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ABSTRACT

Characterizing the computational power of neural network architectures in terms
of formal language theory remains a crucial line of research, as it describes lower
and upper bounds on the reasoning capabilities of modern AI. However, when em-
pirically testing these bounds, existing work often leaves a discrepancy between
experiments and the formal claims they are meant to support. The problem is
that formal language theory pertains specifically to recognizers: machines that
receive a string as input and classify whether it belongs to a language. On the
other hand, it is common to instead use proxy tasks that are similar in only an
informal sense, such as language modeling or sequence-to-sequence transduction.
We correct this mismatch by training and evaluating neural networks directly as
binary classifiers of strings, using a general method that can be applied to a wide
variety of languages. As part of this, we extend an algorithm recently proposed
by Anonymous (2024) to do length-controlled sampling of strings from regular
languages, with much better asymptotic time complexity than previous methods.
We provide results on a variety of languages across the Chomsky hierarchy for
three neural architectures: a simple RNN, an LSTM, and a causally-masked trans-
former. We find that the RNN and LSTM often outperform the transformer, and
that auxiliary training objectives such as language modeling can help, although
no single objective uniformly improves performance across languages and archi-
tectures. Our contributions will facilitate theoretically sound empirical testing of
language recognition claims in future work. We have released our datasets as a
benchmark called FLaRe1 (Formal Language Recognition), along with our code.2

1 INTRODUCTION

Neural network-based AI systems, including large language models (LLMs), have been hailed for
their emergent reasoning abilities. What exactly are these abilities? The precise scope of what
has emerged is hard to pin down. Fortunately, formal language theory gives us a vocabulary for
ascribing hard limits to the kinds of computations neural networks can perform, enabling a much-
needed formal characterization. For example, results from formal language theory allow us to know
with certainty that a transformer LM (with no extra chain-of-thought timesteps) cannot determine
whether two regular expressions with repetition operators are equivalent; a transformer LM runs in
quadratic time, but the aforementioned problem provably requires exponential time (Sipser, 2013).

A long line of research has attempted to precisely describe the class of problems neural architectures
can solve in terms of formal languages. It consists of two parts: formal results that mathematically
prove language class bounds, often under simplifying assumptions; and empirical results that, in
complementary fashion, provide evidence of these bounds under real settings. Simplifying assump-
tions for the transformer architecture have included the absence of layer normalization, the use of
hard attention, or the use of special positional encodings (see Strobl et al. (2024b) for a survey). For-
mal expressivity results also typically do not comment on whether solutions are practically reachable
through training, even though the bias imposed by the training algorithm may render the set of solv-
able problems much smaller than suggested by formal expressivity results. Empirical results are
therefore important for validating formal results under unsimplified conditions.

1Included in the supplementary material.
2Included in the supplementary material.
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Figure 1: Summary of our empirical expressivity results. Dots represent languages, which are listed
in Table 1. A filled dot means that the architecture exhibits perfect length generalization (see Table 2
under “Expressivity”). R = regular, DCF = deterministic context-free, CF = context-free, CS =
context-sensitive. All architectures are limited to regular languages and the DCF language Majority.
The transformer is strictly less expressive than the RNN/LSTM on the languages we tested.

The purpose of this paper is to reconcile a subtle but important disconnect between empirical results
and claims about computational power. Formal language theory deals in recognizers: machines that
receive a string as input and classify whether it is a member of a language. The Chomsky hierarchy
and the classes P and NP are defined in terms of recognizers. Consider, for example, the recent
study by Delétang et al. (2023): its core claims are about the Chomsky hierarchy, but the support-
ing experiments train language models and evaluate them as string-to-string functions. While the
experiments do validate the authors’ claims about a memory-based hierarchy in an informal sense,
formally, the experiments do not demonstrate claims about the Chomsky hierarchy of languages,
but an analogous hierarchy of functions. There are multiple ways to fix this mismatch: one could
change the theoretical claims to those of a hierarchy of language models (Icard, 2020; Borenstein
et al., 2024) or string-to-string functions (Strobl et al., 2024a); or one could change the experiments
to recognition to match the Chomsky hierarchy. In this paper, we explore the latter approach.

We propose a methodology for training neural networks as recognizers of formal languages that only
requires language-specific algorithms for positive sampling and membership testing. Unlike most
prior work, we do not require language-specific rules to generate adversarial negative examples (cf.
Weiss et al., 2018b; Someya et al., 2024; Bhattamishra et al., 2024). Like Delétang et al. (2023),
we focus on length generalization, and we include two sets of experiments that carefully distinguish
between tests of inductive bias and expressivity. We extend work by Anonymous (2024) to imple-
ment a scalable algorithm for length-controlled sampling from finite automata, with a preprocessing
step that is asymptotically faster than a standard approach by a factor of O(nmax

2), where nmax is
the maximum string length. To explore the effectiveness of other training objectives used in past
work while remaining within the recognition paradigm, we experiment with auxiliary loss terms in
a multi-task learning setup. Although they do aid certain architectures on specific tasks, they do
not have a consistent effect across architectures and languages, and a simple binary cross-entropy
objective is often very effective. We compare three architectures: a simple RNN, an LSTM, and
a causally-masked transformer. We experiment on a variety of formal languages across the Chom-
sky hierarchy; the transformer generally underperforms the RNN and LSTM, and all architectures
are limited to low levels of the hierarchy (Figure 1). We have publicly released our datasets as a
benchmark called FLaRe (Formal Language Recognition), along with our code.

2 METHOD

We start with some basic definitions. An alphabet, often denoted with the variable Σ, is a non-
empty finite set of elements called symbols. A string over Σ is a finite sequence of symbols in
Σ. We use ε to denote the empty string. A language (or formal language) over Σ is a (possibly
infinite) set of strings over Σ. Let Σ∗ denote the language of all strings over Σ. If a machine works
by receiving a string as input and producing a decision to accept or reject it as output, then we call it
a recognizer, and we say that it recognizes the language of strings that it accepts. A language class
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is a (possibly infinite) set of languages. Throughout the rest of this section, let us assume we are
dealing with a specific language L over alphabet Σ. For any string w ∈ Σ∗, we call the proposition
w ∈ L the label of w.

We now describe a general, effective method for sampling datasets from formal languages and train-
ing neural networks as recognizers. We address a number of challenges cited in past work, namely
negative sampling, length-constrained sampling, and the paucity of the training signal when training
on binary labels. We provide particularly efficient solutions for regular languages.

2.1 DATASET GENERATION

Suppose we want to sample a set of N string-label pairs, where the length of every string is in the
range [nmin, nmax]. Assume that we have available to us (a) an algorithm for sampling a string
w from L such that |w| ∈ [nmin, nmax], and (b) an algorithm for determining whether a string
w ∈ Σ∗ is a member of L.3 We do the following N times. We uniformly sample a label from
{0, 1}, ensuring a balanced dataset. If the label is 1, we sample a string from L using the algorithm
assumed by item (a). If the label is 0, we propose a random string w as a negative example. Since
it is possible that w is inadvertently a member of L, we test whether it is in L using the algorithm
assumed by item (b). If w ∈ L, we propose a new string until we get a confirmed negative example.

