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Abstract

Variational Learning (VL) has recently gained popularity for training deep neural
networks. Part of its empirical success can be explained by theories such as PAC-
Bayes bounds, minimum description length and marginal likelihood, but little
has been done to unravel the implicit regularization in play. Here, we analyze
the implicit regularization of VL through the Edge of Stability (EoS) framework.
EoS has previously been used to show that gradient descent can find flat solutions
and we extend this result to show that VL can find even flatter solutions. This
result is obtained by controlling the shape of the variational posterior as well as
the number of posterior samples used during training. The derivation follows in a
similar fashion as in the standard EoS literature for deep learning, by first deriving
a result for a quadratic problem and then extending it to deep neural networks. We
empirically validate these findings on a wide variety of large networks, such as
ResNet and ViT, to find that the theoretical results closely match the empirical ones.
Ours is the first work to analyze the EoS dynamics of VL.

1 Introduction

Variational Learning (VL) has been used to perform deep learning from early on [Graves, 2011,
Blundell et al., 2015] and recently also started to show good results at large scale. It has been shown
to outperform state-of-the-art optimizers without any increase in the cost. For example, on ImageNet,
VL substantially improves overfitting commonly seen in AdamW and for pretraining GPT-2 from
scratch, VL achieves a lower validation perplexity than AdamW [Shen et al., 2024]. For low-rank
fine-tuning of Llama-2 (7B), VL improves both accuracy (by 2.8%) and calibration (by 4.6%) [Cong
et al., 2024, Li et al., 2025]. Moreover, VL methods explicitly derived by using PAC-Bayes bounds
[Wang et al., 2023b, Zhang et al., 2024b] have shown consistent improvements over AdamW. All
such results confirm the importance of VL for deep learning.

Despite these successes, the theoretical mechanisms behind the good performance of VL remain
poorly understood. It is often assumed that simplistic Gaussian posteriors, such as those used
currently for deep learning, may not be enough because they are poor approximations of the true
posterior; lack of a good prior is another issue. Despite these concerns, VL shows good performance
in practice. Theories such as minimum description length [Hinton and Van Camp, 1993, Hochreiter
and Schmidhuber, 1997, Blier and Ollivier, 2018], PAC-Bayes [Dziugaite and Roy, 2017, Zhou et al.,
2019, Lotfi et al., 2024, Alquier et al., 2024] and marginal likelihood [Smith and Le, 2017, Immer
et al., 2021] can partially explain the success. In particular, PAC-Bayes theory provides a natural
explanation for why flatter solutions may generalize better, see for instance the discussion in [Alquier
et al., 2024, Section 3.3]. However these theories say little about the regularizing properties of the
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Figure 1: Panel (a): The left figure shows trajectory traces of VL on a quadratic problem with
an isotropic variational posterior whose mean is learned but variance is set to a fixed value. The
trajectory becomes more unstable as the posterior variance is increased and number of Monte-Carlo
samples is decreased. We provide an exact expression to compute the stability threshold at which the
iterations become unstable (Theorem 3.1). Panel (b): We show the validity of the threshold on neural
network training. The right figure (top) shows this on CIFAR-10 for an MLP where VL achieves
lower sharpness than GD when posterior variance is increased. The bottom figure shows that the
sharpness (solid line) matches the stability threshold obtained by our theorem (dashed line).

learning algorithm. Similarly to deep learning, the presence of implicit regularization is likely also at
play in VL, but few tools exist to unravel these effects.

In this work, we analyze the implicit regularization of VL algorithms at the Edge of Stability. The EoS
analysis has previously been used to show that Gradient Descent (GD) with constant learning rate ρ
implicitly biases the trajectories towards flatter solutions, where the sharpness (defined as the operator
norm of the loss Hessian) hovers around 2/ρ. We extend this analysis to VL and show that sharpness
can be further lowered by controlling the posterior covariance and the number of Monte-Carlo samples
used to compute posterior expectations; see an illustration in Figure 1a. Similarly to the standard EoS
technique, we first derive an exact expression for the stability threshold for VL on a quadratic problem
and then propose extensions to general loss functions. We then empirically validate these finding on a
wide variety of deep networks, including Multi-Layer Perceptron, ResNet, and Vision Transformers;
see an example in Figure 1b. We observe similar results when posterior shape is automatically
learned, for instance, by using diagonal covariance Gaussians and heavy-tailed posteriors. Code to
replicate these results is available at https://github.com/Avra98/variationallearning-eos.

2 Theoretical Tools to Analyze Variational Learning

Variational Learning optimizes the variational reformulation of Bayesian learning [Zellner, 1988],
where the goal is to find good approximations of the Gibbs distribution exp(−ℓ(θ))/Z with partition
function Z over parameters θ ∈ Rd. Specifically, we seek the closest distribution q(θ) in a set of
distributions Q that minimizes the expected loss regularized by the entropy:

argmin
q∈Q

Eθ∼q[ℓ(θ)]−H(q). (1)

This is an instance of the maximum-entropy principle. The objective is equivalent to minimizing
the KL divergence to the Gibbs posterior and naturally encourages higher-entropy (flatter) solutions
due to the entropyH(q); for example, see the illustrative example in Khan and Rue [2023, Figure 1].
Similar arguments can also be made with the minimum-description-length principles [Hinton and
Van Camp, 1993, Graves, 2011, Blier and Ollivier, 2018]. In practice, Variational Learning has
started to show good results achieving generalization performance better than the state of the art
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Figure 2: VL’s mechanism for flatter minima: The posterior variance determines the minima’s
location. A small variance settles the posterior in a sharp minima (left), while a larger variance allows
it to explore and find a flat minima (right).

optimizers across several tasks [Shen et al., 2024, Cong et al., 2024]. This matches with the intuition:
Because the variational objective prefers wider distributions, we expect the posterior to be located in
the region where the loss ℓ(θ) is flatter, see Figure 2.

Despite this intuition, there is little work to analyze the implicit regularization that could help us
understand how VL favors flatter regions and how we can control it. Existing theories do not
sufficiently address this; a review of the related work is in Appendix A. We suspect the implicit
regularization to be related to the shape of the posterior but currently there are no results explicitly
characterizing this. VL is also closely connected to weight-noise or weight-perturbation methods
where the goal is to optimize Eq(ϵ)[ℓ(θ + ϵ)] with q(ϵ) being a fixed distribution to inject weight
noise. This can be seen as a special case of variational learning where the shape of the posterior is
fixed and only the location is learned. Multiple works [Zhu et al., 2019, Nguyen et al., 2019, Zhang
et al., 2019, Jin et al., 2017, Simsekli et al., 2019] have analyzed generalization behavior of such
weight-noise variational methods but, even for this simple case, there are no studies connecting them
to the EoS results for GD. In this paper, we will address these gaps and provide both theoretical and
empirical results regarding the edge of stability phenomenon of such a variational GD (VGD).

2.1 Edge of Stability for Gradient Descent

We will briefly review the EoS result for GD. The standard EoS literature relies on a result for a
quadratic problem and then extends it to deep neural networks. For instance, consider the following

quadratic loss: ℓ(θ) =
1

2
θ⊤Qθ, where Q =

d∑
i=1

λiviv
T
i . (2)

Here, Q is a positive definite matrix with λi being its ith largest eigenvalue and vi being the
corresponding eigenvector. The following result states the condition under which one step of GD
leads to a decrease in the loss.
Lemma 2.1. (Descent Lemma) For a GD update θt+1 = θt − ρ∇ℓ(θt) on the quadratic loss (2),
the loss decreases at each step, that is, we have

ℓ(θt+1)− ℓ(θt) ≤ 0, if and only if λi ≤
2

ρ
for all i. (3)

This lemma implies that GD converges on a quadratic loss if all eigenvalues satisfy λi < 2/ρ. This is
a different way of writing the standard condition that maximum eigenvalue λ1 < 2/ρ. The result
extends to any smooth ℓ(θ) and for such cases, the condition implies that the learning rate ρ < 2/β,
where β = supθ ∥∇2ℓ(θ)∥2 is the bound on the Hessian norm [Nesterov et al., 2018, Chapter 2].
This condition is necessary and sufficient for descent of GD on quadratic.

While the descent lemma is predictive of convergence of GD for smooth functions, deep learning
exhibits a more complex behavior. When training deep neural networks with a constant learning rate ρ,
the Hessian’s operator norm (or sharpness) tends to settle around the value 2/ρ. This phenomenon is
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referred to as the Edge of Stability. Deep neural networks often operate at this edge and converge in a
non-monotonic, unstable manner. A comprehensive empirical investigation of this phenomenon is
given by Cohen et al. [2021], where two phases of training neural networks were noticed. In the first
phase referred to as ‘progressive sharpening’, the Hessian’s operator norm, ∥∇2ℓ(θt)∥2 increases
and slowly approaches 2/ρ. This is followed by the second, EoS phase, where sharpness hovers
around 2/ρ and the loss continues to decrease in an oscillatory fashion.

