps unsurprisingly, PG and V-trace perform worse on all tasks. This is likely caused by their
inability to handle data that becomes off-policy in one iteration, either due to multiple passes (C3)

6https://github.com/google-research/seed_rl/blob/master/mujoco/what_
matters_in_on_policy_rl.ipynb

7We used the V-MPO policy loss without the decoupled KL constraint as we investigate the effects of
different policy regularizers separately in Sec. 3.8.

8AWR loss has two hyperparameters — the temperature β (C18) and the weight clipping coefficient ωmax
(C17). We only condition on β which is more important.

9These two tasks were not included in the original PPO paper [17] so the hyperparameters we use were not
tuned for them.

4



Published as a conference paper at ICLR 2021

over experience (which can be seen in Fig. 14) or a large experience buffer (C2) in relation to the
batch size (C4). While V-Trace contains an off-policy correction, it was designed for ”slightly”
off-policy experience arising in ansynchronous, distributed setups and becomes more and more biased
as experience becomes more off-policy. Overall, these results show that trust-region optimization
(preventing the current policy from diverging too much from the behavioral one) which is present in
all the other policy losses is crucial for good sample complexity.

For PPO and its clipping threshold ε (C16), we further observe that ε = 0.2 and ε = 0.3 perform
reasonably well in all environments but that lower (ε = 0.1) or higher (ε = 0.5) values give better
performance on some of the environments (See Fig. 10 and Fig. 32).

Recommendation. Use the PPO policy loss. Start with the clipping threshold set to 0.25 but also try
lower and higher values if possible.

3.2 NETWORKS ARCHITECTURE (BASED ON THE RESULTS IN APPENDIX E)

Study description. We investigate the impact of differences in the policy and value function neural
network architectures. We consider choices related to the network structure and size (C47, C48,
C49, C50, C51, C52, C52), activation functions (C55), and initialization of network weights (C56,
C57, C58). We further include choices related to the standard deviation of actions (C59, C60, C61,
C62) and transformations of sampled actions (C63).

Interpretation. Separate value and policy networks (C47) appear to lead to better performance on
four out of five environments (Fig. 15). To avoid analyzing the other choices based on bad models,
we thus focus for the rest of this experiment only on agents with separate value and policy networks.
Regarding network sizes, the optimal width of the policy MLP depends on the complexity of the
environment (Fig. 18) and too low or too high values can cause significant drop in performance while
for the value function there seems to be no downside in using wider networks (Fig. 21). Moreover,
on some environments it is beneficial to make the value network wider than the policy one, e.g. on
HalfCheetah the best results are achieved with 16− 32 units per layer in the policy network and 256
in the value network. Two hidden layers appear to work well for policy (Fig. 22) and value networks
(Fig. 20) in all tested environments. As for activation functions, we observe that tanh activations
perform best and relu worst. (Fig. 30).

Interestingly, the initial policy appears to have a surprisingly high impact on the training performance.
The key recipe is to initialize the policy at the beginning of training so that the action distribution is
centered around 010 regardless of the observation and has a rather small standard deviation. This can
be achieved by initializing the policy MLP with smaller weights in the last layer (C57, Fig. 24, this
alone boosts the performance on Humanoid by 66%) so that the initial action distribution is almost
independent of the observation and by introducing an offset in the standard deviation of actions (C61).
Fig. 2 shows that the performance is very sensitive to the initial action standard deviation with 0.5
performing best on all environments except Hopper where higher values perform better.

0.
1

0.
5

1.
0

2.
0

0
200
400
600
800

1000
1200
1400

Hopper-v1

0.
1

0.
5

1.
0

2.
0

0

500

1000

1500

2000

2500

3000
Humanoid-v1

0.
1

0.
5

1.
0

2.
0

0

200

400

600

800

Walker2d-v1

0.
1

0.
5

1.
0

2.
0

0

500

1000

1500

2000

2500

3000
HalfCheetah-v1

0.
1

0.
5

1.
0

2.
0

0

500

1000

1500

2000

2500

3000

Ant-v1

Figure 2: Comparison of different initial standard deviations of actions (C61).

Fig. 17 compares two approaches to transform unbounded sampled actions into the bounded [−1, 1]
domain expected by the environment (C63): clipping and applying a tanh function. tanh performs
slightly better overall (in particular it improves the performance on HalfCheetah by 30% ). Comparing

10All environments expect normalized actions in [−1, 1].