We propose negative strings in one of two ways, with uniform probability. Half the time, we propose
a uniform negative example by uniformly sampling a length n from [nmin, nmax], then uniformly
sampling a string from Σn. For many languages, this is very likely to produce a negative exam-
ple, but one that is so superficially dissimilar to positive examples that the classification problem
becomes too easy and fails to demonstrate the underlying algorithm. Prior work, therefore, typ-
ically uses language-specific rules to generate adversarial negative samples (Weiss et al., 2018b;
Bhattamishra et al., 2024; Someya et al., 2024). To keep our methodology more general, the other
half of the time, we propose a perturbed negative example by sampling a positive example and
perturbing it with random edits (cf. Weiss et al., 2018a). More precisely, we (1) sample the number
of edits K from a geometric distribution that heavily favors small K, and (2) iteratively apply K
uniformly-sampled edits (single-symbol insertion, replacement, or deletion). We describe this pro-
cedure in more detail in App. A. Typically, this is much more likely to produce negative examples
that are difficult to distinguish from positive ones (see also our analysis in Figure 2).

2.2 EFFICIENT LENGTH-CONSTRAINED SAMPLING FOR REGULAR LANGUAGES

We now turn to efficient length-constrained sampling for regular languages. Any regular language
can be expressed as a simple state machine called a deterministic finite automaton (DFA).
Definition 1. A partial deterministic finite automaton (partial DFA) is a tupleA = (Q,Σ, δ, q0, F )
where (i) Q is a finite set of states; (ii) Σ is an alphabet; (iii) δ : Q×Σ→ Q ∪ {∅} is the transition
function, where ∅ indicates the absence of a transition; (iv) q0 ∈ Q is the start state; and (v) F ⊆ Q
is the set of accept states. If δ(q, a) = r, we say thatA has a transition from q to r that scans a, and
we write q

a−→ r ∈ δ.

Our definition of DFA is partial in the sense that we do not require an outgoing transition to be
defined for all (q, a) ∈ Q × Σ. For simplicity, from now on, we will simply refer to partial DFAs
as DFAs. We call a sequence π of connecting states and transitions a path. If π’s transitions scan
a1, . . . , an, we say that π scans the string a1 · · · an. For any string w ∈ Σ∗, if there is a path that
starts in q0, scans w, and ends in an accept state, we say that A accepts w and rejects it otherwise.
This leads to a straightforward O(n)-time membership testing algorithm: start in the initial state,
follow the unique w-scanning path (if it exists), and accept if it ends in an accept state. We say that
A recognizes the language {w ∈ Σ∗ | A accepts w}. If all states in a DFA are reachable from the
start state and can lead to an accept state, we call it trim.

We present an algorithm for length-constrained sampling from a DFA’s language that is asymptot-
ically much more efficient than a standard approach. To facilitate the exposition of this algorithm
(and other algorithms in this paper), we first introduce semirings and weighted DFAs.

3This is directly comparable to the classical learning theory of Gold (1967), which assumes the availability
of a “text” of positive examples and an “informant” that provides labels.
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Definition 2. A monoid is a tuple (K,⊙, I), where K is a set, ⊙ is an associative binary operation,
and I ∈ K, called the identity element, satisfies I⊙ a = a⊙ I = a for all a ∈ K. If a⊙ b = b⊙ a
for all a, b ∈ K, we say that the monoid is commutative.

Definition 3. A semiring is a tuple (K,⊕,⊗,0,1) where (K,⊕,0) is a commutative monoid and
(K,⊗,1) is a monoid. Additionally, ⊗ distributes over ⊕: a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c); and 0 is absorbing with respect to ⊗: 0⊗ a = a⊗ 0 = 0.

A weighted DFA is a DFA with semiring-weighted transitions. The weights can, for example, be
probabilities. Some of our algorithms are variants of existing algorithms over a different semiring.

Definition 4. A weighted deterministic finite automaton (WDFA) over a semiring (K,⊕,⊗,0,1)
is a tuple A = (Q,Σ, δ, q0, ρ) such that (i) Q, Σ, and q0 are defined as in Def. 1;
(ii) δ : Q × Σ → (Q × K) ∪ {∅} is the transition function; and (iii) ρ : Q → K is the accept
weight function. If δ(q, a) = (r, w), we say that A has a transition from q to r that scans a with

weight w, and we write q
a/w−−→ r ∈ δ. We call {q ∈ Q | ρ(q) ̸= 0} the set of accept states.

Rather than simply accepting or rejecting a string, a WDFA assigns it a weight. The weight of a
path is the product of the weights of its transitions and accept state, and the weight of a string is the
weight of the path that scans it, or 0 if one does not exist. We can assign probabilities to strings
with the probability semiring ([0, 1],+,×, 0, 1) or, for numerical stability, the log semiring (R ∪
{−∞}, log(exp(·) + exp(·)),+,−∞, 0). For random sampling, a probability semiring-weighted
DFA must have transition and accept weights that are locally normalized per state.

Definition 5. A WDFA A = (Q,Σ, δ, q0, ρ) over the probability semiring is called a probabilistic

DFA (PDFA) if for all q ∈ Q,
(∑

q
a/p−−→r∈δ

p

)
+ ρ(q) = 1.

Let A be a trim DFA that recognizes the regular language L. We convert A to a PDFA A′ by
assigning uniform probabilities to its transitions and accept states. That is, for each state q ∈ Q, let
kq

def
= |{a ∈ Σ | ∃r ∈ Q, q

a−→ r ∈ δ}|+1[q ∈ F ]. We set the probability of each outgoing transition
to 1

kq
, and the accept probability to 1

kq
1[q ∈ F ]. Let pA′ denote the probability distribution defined

by A′, and w a pA′-distributed string-valued random variable. Mathematically (without getting
into algorithmic details yet), our length-constrained sampling algorithm will do the following. Let
NA′

def
= {n ∈ [nmin, nmax] | ∃w ∈ Σn, pA′(w) > 0}. We sample a length n uniformly from

NA′ . Then, we sample a string from the posterior distribution pA′(w | |w| = n). This amounts to
sampling from the distribution

p(w) =
1

|NA′ |
pA′(w = w | |w| = |w|). (1)

How do we compute NA′ and sample from the posterior distribution efficiently? One approach
would be to construct a WDFA for the distribution pA′(w = w | |w| = |w|). We could do this
by intersecting A′ with a DFA that recognizes Σn, a procedure that would take O(|Q|n) time (cf.
van der Poel et al., 2024). This would result in a WDFA that is not necessarily probabilistic, so as a
prerequisite for sampling from the posterior distribution, we would need to redistribute its weights
to locally sum to 1 (Def. 5), using a procedure known as weight pushing (Mohri, 2009) that runs
in O((|Q|n)3) time. Supposing nmin = 0, it would take O(|Q|3nmax

4) time to do this for all
lengths. This would not be scalable for our experiments, in which we sample strings up to length
nmax = 500. Fortunately, we can improve this by a factor of O(nmax

2) using a tool proposed by
Anonymous (2024) called the binning semiring. The key idea is to share computation among the
different lengths by running a version of the weight pushing algorithm—only once—that computes
the normalized weights for all lengths. Instead of weighting the DFA with probabilities, we use
vectors that bin probabilities by each length in [0, nmax].

