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Abstract

Building robust multimodal models are crucial001
to achieving reliable deployment in the wild.002
Despite its importance, less attention has been003
paid to identifying and improving the robust-004
ness of Multimodal Sentiment Analysis (MSA)005
models. In this work, we hope to address that006
by (i) Proposing simple diagnostic checks for007
modality robustness in a trained multimodal008
model. Using these checks, we find MSA mod-009
els to be highly sensitive to a single modality,010
which creates issues in their robustness; (ii)011
We analyze well-known robust training strate-012
gies to alleviate the issues. Critically, we ob-013
serve that robustness can be achieved without014
compromising on the original performance. We015
hope our extensive study–performed across five016
models and two benchmark datasets–and pro-017
posed procedures would make robustness an018
integral component in MSA research. Our di-019
agnostic checks and robust training solutions020
are simple to implement and shall be released021
at https://github.com/XXXX022

1 Introduction023

Multimodal Sentiment Analysis (MSA) is a bur-024

geoning field of research that has seen accelerated025

developments in recent years. Numerous models026

have been proposed that utilize multiple modalities027

such as audio, visual, and language signals to pre-028

dict sentiments, emotions, and other forms of affect.029

While progress in MSA has been driven mainly by030

improvements in multimodal performance, we call031

for attention towards an equally important aspect032

in multimodal systems – multimodal robustness.033

Robustness is crucial when models are deployed034

in the wild, where it is common to encounter inad-035

vertent errors in the source modalities due to data036

loss, data corruption, jitter, privacy issues, amongst037

others.038

A well-known fact in the MSA research is that039

language modality tends to be the most effective,040

which has prompted models to utilize language041
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Figure 1: Removing modalities one at a time from the test-
ing set of CMU-MOSI (Zadeh et al., 2016) on a trained
MISA (Hazarika et al., 2020).

as its core modality (Wu et al., 2021; Han et al., 042

2021a; Zeng et al., 2021). In this work, we focus on 043

skewed dependence on language and try to under- 044

stand how it affects the robustness of MSA models. 045

Specifically, we ask, 046

RQ1: Are models in MSA over-reliant on a sub- 047

set of modalities, particularly language? 048

RQ2: If yes, what implications does it have on 049

modality robustness? 050

To answer RQ1, we look at Fig. 1. The figure il- 051

lustrates a setup where we fully remove one modal- 052

ity during testing on the MISA model (Hazarika 053

et al., 2020). Here, we observe a sharp drop in per- 054

formance when language modality is removed but 055

do not see statistically significant drops when audio 056

or visual modalities are removed. This observation 057

aligns with recent findings in the MSA literature 058

highlighting the dominance of language. 059

This brings us to RQ2 where we try to under- 060

stand the robustness implications over this dom- 061

inance. We design an elaborate study in § 3— 062

over five state-of-the-art (SOTA) MSA models and 063

across two benchmark datasets—where we propose 064

diagnostic checks to understand modality robust- 065

ness, i.e., how robust are models against modality 066

errors such as missing or noisy modalities. 067

Based on our findings, we then proceed to ask, 068

RQ3: How can we improve the robustness of 069

these models? 070
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RQ4: Does robust training lead to a perfor-071