This phenomenon does not happen on a quadratic loss, but only for certain losses with nonzero third-
order derivative. As shown by Damian et al. [2023], once sharpness reaches 2/ρ, a local quadratic
approximation is insufficient to capture the dynamics because the third order Taylor expansion term
of the loss becomes significant. This cubic term represents the gradient of the sharpness, which serves
as a negative feedback to counteract progressive sharpening and stabilize the sharpness around 2/ρ in
GD. Instead of divergence, the iterates exhibit oscillatory or non-monotonic behavior even when the
sharpness reaches 2/ρ. This is the reason why 2/ρ is also called the ‘Stability Threshold’. Increasing
ρ reduces the edge, which could then drive the iterates toward flatter minima that may generalize
better. EoS analysis can help us understand such implicit regularization during training, especially
for nonconvex problems.

Different optimizers have different stability thresholds which depends on the sharpness value
∥∇2ℓ(θt)∥2. For instance, Sharpness Aware Minimization (SAM) leads to a different, smaller
stability threshold [Long and Bartlett, 2024] compared to 2/ρ for GD. In this work, we show a similar
result where VL has a smaller threshold than GD. We show this by deriving the stability threshold
for a simpler quadratic problem first and analyze several factors such as posterior covariance and
the number of posterior samples that influence the threshold. Then, we empirically demonstrate that
similar results hold for the case when VL is used to train deep neural networks.

3 Stability Threshold for a Simple Case of Variational Learning

We start with a simple VL setting where the goal is to estimate a Gaussian q(θ) = N (θ|m,Σ)
whose mean m is unknown and covariance Σ is fixed. We assume Σ = σ2I is an isotropic covariance
matrix, with scalar variance σ2. Khan and Rue [2023] [Section 1.3.1] show that this can be estimated
by the following Variational GD algorithm:

mt+1 ←mt − ρEϵ∼N (0,Σ)[∇ℓ(mt + ϵ)]. (4)

This algorithm can be implemented by the following version where the expectation is estimated by
drawing Ns Monte Carlo samples to approximate the expectation as follows

mϵ
t+1 ←mt − ρ

1

Ns

Ns∑
i=1

∇ℓ(mt + ϵi), ϵi ∼ N (0, σ2I). (5)

The updated iterate mϵ
t+1 depends on the Ns Monte Carlo samples ϵ = [ϵ1, ϵ2, .., ϵNs

]. Compared
to the standard gradient descent, the update step in Variational GD (VGD), is determined by gradients
averaged over a local neighborhood of perturbed weights. As a result, the update introduces two
interacting effects influencing its stability threshold: (1) a perturbation effect, originating from the
perturbation covariance Σ, and (2) a smoothing effect, resulting from averaging gradients across Ns

Monte Carlo samples. Similarly to Lemma 2.1, we can derive the stability threshold for the above
VGD and show that it is smaller than that of GD.
Theorem 3.1. Consider the VGD update (5) on the quadratic loss (2), then

Eϵ[ℓ(m
ϵ
t+1)]− ℓ(mt) < 0 if λi <

2

ρ
·VF

(
Ns

σ2
· ci,t

)
for all i, (6)

where ci,t = (λim
⊤
t vi)

2, and VF(·) denotes the Variational Factor given by

VF(z) := ρ ·
√

z

3
· sinh

(
1

3
arcsinh

(
3

ρ

√
3

z

))
. (7)

See Appendix B for a proof where we also discuss the case where Q is low rank. The theorem is
analogous to the descent lemma for GD and it states that the Variational GD (5) also decreases the
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(a) Variational Factor (VF) (b) Descent probability (c) Stability

Figure 3: (a) Solid black curve shows the theoretical stability-threshold of VGD as a function of
Ns/σ

2. The curve is clearly lower than the stability threshold of GD, shown with the horizontal
dashed, gray line. (b) Empirical verification on a scalar quadratic problem with curvature λ where
we plot the empirically computed probability of descent for VGD runs with different values of σ2.
We show a heatmap for (λ, 1/σ2) values where lighter colors indicate higher probability of descent.
We overlay the heatmap with the stability thresholds of VGD (red solid curve), clearly showing that
theoretical limit shown in (6) matches the empirical probability. (c) The figure further includes Ns

and marks the region where a pair (Ns, σ
2) will either lead to descent or not (marked with ‘stable’

and ‘unstable’ respectively).

expected loss over ϵ if each eigenvalue λi is less than 2/ρ times a function called the Variational
Factor (VF). The VF function is strictly less than 1, therefore the stability threshold is strictly less
than 2/ρ. Unlike GD, the condition here is only sufficient but not necessary. A necessary condition
can also be derived but the one above is sufficient for this paper.

Figure 3a shows the stability threshold as a function of z where it is clear that it always lower bounds
2/ρ (dashed horizontal line). The exact value of VF depends on its argument z which in Theorem 3.1
mainly depends on the number of Monte-Carlo samples Ns and posterior variance σ2, but also on the
loss-dependent constant cit which is essentially a function of λi and m⊤

t vi.

Theorem 1 guarantees a decrease in the expected loss. Below, we state another result to show that the
actual loss also decreases with high probability if the expected loss decreases by a margin δ > 0.
Lemma 3.2. In the same setting as Theorem 3.1, when the expected loss at next iteration is smaller
than the previous loss by some margin δ > 0, that is,

Eϵ[ℓ(m
ϵ
t+1)] < ℓ(mt)− δ,

then ℓ(mϵ
t+1)−ℓ(mt) < 0 occurs with probability at least 1−2 exp

(
−c1 min

{
δ2N2

s /c2, δNs/c2
})

,
for constants c1, c2 > 0 depending only on ρ, Q, and Σ.

The result also shows that the probability with which this happens increases with the number of
Monte Carlo samples Ns.

So far, we show that the stability threshold for Variational GD is smaller than that of GD, but can
we also ensure it to be smaller in practice? The answer is yes, and it can be done by controlling σ2

and Ns. We will now demonstrate this on a 1D quadratic loss ℓ(m) = 1
2λm

2. For such cases, GD
with step-size ρ descends whenever the curvature λ is bounded by 2/ρ, but we can show that VGD
descends only for lower curvature values. To show this, we run VGD for many (λ, σ) pairs. For
each run, we use 10 random realizations of ϵ, then record how often the loss decreases, and finally
compute the approximate descent probability P

(
ℓ(mϵ

t+1) < ℓ(mt)
)
.

Figure 3b shows this probability as a heatmap where lighter color indicate a higher probability of
descent; a white pixel indicates a probability of 1 and a black one indicates a probability of 0. We
overlay this with the solid red curve showing the theoretical stability-threshold of Variational GD as
dictated by (6), that is, λ = (2/ρ)VF(Ns/σ

2). The theoretical curve closely matches the transition
boundary where probabilities transition from 1 to 0. The figure clearly shows that by increasing
σ2 we can reduce the stability threshold in practice too. Figure 3c further illustrates the effect of
changing Ns, showing the regions where a (Ns, σ

2) pair lead to descent (marked as ‘stable’) or
otherwise (marked with ‘unstable’). As expected, the relationship is linear and the same effect is
obtained by either increasing Ns or decreasing σ2.
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3.1 Nature of Stability in GD and VGD

The introduction of noise in VGD fundamentally changes the nature of its stability compared to the
deterministic behavior of GD. The descent lemma for GD on a quadratic guarantees that the iterates
are asymptotically stable, which is defined as follows:
Definition 3.3 (Asymptotic Stability Lyapunov [1992], Chapter 2). Let θ∗ be the minimum. An
iterate θk is asymptotic stable if it is Lyapunov stable and there also exists a δ > 0 such that if the
algorithm starts within a δ-neighborhood of the fixed point, the iterate will converge to the fixed point.
Formally, if ∥θk − θ∗∥ < δ for a finite k, then:

lim
k→∞

∥θk − θ∗∥ = 0. (8)

GD on a quadratic is asymptotically stable because the condition learning-rate ρ < 2/λ1 ensures that
the iteration matrix (I− ρQ) has all eigenvalues less than 1, guaranteeing convergence of the iterates
to its fixed point. Analogously VGD, the iterates are Stochastically Stable which is defined as follows
Definition 3.4 (Stochastic Stability Kushner [1972], Chapter 2). Let θ∗ be the minimum. The VGD
iterates θϵ

t is said to be stochastically stable in the mean-square sense if there exists a constant C > 0
such that for any initial point θ0, the iterates θϵ

t satisfy:

Eϵ

[
∥θϵ

t − θ∗∥2
]
≤ C∥θ0 − θ∗∥2, for all t > 0. (9)

This form of stability ensures that the iterates remain bounded in the mean-square error sense,
preventing them from diverging. Practically, this corresponds to the behavior where the distribution
of the iterates converges to a stationary distribution, rather than the iterates themselves converging to
a single fixed point as in asymptotic stability. The condition for probabilistic descent, established in
Theorem 3.1, is what characterizes this stable behavior. By ensuring the loss decreases on average,
it prevents the divergence of the iterates, confining them to a stable random walk that converges in
distribution to a stationary state around the minimum. Accordingly, any reference to "stability" or a
"stability threshold" throughout for VGD in this paper refers to this notion of stochastic stability.