Definition 6. LetW = (K,⊕,⊗,0,1) be a semiring, and let D ∈ Z≥0. For v ∈ KD+1, we write
v = (v0,v1, . . . ,vD). The Dth-order binning semiring with respect to the base semiringW is the

4
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semiringWD = (KD+1, ⊕ , ⊗ , 0 , 1 ), where:

(u ⊕ v)i
def
= ui ⊕ vi (u,v ∈ KD+1; 0 ≤ i ≤ D) (2a)

(u ⊗ v)i
def
=

i⊕
j=0

uj ⊗ vi−j (u,v ∈ KD+1; 0 ≤ i ≤ D) (2b)

0
def
= (0, . . . ,0) 1

def
= (1,0, . . . ,0) (2c)

The indexes of the vectors in the Dth-order binning semiring represent the values of an integer
counter from 0 to D; the meaning of the counter depends on how the semiring is used. We will use
the counter to keep track of the number of symbols scanned by a DFA, i.e., the length of a sampled
string. Say the base semiring is the probability semiring. In this case, vi is the probability of scan-
ning a length-i string. This interpretation applies to anything with a weight, including transitions,
accept states, paths, and strings. To do length-constrained sampling from the PDFA A′, we lift it to

a nmax
th-order binning semiring-weighted DFA AD as follows. For every transition q

a/p−−→ r in A′,
we set the weight of q a−→ r inAD to (0, p,0, . . . ,0), indicating that the transition scans exactly one
symbol with probability p. For every state with accept weight p, we set its accept weight in AD to
(p,0, . . . ,0), indicating that it accepts (and scans no symbols) with probability p.

Running a semiring generalization of weight pushing onAD allows us to compute exactly the quan-
tities we need for efficient sampling from pA′(w | |w| = n). The key idea is that for every state
and 0 ≤ i ≤ D, it computes a probability distribution over (1) outgoing transitions and (2) whether
to accept, conditioned on scanning exactly i symbols in the future, according to the probabilities of
A′. The set of valid string lengths NA′ is the set of all n for which we can take any transition or
accept at q0, conditioned on scanning n symbols in the future, with nonzero probability. The weight
pushing step takes O(|Q|3D2) = O(|Q|3nmax

2) time, and sampling a string of length n takes O(n)
time. See App. B for details.

2.3 NEURAL NETWORK ARCHITECTURES

We compare three neural network architectures: (a) a multi-layer simple RNN (Elman, 1990) with a
tanh activation function and learned initial hidden states, (b) a multi-layer LSTM (Gers & Schmid-
huber, 2001) with decoupled input and forget gates and learned initial hidden states, and (c) a causal-
ly-masked transformer encoder (Vaswani et al., 2017) with pre-norm (Wang et al., 2019; Nguyen
& Salazar, 2019) and sinusoidal positional encodings. In all cases, the model receives a string of
symbols w = w1 · · ·wn ∈ Σn as input, converts it to a sequence of input embedding vectors
x1, . . . ,xn ∈ Rd using an embedding matrix E, and produces a sequence of hidden vectors
h0,h1, . . . ,hn ∈ Rd, which are used to compute logits for loss terms. For the simple RNN and
LSTM, the hidden vectors are the hidden states of the last layer. For the transformer, the hidden
vectors are the outputs of the last layer, and we always prepend a reserved BOS symbol to the input,
whose corresponding output is h0. For more details, see App. C.

We apply a learned affine transformation, called the recognition head, to the last hidden vector to
classify whether the string is a member of the language. Let pM (w ∈ L) denote the probability that
w is a member of L according to the neural network model M , and let σ(·) be the logistic function.

pM (w ∈ L)
def
= σ(WRhn + bR) (3)

We say that the model accepts w if pM (w ∈ L) ≥ 1
2 and rejects it otherwise.

2.4 TRAINING OBJECTIVES

In all experiments, we train a neural network to classify whether an input string is in L by minimizing
the binary cross-entropy of the recognition head (cf. Weiss et al., 2018b; Bhattamishra et al., 2023;
van der Poel et al., 2024; Hahn & Rofin, 2024; Bhattamishra et al., 2024). For any probability p and
proposition ϕ, we define the binary cross-entropy Hϕ(p) as follows.

Hϕ(p)
def
=

{
− log(p) if ϕ
− log(1− p) otherwise

(4)
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We minimize the following loss function.

LR(M,w)
def
= Hw∈L(pM (w ∈ L)) (5)

Using LR(M,w) as the only training objective may lead to some problems. For one, it might be
difficult to learn to orchestrate a large number of internal computational steps given only a single
bit of information per example. Moreover, gradient originates only from the last timestep, which is
problematic for the RNN and LSTM, which are susceptible to the exploding and vanishing gradient
problems. It is presumably for these reasons, in addition to the need for negative sampling, that most
prior work has shied away from a pure language recognition training objective. One way to alleviate
these issues is to provide the model with hints about the expected intermediate computational steps
at all timesteps. Indeed, a common setup in past work is to have the model predict, for each timestep
t, the set of symbols that may appear at position t given the prefix w1 · · ·wt−1 (Cleeremans et al.,
1989; Gers & Schmidhuber, 2001; Schmidhuber et al., 2002; Rodriguez & Wiles, 1997; Suzgun
et al., 2019a;b;c; Bhattamishra et al., 2020a;b;c; Ebrahimi et al., 2020). Other work uses language
modeling, often eschewing negative sampling entirely (Merrill, 2019; Hewitt et al., 2020; DuSell
& Chiang, 2020; 2022; 2023; 2024; Liu et al., 2023; Akyürek et al., 2024; Someya et al., 2024;
Borenstein et al., 2024).

To this end, we include experiments that add one or both of the following auxiliary loss terms to
the training objective for positive examples: (a) a language modeling loss term, which requires the
model to learn a distribution over next symbols at each position; and (b) a next symbol predic-
tion4 loss term, which requires the model to predict whether each symbol may appear next at each
position, given the prefix of w seen so far.

When we include the language modeling loss term, we add a language modeling head to the model
that computes logits from the hidden vectors. The weights of the language modeling head are tied
to the embedding matrix E. We always require the head to predict EOS as the last symbol, and
we add an embedding for EOS to E. We average cross-entropy over timesteps to get the loss term.
Let ΣEOS

def
= Σ ∪ {EOS}, and let EΣEOS

denote the sub-slice of E that only contains embeddings for
symbols in ΣEOS (i.e., it does not contain the reserved BOS embedding used by the transformer).

pM (wt | w<t)
def
= softmax((EΣEOS

)Tht−1)wt (1 ≤ t ≤ n+ 1) (6a)

LLM(M,w)
def
=

1

n+ 1

n+1∑
t=1

− log pM (wt | w<t) wn+1
def
= EOS (6b)

Likewise, when we include the next symbol prediction loss term, we add a next symbol prediction
head. For any string u ∈ Σ∗, we define the set of valid next symbols as follows.

NEXTL(u)
def
= {a ∈ ΣEOS | ∃v ∈ (ΣEOS)

∗ uav ∈ L ◦ {EOS}} (7)
We use binary cross-entropy to train the model to discern whether each symbol in ΣEOS is in
NEXTL(w<t). We average cross-entropy over symbol types and timesteps to get the loss term.

pM (a ∈ NEXTL(w<t))
def
= σ(WNSht−1 + bNS)a (1 ≤ t ≤ n+ 1; a ∈ ΣEOS) (8)

LNS(M,w)
def
=

1

n+ 1

n+1∑
t=1

1

|ΣEOS|
∑

a∈ΣEOS

Ha∈NEXTL(w<t)(pM (a ∈ NEXTL(w<t))) (9)

We say that at each timestep t, the model predicts the set {a ∈ ΣEOS | pM (a ∈ NEXTL(w<t)) ≥ 1
2}.