mance trade-off?072

For RQ3, we study well-known robust training073

methods, that act as a pre-emptive strategy to re-074

duce the performance drops. Critically, our training075

is model-agnostic and can be easily included in076

any existing multimodal model (§ 4). For RQ4,077

we observe that our method to improve robustness078

does not trade-off with the final performance on079

the clean testing set, thus achieving similar perfor-080

mance as the original model.081

2 Related Works082

While MSA has received increased attention in re-083

cent times, the topic of robustness has not taken084

center stage. Fortunately, few works have started085

changing this trend. (Gat et al., 2020) reveals how086

multimodal classifiers often utilize a subset of087

modalities, which they addressed by inducing uni-088

form contribution from all input modalities. In089

MSA, multiple works over-rely on language modal-090

ity to improve the performance. (Wu et al., 2021)091

constructs a text-centered shared-private frame-092

work for multimodal fusion, and (Han et al., 2021a)093

obtains two text-related modal pairs and iteratively094

push the interaction between modalities to supple-095

ment information for better performance. While096

this has enabled performance boosts, our goal is097

to explore the double-edged nature of this feature098

and how it impacts robustness. Our motivation for099

diagnostics is similar to (Frank et al., 2021), but un-100

like them, we do not perturb the raw data (such as101

image patches). Instead, we intervene on modality102

representations, which is easier to integrate with103

existing models and do not require prior knowledge104

of the modality structure.105

To address robustness in MSA, (Tsai et al., 2018)106

proposes a factored model that can accommodate107

modality drops. Also, (Ma et al., 2021) introduces108

modality drops during training and testing and uses109

meta-learning to make models robust. However, our110

work comprises some crucial distinctions: i) Unlike111

these works, our diagnostics and robust training112

do not require sophisticated architecture and can113

be easily integrated into existing models. ii) We114

perform an exhaustive analysis of robustness across115

multiple models, which is previously not done in116

the MSA literature.117

3 Testing Robustness via Diagnostic 118

Checks 119

In this section we perform an elaborate study on 120

modality robustness by simulating potential issues 121

with modality signals during testing (or deploy- 122

ment) of MSA models. 123

3.1 Experiment Setup 124

Models. In order to fully verify the universal- 125

ity of our experiments, we select a series of di- 126

verse SOTA models, ranging from RNN-based 127

to Transformer-based architectures. These models 128

work across different granularities from word-level 129

to sentence-level variants: 130

(i) MISA (Hazarika et al., 2020) is a popu- 131

lar model that generates modality-invariant and 132

-specific features of multimodal data, to learn both 133

shared and unique characteristics of each modal- 134

ity. (ii) BBFN (Han et al., 2021a) in a similar 135

vein performs fusion and separation to increase 136

cross-modal relevances and differences. This work 137

acknowledges the dominance of text modality 138

in MSA and proposes two text-centric bi-modal 139

transformers to increase performance. (iii) Self- 140

MM (Yu et al., 2021) focuses on the relationship 141

between multi- and uni-modal predictions by multi- 142

tasking consistencies and differences between them. 143

(iv) MMIM (Han et al., 2021b) incorporates mu- 144

tual information (MI) into MSA by maximizing 145

MI at the input and fusion level. (v) MulT (Tsai 146

et al., 2019) merges multimodal time series through 147

multiple sets of directional pairwise cross-modal 148

transformers. It accounts for long-range dependen- 149

cies across modality elements to create a strong 150

baseline (see Appendix B). 151

Datasets. We consider two benchmark datasets 152

widely used in the field of multimodal sentiment 153

analysis, CMU-MOSI (Zadeh et al., 2016), which 154

is a popular dataset for studying the intensity of 155

multimodal sentiment in the MSA field and CMU- 156

MOSEI (Bagher Zadeh et al., 2018) which is a 157

larger counterpart of MOSI with richer annotations 158

and more diverse samples. Both these datasets con- 159

tain short utterance videos and provide language, 160

audio, and visual modality features. 161

3.2 Proposed Diagnostic Checks 162

We propose two diagnostic checks that introduce 163

i) Missing modalities, which drops (or nullifies) a 164

modality from the input and ii) Noisy Modalities 165
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Figure 2: Diagnostic checks (missing modality) for modality robustness in MOSI and MOSEI datasets. Results are averaged
over three independent runs. Each modality error is applied to 30% of testing data. For noise diagnostic, we provide the results in
Fig. 3.

which include random changes to the modality rep-166

resentations, introduced via white Gaussian noise167

to the respective modality representations1. To sim-168

ulate a realistic scenario, we apply these checks to169

30% of the testing data set2. Given the increased170

dependence on language modality in MSA mod-171

els, we limit our study to errors introduced only in172

language modality without loss of generality.173

Procedure. We aim to intervene on modality174

representations to simulate modality errors. For175

the language modality l, all models map the se-176

quence of tokens Ul ∈ RTl to its low-level em-177

bedding Ul ∈ RTl×dl with Tl tokens and dl em-178

bedding dimension. This low-level sequence is179

then encoded into hidden representations using an180

encoder of choice, such as BERT (Devlin et al.,181

2019), to achieve the language representation vec-182

tor ul = encθl(Ul) ∈ Rd. We intervene on this rep-183

resentation and apply our diagnostics as follows.184

We sample 30% of ul from the testing set and185

modify them as ûl = f(ul), where f(x) is defined186

as either f(x) = x ⊙ 0 for modality dropping187

(nulling the vector to 0s by elementwise multipli-188

cation) or f(x) = x+N (0,1) to add white noise.189

The modified ûl is then fed to the rest of the net-190

1While missing and noisy errors are predominant in the
wild, we leave other potential forms of errors, such as affine
transformations to the representations for future work.