3.2 Comparison with Regularization Effect of SGD

Our work differs fundamentally from studies on the regularization effects of mini-batch noise in SGD,
such as Wu et al. [2022], Zhu et al. [2019], Wu et al. [2018], Ibayashi and Imaizumi [2023], Mulayoff
and Michaeli [2024], which analyze gradient noise and its role in promoting flatter solutions. In
contrast, VGD introduces noise directly in the weights, inducing a structured and anisotropic form
of gradient noise shaped by the curvature of the loss landscape, something not captured by existing
SGD analyses. While most SGD-based studies assume Gaussian gradient noise, despite empirical
evidence of heavy-tailed behavior [Gurbuzbalaban et al., 2021, Nguyen et al., 2019], we show that
for the quadratic loss, Gaussian perturbations in weights lead to Gaussian-distributed gradients, that
is, ĝ ∼ N (∇ℓ(mt),

1
Ns

QΣQ), where the covariance is amplified along sharper directions. This
formulation requires no assumptions on the shape of gradient noise (unlike, e.g., Lee and Jang [2023]).
To complement our work, we further perform an empirical study using weight perturbations drawn
from a heavy-tailed distribution in deep neural networks.

4 Experiments on Deep Neural Networks

Similarly to the GD case, we expect the stability threshold for the quadratic to serve as an EoS limit.
That is, we expect that, when using variational learning for deep neural networks, the sharpness
should hover around the stability limit. By controlling the covariance shape and number of Monte
Carlo samples we can stere optimization into regions where sharpness is much lower than GD. The
following hypothesis formally states this intuition which we verify through extensive experiments.
Hypothesis 1. For a twice-differentiable loss ℓ(m) optimized using the update rule (5), the top
Hessian eigenvalue ∥∇2ℓ(mt)∥2 hovers around the stability threshold,

2

ρ
·VF

(
Ns

σ2
· c1,t

)
,

where c1,t = (v⊤
1,t∇ℓ(mt))

2 and v1,t denotes the top eigenvector of the Hessian ∇2ℓ(mt), and
∇ℓ(mt) is the gradient evaluated at mt.

6



GD GD with Gaussian weight perturbation 2/

0 50000 100000
Train steps

0.25

0.50

0.75

1.00
Train Accuracy

0 50000 100000
Train steps

0.2

0.4

0.6
Test Accuracy

0 50000 100000
Train steps

200

400

Sharpness

(a) ViT

0 50000 100000
Train steps

0.25

0.50

0.75

1.00
Train Accuracy

0 50000 100000
Train steps

0.2

0.4

Test Accuracy

0 50000 100000
Train steps

20

40

60
Sharpness

(b) MLP

0 5000 10000
Train steps

0.25

0.50

0.75

1.00
Train Accuracy

0 5000 10000
Train steps

0.2

0.4

0.6

0.8 Test Accuracy

0 5000 10000
Train steps

2

4

6

8 Sharpness

(c) ResNet-20

Figure 4: Smaller sharpness corresponds to higher test accuracy for network architectures trained on
CIFAR-10. Panels show (a) ViT, (b) MLP, and (c) ResNet-20. Full batch GD with Variational GD
achieves lower sharpness and better test accuracy.

(a) ρ = 0.01 (b) ρ = 0.02 (c) ρ = 0.05

Figure 5: Normalized Sharpness ∥∇2ℓ(mt)∥2/(2/ρ) hovers around the Variational Factor in MLP.

To validate the hypothesis, we conduct extensive experiments on standard architectures (MLPs,
ResNets) and modern ones such as Vision Transformers. In Figure 4, we plot the full training
dynamics of Variational GD, including test accuracy, training accuracy, and sharpness. Across all
three architectures on the CIFAR-10 classification task using MSE loss, Variational GD with isotropic
Gaussian noise consistently achieves lower sharpness and higher test accuracy compared to GD.

In Figure 5, we plot the normalized sharpness (∥∇2ℓ(mt)∥2 divided by 2/ρ) for MLPs, evaluated at
each training step, alongside the corresponding Variational Factor (VF) for various learning rates ρ
and posterior variances σ2. The results support Hypothesis 1, showing that the normalized sharpness
closely tracks the predicted VF across settings. This further validates the use of a local quadratic
approximation to analyze stability dynamics, consistent with several prior works. Unlike the stability
analysis for GD on a quadratic where the threshold 2/ρ is constant, the stability condition in VGD
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(a) 2/ρ = 40 (b) 2/ρ = 20 (c) 2/ρ = 10

Figure 6: Sharpness of the final iterate for an MLP trained on CIFAR-10 for variational GD across
learning rate ρ, noise covariance Σ, and posterior samples Ns. Higher variance and smaller samples
lead to lower sharpness. For panel (c), training did not converge for variance values 2 and 5, therefore
not shown in the plot.

is dynamic since it depends on the gradient evaluated at the mean. This explains the fluctuation of
the stability threshold across iterations in VGD. In the Appendix (Figure 14), we demonstrate that a
similar phenomenon holds for ResNet-20. Next, we isolate and examine the roles of the posterior
variance and the number of samples in determining this stability threshold.

Perturbation effect of Gaussian variance: In Figure 6, we present experiments on VGD for a
classification task using a multi-layer perceptron (MLP), where we plot the sharpness of the final
iterate as a function of the variance σ2 of an isotropic Gaussian. For three different learning rates,
ρ = 0.05, 0.1, and 0.2, we run VGD with different σ2. Across all learning rates ρ and numbers of
posterior samples Ns, we observe that larger variance consistently leads to lower sharpness. This
exactly aligns with Hypothesis 1, larger perturbations reduce the stability threshold, promoting escape
from sharper regions of the loss landscape.

Smoothing effect of posterior samples Ns: Larger posterior sample size Ns reduces the vari-
ance of the perturbed gradient estimator ĝ = 1

Ns

∑Ns

i=1∇ℓ(mt + ϵi), which satisfies ĝ ∼
N (∇ℓ(mt),

1
Ns

QΣQ) under a quadratic loss. As Ns decreases, the variance increases (scaling
as 1/Ns), lowering the stability threshold and enabling escape from sharper regions. This effect is
shown in Figure 6, where smaller Ns consistently yields lower sharpness across learning rates and
variances. Additional discussion on the role of posterior samples, is provided in Appendix C.

4.1 Edge of Stability under Heavy-Tailed Noise

In variational gradient descent (VGD), the stability threshold depends not only on the perturbation
covariance and sample size, but also on the posterior’s tail behavior. We empirically investigate this
by drawing weight perturbations from a Student-t distribution with degrees of freedom α, where
smaller α induces heavier tails and larger deviations in the perturbed gradients. The distribution
becomes heavier-tailed as α decreases, with the Gaussian recovered as α→∞. In Figure 7, we train
an MLP on CIFAR-10 and observe that heavier-tailed perturbations yield lower sharpness and better
test accuracy. Similar trends are confirmed for ResNet-20 and ViT in Appendix F. While a theoretical
analysis under heavy-tailed noise is challenging, our results highlight that the posterior shape plays a
critical role in generalization.

4.2 Adaptive Edge of Stability and Variational Online Newton Methods

Recent work by Cohen et al. [2022] studies the dynamics of adaptive gradient methods, introducing
the concept of Adaptive Edge of Stability (AEoS). In this section, we will show that a similar
phenomenon happens in natural-gradient variational learning.

Cohen et al. [2022] show that for adaptive gradient methods instead of sharpness ∥∇2ℓ(mt)∥2, a
modified quantity, termed preconditioned sharpness ∥diag(pt)

−1∇2ℓ(mt)∥2 hovers around 2/ρ,
where pt is a preconditoner. Adaptive gradient methods differ from standard gradient descent as the
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Figure 7: Sharpness dynamics with noise injection from a heavy tailed Student t posterior parameter-
ized by α. Perturbations from heavier tails (smaller α) lead to smaller sharpness.
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Figure 8: Preconditioned sharpness for Adam and IVON across temperatures τ . Smaller τ shrinks
the posterior and yields larger preconditioned sharpness.

former can adapt their preconditioner Pt and move into high curvature regions. For example in Adam,
a preconditioner pt is updated in an exponential moving average (EMA) fashion with parameter β2:

vt+1 = β2vt + (1− β2)∇ℓ(mt)
2, pt+1 =

√
vt+1

1− βt+1
2

, mt+1 = mt − ρ∇ℓ(mt)/pt+1. (10)

Here, all operations such as squaring or division of vectors are performed elementwise.

Natural-gradient VL methods which learn a complete Gaussian posterior qt = N (mt,P
−1
t ) take a

similar form to the above adaptive gradient methods. An instance of this is the Variational Online
Newton (VON) update rule [Khan and Rue, 2023, Eq. 12],

mt+1 ←mt − ρP−1
t+1 Eqt [∇θℓ(θ)] and Pt+1 ← (1− β2)Pt + β2 Eqt [∇2

θℓ(θ)]. (11)

Here, the posterior covariance P−1
t is learned using the loss Hessians. The variational GD in Eq. (5)

corresponds to the special case where Pt is fixed across iterations. Adaptive optimizers such as
Adam, RMSProp, and Adadelta can be seen as special cases of VON, as shown in [Khan and Rue,
2023, Section 4.2].