Unlike language modeling, next symbol prediction adds additional information to the training data,
as NEXTL(w<t) can include information about unobserved strings. Because of the presence of EOS,
it also requires the model to predict whether every prefix of w is in L. For trim partial DFAs, we
can easily precompute the set of valid next symbols for each state based on the outgoing transitions
(Algorithm 6). We use language-specific rules for non-regular languages (App. E). The full loss
function with all auxiliary loss terms is

L(M,w)
def
= LR(M,w) + λLMLLM(M,w) + λNSLNS(M,w) (10)

where λLM, λNS ∈ R≥0 are coefficients that determine the importance of each auxiliary loss term.
Whenever an auxiliary loss term is not included, this is equivalent to setting λLM or λNS to 0. Note
that we never include them for negative examples. When computing the loss for a whole minibatch
of examples, we average the loss L(M,w) of the individual examples.

4This is often called next character prediction in prior work.
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2.5 COMPARISON TO PRIOR WORK

Broadly speaking, although there have been a number of past papers that use neural networks for
formal language recognition, each paper uses a slightly different methodology, without much empir-
ical justification for the particular choices made. Our work is an attempt to unify this methodology,
to extend it to the broadest possible class of languages, to compare different training objectives used
in past work, and to spur theoretically sound empirical work in the future. A particularly relevant
piece of work is MLRegTest (van der Poel et al., 2024), which performs a thorough study of recog-
nition for subclasses of regular languages. Van der Poel et al. (2024) focus exclusively on regular
languages; their negative sampling method is specific to regular languages and cannot be readily
applied to non-regular languages. Our method generalizes to any language (including non-regular
languages), as long as that language has tractable algorithms for positive sampling and membership
testing. Weiss et al. (2018a) employ a similar perturbation-based negative sampling method that
edits positive samples up to 9 times; we sample the number of edits from a geometric distribution
and provide a way of analyzing the ground-truth edit distance distribution in §4, Figure 2. Van der
Poel et al. (2024) also use the intersection-based approach for length-constrained sampling from
DFAs described in §2.2. Their approach does not sample from the posterior distribution of a PDFA;
modifying it to do so would require nmax invocations of weight pushing, resulting in O(|Q|3nmax

4)

time. Our method does sample from the posterior, and in only O(|Q|3nmax
2) time.

3 EXPERIMENTS

We test the performance of the three architectures in §2.3 on a variety of formal languages (Table 1)
that have proven to be of particular interest in prior work, and that come from various levels of the
Chomsky hierarchy. These include analogs of the transduction tasks used by Delétang et al. (2023).
For each regular language, we generate datasets using a hand-crafted DFA and the algorithms de-
scribed in §2.2. For the other languages, we use language-specific algorithms for length-constrained
sampling and membership testing. We describe all languages in more detail in App. E. We call this
collection of datasets FLaRe (Formal Language Recognition).

For each language, we sample a single, fixed training set of 10k examples with lengths in [0, 40].
We run separate experiments with two different validation sets that are designed to address different
scientific questions, each with 1k examples: a short validation set with string lengths in [0, 40], and
a long validation set with string lengths in [0, 80]. For any finite training set of strings, there are
infinitely many valid ways of extrapolating to longer strings; we refer to the way that a neural net-
work architecture disambiguates these possible solutions as its inductive bias. The short validation
set reveals an architecture’s inductive bias in the absence of any disambiguating information about
how it should generalize to longer lengths, as in the experiments of Delétang et al. (2023). The long
validation set, on the other hand, does include longer strings, and so the model’s performance on
strings that are longer than those in the training set modulates the learning rate schedule, early stop-
ping schedule, and model selection. In this way, it is more in line with expressivity work that seeks
to understand whether an architecture admits a certain solution at all, regardless of its inductive bias.

Each architecture consists of multiple layers; in all experiments, we use 5 layers. We automatically
adjust the hidden vector size d so that the number of parameters in each model is as close as possible
to 64k, excluding extra parameters for language modeling and next symbol prediction heads. This
ensures that all models are of comparable size across architectures and languages. For the simple
RNN and LSTM, d is the size of the hidden state vectors. For the transformer, d is the model
size dmodel. In the transformer, we use 8 attention heads in each layer, and we set the number of
hidden units in each feedforward layer to 4d. Every time we train a model, we randomly sample
certain hyperparameters (Bergstra & Bengio, 2012), namely initial learning rate, minibatch size,
and (when required) λLM and λNS. For every combination of architecture, loss function variant, and
type of validation set, we train 10 models. We use four loss function variants: recognition with(out)
language modeling and with(out) next symbol prediction. Therefore, for every architecture and
validation set, we train 40 models. For more details, see App. D.
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Table 1: Formal languages tested in this paper and included in FLaRe. For each language, we show
the language class that it belongs to: regular (R), deterministic context-free (DCF), context-free
(CF), or context-sensitive (CS). Each language does not belong to the previous language classes.
Let cu(w) be the number of times substring u occurs in w, let wi→a be w with its ith symbol
replaced with a, and let ⟨x⟩ be the little-endian binary encoding of x ∈ Z≥0. See App. E for details.

Class Language Description Example String

R Even Pairs {w ∈ {0, 1}∗ | c01(w) + c10(w) is even} 010110
= {aua | a ∈ {0, 1}, u ∈ {0, 1}∗} ∪ {ε, 0, 1}

Repeat 01 {(01)n | n ≥ 0} 010101
Parity {w ∈ {0, 1}∗ | c1(w) is odd} 11011001
Cycle Navigation A sequence of left (<), right (>), stay (=) moves on a 5-

position cycle, then the final position (0-indexed).
>>=<>2

Modular Arithmetic Expression involving {+,−,×} and {0, . . . , 4}, then
the result mod 5. No operator precedence.

1-3×2=1

Dyck-(2, 3) Strings of balanced brackets with 2 bracket types and a
maximum depth of 3.

[()([])]()

First {1w | w ∈ {0, 1}∗} 100010

DCF Majority {w ∈ {0, 1}∗ | c1(w) > c0(w)} 101101
Stack Manipulation A stack from bottom to top, a sequence of push and pop

operations, and the resulting stack from top to bottom.
011 POP =10

Marked Reversal {w#wR | w ∈ {0, 1}∗} 001#100

CF Unmarked Reversal {wwR | w ∈ {0, 1}∗} 001100

CS Marked Copy {w#w | w ∈ {0, 1}∗} 001#001
Missing Duplicate {(ww)i→_ | w ∈ {0, 1}∗, 1 ≤ i ≤ 2|w|, (ww)i = 1} 1_011101
Odds First {a1b1 · · · anbna#a1 · · · anab1 · · · bn | 01010=00011

n ≥ 0; ai, bi ∈ {0, 1}; a ∈ {0, 1, ε}}
Binary Addition {⟨x⟩0i+⟨y⟩0j=⟨x+ y⟩0k | x, y, i, j, k ∈ Z≥0} 110+01=10100
Binary Multiplication {⟨x⟩0i×⟨y⟩0j=⟨xy⟩0k | x, y, i, j, k ∈ Z≥0} 110×0100=011
Compute Sqrt {⟨x⟩0i=⟨⌊

√
x⌋⟩0j | x, i, j ∈ Z≥0} 01010=1100

Bucket Sort Sequence of integers in {1, . . . , 5}, then # and the
sorted sequence.

45134#13445

4 RESULTS

To test whether a model has learned the underlying recognition algorithm, our evaluation focuses
on the ability to generalize to inputs that are longer than those seen in training (cf. Delétang et al.,
2023). In Table 2, we show recognition accuracy on a test set with string lengths in [0, 500]. It has
5,010 examples, or an average of 10 examples per length. Under “Inductive Bias,” we select the loss
function with the highest mean accuracy on the test set from among the models trained on the short
validation set, and we report this mean accuracy. Although we could select a single model based on
performance on the validation set, this would result in noise due to the vagaries of model selection;
we find that the mean accuracy that each architecture converges to when aggregated across multiple
runs is more informative. Under “Expressivity,” we show the maximum test accuracy across all 40
models trained on the long validation set. See unabridged results and additional metrics in App. F.