2We set 30% arbitrarily to simulate modality errors to a
proportion of the input signals.

work as usual. 191

In the selected models, we apply diagnostics at 192

different network locations. These include the rep- 193

resentations before the hidden projection, such as 194

in MISA, or fusion operation, such as in Self-MM. 195

For MulT and BBFN, we apply the interventions 196

right after the word embeddings. Detailed discus- 197

sion on the location of interventions is provided in 198

Appendix A. 199

Observations. Fig. 2 presents the results, where 200

across both MOSI and MOSEI datasets, we find 201

that language modality is highly sensitive to modal- 202

ity errors in the language source (across all models). 203

This trend is observed for both missing and noisy 204

modality checks, thus highlighting the concerns 205

over robustness of these SOTA models. These di- 206

agnostic checks are easy to analyze, and we hope 207

they will become an integrated part of the model- 208

development pipeline in MSA. 209

4 Robust Training 210

In this section, we explore how to reduce the sen- 211

sitivity of the models to the dominant modality, 212

i.e., language. One of the popular ways to alle- 213

viate such issues is to teach the model such sce- 214

narios during training. We dub this approach as 215

modality-perturbation, which is conceptually sim- 216

ilar to removing modalities in (Ma et al., 2021) 217

or adding noise in (Miyato et al., 2018). It sim- 218
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ulates the modality errors during training so that219

the model learns to expect duch events during test-220

ing/deployment. The procedure is as follows,221

1. Training:222

(a) For a particular batch of data, sample a223

proportion of the data to be perturbed.224

(b) Similar to the diagnostic checks in § 3, per-225

turb the dominant modality (in our case,226

language) of half of this data with missing227

and the other half with noisy perturbation.228

Repeat both these steps for the next batch.229

2. Testing: Apply the diagnostic checks as in § 3.230

This simple approach can be interpreted as reg-231

ularization akin to dropouts or noising strategies232

used in de-noising auto-encoders.233

4.1 Results234

Robustness. Table 1 presents the results, where235

we perform balanced perturbation between missing236

and noisy modalities. For the 30% perturbable data237

in training, we drop the language modality on 15%238

and for the other 15%, we add noise. This setting239

improves the diagnostics in both kinds of errors.240

Appendix C presents results on other proportions241

of the training data.242

With balanced perturbation, (BBFN-MOSI) re-243

duces the relative drop on missing language diag-244

nostic by 31% (in F1) and 98% on noise. Also, miss-245

ing drop reduces by 11% in Corr and by 99% for246

noisy diagnostic. (Self-MM, MOSI) increases the247

relative drop in Corr slightly on missing diagnostic,248

but in all other cases, it is significantly reduced. For249

example, the F1 drop on MOSI for noisy diagnostic250

reduces significantly by 93%. Table 1 also shows251

that our method performs well on both RNN-based252

and Transformer-based models, demonstrating the253

wide applicability of our method.254

Performance Trade-off. While alleviating ro-255

bustness via regularization is well-known in the256

literature, there is often a trade-off with absolute257

performance in the original testing setup. Most258

approaches that achieve robustness take a hit at259

their best performance on clean input (Zhang et al.,260

2022) (Nakkiran, 2019) (Su et al., 2018) (Tsipras261

et al., 2019). This raises the question of whether262

introducing modality-perturbation reduces the per-263

formance of the model on the original testing set.264

We find the answer to this is No. Surprisingly,265

our robust training procedure does not degrade in266

Diagnostic
(30%)