5



Published as a conference paper at ICLR 2021

Fig. 17 and Fig. 2 suggests that the difference might be mostly caused by the decreased magnitude of
initial actions11.

Other choices appear to be less important: The scale of the last layer initialization matters much less
for the value MLP (C58) than for the policy MLP (Fig. 19). Apart from the last layer scaling, the
network initialization scheme (C56) does not matter too much (Fig. 27). Only he_normal and
he_uniform [7] appear to be suboptimal choices with the other options performing very similarly.
There also appears to be no clear benefits if the standard deviation of the policy is learned for each
state (i.e. outputted by the policy network) or once globally for all states (C59, Fig. 23). For the
transformation of policy output into action standard deviation (C60), softplus and exponentiation
perform very similarly12 (Fig. 25). Finally, the minimum action standard deviation (C62) seems to
matter little, if it is not set too large (Fig. 30).

Recommendation. Initialize the last policy layer with 100× smaller weights. Use softplus to
transform network output into action standard deviation and add a (negative) offset to its input to
decrease the initial standard deviation of actions. Tune this offset if possible. Use tanh both as the
activation function (if the networks are not too deep) and to transform the samples from the normal
distribution to the bounded action space. Use a wide value MLP (no layers shared with the policy)
but tune the policy width (it might need to be narrower than the value MLP).

3.3 NORMALIZATION AND CLIPPING (BASED ON THE RESULTS IN APPENDIX F)

Study description. We investigate the impact of different normalization techniques: observation
normalization (C64), value function normalization (C66), per-minibatch advantage normalization
(C67), as well as gradient (C68) and observation (C65) clipping.

Interpretation. Input normalization (C64) is crucial for good performance on all environments apart
from Hopper (Fig. 33). Quite surprisingly, value function normalization (C66) also influences the
performance very strongly — it is crucial for good performance on HalfCheetah and Humanoid,
helps slightly on Hopper and Ant and significantly hurts the performance on Walker2d (Fig. 37). We
are not sure why the value function scale matters that much but suspect that it affects the performance
by changing the speed of the value function fitting.13 In contrast to observation and value function
normalization, per-minibatch advantage normalization (C67) seems not to affect the performance
too much (Fig. 35). Similarly, we have found little evidence that clipping normalized14 observations
(C65) helps (Fig. 38) but it might be worth using if there is a risk of extremely high observations due
to simulator divergence. Finally, gradient clipping (C68) provides a small performance boost with
the exact clipping threshold making little difference (Fig. 34).

Recommendation. Always use observation normalization and check if value function normalization
improves performance. Gradient clipping might slightly help but is of secondary importance.

3.4 ADVANTAGE ESTIMATION (BASED ON THE RESULTS IN APPENDIX G)

Study description. We compare the most commonly used advantage estimators (C6): N-step [3],
GAE [9] and V-trace [19] and their hyperparameters (C7, C8, C9, C10). We also experiment
with applying PPO-style pessimistic clipping (C13) to the value loss (present in the original PPO
implementation but not mentioned in the PPO paper [17]) and using Huber loss [1] instead of MSE
for value learning (C11, C12). Moreover, we varied the number of parallel environments used (C1)
as it changes the length of the experience fragments collected in each step.

Interpretation. GAE and V-trace appear to perform better than N-step returns (Fig. 44 and 40) which
indicates that it is beneficial to combine the value estimators from multiple timesteps. We have not

11tanh can also potentially perform better with entropy regularization (not used in this experiment) as it
bounds the maximum possible policy entropy.

12We noticed that some of the training runs with exponentiation resulted in NaNs but clipping the exponent
solves this issue (See Sec. B.8 for the details).

13Another explanation could be the interaction between the value function normalization and PPO-style value
clipping (C13). We have, however, disabled the value clipping in this experiment to avoid this interaction. The
disabling of the value clipping could also explain why our conclusions are different from [27] where a form of
value normalization improved the performance on Walker.

14We only applied clipping if input normalization was enabled.