We find that the RNN and LSTM outperform the transformer in most cases. In the inductive bias
experiments, the transformer outperforms the RNN and LSTM only on Even Pairs, First, and Major-
ity. In the expressivity experiments, it is never the best (except by a hair on Binary Multiplication),
and it only outperforms the LSTM on Bucket Sort. In terms of languages that the architectures can
solve perfectly in the expressivity experiments, all architectures are limited to regular languages and
Majority (Figure 1). The transformer almost reaches, but does not quite reach, 100% accuracy on
Majority; past work has argued that transformers cannot implement Majority because it is not in the
circuit complexity class AC0 (Strobl et al., 2024b). We do see differences based on a language’s
sensitivity, i.e., the tendency that changing a bit in a string changes its label. Transformers struggle
on high-sensitivity languages (Repeat 01, Parity) and do well on low-sensitivity languages (Even
Pairs, First), in accordance with prior work (Hahn, 2020; Bhattamishra et al., 2023; Hahn & Rofin,
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Table 2: Accuracy on a test set with strings in the length range [0, 500]. The training data is in
the length range [0, 40]. “Inductive Bias” uses validation data in the length range [0, 40]. We show
mean accuracy and standard deviation across 10 runs for the loss function with the highest mean
accuracy on the test set. “Expressivity” uses validation data in the length range [0, 80]. We show
maximum accuracy across all 10 runs of all 4 loss functions. “Tf” = transformer, “RNN” = simple
RNN, “LSTM” = LSTM. Best scores among all three architectures are in bold.

Inductive Bias Expressivity

Language Tf RNN LSTM Tf RNN LSTM

Even Pairs 0.99±0.01 0.60±0.20 0.83±0.22 1.00 1.00 1.00
Repeat 01 0.72±0.09 0.97±0.07 0.97±0.07 0.86 1.00 1.00
Parity 0.56±0.03 0.71±0.24 0.90±0.20 0.60 1.00 1.00
Cycle Navigation 0.84±0.05 0.93±0.01 0.90±0.04 0.93 0.93 0.93
Modular Arithmetic 0.69±0.11 1.00±0.00 0.98±0.03 0.88 1.00 1.00
Dyck-(2, 3) 0.70±0.09 0.95±0.05 0.91±0.10 0.82 1.00 0.98
First 0.98±0.04 0.80±0.24 0.94±0.14 1.00 1.00 1.00
Majority 0.97±0.04 0.90±0.03 0.95±0.04 1.00 0.95 1.00
Stack Manipulation 0.66±0.14 0.84±0.16 0.75±0.17 0.87 0.93 0.91
Marked Reversal 0.64±0.12 0.70±0.18 0.74±0.17 0.87 0.95 0.95
Unmarked Reversal 0.58±0.03 0.72±0.08 0.76±0.01 0.63 0.81 0.88
Marked Copy 0.63±0.11 0.76±0.15 0.69±0.15 0.86 0.95 0.95
Missing Duplicate 0.66±0.08 0.82±0.10 0.85±0.07 0.86 0.95 0.94
Odds First 0.59±0.11 0.79±0.15 0.67±0.14 0.86 0.95 0.96
Binary Addition 0.64±0.13 0.74±0.12 0.74±0.12 0.88 0.92 0.92
Binary Multiplication 0.70±0.11 0.74±0.13 0.78±0.12 0.92 0.92 0.92
Compute Sqrt 0.67±0.10 0.78±0.12 0.84±0.07 0.86 0.89 0.89
Bucket Sort 0.63±0.08 0.84±0.09 0.69±0.13 0.88 0.96 0.83

2024). The LSTM outperforms the RNN on some languages that involve long-range dependencies
(Even Pairs, First), likely thanks to its memory cell. The LSTM can use its memory cell as a set
of counters, which is useful for certain languages (Weiss et al., 2018b); accordingly, we see that it
outperforms the RNN on Majority, but surprisingly not on Bucket Sort. Although Yao et al. (2021)
gave a construction showing that the transformer can recognize bounded Dyck languages, we see
that it struggles on Dyck-(2, 3).

Although it is possible, in principle, for a model’s inductive bias to differ substantially from its ex-
pressivity, we see a remarkable consistency between inductive bias and expressivity. As expected, all
expressivity scores are higher than the corresponding inductive bias score. However, the ranking of
the architectures remains the same between inductive bias and expressivity for almost all languages;
it only changes slightly for Missing Duplicate and Odds First, and more noticeably for Bucket Sort.

Certain auxiliary loss terms do help in isolated cases: for example, next symbol prediction is crucial
for the RNN to learn Even Pairs (Table 4). On the other hand, they are sometimes detrimental; for
example, language modeling results in lower accuracy for the LSTM on Parity (Table 6). However,
we see that no term has a consistently positive or negative impact across languages and architectures
(Table 3). In fact, recognition alone is the most frequent best loss function, followed by next symbol
prediction; loss functions that include a language modeling term help the least often. Remarkably,
the RNN gets a mean accuracy of 100% in the inductive bias experiments for Modular Arithmetic,
using only a recognition training objective.

We see accuracy ceilings in the expressivity results for Cycle Navigation, Binary Addition, Binary
Multiplication, and Compute Sqrt. To investigate this, we looked at the examples with the highest
cross-entropy. For Cycle Navigation, all architectures struggle on negative examples that have the
right format but the wrong digit at the end; in contrast, the RNN and LSTM were able to get per-
fect accuracy on a related task in Delétang et al. (2023). On Binary Addition, the transformer and
RNN/LSTM fail for different reasons. The RNN/LSTM only misclassify negative examples that
have the right format but incorrect arithmetic, but the transformer also misclassifies positive exam-
ples and negative examples that have extra +, ×, or = symbols. The RNN and LSTM fail on Compute
Sqrt for dissimilar reasons; the RNN sometimes accepts invalid formats.
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Figure 2: Recognition cross-entropy (lower is better) as a function of edit distance for the trans-
former model shown under “Expressivity” in Table 2, on a separate dataset of 50 negative examples
in the length range [0, 500]. The dashed lines show log 2, the threshold for incorrect predictions.
Despite being trained on a large proportion of negative examples with low edit distance, the trans-
former still struggles on examples that resemble positive examples.

How does treating neural networks as recognizers instead of string-to-string functions affect perfor-
mance? The most comparable sets of experiments are those of Delétang et al. (2023, Tables B.1
and B.5) and our inductive bias experiments. Whereas they found that transformers struggle on
Even Pairs and the RNN/LSTM excel, we see the opposite. Both our results show that transformers
struggle on Parity. Whereas they showed that the RNN/LSTM can perfectly solve Cycle Navigation,
our results show they cannot, perhaps because in our version, the model must additionally validate
the format of the string rather than emit a single digit. We see the same model ranking on Stack
Manipulation, but we see differences on Marked Reversal, Odds First, Binary Addition, Binary
Multiplication, Compute Sqrt, and Bucket Sort. Notably, we see that the RNN overperforms in our
experiments, possibly due to our use of dropout, multiple layers, and a different activation function.
We also analyze performance vs. input length in App. H. In most cases, we find that recognition
cross-entropy remains stable as input length increases. In contrast, Delétang et al. (2023) found that
accuracy often decreases sharply.