Robust
Training

MOSI MOSEI
Corr F1 Corr F1

M
IS

A

- 0.737 82.40 0.765 85.76
Yes 0.736 81.42 0.767 85.97

missing
- ↓ 0.122 ↓ 11.53 ↓ 0.186 ↓ 8.45
Yes ↓ 0.210 ↓ 9.96 ↓ 0.147 ↓ 8.26

noise
- ↓ 0.122 ↓ 11.67 ↓ 0.136 ↓ 8.36
Yes ↓ 0.163 ↓ 10.10 ↓ 0.002 ↓ 0.19

B
B

FN

- 0.754 83.12 0.764 85.70
Yes 0.754 83.28 0.763 85.43

missing
- ↓ 0.127 ↓ 10.55 ↓ 0.139 ↓ 10.57
Yes ↓ 0.119 ↓ 7.28 ↓ 0.124 ↓ 7.88

noise
- ↓ 0.232 ↓ 8.58 ↓ 0.308 ↓ 9.62
Yes ↓ 0.046 ↓ 0.16 ↓ 0.003 ↓ 0.23

Se
lf

-M
M

- 0.794 85.61 0.759 84.62
Yes 0.790 84.73 0.754 84.67

missing
- ↓ 0.099 ↓ 11.74 ↓ 0.126 ↓ 9.04
Yes ↓ 0.120 ↓ 9.66 ↓ 0.122 ↓ 6.86

noise
- ↓ 0.154 ↓ 8.35 ↓ 0.172 ↓ 9.48
Yes ↓ 0.041 ↓ 0.58 ↓ 0.051 ↓ 1.02

M
M

IM

- 0.796 86.02 0.758 84.89
Yes 0.784 84.67 0.751 83.15

missing
- ↓ 0.117 ↓ 9.37 ↓ 0.122 ↓ 8.15
Yes ↓ 0.146 ↓ 10.48 ↓ 0.115 ↓ 6.62

noise
- ↓ 0.197 ↓ 9.55 ↓ 0.191 ↓ 9.18
Yes ↓ 0.180 ↓ 8.88 ↓ 0.096 ↓ 4.41

M
ul

t
- 0.747 82.25 0.738 83.37
Yes 0.744 82.21 0.745 83.95

missing
- ↓ 0.113 ↓ 12.17 ↓ 0.109 ↓ 6.60
Yes ↓ 0.117 ↓ 9.63 ↓ 0.113 ↓ 7.03

noise
- ↓ 0.295 ↓ 8.99 ↓ 0.263 ↓ 7.95
Yes ↓ 0.068 ↓ 6.13 ↓ 0.001 ↑ 0.02

Table 1: Robust Training is performed with 15% miss-
ing and 15% noise perturbation. Results are averaged
over 3 random runs. More perturbation are provided
in Appendix C. Higher drops between Non-robust and
robust training (consecutive rows) are highlighted.

its original performance and can perform similar to 267

the original model variants. This is highly ideal as 268

we achieve robustness without compromising on 269

performance in clean data. 270

5 Conclusion 271

In this work, we performed a systematic study that 272

demonstrate the double-edged nature of dominant 273

modality in SOTA MSA models. Our analysis us- 274

ing diagnostic checks reveal high susceptibility to 275

performance drops when presented with unwanted 276

errors in their representations. 277

To alleviate the issues, we also study robust train- 278

ing methods that uses modality perturbations. Criti- 279

cally, we find that robustness and performance can 280

co-exist without an explicit trade-off. These im- 281

provements demonstrate a positive nudge in the 282

effort to achieve robustness and we believe there re- 283

mains significant room for improvement. With this 284

work, by proposing simple and easy-to-integrate 285

diagnostic checks and training methods, we hope 286

to permeate discussions on robustness into main- 287

stream MSA research. 288
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A Model Details414

MISA: We get the MISA model from its official415

repository 3. In this model, we apply the interven-416

tions at the following encoded language represen-417

tation from the original paper:418

ul = Bert
(
Ul; θ

bert
l

)
(1)419

ûl = f(ûl) (2)420

hc
l = Ec (ûl; θ

c) , hp
l = Ep

(
ûl; θ

p
l

)
(3)421

That is, the interventions are applied before the422

language representation is projected to its shared423

and private subspaces.424

BBFN: We get the BBFN model from its official425

repository 4. In this model, we execute the interven-426

tions after the following language embedding from427

the original paper.428

Ml = (m0,m1, . . . ,mn+1) (4)429

M̂l = f(Ml) (5)430

Self-MM: We get the Self-MM model from its431

official repository5. In this model, we set the inter-432

ventions after the language features encoded below433

from the original paper.434

Fl = BERT
(
Il; θ

bert
l

)
∈ Rdl (6)435

F̂l = f(Fl) (7)436

3https://github.com/declare-
lab/MISA/tree/ec42faddde0d210cf7368aebf2118fe9570e7102

4https://github.com/declare-
lab/BBFN/tree/be15f947ed7539b3c54381e453f09439466ed915

5https://github.com/thuiar/Self-MM

Models Item CMU-MOSI CMU-MOSEI

MISA
Learning rate 1e-5 4e-5
Optimizer RMSprop Adam
Activation hardtanh relu

BBFN Learning rate 1e-4 5e-5

MMIM

Batch size 32 64
learning rate ηlld 4e-3 1e-3
learning rate ηmain 1e-3 5e-4
α 0.3 0.1
β 0.1 0.05
V-LSTM hidden dim 32 64
A-LSTM hidden dim 32 16

MulT

Batch size 128 16
Learning rate 1e-4 1e-4
Optimizer Adam Adam

Transformers Hidden
Unit Size d

30 30

No. of Crossmodal
Attention Heads

10 10

No. of Crossmodal
a Blocks D

4 4

Textual Embedding
Dropout

0.3 0.3

Crossmodal Attention
Block Dropout

0.2 0.1

Output Dropout 0.2 0.1
Gradient Clip 0.8 1.0
No. of Epochs 100 20
Use Bert Yes Yes

Table 2: Hyper-parameter config used to train the mod-
els.

MMIM: We get the MMIM model from its of- 437

ficial repository 6. For this model, we perform the 438

interventions after the following encoded language 439

representation from the original paper. 440

xl = BERT
(
Xl; θ

BERT
l

)
(8) 441

x̂l = f(xl) (9) 442

Mult: We get the Mult model from its official 443

repository 7. We intervene in this model after the 444

following encoded language representation:. 445

xl = Conv1D(Xl, kl) ∈ RTl×d (10) 446

x̂l = f(xl) (11) 447

B Reproducing Results 448

For each model we train the models to achieve 449

performances close to reported in the respective 450

papers. Table 2 presents the hyper-parameters we 451

used to reproduce their results. 452

6https://github.com/declare-lab/Multimodal-Infomax
7https://github.com/yaohungt/Multimodal-Transformer
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Figure 3: Diagnostic checks (noisy modality) for modality robustness in MOSI and MOSEI datasets. Results are averaged over
three independent runs. Each modality error is applied to 30% of testing data.