6



Published as a conference paper at ICLR 2021

found a significant performance difference between GAE and V-trace in our experiments. λ = 0.9
(C8, C9) performed well regardless of whether GAE (Fig. 45) or V-trace (Fig. 49) was used on all
tasks but tuning this value per environment may lead to modest performance gains. We have found
that PPO-style value loss clipping (C13) hurts the performance regardless of the clipping threshold15

(Fig. 43). Similarly, the Huber loss (C11) performed worse than MSE in all environments (Fig. 42)
regardless of the value of the threshold (C12) used (Fig. 48).

Recommendation. Use GAE with λ = 0.9 but neither Huber loss nor PPO-style value loss clipping.

3.5 TRAINING SETUP (BASED ON THE RESULTS IN APPENDIX H)

Study description. We investigate choices related to the data collection and minibatch handling:
the number of parallel environments used (C1), the number of transitions gathered in each iteration
(C2), the number of passes over the data (C3), minibatch size (C4) and how the data is split into
minibatches (C5).

For the last choice, in addition to standard choices, we also consider a new small modification of
the original PPO approach: The original PPO implementation splits the data in each policy iteration
step into individual transitions and then randomly assigns them to minibatches (C5). This makes it
impossible to compute advantages as the temporal structure is broken. Therefore, the advantages are
computed once at the beginning of each policy iteration step and then used in minibatch policy and
value function optimization. This results in higher diversity of data in each minibatch at the cost of
using slightly stale advantage estimations. As a remedy to this problem, we propose to recompute the
advantages at the beginning of each pass over the data instead of just once per iteration.

Results. Unsurprisingly, going over the experience multiple times appears to be crucial for good sam-
ple complexity (Fig. 54). Often, this is computationally cheap due to the simple models considered,
in particular on machines with accelerators such as GPUs and TPUs. As we increase the number of
parallel environments (C1), performance decreases sharply on some of the environments (Fig. 55).
This is likely caused by shortened experience chunks (See Sec. B.1 for the detailed description
of the data collection process) and earlier value bootstrapping. Despite that, training with more
environments usually leads to faster training in wall-clock time if enough CPU cores are available.
Increasing the batch size (C4) does not appear to hurt the sample complexity in the range we tested
(Fig. 57) which suggests that it should be increased for faster iteration speed. On the other hand, the
number of transitions gathered in each iteration (C2) influences the performance quite significantly
(Fig. 52). Finally, we compare different ways to handle minibatches (See App. B.1 for the detailed
description of different variants) in Fig. 53 and 58. The plots suggest that stale advantages can in fact
hurt performance and that recomputing them at the beginning of each pass at least partially mitigates
the problem and performs best among all variants.

Recommendation. Go over experience multiple times. Shuffle individual transitions before assigning
them to minibatches and recompute advantages once per data pass (See App. B.1 for the details).
For faster wall-clock time training use many parallel environments and increase the batch size (both
might hurt the sample complexity). Tune the number of transitions in each iteration (C2) if possible.

3.6 TIMESTEPS HANDLING (BASED ON THE RESULTS IN APPENDIX I)

Study description. We investigate choices related to the handling of timesteps: discount fac-
tor16 (C20), frame skip (C21), and how episode termination due to timestep limits are handled (C22).
The latter relates to a technical difficulty explained in App. B.4 where one assumes for the algorithm
an infinite time horizon but then trains using a finite time horizon [16].

Interpretation. Fig. 60 shows that the performance depends heavily on the discount factor γ (C20)
with γ = 0.99 performing reasonably well in all environments. Skipping every other frame (C21)
improves the performance on 2 out of 5 environments (Fig. 61). Proper handling of episodes
abandoned due to the timestep limit seems not to affect the performance (C22, Fig. 62) which

15This is consistent with prior work [27].
16While the discount factor is sometimes treated as a part of the environment, we assume that the real goal is

to maximize undiscounted returns and the discount factor is a part of the algorithm which makes learning easier.

7



Published as a conference paper at ICLR 2021

is probably caused by the fact that the timestep limit is quite high (1000 transitions) in all the
environments we considered.

Recommendation. Discount factor γ is one of the most important hyperparameters and should be
tuned per environment (start with γ = 0.99). Try frame skip if possible. There is no need to handle
environments step limits in a special way for large step limits.

3.7 OPTIMIZERS (BASED ON THE RESULTS IN APPENDIX J)

Study description. We investigate two gradient-based optimizers commonly used in RL: (C23) –
Adam [8] and RMSprop – as well as their hyperparameters (C24, C25, C26, C27, C28, C29, C30)
and a linear learning rate decay schedule (C31).