Here, we study the AEoS for a recent large-scale implementation of Equation (11) by Shen et al.
[2024] called IVON (Improved Variational Online Newton). There, the update for the preconditioner
is approximated using Stein’s identity to estimate the Hessian from Ns samples:

Eqt [diag(∇2
θℓ(θ))] ≈

1

Ns

Ns∑
i=1

(
∇ℓ(θi) ·

θi −mt

σ2

)
, θi ∼ qt. (12)

In Figure 8, we compare the preconditioned sharpness of IVON and Adam on MLPs by varying
the temperature τ , which linearly scales covariance of the posterior distribution qt, see [Shen et al.,
2024, Algorithm 1, line 8]. We observe that IVON consistently yields lower preconditioned sharpness
than the 2/ρ threshold typically observed in Adam. We conjecture the lower sharpness is due to
the noise injection and smoothing effects in estimating both the gradient and curvature. Additional
comparisons for ResNet-20 and ViT are provided in Appendix F. Computing the exact stability
threshold for IVON is nontrivial, as it requires a joint analysis of the coupled dynamics in Eq. 11, and
an interesting direction for future work.
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(a) Varying learning rate (b) Varying batch size

Figure 9: Minimizing the variational objective depends on the choice of hyperparameter and its
implicit regularization effect, visible in both the objective value and sharpness reduction.

4.3 Effect of Batch Size

For nonconvex problems such as deep learning, minimizing the variational objective (1) is not,
by itself, sufficient to guarantee flat minima or a low objective value. The choice of optimization
dynamics and hyperparameters play a crucial role as well. We demonstrate this by running IVON with
mini-batching across varying learning rates ρ and batch sizes B. As shown in Figure 9, larger learning
rates and smaller batch sizes consistently lead to better local minima of the variational objective.
The present work offers an explanation why large learning rates work better, but we also speculate
that smaller batch sizes encourages broader posteriors in flatter minima allowing a smaller objective
value. These results further highlight the importance of choice of hyperparameter and optimizers in
variational learning. Poor performance of variational methods as claimed in the literature may not be
due to flaws in the variational formulation itself but due to unfavorable optimization dynamics or
choices of hyperparameters.

5 Conclusion and Discussion

In this work, we study the regularization effect in Variational Learning (VL) that enables it to
find solutions with better generalization than Gradient Descent (GD). We show that the sharpness
dynamics in VL can be accurately tracked through its instability mechanism under a local quadratic
approximation of the loss. We argue that to fully explain generalization in VL, one must look beyond
theoretical frameworks like PAC-Bayes bounds and instead understand the optimization dynamics
and the implicit regularization they induce. We hope our work takes a positive step in this direction
and motivates further investigation into the role of training dynamics in Bayesian deep learning.
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A Related Works

Variational Learning

Given a prior and a likelihood, variational inference approximates the posterior by optimizing the
evidence lower bound within a family of posterior distribution. The ELBO is optimized by natural
gradient descent [Amari, 1998], in the hope that steepest descent induced by the KL divergence is a
better metric to compare probability distributions, this gives to rise of a class of algorithms called
Natural Gradient Variational Learning. Several works have attempted to apply this to deep learning
[Khan et al., 2018, Osawa et al., 2019, Lin et al., 2020]. Recently, Shen et al. [2024] provide an
improved version of varlational Online Newton that largely scales and obtains state of the art accuracy
and uncertainty at identical cost as Adam. A step of VL includes weight perturbation based on noise
injection from the posterior distribution which has similarities to noise injection.

Regularization Effect of Noise

Injecting noise into the parameters within gradient descent has several desirable features such as
escaping saddle points [Jin et al., 2017, Reddi et al., 2018] and local minima Zhu et al. [2019], Nguyen
et al. [2019]. In fact it has been widely observed empirically that the SGD noise has an important
role to play to find flat minima. Noise with larger scale [Zhu et al., 2019, Nguyen et al., 2019,
Zhang et al., 2019, Smith et al., 2020, Wei and Schwab, 2019] and heavy-tail [Simsekli et al., 2019,
Panigrahi et al., 2019, Nguyen et al., 2019, Wang et al., 2022a] drives the optimization trajectories
towards flatter minima. Orvieto et al. [2023] demonstrated through stochastic Taylor expansion that
injecting Gaussian noise into parameters before a gradient step implicitly regularizes by penalizing
the curvature of the loss, while Orvieto et al. [2022] showed that anticorrelated noise in Perturbed
Gradient Descent (PGD) specifically penalizes the trace of the Hessian. Zhang et al. [2024a] showed
that injecting noise in opposite directions to the weight space leads to a better regularization of the
trace of the Hessian.

Gradient Descent at Edge of Stability

Cohen et al. [2021], building on the work of Jastrzebski et al. [2020] empirically showed that for
full batch Gradient Descent (GD) with constant step-size (ρ), the operator norm of the Hessian (also
termed as sharpness) settles in a neighborhood of 2/ρ. This threshold is termed as edge of stability
(EoS) because gradient descent on a quadratic only converges if the sharpness is below 2/ρ. Strikingly
in complex neural network landscapes, sharpness settling around the stability limit 2/ρ (instead of
diverging) indicates that presence of a self-stabilization mechanism Damian et al. [2023] (which
is absent in a quadratic) that regularizes the sharpness near 2/ρ. The common occurrence of this
phenomenon across various tasks, architectures and initialization has inspired substantial research on
edge of stability. For example EoS has been studied across several non-convex optimization problems
[Wang et al., 2022b, 2023a, Zhu et al., 2023, Chen and Bruna, 2023, Agarwala et al., 2023, Arora
et al., 2022, Lyu et al., 2022, Ahn et al., 2024, Wu et al., 2024, Ghosh et al., 2025, Even et al., 2024,
Chen et al., 2024, Kreisler et al., 2023, Kalra et al., 2025, Zhu et al., 2024] and across other descent
based optimizers such as SGD [Lee and Jang, 2023, Andreyev and Beneventano, 2024], momentum
[Phunyaphibarn et al., 2024], sharpness aware minimization (SAM) Agarwala and Dauphin [2023],
Long and Bartlett [2024] and Adam/RMSProp [Cohen et al., 2022, 2025].
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Figure 10: Shows the mechanism through which VL finds flatter minima. GD (gray iterates) get
stuck in a local sharp minima whereas VL (red iterates) escapes to a flatter minima.

Stability of GD with Noise

Wu et al. [2018] analyze the linear dynamical stability of SGD, demonstrating that the batch size and
the gradient covariance matrix impose an additional constraint, requiring the Hessian operator norm
to be smaller than 2/ρ. Wu et al. [2022] extend this work by assuming alignment between the gradient
covariance matrix and the Fisher matrix, arguing that noise concentrates in the sharp directions of
the landscape. Although neither study analyzes the EoS limit for SGD, they were instrumental in
understanding the local stability of SGD near a global minimum. Lee and Jang [2023], Andreyev and
Beneventano [2024] investigate the dynamics of SGD at EoS and instead propose that a different
metric, called mini-batch aware sharpness, must be smaller than 2/ρ for stability. Since the actual
sharpness is less than this mini-batch aware sharpness, sharpness itself must be smaller than 2/ρ.
However, in our work, the perturbation is in the weight-space and not on the gradient.

B Proof of Theorem 1

First, we prove a sufficient condition for descent for variational GD in Theorem B. The following
theorem states the condition on the eigenspectrum for which descent takes place in expectation.
Theorem 3.1. Consider the VGD update (5) on the quadratic loss (2), then

Eϵ[ℓ(m
ϵ
t+1)]− ℓ(mt) < 0 if λi <

2

ρ
·VF

(
Ns

σ2
· ci,t

)
for all i, (6)

where ci,t = (λim
⊤
t vi)

2, and VF(·) denotes the Variational Factor given by

VF(z) := ρ ·
√

z

3
· sinh

(
1

3
arcsinh

(
3

ρ

√
3

z

))
. (7)

Proof. We analyze the stability of the weight-perturbed gradient descent (GD) update applied to the
quadratic loss

ℓ(m) =
1

2
m⊤Qm, (13)

where Q ∈ Rd×d is positive definite. The update rule is given by

mt+1 ←mt − ρ ĝ, where ĝ :=
1

Ns

Ns∑
i=1

∇ℓ(mt + ϵi), ϵi ∼ N (0,Σ). (14)

Since ℓ is quadratic, its gradient at perturbed point satisfies

∇ℓ(mt + ϵ) = ∇ℓ(mt) +Qϵ. (15)
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Therefore, if ϵ ∼ N (0,Σ), then
∇ℓ(mt + ϵ) ∼ N (∇ℓ(mt),QΣQ) , (16)

by linear transformation of Gaussian variables.