C Additional Results on453

Modality-Perturbation454

We also analyze with varying proportions of per-455

turbations in the training and testing phase, respec-456

tively. As seen in Table 3, as the noise gradually in-457

creases from 5% to 15%, the drop of Corr in MOSI458

is gradually reduced , which shows the robustness459

is getting better, until it reaches the optimum at 30%460

perturbation (15% missing + 15% noise). In other461

models, 30% perturbation is also advantageous. For462

example, in Table 7, (Mult, MOSEI) reduces Corr463

drop while improving F1 performance in 30% per-464

turbation. Although it is only a small improvement465

at present, we believe that there will be more mean-466

ingful improvements in the future.467
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Robust
Training Diagnostic MOSI MOSEI

Corr F1 Corr F1

M
IS

A

-

0.737 82.40 0.765 85.76
missing 5% ↓ 0.011 ↓ 1.18 ↓ 0.042 ↓ 1.57
noise 5% ↓ 0.022 ↓ 0.75 → 0 → 0
missing 10% ↓ 0.031 ↓ 2.19 ↓ 0.073 ↓ 2.41
noise 10% ↓ 0.047 ↓ 2.56 ↓ 0.031 ↓ 1.75
missing 15% ↓ 0.050 ↓ 3.99 ↓ 0.126 ↓ 4.10
noise 15% ↓ 0.076 ↓ 4.05 ↓ 0.068 ↓ 3.88
missing 30% ↓ 0.122 ↓ 11.53 ↓ 0.186 ↓ 8.45
noise 30% ↓ 0.210 ↓ 9.96 ↓ 0.147 ↓ 8.26

5% missing
5% noise

0.714 80.99 0.765 85.68
missing 5% ↓ 0.010 ↓ 1.38 ↓ 0.042 ↓ 1.57
noise 5% ↓ 0.032 ↓ 1.37 → 0 → 0
missing 10% ↓ 0.030 ↓ 2.17 ↓ 0.074 ↓ 2.41
noise 10% ↓ 0.055 ↓ 2.44 ↓ 0.041 ↓ 2.22
missing 15% ↓ 0.044 ↓ 4.52 ↓ 0.126 ↓ 0.41
noise 15% ↓ 0.094 ↓ 3.65 ↓ 0.058 ↓ 3.53
missing 30% ↓ 0.121 ↓ 11.08 ↓ 0.186 ↓ 8.37
noise 30% ↓ 0.201 ↓ 8.71 ↓ 0.150 ↓ 8.12

10% missing
10% noise

0.734 81.40 0.765 85.68
missing 5% ↓ 0.011 ↓ 1.04 ↓ 0.022 ↓ 1.58
noise 5% ↓ 0.028 ↓ 1.20 → 0 → 0
missing 10% ↓ 0.030 ↓ 2.05 ↓ 0.042 ↓ 2.54
noise 10% ↓ 0.045 ↓ 2.27 ↓ 0.001 ↓ 0.02
missing 15% ↓ 0.049 ↓ 3.54 ↓ 0.071 ↓ 4.04
noise 15% ↓ 0.073 ↓ 3.42 ↓ 0.001 ↓ 0.43
missing 35% ↓ 0.118 ↓ 11.11 ↓ 0.135 ↓ 8.17
noise 30% ↓ 0.181 ↓ 9.55 ↓ 0.035 ↓ 0.54

15% missing
15% noise

0.736 81.42 0.767 85.97
missing 5% ↓ 0.012 ↓ 1.50 ↓ 0.021 ↓ 1.46
noise 5% ↓ 0.027 ↓ 1.50 → 0 → 0
missing 10% ↓ 0.033 ↓ 2.71 ↓ 0.041 ↓ 2.43
noise 10% ↓ 0.032 ↓ 2.12 ↓ 0.001 ↓ 0.03
missing 15% ↓ 0.052 ↓ 4.40 ↓ 0.021 ↓ 4.11
noise 15% ↓ 0.073 ↓ 4.99 ↓ 0.001 ↓ 0.12
missing 30% ↓ 0.122 ↓ 11.67 ↓ 0.136 ↓ 8.36
noise 30% ↓ 0.163 ↓ 10.10 ↓ 0.002 ↓ 0.19

Table 3: MISA Robust Training. Results are averaged over three random runs.