Interpretation. The differences in performance between the optimizers (C23) appear to be rather
small with no optimizer consistently outperforming the other across environments (Fig. 66). Unsur-
prisingly, the learning rate influences the performance very strongly (Fig. 69) with the default value
of 0.0003 for Adam (C24) performing well on all tasks. Fig. 67 shows that Adam works better with
momentum (C26). For RMSprop, momentum (C27) makes less difference (Fig. 71) but our results
suggest that it might slightly improve performance17. Whether the centered or uncentered version of
RMSprop is used (C30) makes no difference (Fig. 70) and similarly we did not find any difference
between different values of the ε coefficients (C28, C29, Fig. 68 and 72). Linearly decaying the
learning rate to 0 increases the performance on 4 out of 5 tasks but the gains are very small apart
from Ant, where it leads to 15% higher scores (Fig. 65).

Recommendation. Use Adam [8] optimizer with momentum β1 = 0.9 and a tuned learning rate
(0.0003 is a safe default). Linearly decaying the learning rate may slightly improve performance but
is of secondary importance.

3.8 REGULARIZATION (BASED ON THE RESULTS IN APPENDIX K)

Study description. We investigate different policy regularizers (C32), which can have either the
form of a penalty (C33, e.g. bonus for higher entropy) or a soft constraint (C34, e.g. entropy should
not be lower than some threshold) which is enforced with a Lagrange multiplier. In particular, we
consider the following regularization terms: entropy (C40, C46), the Kullback–Leibler divergence
(KL) between a reference N (0, 1) action distribution and the current policy (C37, C43) and the KL
divergence and reverse KL divergence between the current policy and the behavioral one (C35, C41,
C36, C42), as well as the “decoupled” KL divergence from [18, 34] (C38, C39, C44, C45).

Interpretation. We do not find evidence that regularization helps significantly on our environments
with the exception of HalfCheetah on which all constraints (especially the entropy constraint) help
(Fig. 76 and 77). However, the performance boost is largely independent on the constraint threshold
(Fig. 83, 84, 87, 89, 90 and 91) which suggests that the effect is caused by the initial high strength
of the penalty (before it gets adjusted) and not by the desired constraint. While it is surprising that
regularization does not help at all (apart from HalfCheetah), we conjecture that regularization might
be less important in our experiments because: (1) the PPO policy loss already enforces the trust region
which makes KL penalties or constraints redundant; and (2) the careful policy initialization (See
Sec. 3.2) is enough to guarantee good exploration making the entropy bonus or constraint redundant.

4 RELATED WORK

Islam et al. [15] and Henderson et al. [22] point out reproducibility issues in RL including the
performance differences between different code bases, the importance of hyperparameter tuning
and the high level of stochasticity due to random seeds. Tucker et al. [26] showed that the gains,
which had been attributed to one of the recently proposed policy gradients improvements, were,
in fact, caused by the implementation details. The most closely related work to ours is probably
Engstrom et al. [27] where the authors investigate code-level improvements in the PPO [17] code
base and conclude that they are responsible for the most of the performance difference between PPO

17Importantly, switching from no momentum to momentum 0.9 increases the RMSprop step size by approxi-
mately 10× and requires an appropriate adjustment to the learning rate (Fig. 74).

8



Published as a conference paper at ICLR 2021

and TRPO [10]. Our work is also similar to other large-scale studies done in other fields of Deep
Learning, e.g. model-based RL [31], GANs [24], NLP [35], disentangled representations [23] and
convolution network architectures [36].

5 CONCLUSIONS

In this paper, we investigated the importance of a broad set of high- and low-level choices that need
to be made when designing and implementing on-policy deep actor-critic RL algorithms. Based on
more than 250’000 experiments in five continuous control environments, we evaluate the impact of
different choices and provide practical recommendations. One of the surprising insights is that the
initial action distribution plays an important role in agent performance. We expect this to be a fruitful
avenue for future research.

REFERENCES

[1] Peter J Huber. “Robust estimation of a location parameter”. In: Breakthroughs in statistics. Springer,
1992, pp. 492–518.

[2] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist reinforcement
learning”. In: Machine learning 8.3-4 (1992), pp. 229–256.