As ĝ is the average of Ns i.i.d. samples from this distribution, it follows that

ĝ ∼ N
(
∇ℓ(mt),

1

Ns
QΣQ

)
. (17)

Now, the Taylor expansion (exact) of the quadratic loss around mt gives

ℓ(mt+1) = ℓ(mt) +∇ℓ(mt)
⊤(mt+1 −mt) +

1

2
(mt+1 −mt)

⊤Q(mt+1 −mt). (18)

Substituting the update rule (14) into (18), we get

ℓ(mt+1)− ℓ(mt) = −ρ∇ℓ(mt)
⊤ĝ +

ρ2

2
ĝ⊤Qĝ. (19)

We now observe that the change in loss, denoted by ∆ℓ := ℓ(mt+1)− ℓ(mt), is a random variable
due to the stochasticity in the update. Using the expression from Equation (19), we can expand ∆ℓ
into a deterministic (mean) and a stochastic (fluctuation) component (R).

∆ℓ = ℓ(mt+1)− ℓ(mt) = −ρg⊤ĝ +
ρ2

2
ĝ⊤Qĝ (20)

= −ρg⊤(g + ξ) +
ρ2

2
(g + ξ)⊤Q(g + ξ) (21)

= −ρ∥g∥2 + ρ2

2
g⊤Qg +

ρ2

2
E[ξ⊤Qξ]︸ ︷︷ ︸

E[∆ℓ]

+

(
−ρg⊤ξ + ρ2 g⊤Qξ +

ρ2

2

(
ξ⊤Qξ − E[ξ⊤Qξ]

))
︸ ︷︷ ︸

R

(22)

We write the perturbed gradient as ĝ = g + ξ, where ξ ∼ N
(
0, 1

Ns
QΣQ

)
. Here g denotes the

gradient evaluated at the posterior mean, that is, ∇ℓ(mt). This expresses the update as the sum of a
deterministic component g and a random fluctuation ξ.

To ensure that the update leads to descent on average, we compute the expected change in loss and
enforce the stability condition E[∆ℓ] < 0 with respect to the curvature.

Taking the expectation of the loss change derived in Equation (19), we obtain:

E[∆ℓ] = −ρg⊤(I− ρ

2
Q)g +

ρ2

2Ns
Tr
(
ΣQ3

)
< 0 (23)

Since the Hessian Q is symmetric, it admits an eigendecomposition Q =
∑d

i=1 λiviv
⊤
i , where

(λi,vi) are the eigenvalue-eigenvector pairs. We expand the expression in the eigenbasis of Q. Note
the following identities:

• g⊤g =
∑d

i=1(v
⊤
i g)

2,

• g⊤Qg =
∑d

i=1 λi(v
⊤
i g)

2,

• Tr(ΣQ3) ≤
∑d

i=1 σiλ
3
i (Von Neuman’s trace inequality).

Thus, we obtain an upper bound on the expected descent:

E[ℓ(mt+1)]− ℓ(mt) ≤
d∑

i=1

[
−ρ(v⊤

i g)
2 +

ρ2

2
λi(v

⊤
i g)

2 +
ρ2

2Ns
σiλ

3
i

]

=:

d∑
i=1

f(λi,vi).
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The inequality is an equality for an isotropic Gaussian Σ. For anisotropic covariance matrix, the
tightness of this inequality depends on the alignment of the Hessian and the covariance matrix.

To ensure descent in expectation, we require f(λi,vi) < 0 for all i. We note that this is a sufficient
condition for descent to take place. We further extend this Theorem to a necessary condition in
Theorem. Define

f(λi) = −ρai +
ρ2

2
λiai +

ρ2

2Ns
σiλ

3
i ,

where ai := (v⊤
i g)

2 > 0 1. This is a cubic polynomial in λi of the form

f(λ) = a+ bλ+ cλ3,

with:

a = −ρai < 0,

b =
ρ2

2
ai > 0,

c =
ρ2

2Ns
σi > 0.

Since f ′(λ) = b+ 3cλ2 > 0 for all λ > 0, the function is strictly increasing. Therefore, ensuring
f(λi) < 0 is equivalent to requiring λi to be smaller than the (unique) positive root of f(λ) = 0.

By Cardano’s method for solving cubics, the condition ∆ =
(

b
3c

)3
+
(

a
2c

)2
> 0 implies a unique

real root. The root can be expressed as:

λi =

(
zi
ρ

)1/3
(1 +√1 +

ziρ2

27

)1/3

+

(
1−

√
1 +

ziρ2

27

)1/3
 (24)

= 2

√
zi
3
sinh

(
1

3
sinh−1

(
3

ρ

√
3

zi

))
, (25)

where zi :=
Nsai

σi
=

Ns(v
⊤
i g)2

σi
.

Hence, the expected loss decreases if

0 < λi < 2

√
zi
3
sinh

(
1

3
sinh−1

(
3

ρ

√
3

zi

))
for all i.

Now that we have established a sufficient condition on the curvature matrix Q to ensure that the
expected loss decreases, we next address the random variability of the actual loss change due to the
stochasticity of the update. Specifically, we show that the random variable ∆ℓ concentrates sharply
around its expectation.

For simplicity, we assumed to Q to be full rank. If Q has a non-trivial null-space that is λi = 0 for
some d > i ≥ k, then we have v⊤

i g = v⊤
i Qmt = λiv

⊤
i mt = 0. This means there is no component

of the iterate in the null-space direction of Q and does not contribute to the descent objective.

This guarantees that, under the sufficient condition derived above, the actual loss decrease also holds
with high probability, not just in expectation. The following lemma provides a concentration bound
for ∆ℓ about its mean:

Lemma 3.2. In the same setting as Theorem 3.1, when the expected loss at next iteration is smaller
than the previous loss by some margin δ > 0, that is,

Eϵ[ℓ(m
ϵ
t+1)] < ℓ(mt)− δ,

then ℓ(mϵ
t+1)−ℓ(mt) < 0 occurs with probability at least 1−2 exp

(
−c1 min

{
δ2N2

s /c2, δNs/c2
})

,
for constants c1, c2 > 0 depending only on ρ, Q, and Σ.

1For GD, if vT
i m0 = 0, ai = 0 always holds. However, stochasticity ensures that ai ̸= 0 even when an m0

is chosen such that it is orthogonal to some vi’s.
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Proof. In Theorem 3.1, we showed that the descent step occurs in expectation, if the sharpness is less
than the stability threshold. In this lemma, we show that the descent step occurs with high probability
under the same condition. To show, this we use derive a concentration inequality to show that the
descent step concentrates around its expectation with high probability. Moreover, with larger MC
samples Ns, the deviation is small. The proof occurs in the following steps:

1. Let ϵ = ĝ − g denote the gradient noise which is a rv ϵ ∼ N (0, 1
Ns

QΣQ). The descent
step has both linear and quadratic terms wrt ϵ.

2. To ensure the deviation of the descent ∆ℓ from its expectation E[∆ℓ], we analyze the
concentration of both the linear term and the quadratic term. The concentration of the linear
term follows simply from the Gaussian tail. The concentration of the quadratic term is
done using the Hanson Wright concentration inequality Rudelson and Vershynin [2013],
Vershynin [2018].

3. The tail bounds from both the linear and the quadratic term is combined using the union
bound which concludes the proof.

Step-1: Separating fluctuation and expectation term

The descent step ∆ℓ as derived in Theorem 3.1 can be written as its expectation E[∆ℓ] and fluctuation
R.

∆ℓ = l(mt+1)− l(mt) = −ρgT ĝ +
ρ2

2
ĝTQĝ

= −ρgT (g + ϵ) +
ρ2

2
(g + ϵ)TQ(g + ϵ)

= −ρ∥g∥2 + ρ2

2
gTQg +

ρ2

2
E[ϵTQϵ︸ ︷︷ ︸

E[∆ℓ]

] + (−ρgT ϵ+ ρ2gTQϵ+
ρ2

2
(ϵTQϵ− E[ϵTQϵ]))︸ ︷︷ ︸

R

We show that the fluctuation R = ∆ℓ−E[∆ℓ] is small with high probability, i.e, it has a sub-Gaussian
tail.

Step-2: Concentration bound on the fluctuation

We separate the fluctuation on linear and quadratic terms wrt ϵ since applying concentration inequality
on each term is different.

R = L+Q, where L = −ρgT ϵ+ ρ2gTQϵ and Q = ρ2

2 (ϵTQϵ− E[ϵTQϵ]).

Tail bound on L using sub-Gaussin concentration: Since L is a linear function of the Gaussian vector
ϵ, it itself is Gaussian. its variance is

σ2
L =

1

Ns
hT (QΣQ)h =

αL

Ns

where αL := hT
(
QΣQ

)
h and h = ρ2Qg − ρg. A standard Gaussian tail then implies that for any

t > 0,

Pr
(
|L| ≥ t

)
≤ 2 exp

(
− t2

2σ2
L

)
= 2 exp

(
− t2Ns

2αL

)
Choosing t = ϵ

2 yields

Pr
(
|L| ≥ ϵ

2

)
≤ 2 exp

(
−ϵ2Ns

8αL

)
(26)

Tail bound on Q using Hanson-Wright Concentration inequality: For the quadratic term, note that

Q = ρ2

2 (ϵTQϵ−E[ϵTQϵ]). The Hanson-Wright inequality states that a sub-Gaussian vector ϵ (here

Gaussian) with sub-Gaussian norm bounded by K for any matrix A (in our case A = ρ2

2 Q), there
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exists universal constant c1 > 0 such that for any t > 0,

Pr
(∣∣ϵTAϵ− E[ϵTAϵ]

∣∣ > t
)
≤ 2 exp

(
−c1 min

{ t2

K4∥A∥2F
,

t

K2∥A∥2

})
.