In order to examine how the similarity of negative examples to positive examples affects classifica-
tion difficulty, for Repeat 01 and Dyck-(2, 3), we plot the transformer’s recognition cross-entropy
vs. the minimum edit distance between a string and any string in the language in Figure 2 (we do
not plot the RNN and LSTM because they get almost 100% accuracy). Note that the number of edits
K performed in §2.1 is an upper bound for, but necessarily equal to, the true edit distance. We give
formal definitions and algorithms for computing edit distance in App. G. We do see that for both
languages, the lower the edit distance is, the more the transformer struggles, particularly near 1 and
2 edits. This confirms that strings with few perturbations are indeed adversarial (cf. van der Poel
et al., 2024), even when the training distribution is highly skewed toward few edits.

5 CONCLUSION

We have proposed a general method for training neural networks as recognizers of formal languages,
filling a crucial gap between formal results and experiments designed to support them. Moreover, we
have developed a new algorithm for length-constrained sampling of strings from regular languages
that is much more efficient than standard methods. We provided results for RNNs, LSTMs, and
transformers on a wide range of formal languages commonly used in prior work, showing that
RNNs and LSTMs often outperform transformers. An interesting question to address in future work
is why transformers perform so much better on natural language than on formal languages. Finally,
we trained all our models using additional loss terms that have been previously used as a proxy
for recognition and found that these do not improve model performance reliably. We have publicly
released our datasets as a benchmark called FLaRe (Formal Language Recognition).
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A DETAILS OF PERTURBATION SAMPLING

We perform perturbation sampling as follows. Given a positive string w ∈ L with |w| ∈
[nmin, nmax], we first sample a number of edits K from a geometric distribution with a success
probability of p = 1

2 . Note that this is highly skewed toward small K, ensuring that strings with
few edits (i.e., similar to positive examples) are well-represented in the dataset. Then, K times, we
randomly apply an edit as follows. Let w′ be the current edited version of w. We uniformly sample
a type of edit: insertion, replacement, or deletion. We disallow insertion if it would increase |w′|
beyond nmax, and deletion if it would decrease it below nmin. We disallow replacement if |Σ| = 1.
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For each insertion, we uniformly sample an insertion position from {1, . . . , |w′| + 1} and a sym-
bol to insert from Σ. For each replacement, we uniformly sample a replacement position i from
{1, . . . , |w′|} and a new symbol from Σ \ {w′

i}. For each deletion, we uniformly sample a deletion
position from {1, . . . , |w′|}.

B DETAILS OF LENGTH-CONSTRAINED SAMPLING FOR REGULAR
LANGUAGES

Here, we discuss our length-constrained sampling algorithm for regular languages, and the binning
semiring, in more detail.

B.1 FURTHER EXPOSITION OF THE BINNING SEMIRING

Notice that if u is a vector whose only non-zero element is ui, and v is a vector whose only non-zero
element is vj , then u ⊗ v is a vector with the value ui ⊗ vj at index i+ j and 0 elsewhere. More
generally, Eq. (2b) convolves the two vectors, in effect marginalizing over all ways of reaching a
count of i for each 0 ≤ i ≤ D.

In the case of AD (§2.2), in which all transition and accept weights are vectors with at most one
non-zero element, the weight of any path is also a vector with at most one non-zero element, whose
index is equal to the number of symbols the path scans, and whose value is the product of the original
transition probabilities. We combine the weights of multiple paths by adding them elementwise
(Eq. (2a)).

B.2 CLOSED SEMIRINGS

A key component of our method is the semiring generalization of weight pushing (Mohri, 2009).
Weight pushing sums over an infinite number of paths in a WDFA, which requires the ability to
perform infinite summations in that semiring.

Definition 7. Let (K,⊕,⊗,0,1) be a semiring. Let a⊗i =
⊗i

j=1 a, and a∗ =
⊕∞

i=0 a
⊗i. If a∗ is

defined and in K for all a ∈ K, we say the semiring is closed.

In the probability semiring, v∗
0 = 1

1−v0
. In the log semiring, v∗

0 = log 1
1−expv0

= − log(1 −
exp(v0)).

If a semiringW = (K,⊕,⊗,0,1) is closed, so is any Dth-order binning semiring with respect toW ,
i.e., WD = (KD+1, ⊕ , ⊗ , 0 , 1 ). We write v ∗ def

= ⊕∞
j=0 v

⊗ j . It has the following closed-form
solution.

(v ∗ )i = v∗
0 ⊗

 1 i ⊕
i⊕

j=1

vj ⊗ (v ∗ )i−j

 (0 ≤ i ≤ D) (11)

A derivation is given by Anonymous (2024). The elements (v ∗ )i can be computed in order of
increasing i. Assuming ⊕, ⊗, and ∗ run in O(1) time, the total time complexity is O(D2), since it
involves O(D) iterations, each of which takes O(D) time.

B.3 ALGORITHMS

Here, we describe our algorithms for sampling strings from regular languages in more detail. Given a
DFAA and length range [nmin, nmax], we run the following steps once and for all for each language:

1. convert A to a PDFA A′, then convert A′ to a WDFA AD over the nmax
th-order binning

semiring with respect to the log semiring (Algorithm 1);

2. push the weights of AD to get a new WDFA A′
D with respect to the real semiring (Al-

gorithm 2), using the backward algorithm (Algorithm 3) and Lehmann’s algorithm (Algo-
rithm 4);
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Algorithm 1 Convert a partial DFA A to a WDFAAD over the nmax
th-order binning semiring with

respect to the log semiring. This implicitly creates an intermediate PDFA A′ over the probability
semiring with uniform probabilities.

1. def LIFTWEIGHTS(A = (Q,Σ, δ, q0, F ), nmax):
2. let AD = (Q,Σ, δ′, q0, ρ) be a new WDFA over the nmax

th-order binning semiring with
respect to the log semiring

3. for q ∈ Q :
4. k ← 0
5. for q

a−→ r ∈ δ :
6. k ← k + 1
7. if q ∈ F :
8. k ← k + 1
9. p← − log k ▷Set the probability to 1

k
(in log space)

10. for q
a−→ r :

11. add q
a/(−∞,p,−∞,...,−∞)−−−−−−−−−−−−−−→ r to δ′

12. if q ∈ F :
13. ρ(q)← (p,−∞, . . . ,−∞)
14. else
15. ρ(q)← (−∞, . . . ,−∞)

16. return AD

Algorithm 2 Weight pushing on AD, where AD is a WDFA over the Dth-order binning semiring
with respect to the log semiring. Given AD, produce a WDFA A′

D over the Dth-order binning
semiring with respect to the probability semiring that is suitable for length-constrained sampling
(Algorithm 7). Also return the allsum weight z, which can be used to compute the set of valid
lengths (Algorithm 5).

1. def PUSHWEIGHTS(AD = (Q,Σ, δ, q0, ρ)):
2. β ← BACKWARD(AD)
3. letA′

D = (Q,Σ, δ′, q0, ρ
′) be a new WDFA over the Dth-order binning semiring with respect

to the probability semiring
4. for q ∈ Q :
5. let T be an empty mapping from Σ to (R ∪ {−∞})D

6. for q
a/v−−→ r ∈ δ :

7. T [a]← v ⊗ β[r]

8. T ← softmax
a

T [a, :] ▷Convert log probabilities to normalized probabilities. This may safely

return NaN for columns with all −∞.