8



Robust
Training Diagnostic MOSI MOSEI

Corr F1 Corr F1

B
B

FN

-

0.754 83.12 0.764 85.70
missing 5% ↓ 0.013 ↓ 1.51 ↓ 0.020 ↓ 1.97
noise 5% ↓ 0.034 ↓ 0.75 ↓ 0.050 ↓ 1.21
missing 10% ↓ 0.028 ↓ 2.59 ↓ 0.038 ↓ 3.34
noise 10% ↓ 0.093 ↓ 2.90 ↓ 0.121 ↓ 3.54
missing 15% ↓ 0.032 ↓ 3.79 ↓ 0.055 ↓ 5.45
noise 15% ↓ 0.080 ↓ 2.28 ↓ 0.154 ↓ 4.18
missing 30% ↓ 0.127 ↓ 10.55 ↓ 0.139 ↓ 10.57
noise 30% ↓ 0.232 ↓ 8.58 ↓ 0.308 ↓ 9.62

5% missing
5% noise

0.743 82.39 0.765 85.48
missing 5% ↓ 0.020 ↓ 0.94 ↓ 0.017 ↓ 1.00
noise 5% ↓ 0.002 → 0 → 0 ↓ 0.08
missing 10% ↓ 0.039 ↓ 2.17 ↓ 0.032 ↓ 1.95
noise 10% → 0 → 0 → 0 ↓ 0.06
missing 15% ↓ 0.045 ↓ 2.18 ↓ 0.050 ↓ 3.57
noise 15% ↓ 0.002 ↓ 0.15 ↓ 0.001 → 0
missing 30% ↓ 0.049 ↓ 1.92 ↓ 0.122 ↓ 7.60
noise 30% → 0 ↓ 0.20 ↓ 0.001 ↓ 0.04

10% missing
10% noise

0.742 81.66 0752 85.15
missing 5% ↓ 0.018 ↓ 1.66 ↓ 0.018 ↓ 1.62
noise 5% ↓ 0.001 → 0 ↓ 0.022 ↓ 0.05
missing 10% ↓ 0.034 ↓ 2.87 ↓ 0.035 ↓ 2.87
noise 10% ↓ 0.001 → 0 ↓ 0.003 ↓ 0.09
missing 15% ↓ 0.036 ↓ 3.63 ↓ 0.050 ↓ 4.47
noise 15% ↓ 0.001 ↓ 0.01 ↓ 0.004 ↓ 0.07
missing 30% ↓ 0.126 ↓ 9.75 ↓ 0.125 ↓ 9.40
noise 30% ↓ 0.003 ↓ 0.46 ↓ 0.079 ↓ 0.31

15% missing
15% noise

0.754 83.28 0.763 85.43
missing 5% ↓ 0.020 ↓ 1.50 ↓ 0.018 ↓ 0.96
noise 5% ↓ 0.001 → 0 ↓ 0.001 → 0
missing 10% ↓ 0.031 ↓ 2.26 ↓ 0.036 ↓ 2.08
noise 10% ↓ 0.002 → 0 → 0 ↓ 0.05
missing 15% ↓ 0.035 ↓ 2.71 ↓ 0.057 ↓ 3.62
noise 15% ↓ 0.003 ↓ 0.14 ↓ 0.001 → 0
missing 30% ↓ 0.119 ↓ 7.28 ↓ 0.124 ↓ 7.88
noise 30% ↓ 0.046 ↓ 0.16 ↓ 0.003 ↓ 0.23

Table 4: BBFN Robust Training. Results are averaged over three random runs.
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Robust
Training Diagnostic MOSI MOSEI

Corr F1 Corr F1

Se
lf

-M
M

-

0.794 85.61 0.759 84.62
missing 5% ↓ 0.023 ↓ 1.93 ↓ 0.018 ↓ 1.99
noise 5% ↓ 0.009 ↓ 0.91 ↓ 0.022 ↓ 1.32
missing 10% ↓ 0.046 ↓ 3.57 ↓ 0.040 ↓ 3.51
noise 10% ↓ 0.039 ↓ 2.43 ↓ 0.058 ↓ 2.91
missing 15% ↓ 0.051 ↓ 4.77 ↓ 0.056 ↓ 4.51
noise 15% ↓ 0.050 ↓ 2.71 ↓ 0.069 ↓ 3.65
missing 30% ↓ 0.099 ↓ 11.74 ↓ 0.126 ↓ 9.04
noise 30% ↓ 0.154 ↓ 8.35 ↓ 0.172 ↓ 9.48