Since ϵ ∼ N (0, 1
Ns

QΣQ), its sub-Gaussian norm satisfies K2 ≤ c22λmax

(
1
Ns

QΣQ
)
=

c22β
Ns

, where

we define β = λmax

(
QΣQ

)
and c2 is another universal constant. Furthermore, we have K4 <

c24β
2

N2
s

,

∥A∥ = ρ2

2 ∥Q∥ and ∥A∥F = ρ2

2 ∥Q∥F . To substitute the sub-gaussian norm K from the bound, we

use the inequalities t2

K4∥A∥2
F
≥ t2N2

s

c42β
2 ρ4

4 ∥Q∥2
F

and t
K2∥A∥ ≥

tNs

c22β
ρ2

2 ∥Q∥
, we get the tail bound to be

Pr
(∣∣Q| > t

)
≤ 2 exp

(
−c1 min

{ t2N2
s

c42β
2 ρ4

4 ∥Q∥
2
F

,
tNs

c22β
ρ2

2 ∥Q∥

})
.

Finally chosing c3 = max{c42β2 ρ4

4 ∥Q∥
2
F , c

2
2β

ρ2

2 ∥Q∥} and t = ϵ
2 , we get:

Pr
(∣∣Q∣∣ > ϵ

2

)
≤ 2 exp

(
−c1 min

{ ( ϵ2 )2N2
s

c3
,
( ϵ2 )Ns

c3

})
. (27)

Step-3: Combining L and Q concentation using union bound

Since R = L+Q, by the union bound and using equation (27) and (26) we get

Pr
(∣∣R∣∣ > ϵ

)
≤ Pr

(∣∣L∣∣ > ϵ

2

)
+ Pr

(∣∣Q∣∣ > ϵ

2

)
=⇒ Pr

(∣∣R∣∣ > ϵ
)
≤ 2 exp

(
−ϵ2Ns

8αL

)
+ 2 exp

(
−c1 min

{ ( ϵ2 )2N2
s

c3
,
( ϵ2 )Ns

c3

})

We combine the sum to a single exponential tail by using the inequality exp(−X) +
exp(−Y ) ≤ 2 exp(−min{X,Y }). Now chosing d2 = 32max{αL, c3} =

32max{αL, c
4
2β

2 ρ4

4 ∥Q∥
2
F , c

2
2β

ρ2

2 ∥Q∥} (substituting c3) and d1 = min{ 1
32αL

, c1
4 } and us-

ing exp(−X) + exp(−Y ) ≤ 2 exp(−min{X,Y }), we get

Pr
(∣∣R∣∣ > ϵ

)
≤ 2 exp

(
−d1 min

{ϵ2N2
s

d2
,
ϵNs

d2

})

Assume the expected descent step is strictly negative by some margin δ > 0, i.e. E[∆ℓ] ≤ −δ < 0.
Recall that R = ∆ℓ− E[∆ℓ]. Under this assumption, if ∆ℓ ≥ 0, then ∆ℓ− E[∆ℓ] ≥ δ. Hence

{∆ℓ ≥ 0} ⊆
{
|R| ≥ δ

}
.

We set ϵ = δ in the concentration bound

Pr
(
|R| ≥ ϵ

)
≤ 2 exp

(
− d1 min

{
ϵ2 N2

s

d2
, ϵNs

d2

})
,

and obtain
Pr
(
∆ℓ ≥ 0

)
≤ 2 exp

(
− d1 min

{
δ2 N2

s

d2
, δ Ns

d2

})
.

Therefore, with probability at least

1 − 2 exp
(
− d1 min

{
δ2 N2

s

d2
, δ Ns

d2

})
,

we have ∆ℓ < 0. Thus, if the expected descent step is at most −δ, then ∆ℓ is negative with high
probability.
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C Role of posterior samples on a quadratic

On a quadratic loss, the perturbed averaged gradient follows a Gaussian distribution with variance
inversely proportional to the number of posterior samples:

ĝ ∼ N
(
∇ℓ(mt),

1

Ns
QΣQ

)
. (28)

For large Ns, the dynamics of variational GD approach those of standard GD and exhibit similar
stability characteristics. To examine the role of Ns, we consider a quadratic loss ℓ(m) = a

2m
2

and compare GD with variational GD across varying values of Ns. When ρ < 2/a, standard GD
converges to the minimum. In the limit Ns →∞, variational GD recovers this behavior. However,
for finite Ns, the gradient estimate becomes noisier, reducing the stability threshold as predicted by
Theorem-1. Figure11 shows the resulting trajectories and histograms of the iterates. As Ns decreases,
the iterates exhibit greater variability and cover a wider range, reflecting increased instability. These
results confirm the theoretical prediction that smaller Ns increases the likelihood of the loss increasing
in the next step, even under a stable learning rate.

(GD ρ < 2
a ) Ns = 1000 Ns = 200 Ns = 100

Ns = 50 Ns = 20 Ns = 10 Ns = 5

Figure 11: Histogram plot of iterates on a quadratic for GD with noise injection from a posterior
distribution with Ns samples. As Ns decreases, the iterates become more unstable.

We further visualize the stability threshold predicted by Theorem-1 in Figure12. For each posterior
sample size Ns, we compute the descent probability on a quadratic loss and plot it alongside the
corresponding stability threshold 2/ρ · VF. As shown in the top row, descent occurs with high
probability whenever the curvature is below the threshold—consistent with Theorem 1. In the
bottom row, we binarize the descent probability by setting it to 1 if it exceeds 0.5, and 0 otherwise.
The resulting transition boundary closely aligns with the predicted threshold, further validating our
theoretical result.

D Loss Smoothing Beyond Local Quadratic Approximation

In our paper, we consider a local quadratic approximation of the loss to characterize the distribution
of the perturbed gradient. By the property that a Gaussian distribution is invariant under linear
transformation, we showed that the perturbed gradient (or it’s sample average) is also Gaussian. This
is observed by characterizing the distribution of the perturbed gradient∇ℓ(mt + ϵ). Employing a
Taylor expansion around the current mean parameter m, we obtain:

∇ℓ(m+ ϵ) = ∇ℓ(m) +∇2ℓ(m)ϵ+
1

2
∇3ℓ(m)[ϵ, ϵ] +O(∥ϵ∥3), ϵ ∼ N (0,Σ) (29)

In general, the distribution of ∇ℓ(m + ϵ) involves higher-order terms of Gaussian variables,
making exact characterization challenging. However, if the perturbation covariance Σ is suffi-
ciently small relative to the local curvature, defined by the Hessian H(m) = ∇2ℓ(m), specif-
ically, when ∥∇3ℓ(m)∥op · ∥Σ∥2 ≪ ∥H(m)∥2, the gradient approximation effectively simpli-
fies to a linear approximation ∇ℓ(m + ϵ) ≈ ∇ℓ(m) + H(m)ϵ. This approximation is exact

21



for a quadratic. Under this condition, since ϵ ∼ N (0,Σ), the perturbed gradient is Gaussian
∇ℓ(m+ ϵ) ∼ N (∇ℓ(m),H(m)ΣH(m)⊤).

However, in high-perturbation regimes (large covariance Σ where ∥∇3ℓ(m)∥op ·∥Σ∥2 ≈ ∥H(m)∥2),
the perturbed gradient is no more Gaussian (since it involves second-order terms on ϵ). Furthermore,
the expectation of the perturbed gradient has a contribution from the neighborhood of the loss, which
is referred to here as third-order curvature bias.

E[∇ℓ(m+ ϵ)] ≈ ∇ℓ(m) + 1
2 Tr2,3(Σ∇

3ℓ(m))︸ ︷︷ ︸
third-order curvature bias

+O(∥Σ∥2). (30)

Having a large number of posterior samples, can help recover this modified expectation better with
increasing number of samples. Here, the algorithm effectively follows the gradient of a smoothed
version of the loss landscape, since samples are drawn from a wide neighborhood around m.
Accurately estimating this biased but meaningful descent direction under heavy-tailed noise requires
a sufficiently large Ns, not just to reduce variance, but to faithfully recover the expected smoothed
gradient.

In the next section and the subsequent theorem, we study this phenomenon in a non-quadratic
function. Here we show that, first for a quadratic function, smoothing does not change the curvature
of the underlying loss. But for a quartic function, smoothing by expectation changes the underlying
curvature by the variance of the posterior, and furthermore, for smoothing by finite averaging, the
curvature changes as a function of both the variance and the number of samples used to approximate
the expectation.