[3] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning. Vol. 135. MIT press
Cambridge, 1998.

[4] Brian D Ziebart. “Modeling purposeful adaptive behavior with the principle of maximum causal entropy”.
In: (2010).

[5] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-based control”. In:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2012, pp. 5026–5033.

[6] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv preprint
arXiv:1312.5602 (2013).

[7] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification”. In: Proceedings of the IEEE international conference on computer vision. 2015, pp. 1026–
1034.

[8] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. 2015. URL: http://arxiv.org/abs/1412.6980.

[9] John Schulman et al. “High-dimensional continuous control using generalized advantage estimation”. In:
arXiv preprint arXiv:1506.02438 (2015).

[10] John Schulman et al. “Trust region policy optimization”. In: International conference on machine
learning. 2015, pp. 1889–1897.

[11] Martın Abadi et al. “Tensorflow: A system for large-scale machine learning”. In: 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 2016, pp. 265–283.

[12] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).
[13] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In: International

Conference on Learning Representations. 2016.
[14] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”. In: International

conference on machine learning. 2016, pp. 1928–1937.
[15] Riashat Islam et al. “Reproducibility of benchmarked deep reinforcement learning tasks for continuous

control”. In: arXiv preprint arXiv:1708.04133 (2017).
[16] Fabio Pardo et al. “Time limits in reinforcement learning”. In: arXiv preprint arXiv:1712.00378 (2017).
[17] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347

(2017).
[18] Abbas Abdolmaleki et al. “Maximum a posteriori policy optimisation”. In: arXiv preprint

arXiv:1806.06920 (2018).
[19] Lasse Espeholt et al. “IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner

Architectures”. In: International Conference on Machine Learning. 2018, pp. 1406–1415.
[20] Tuomas Haarnoja et al. “Soft actor-critic algorithms and applications”. In: arXiv preprint

arXiv:1812.05905 (2018).
[21] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning

with a Stochastic Actor”. In: International Conference on Machine Learning. 2018, pp. 1861–1870.

9



Published as a conference paper at ICLR 2021

[22] Peter Henderson et al. “Deep reinforcement learning that matters”. In: Thirty-Second AAAI Conference
on Artificial Intelligence. 2018.

[23] Francesco Locatello et al. “Challenging common assumptions in the unsupervised learning of disentan-
gled representations”. In: arXiv preprint arXiv:1811.12359 (2018).

[24] Mario Lucic et al. “Are gans created equal? a large-scale study”. In: Advances in neural information
processing systems. 2018, pp. 700–709.

[25] M Andrychowicz OpenAI et al. “Learning dexterous in-hand manipulation”. In: arXiv preprint
arXiv:1808.00177 (2018).

[26] George Tucker et al. “The mirage of action-dependent baselines in reinforcement learning”. In: arXiv
preprint arXiv:1802.10031 (2018).

[27] Logan Engstrom et al. “Implementation Matters in Deep RL: A Case Study on PPO and TRPO”. In:
International Conference on Learning Representations. 2019.

[28] Lasse Espeholt et al. “SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference”.
In: arXiv preprint arXiv:1910.06591 (2019).

[29] Michael Janner et al. “When to trust your model: Model-based policy optimization”. In: Advances in
Neural Information Processing Systems. 2019, pp. 12498–12509.

[30] Alex Kendall et al. “Learning to drive in a day”. In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE. 2019, pp. 8248–8254.

[31] Eric Langlois et al. “Benchmarking model-based reinforcement learning”. In: arXiv preprint
arXiv:1907.02057 (2019).

[32] Ilge OpenAI et al. “Solving Rubik’s Cube with a Robot Hand”. In: arXiv preprint arXiv:1910.07113
(2019).

[33] Xue Bin Peng et al. “Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement
Learning”. In: arXiv preprint arXiv:1910.00177 (2019).

[34] H Francis Song et al. “V-MPO: On-Policy Maximum a Posteriori Policy Optimization for Discrete and
Continuous Control”. In: arXiv preprint arXiv:1909.12238 (2019).

[35] Jared Kaplan et al. “Scaling laws for neural language models”. In: arXiv preprint arXiv:2001.08361
(2020).

[36] Ilija Radosavovic et al. “Designing Network Design Spaces”. In: arXiv preprint arXiv:2003.13678
(2020).

10