5% missing
5% noise

0.798 83.97 0.789 0.837
missing 5% ↓ 0.022 ↓ 1.73 ↓ 0.021 ↓ 1.83
noise 5% ↓ 0.002 → 0 ↓ 0.002 ↓ 0.05
missing 10% ↓ 0.046 ↓ 3.32 ↓ 0.046 ↓ 3.28
noise 10% ↓ 0.012 ↓ 0.14 ↓ 0.011 ↓ 0.44
missing 15% ↓ 0.050 ↓ 4.63 ↓ 0.053 ↓ 4.60
noise 15% ↓ 0.018 ↓ 0.09 ↓ 0.018 ↓ 0.51
missing 30% ↓ 0.119 ↓ 9.57 ↓ 0.124 ↓ 9.77
noise 30% ↓ 0.046 ↓ 0.33 ↓ 0.043 ↓ 1.04

10% missing
10% noise

0.789 83.67 0.764 0.849
missing 5% ↓ 0.021 ↓ 1.83 ↓ 0.017 ↓ 0.63
noise 5% ↓ 0.002 ↓ 0.05 ↓ 0.005 ↓ 0.03
missing 10% ↓ 0.046 ↓ 3.28 ↓ 0.038 ↓ 1.93
noise 10% ↓ 0.011 ↓ 0.44 ↓ 0.011 ↓ 0.15
missing 15% ↓ 0.053 ↓ 4.60 ↓ 0.057 ↓ 3.16
noise 15% ↓ 0.018 ↓ 0.51 ↓ 0.019 ↓ 0.13
missing 30% ↓ 0.124 ↓ 9.77 ↓ 0.126 ↓ 7.42
noise 30% ↓ 0.043 ↓ 1.04 ↓ 0.056 ↓ 1.01

15% missing
15% noise

0.790 84.73 0.754 84.67
missing 5% ↓ 0.022 ↓ 1.91 ↓ 0.017 ↓ 0.60
noise 5% ↓ 0.003 → 0 ↓ 0.004 ↓ 0.01
missing 10% ↓ 0.046 ↓ 3.39 ↓ 0.038 ↓ 1.91
noise 10% ↓ 0.010 ↓ 0.44 ↓ 0.011 ↓ 0.14
missing 15% ↓ 0.049 ↓ 4.58 ↓ 0.055 ↓ 3.08
noise 15% ↓ 0.018 ↓ 0.28 ↓ 0.016 ↓ 0.16
missing 30% ↓ 0.120 ↓ 9.66 ↓ 0.122 ↓ 6.86
noise 30% ↓ 0.041 ↓ 0.58 ↓ 0.051 ↓ 1.02

Table 5: Self-MM Robust Training. Results are averaged over three random runs.

10



Robust
Training Diagnostic MOSI MOSEI

Corr F1 Corr F1

M
M

IM

-

0.796 86.02 0.758 84.89
missing 5% ↓ 0.028 ↓ 1.34 ↓ 0.016 ↓ 0.93
noise 5% ↓ 0.035 ↓ 1.52 ↓ 0.031 ↓ 1.71
missing 10% ↓ 0.067 ↓ 4.16 ↓ 0.034 ↓ 2.43
noise 10% ↓ 0.058 ↓ 2.10 ↓ 0.070 ↓ 2.64
missing 15% ↓ 0.056 ↓ 2.78 ↓ 0.056 ↓ 4.13
noise 15% ↓ 0.078 ↓ 4.65 ↓ 0.094 ↓ 4.67
missing 30% ↓ 0.117 ↓ 9.37 ↓ 0.122 ↓ 8.15
noise 30% ↓ 0.197 ↓ 9.55 ↓ 0.191 ↓ 9.18

5% missing
5% noise

0.797 85.13 0.755 0.836
missing 5% ↓ 0.057 ↓ 1.19 ↓ 0.016 ↓ 0.62
noise 5% ↓ 0.021 ↓ 1.20 ↓ 0.025 ↓ 1.07
missing 10% ↓ 0.035 ↓ 1.80 ↓ 0.046 ↓ 2.29
noise 10% ↓ 0.075 ↓ 2.25 ↓ 0.056 ↓ 2.43
missing 15% ↓ 0.057 ↓ 4.37 ↓ 0.168 ↓ 2.26
noise 15% ↓ 0.072 ↓ 3.96 ↓ 0.063 ↓ 2.75
missing 30% ↓ 0.117 ↓ 8.24 ↓ 0.120 ↓ 6.52
noise 30% ↓ 18.75 ↓ 9.31 ↓ 0.178 ↓ 7.34

10% missing
10% noise

0.794 84.76 0.758 84.81
missing 5% ↓ 0.020 ↓ 1.50 ↓ 0.016 ↓ 1.07
noise 5% ↓ 0.006 ↓ 0.46 ↓ 0.024 ↓ 1.28
missing 10% ↓ 0.032 ↓ 2.09 ↓ 0.043 ↓ 2.79
noise 10% ↓ 0.060 ↓ 2.57 ↓ 0.045 ↓ 2.58
missing 15% ↓ 0.060 ↓ 3.27 ↓ 0.058 ↓ 3.84
noise 15% ↓ 0.062 ↓ 3.65 ↓ 0.063 ↓ 3.42
missing 30% ↓ 0.110 ↓ 8.40 ↓ 0.119 ↓ 7.50
noise 30% ↓ 0.163 ↓ 9.18 ↓ 0.177 ↓ 8.16