9. for q
a/v−−→ r ∈ δ :

10. add q
a/T [a]−−−−→ r to δ′

11. z ← β[q0]
12. return (A′

D, z)

3. compute the subset of valid lengths NA′ ⊆ [nmin, nmax] (Algorithm 5);

4. precompute the next symbol sets for each state (Algorithm 6).

Afterwards, we can sample strings as many times as desired as follows:

1. uniformly sample a length n from NA′ ;

2. sample a string of length n using Algorithm 7, with next symbol sets.
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Algorithm 3 Backward algorithm on a WDFA A over the closed semiring (K,⊕,⊗,0,1). Time
complexity: O(|Q|3).

1. def BACKWARD(A = (Q,Σ, δ, q0, ρ)):
2. let A be a matrix indexed by Q×Q full of 0

3. for q
a/w−−→ r ∈ δ :

4. A[q, r]← A[q, r]⊕ w

5. A← LEHMANN(A)
6. let β be a table indexed by Q
7. for q ∈ Q :
8. β[q]←

⊗
r∈Q

A[q, r]⊗ ρ(r)

9. return β

Algorithm 4 Lehmann’s algorithm for inverting matrix A ∈ KN×N in the closed semiring
(K,⊕,⊗,0,1). Time complexity: O(N3).

1. def LEHMANN(A):
2. for k = 1, . . . , N :
3. let A′ be a N ×N matrix
4. a← A[k, k]∗

5. for i = 1, . . . , N :
6. for j = 1, . . . , N :
7. A′[i, j]← A[i, j]⊕ (A[i, k]⊗ a⊗A[k, j])

8. A← A′

9. for k = 1, . . . , N :
10. A[k, k]← A[k, k]⊕ 1

11. return A

B.4 EXPLANATION AND DETAILS

The log semiring is used in Algorithm 1 instead of the probability semiring in order to avoid under-
flow.

Running a semiring generalization of weight pushing onAD allows us to compute exactly the quan-
tities we need for efficient sampling from pA′(w | |w| = n). At every state, and for every 0 ≤ i ≤ D,
it computes a probability distribution over (1) outgoing transitions and (2) whether to accept, condi-
tioned on scanning exactly i symbols in the future, according to the probabilities of A′. It does this
by computing (1) for every transition, the sum of the weights of all paths in AD that start with that
transition, and (2) for every state, the sum of the weights of all paths in AD that start and end at that
state. Once we have these weights, which are vectors, if we locally normalize them elementwise at
each state, we get the aforementioned probability distributions. Now, a O(n)-time sampling algo-
rithm for sampling a string of exactly length n becomes straightforward (Algorithm 7). We start in
q0 and initialize a counter i to n. Repeatedly, we sample transitions from the normalized distribu-
tions for index i from the current state and decrement i for every symbol scanned. We stop when
we sample an accept action. The set of valid string lengths NA′ is the set of all n for which we can
take any transition or accept at q0, conditioned on scanning n symbols in the future, with nonzero
probability (Algorithm 5).

We now discuss details of the weight pushing algorithm. Let us define a path in a WDFA as follows
(cf. Def. 12).

Definition 8. For any WDFA A = (Q,Σ, δ, q0, ρ), a path is a sequence of states and transitions

π = r0
a1/w1−−−−→ r1 · · · rm−1

am/wm−−−−−→ rm (12)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 5 Given an allsum weight z ∈ (R∪{−∞})D, a minimum length nmin, and a maximum
length nmax, where D ≥ nmax, compute the set of valid lengths NA′ . The allsum weight z must be
the second output of Algorithm 2.

1. def COMPUTEVALIDLENGTHS(z, nmin, nmax):
2. return {n ∈ {nmin, . . . , nmax} | zn > −∞}

Algorithm 6 Given a trim partial DFA A, precompute the next symbol set for each state.
1. def COMPUTENEXT(A = (Q,Σ, δ, q0, F )):
2. let NEXT be a table indexed by Q
3. for q ∈ Q :
4. NEXT[q]← {a ∈ Σ | δ(q, a) ̸= ∅}
5. if q ∈ F :
6. add EOS to NEXT[q]

7. return NEXT

such that for all i = 0, . . . ,m− 1, ri
ai+1/wi+1−−−−−−−→ ri+1 ∈ δ. We say that π scans the string a1 · · · am

and that the inner path weight of π is

wI(π)
def
=

(
m⊗
i=1

wi

)
. (13)

The path weight of π is
w(π)

def
= wI(π)⊗ ρ(rm). (14)

Lehmann’s algorithm (Lehmann, 1977) computes the total inner weight of all paths between all pairs
of states. When a WDFA A contains cycles, this set of paths can be infinite, so a closed semiring
with a defined ∗ operation is required. We give Lehmann’s algorithm a table A indexed by Q × Q
such that

A[q, r] =
⊕

q
a/w−−→r∈δ

w (q, r ∈ Q). (15)

Let Π(A, q ⇝ r) denote the (infinite) set of all paths starting at q and ending at r in A. Lehmann’s
algorithm computes a table A′ indexed by Q×Q where

A′[q, r] =
⊕

π∈Π(A,q⇝r)

wI(π) (q, r ∈ Q). (16)

This allows us to compute the backward weight of each state q, or the total weight of accepting if
starting in q.

Definition 9. For a WDFA A, the backward weight β[q] is the sum of the weights of all paths from
q to any other state.

β[q]
def
=

⊕
r∈Q,

π∈Π(A,q⇝r)

w(π). (17)

The quantity z = β[q0] is the total weight assigned by A to strings in Σ∗. We call it the allsum.

We use the backward weights for weight pushing. Weight pushing redistributes the weights of AD

so that the weight of each transition in A′
D is the (infinite) sum of the weights of all paths in AD

that start with that transition and accept (Algorithm 2, line 7). Note that unlike the standard weight
pushing algorithm (Mohri, 2009), we do not “normalize” the weights by left-multiplying them by
β[q]−1, where, in general, a−1 ∈ K is the solution to the equation a−1⊗ a = 1. The reason for this
is not because computing a−1 is hard; it is possible to do so by solving a system of linear equations.
The issue is that this would result in weights that add up elementwise to 1 = (1,0, . . . ,0), which
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Algorithm 7 Sample a string of length n from a WDFA A′
D over the Dth-order binning semiring

with respect to the probability semiring, where D ≥ n. Also output a sequence of n + 1 next
symbol sets. The DFA A′

D must be the first output of Algorithm 2, and NEXT must be the output of
Algorithm 6.

1. def SAMPLE(A′
D = (Q,Σ, δ, q0, ρ), n):

2. q ← q0
3. w ← ε
4. s← {NEXT[q]}
5. for i = n, . . . , 1 :

6. sample (a, r) ∼ p, where p((a, r)) = vi for q
a/v−−→ r ∈ δ

7. q ← r
8. w ← wa
9. append NEXT[q] to s

10. return (w, s)

would not be useful for our purposes. Instead, we normalize them by dividing them elementwise,
which we do implicitly when we apply softmax (Algorithm 2, line 8).

In our Python/PyTorch implementation, we precompute the elementwise cumulative sum of the
transition weights, which we pass to the python.choices function as the argument cum_weights
in order to avoid recomputing it every time we call it.

B.5 TIME COMPLEXITY

With the log semiring as the base semiring, the ⊗ and ∗ operations (Eqs. (2b) and (11)) can be com-
puted in O(D2) time. Weight pushing requires O(|Q|3) multiplications and O(|Q|) star operations,
making the overall time complexity of this approach O(|Q|3D2) = O(|Q|3nmax

2). Moreover, the
operations in Def. 6 and weight pushing are all amenable to vectorization, and we take advantage of
this by accelerating it with PyTorch (Paszke et al., 2019).