Let ℓ(θ) = aθ2 + bθ + c and let q = N (θ|m,σ2) , then

ℓconv(m) = Eqℓ(θ) = Eq(aθ
2 + bθ + c) = am2 + bm+ c+ aσ2

So w.r.t the reparameterized variable m, the curvature of the loss remains unchanged, only shift
occurs, proportional to σ2. So, the stability dynamics on ℓ(θ) and ℓconv(m) are the same. The loss
diverges only when the learning rate is ρ > 2

a . However, this is not the case with general losses,
especially for losses where ℓ(4)(θ) ̸= 0, i.e if it has a non-zero fourth order derivative.

For example, let’s take the example of a quartic function ℓ(θ) = (θ2−1)2 where minima is at θ∗ = ±1
and ℓ

′′
(θ∗) = 12θ∗2 − 4 = 8. Now, the smoothed loss ℓconv(m) = Eqℓ(θ) = Eq(θ

2 − 1)2 =

m4 +m2(6σ2 − 2) + (3σ4 − 2σ2 + 1). The new loss has a global minima at m∗ = ±
√
1− 3σ2

Ns = 1 Ns = 2 Ns = 5 Ns = 10 Ns = 50

Ns = 1 Ns = 2 Ns = 5 Ns = 10 Ns = 50

Figure 12: (Top Row): Probability of descent evaluated over 10 trials on several simulations of
combination of quadratic curvature and noise variance. (Bottom Row): Hard thresholded probability
for descent. The transition occurs near the boundary given by the derived expression of 2/ρ · VF
from Theorem-1.
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(only if σ <
√

1
3 ). Comparing the curvature of both the losses at the global minima, we have:

ℓ
′′
(θ) = 12θ2 − 4 = 8

ℓ
′′

conv(m) = 12m2 + 2(6σ2 − 2) = 12m2 − 4 + 12σ2 = 8− 24σ2

So, the smoothing operator, changes the curvature at the global minima for quartic functions. note
that this wasn’t the case for quadratic functions, where the curvature was unchanged. This further
changes the stability dynamics since the learning rate required for stable convergence is difference,
for original loss ℓ(θ), it is ρ < 2

8 , whereas for the smoothed loss, it is ρ < 2
8−24σ2 . However, consider

the effect of averaging of loss using finite mc samples Ns, ℓavg(θ) = 1
Ns

∑Ns

i=1 ℓ(θ + ϵi), where
ϵ ∼ N (0, σ2):

ℓavg(θ) =
1

Ns

Ns∑
i=1

ℓ(θ + ϵi)

=
1

Ns

Ns∑
i=1

((θ + ϵi)
2 − 1)2

= θ4 + θ2

(
1

Ns

Ns∑
i

(6ϵ2i + 4ϵi − 2)

)
+ 4θ

(
1

Ns

Ns∑
i

ϵi(ϵ
2
i − 1)

)
+

(
1

Ns

Ns∑
i

(ϵ4i − 2ϵ2i + 1)

)
So, the second derivative becomes:

ℓ
′′

avg(θ) = 12θ2 − 4 +
2

Ns

Ns∑
i

(6ϵ2i + 4ϵi)

If we compare the second derivative of the smoothed out-loss ℓ
′′

conv(m) and averaged loss over Ns

samples ℓ
′′

avg(θ), we observe that wrt samples, the expectation is same, i.e,

Eϵiℓ
′′

avg(θ) = 12θ2 − 4 + Eϵi [
2

Ns

Ns∑
i

(6ϵ2i + 4ϵi)] = 12θ2 − 4 + 12σ2 = ℓ
′′

conv(θ)

However, the pointwise deviation of ℓ
′′

avg(θ) and ℓ
′′

conv(θ) depends on the number of samples Ns

Taking the difference we have:

ℓ
′′

avg(θ)− ℓ
′′

conv(θ) =
2

Ns

Ns∑
i=1

[
(6 ϵ2i + 4 ϵi) − 6σ2

]
.

Define
Yi = (6 ϵ2i + 4 ϵi) − 6σ2.

Since E[ϵ2i ] = σ2 and E[ϵi] = 0, each Yi has mean zero:
E[Yi] = 0.

Hence,

ℓ
′′

avg(θ) − ℓ
′′

conv(θ) =
2

Ns

Ns∑
i=1

Yi.

Note that ϵi ∼ N (0, σ2) is sub-Gaussian, and ϵ2i is sub-exponential. Thus Yi = 6 ϵ2i + 4 ϵi is a
linear combination of a sub-exponential and a sub-Gaussian variable, which remains sub-exponential.
Shifting by the constant − 6σ2 does not affect sub-exponential parameters. Therefore, each Yi is
sub-exponential.

Let (v, b) be sub-exponential parameters for Yi. By standard Bernstein-type concentration for
sub-exponential random variables, there exists a universal constant c > 0 such that for all t > 0:

Pr
( ∣∣∣ 1

Ns

Ns∑
i=1

Yi

∣∣∣ ≥ t
)
≤ 2 exp

(
− cNs min

{
t2

v ,
t
b

})
.
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Since

ℓ
′′

avg(θ)− ℓ
′′

conv(θ) =
2

Ns

Ns∑
i=1

Yi,

we have ∣∣∣ℓ′′avg(θ)− ℓ
′′

conv(θ)
∣∣∣ =

2

Ns

∣∣∣ Ns∑
i=1

Yi

∣∣∣ = 2
∣∣∣ 1
Ns

Ns∑
i=1

Yi

∣∣∣.
Hence, for any δ > 0,

Pr
( ∣∣ℓ′′avg(θ)−ℓ′′conv(θ)∣∣ ≥ δ

)
= Pr

( ∣∣∣ 1
Ns

Ns∑
i=1

Yi

∣∣∣ ≥ δ
2

)
≤ 2 exp

(
− cNs min

{
(δ/2)2

v , δ/2
b

})
.

Plugging in v = c1σ
4 and b = c2σ

2, which are the subexponential norms in terms of the variance,
we get for some constant c1 and c2:

Pr
( ∣∣ℓ′′avg(θ)− ℓ

′′

conv(θ)
∣∣ ≥ δ

)
≤ 2 exp

(
− cNs min

{
δ2

4c1σ4 ,
δ

2c2σ2

})
.

This inequality shows that the finite-sample second derivative ℓ
′′

avg(θ) concentrates around the
infinite-sample second derivative ℓ

′′

conv(θ) at an exponential rate in Ns. While they are identical in
expectation, the above result quantifies their pointwise deviation with high probability. We formalize
this observation for general analytical function which has continous derivatives.

Theorem D.1 (Concentration of Smoothed Curvature). Let f : R → R be six-times contin-
uously differentiable analytical function, with all derivatives up to order 6 bounded. Suppose
σ2 supx f

(6)(x) < supx f
(4)(x) and for i.i.d. samples {ϵi}Ns

i=1 with ϵi ∼ N (0, σ2), define

favg(x) =
1

Ns

Ns∑
i=1

f
(
x+ ϵi

)
, fconv(x) = Ez∼N (0,σ2)

[
f(x+ z)

]
.

Then there exist universal constants c, c1, c2 > 0 such that for any δ > 0,

Pr
( ∣∣f ′′

avg(x) − f ′′
conv(x)

∣∣ ≥ δ
)
≤ 2 exp

(
− cNs min

{
δ2

4 c1 σ4 ,
δ

2 c2 σ2

})
.

Hence,
∣∣f ′′

avg(x)− f ′′
conv(x)

∣∣ concentrates around zero at an exponential rate in Ns.

A general extension of this proof can be done for functions which has a finite fourth order derivative
and small sixth order derivative such that σ2 supx f

6(x) < supx f
4(x). Starting with a sufficiently

smooth function f ∈ Ck, we can expand f(x+ z) in a Taylor series around x. Let z ∼ N (0, σ2).
Then:

f(x+ z) = f(x) + z f ′(x) +
z2

2!
f ′′(x) +

z3

3!
f (3)(x) + · · ·

Since z is Gaussian with zero mean, all the odd moments E[z], E[z3], etc., vanish. Thus, when we
take the expectation,

fconv(x) = Ez∼N (0,σ2)

[
f(x+ z)

]
= f(x) +

σ2

2
f ′′(x)+ +

σ4

8
f (4)(x) +

σ6

48
f (6)(x) + · · ·

In the above, we use the fact that E[z2] = σ2, E[z4] = 3σ4, E[z6] = 15σ6, etc., and only the even
powers contribute. The curvature of the original function then becomes:

f
′′

conv(x) = f ′′(x) +
σ2

2
f4(x) +

σ4

8
f6(x) + ..

Under the condition that σ2 supx f
6(x) < supx f

4(x), we get

f
′′

conv(x) ≈ f ′′(x) +
σ2

2
f4(x) (31)

The smoothing effect does change the second order curvature of the loss. Furthermore, approximating
This approximation makes the noise due to the Ns samples be a subexponential and similar result
holds.
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E Discussion on stability and descent for Variational GD

On Necessity and Sufficiency of descent:

A further critical difference lies in the nature of the descent conditions for GD versus VGD. For GD
on a quadratic loss, the standard descent lemma provides a condition on the maximum eigenvalue
λmax < 2/ρ that is both necessary and sufficient for ensuring stability and monotonic descent. A
violation of this single condition guarantees divergence.