15% missing
15% noise

0.784 84.67 0.751 83.15
missing 5% ↓ 0.014 ↓ 1.79 ↓ 0.020 ↓ 0.89
noise 5% ↓ 0.028 ↓ 1.04 ↓ 0.016 ↓ 0.69
missing 10% ↓ 0.038 ↓ 2.18 ↓ 0.030 ↓ 2.24
noise 10% ↓ 0.050 ↓ 1.30 ↓ 0.028 ↓ 0.62
missing 15% ↓ 0.061 ↓ 4.91 ↓ 0.059 ↓ 2.77
noise 15% ↓ 0.071 ↓ 4.08 ↓ 0.040 ↓ 1.58
missing 30% ↓ 0.146 ↓ 10.48 ↓ 0.115 ↓ 6.62
noise 30% ↓ 0.180 ↓ 8.88 ↓ 0.096 ↓ 4.41

Table 6: MMIM Robust Training. Results are averaged over three random runs.
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Robust
Training Diagnostic MOSI MOSEI

Corr F1 Corr F1

M
ul

T

-

0.747 82.25 0.738 83.37
missing 5% ↓ 0.032 ↓ 3.76 ↓ 0.019 ↓ 0.84
noise 5% ↓ 0.053 ↓ 1.67 → 0 → 0
missing 10% ↓ 0.046 ↓ 3.92 ↓ 0.031 ↓ 1.85
noise 10% ↓ 0.069 ↓ 3.03 → 0 → 0
missing 15% ↓ 0.052 ↓ 4.84 ↓ 0.051 ↓ 3.29
noise 15% ↓ 0.172 ↓ 5.00 ↓ 0.152 ↓ 4.50
missing 30% ↓ 0.113 ↓ 12.17 ↓ 0.109 ↓ 6.60
noise 30% ↓ 0.295 ↓ 8.99 ↓ 0.263 ↓ 7.95

5% missing
5% noise

0.748 81.90 0.748 84.59
missing 5% ↓ 0.031 ↓ 1.50 ↓ 0.018 ↓ 0.93
noise 5% ↓ 0.021 ↓ 1.67 → 0 → 0
missing 10% ↓ 0.043 ↓ 2.43 ↓ 0.030 ↓ 1.99
noise 10% ↓ 0.021 ↓ 1.96 → 0 → 0
missing 15% ↓ 0.050 ↓ 3.36 ↓ 0.050 ↓ 3.51
noise 15% ↓ 0.067 ↓ 3.30 ↓ 0.173 ↓ 3.97
missing 30% ↓ 0.077 ↓ 5.12 ↓ 0.074 ↓ 4.90
noise 30% ↓ 0.094 ↓ 5.17 ↓ 0.198 ↓ 5.50

10% missing
10% noise

0.741 81.31 0.746 84.13
missing 5% ↓ 0.034 ↓ 2.57 ↓ 0.019 ↓ 0.96
noise 5% ↓ 0.012 ↓ 0.09 → 0 → 0
missing 10% ↓ 0.046 ↓ 3.06 ↓ 0.030 ↓ 0.019
noise 10% ↓ 0.031 ↓ 2.42 → 0 → 0
missing 15% ↓ 0.053 ↓ 5.52 ↓ 0.048 ↓ 3.19
noise 15% ↓ 0.045 ↓ 4.08 ↓ 0.153 ↓ 4.08
missing 30% ↓ 0.077 ↓ 6.57 ↓ 0.072 ↓ 4.62
noise 30% ↓ 0.056 ↓ 4.57 ↓ 0.202 ↓ 5.58

15% missing
15% noise

0.744 82.21 0.745 83.95
missing 5% ↓ 0.034 ↓ 2.56 ↓ 0.018 ↓ 0.86
noise 5% ↓ 0.023 ↓ 1.52 → 0 → 0
missing 10% ↓ 0.047 ↓ 3.93 ↓ 0.032 ↓ 1.86
noise 10% ↓ 0.039 ↓ 3.62 → 0 → 0
missing 15% ↓ 0.052 ↓ 5.15 ↓ 0.051 ↓ 3.27
noise 15% ↓ 0.046 ↓ 3.62 → 0 ↓ 0.08
missing 30% ↓ 0.117 ↓ 9.63 ↓ 0.113 ↓ 7.03
noise 30% ↓ 0.068 ↓ 6.13 ↓ 0.001 ↑ 0.02

Table 7: MulT Robust Training. Results are averaged over three random runs.

12