For VGD, the analysis is more nuanced. The true necessary and sufficient condition for the expected
loss to decrease is that the sum of all components in its eigen-decomposition must be negative, as
shown below:

E[∆ℓ] = −ρg⊤(I− ρ

2
Q)g +

ρ2

2Ns
Tr
(
ΣQ3

)
=

d∑
i=1

f(λi,vi) < 0 (32)

However, analyzing this sum can be intractable. Instead, our work derives a practical sufficient
condition by requiring each term in the sum to be negative independently, i.e., f(λi,vi) < 0 for all i.
This is the condition presented in Theorem 1, which yields the stability limit λi < 2/ρ · VF(zi) for
each eigenvalue.

This theoretical framework is validated by our extensive experiments on MLPs and ResNets across
various learning-rate and variance. We consistently find that the leading Hessian eigenvalues, λi,
hover around their respective stability thresholds, 2/ρ · VF(zi). This alignment provides strong
empirical support for our sufficient condition, showing it is an active constraint that accurately
describes the behavior of VGD in practice.

Mulayoff and Michaeli [2024] also derives a stability condition (see their Theorem 5) which is a
necessary and sufficient condition for the stability of SGD, but their setting is fundamentally different
from ours. Firstly, in their setting, the assumption is that the batch-size is drawn uniformly at random
from the finite set of all possible data samples. Our work, in contrast, does not model noise from data
sampling but rather from perturbations to the model’s weights, which we assume follow an explicit,
continuous distribution (e.g., Gaussian). This leads to fundamentally different noise structures. In our
VGD framework, the resulting gradient estimator is shown to follow a normal distribution whose
covariance, 1

Ns
QΣQ, is shaped by the Hessian (Q), meaning noise is amplified in directions of

high curvature. In the SGD paper, the gradient noise has a discrete distribution with a covariance
determined by the dataset’s intrinsic variance.

F Additional experiments across diverse datasets

While in the manuscript, we presented experiments on CIFAR-10, here we present several additional
results to support our theorem and claims.

Gaussian Variational GD: In Figure 13, we compare GD and GD with weight perturbation trained
across three different architectures on SVHN dataset Netzer et al. [2011]. We arrive at a similar
conclusion that with Gaussian weight perturbation achieves smaller sharpness and better test accuracy
than just GD. Similar trend is also observed for FashionMNIST dataset in Figure 15. In Figure 16,
we show that in deep neural networks, sharpness also depends on the number of posterior samples, as
smaller samples lead to smaller sharpness. In Figure 14, we plot the Variational factor along with the
sharpness in ResNet and show that they match closely.

Sharpness comparison for Cross Entropy Loss: For cross-entropy (CE) loss, the sharpness dynamics
differs from those observed with mean-squared error (MSE) loss. As training progresses and model
predictions become increasingly confident, the term pi(1−pi) in the Hessian approaches zero, driving
the curvature and hence sharpness to vanish. This causes both GD and VL (or IVON) to converge to
regions with negligible sharpness, although their transient behaviors differ. VL’s sharper stability
bound results in smaller peak sharpness compared to GD.

Figure 17 illustrates this effect for a fully connected neural network trained on CIFAR-10 with CE
loss. The left panel shows the training loss, while the right panel presents the evolution of sharpness
over training steps. Although both methods eventually exhibit vanishing curvature, IVON achieves
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(c) ResNet-20

Figure 13: Similar to the trend in Fig. 4, weight perturbed GD consistently finds flatter minima on
the SVHN dataset.

a substantially lower peak sharpness than GD. This highlights the improved stability and flatter
convergence landscape induced by variational learning even under the CE loss.

Weight-perturbation from heavy-tail distribution: In the manuscript, we presented results on perturba-
tion from a heavy-tailed Student-t distribution for MLP trained on CIFAR-10. In Figure 18, we plot
the training dynamics across ViT and ResNet-20 models. Here, we observe that heavier tails (smaller
α) leads to smaller sharpness and better test accuracy.

Experiments in Vision Transformers: In Attention-based architectures, such as Vision Transformers,
it has been widely observed that sharpness for GD often goes above the stability threshold 2/ρ. This
phenomenon has been widely studied [Zhai et al., 2023] as attention entropy collapse that makes
training unstable in Vision Transformers, with sharp spikes in both the training and test accuracy.
To mitigate such unstable behaviour, weight perturbation can be used, due to its sharpness reducing
effect and thereby stabilizing training. For example, in Figure 20, we perform an ablation study of
training ViTs with different perturbation covariance. Noise with larger variance consistently leads to
more stable training and smaller sharpness in ViT. Similarly, for VON we observe that preconditioned
sharpness is smaller than 2/ρ for ViT training 19.

Experiments in NLP tasks: To verify that Variational GD with isotropic Gaussian noise achieves
lower sharpness compared to GD on an NLP task, we add a classification head to a frozen BERT-mini
backbone and finetune the head on SST-2. For both GD and Variational GD, we use the same learning
rate of 0.05. We report train loss, validation loss, and sharpness in Figure 21 and observe lower
sharpness for Variational GD throughout.
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(a) ρ = 0.01 (b) ρ = 0.02 (c) ρ = 0.05

Figure 14: Normalized Sharpness ∥∇2ℓ(mt)∥2/(2/ρ) hovers about the Variational Factor in ResNet.
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(c) ResNet-20

Figure 15: Similar to the trend in Fig. 4, variational learning finds flatter minima on the FashionM-
NIST dataset.
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Figure 16: Using more samples per iteration leads to a large sharpness, as demonstrated in our
ablation study where an MLP network is trained on a subset of the CIFAR-10 dataset containing
10000 images.
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Figure 17: Training dynamics of fully connected neural network trained with GD and IVON with
fixed covariance. Although the sharpness always drops to zero fro CE loss, IVON achives smaller
peak sharpness than GD.
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(a) ResNet-20
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(b) ViT

Figure 18: We notice similar trends shown in Fig. 7 in training ViT and ResNet models. That is to
say, smaller α corresponds to heavier-tailed posterior which leads to smaller sharpness. Note that as
α approaches infinity, the Gaussian posterior is recovered.
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Figure 19: We notice similar trends shown in Fig. 8 in training ViT models. That is to say, Smaller
temperatures which shrinks the posterior reaches larger preconditioned sharpness.
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Figure 20: For ViT, GD training is prone to loss spikes, and the sharpness often goes above the
stability threshold 2/ρ. On the other hand, with weight perturbation the training becomes more stable,
and larger noise variance consistently leads to smaller sharpness.
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Figure 21: SST-2 head finetuning on a frozen BERT mini backbone comparing Variational GD with
isotropic Gaussian noise to vanilla GD, both with learning rate 0.05.
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(a) λ1 (b) λ2

(c) λ3 (d) λ4

(e) λ5 (f) λ6

(g) λ7 (h) λ8

(i) λ9 (j) λ10

Figure 22: Eigenspectrum (λ1-λ10) vs corresponding stability threshold 2/ρ · VF(zi). 2-layer MLP
trained with VGD ρ = 0.05 and σ2 = 0.1.
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Figure 23: Eigenspectrum (λ1-λ10) vs corresponding stability threshold 2/ρ · VF(zi). 2-layer MLP
trained with VGD ρ = 0.02 and σ2 = 0.5.
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Figure 24: Eigenspectrum (λ1-λ10) vs corresponding stability threshold 2/ρ · VF(zi). 2-layer MLP
trained with VGD ρ = 0.02 and σ2 = 1.0.
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Figure 25: Eigenspectrum (λ1-λ10) vs corresponding stability threshold 2/ρ · VF(zi). 2-layer MLP
trained with VGD ρ = 0.1 and σ2 = 1.0.
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Figure 26: Eigenspectrum (λ1-λ10) vs corresponding stability threshold 2/ρ · VF(zi). ResNet-20
trained with VGD ρ = 0.1 and σ2 = 0.1.
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Figure 27: Eigenspectrum (λ1-λ10) vs corresponding stability threshold 2/ρ · VF(zi). ResNet-20
trained with VGD ρ = 0.1 and σ2 = 0.5 (low variance).
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Figure 28: Eigenspectrum (λ1-λ10) vs corresponding stability threshold 2/ρ · VF(zi). ResNet-20
trained with VGD ρ = 0.05 and σ2 = 0.1.
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Figure 29: Eigenspectrum (λ1-λ10) vs corresponding stability threshold 2/ρ · VF(zi). ResNet-20
trained with VGD ρ = 0.05 and σ2 = 0.5.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Thorough experiments show that the observations made in the theorem per-
fectly show up in experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We state that our work is only limited to weight perturbed GD but not precon-
ditioning.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Theorem-1, which states the main result of the paper has been validated
extensively through experiments. For example in Figure-2, the theoritically calculated
thereshold matches the experiment.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code and the details of reproduction such as hyperparameter setting has
been provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide anonymous code for reviewers to check. Once paper is published
we will release the original code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, all these details have been stated explicitly.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, averaged over various random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, it states the computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, it does.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Impact section added.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all code sources cited and credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

42

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We added a Readme file to document our code so reviewers can check them.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Not used. only grammar checks and writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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