C DETAILS OF NEURAL NETWORK ARCHITECTURES

In this section, we describe each of the neural network architectures referenced in §2.3 in more detail.
Our implementations for all three architectures are based on those provided by PyTorch (Paszke
et al., 2019). Each architecture consists of a configurable number of layers L. Each architecture
uses an embedding matrix E to map each symbol wt of the input string to an embedding xt = Ewt

.
The size of the embeddings is always d, the size of the hidden vectors. In the following, DROPOUT(·)
indicates the application of dropout.

C.1 SIMPLE RNN

Let h(ℓ)
t denote the hidden state of the ℓth layer at timestep t. We apply dropout to the input embed-

dings, the hidden states between layers, and the hidden states output from the last layer (Zaremba
et al., 2015). Our simple RNN architecture is defined as follows.

h
(0)
t

def
= xt = Ewt

(1 ≤ t ≤ n) (18a)

h
(ℓ)
0

def
= tanh(w

(ℓ)
0 ) (1 ≤ ℓ ≤ L) (18b)

�h
(ℓ)
t

def
= DROPOUT(h

(ℓ)
t ) (0 ≤ ℓ ≤ L; 0 ≤ t ≤ n) (18c)

h
(ℓ)
t

def
= tanh(W

(ℓ)
h

[
�h

(ℓ−1)
t

h
(ℓ)
t−1

]
+ b

(ℓ)
h ) (1 ≤ ℓ ≤ L; 1 ≤ t ≤ n) (18d)

ht
def
= �h

(L)
t (0 ≤ t ≤ n) (18e)
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Here, w(ℓ)
0 ∈ Rd is a learned parameter, making the initial hidden state h

(ℓ)
0 of each layer learned.

Note that PyTorch’s RNN implementation includes redundant bias parameters bih and bhh; we have
modified it to use a single bias parameter b(ℓ)h per layer instead.

C.2 LSTM

As with the simple RNN, we apply dropout following Zaremba et al. (2015). Our LSTM architecture
is defined as follows. Let ⊙ denote elementwise multiplication.

h
(0)
t

def
= xt = Ewt

(1 ≤ t ≤ n) (19a)

h
(ℓ)
0

def
= tanh(w

(ℓ)
0 ) (1 ≤ ℓ ≤ L) (19b)

�h
(ℓ)
t

def
= DROPOUT(h

(ℓ)
t ) (0 ≤ ℓ ≤ L; 0 ≤ t ≤ n) (19c)

i
(ℓ)
t

def
= σ(W

(ℓ)
i

[
�h

(ℓ−1)
t

h
(ℓ)
t−1

]
+ b

(ℓ)
i ) (1 ≤ ℓ ≤ L; 1 ≤ t ≤ n) (19d)

f
(ℓ)
t

def
= σ(W

(ℓ)
f

[
�h

(ℓ−1)
t

h
(ℓ)
t−1

]
+ b

(ℓ)
f ) (1 ≤ ℓ ≤ L; 1 ≤ t ≤ n) (19e)

g
(ℓ)
t

def
= tanh(W (ℓ)

g

[
�h

(ℓ−1)
t

h
(ℓ)
t−1

]
+ b(ℓ)g ) (1 ≤ ℓ ≤ L; 1 ≤ t ≤ n) (19f)

o
(ℓ)
t

def
= σ(W (ℓ)

o

[
�h

(ℓ−1)
t

h
(ℓ)
t−1

]
+ b(ℓ)o ) (1 ≤ ℓ ≤ L; 1 ≤ t ≤ n) (19g)

c
(ℓ)
t

def
= f

(ℓ)
t ⊙ c

(ℓ)
t−1 + i

(ℓ)
t ⊙ g

(ℓ)
t (1 ≤ ℓ ≤ L; 1 ≤ t ≤ n) (19h)

h
(ℓ)
t

def
= o

(ℓ)
t ⊙ tanh(c

(ℓ)
t ) (1 ≤ ℓ ≤ L; 1 ≤ t ≤ n) (19i)

c
(ℓ)
0

def
= 0 (1 ≤ ℓ ≤ L) (19j)

ht
def
= �h

(L)
t (0 ≤ t ≤ n) (19k)

Here, w(ℓ)
0 ∈ Rd is a learned parameter, making the initial hidden state h

(ℓ)
0 of each layer learned.

Note that PyTorch’s LSTM implementation includes pairs of redundant bias parameters: bii and bhi,
bif and bhf , big and bhg , and bio and bho. We have modified it so that each pair is replaced with a
single bias parameter per layer.

C.3 TRANSFORMER

We use PyTorch’s transformer implementation. Following Vaswani et al. (2017), we map input
symbols to vectors of size d with a scaled embedding layer and add sinusoidal positional encodings.
Note that Delétang et al. (2023) found that the type of positional encoding does not seem to have
a large impact on the transformer performance, while Ruoss et al. (2023) found that transformers
with randomized positional encodings perform better on the same set of tasks. We use pre-norm
instead of post-norm and apply layer norm to the output of the last layer. We use the same dropout
rate throughout the transformer. We apply it in the same places as Vaswani et al. (2017), and,
as implemented by PyTorch, we also apply it to the hidden units of feedforward sublayers and to
the attention probabilities of scaled dot-product attention operations. We always use BOS as the first
input symbol to the transformer, which has been shown to improve performance on formal languages
(Ebrahimi et al., 2020).

D DETAILS OF EXPERIMENTS

Here, we provide additional details about the models and training procedures used in §3.

Wherever dropout is applicable, we use a dropout rate of 0.1. For the transformer, when adjusting d
to accommodate the parameter budget, we round it to the nearest multiple of 8, as PyTorch requires
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it to be a multiple of the number of attention heads. We use Xavier uniform initialization (Glorot &
Bengio, 2010) to initialize the fully-connected layers in the recognition and next symbol prediction
heads. For layer norm, we initialize weights to 1 and biases to 0. We initialize all other parameters
by sampling uniformly from [−0.1, 0.1].
For each epoch, we randomly shuffle the training set and group strings of similar lengths into the
same minibatch, enforcing an upper limit of B symbols per batch, including padding, BOS, and EOS
symbols. We train each model by minimizing the loss function defined in §2.4 using Adam (Kingma
& Ba, 2015). We clip gradients with a threshold of 5 using L2 norm rescaling. We take a checkpoint
every 10k examples (i.e., at the end of each epoch), at which point we evaluate the model on the
validation set and update the learning rate and early stopping schedules. We multiply the learning
rate by 0.5 after 5 checkpoints of no decrease in recognition cross-entropy on the validation set,
and we stop early after 10 checkpoints of no decrease. We select the checkpoint with the lowest
recognition cross-entropy on the validation set when reporting results. We train for a maximum of
1k epochs.

Every time we train a model, we randomly sample a number of hyperparameters. We randomly
sample the batch size B from a uniform distribution over [128, 4096]. We randomly sample the
initial learning rate from a log-uniform distribution over [0.0001, 0.01]. We randomly sample the
loss term coefficients λLM and λNS, when they are needed, from a log-uniform distribution over
[0.01, 10].

Our experiments are small enough that we are able to run them in CPU mode, without GPU accel-
eration.

E DETAILS OF LANGUAGES

Here, we give more detailed descriptions of the languages listed in Table 1. For each language, we
indicate whether it is regular (R), deterministic context-free (DCF), context-free (CF), or context-
sensitive (CS); this also indicates that the language does not belong to previous classes.

Even Pairs (R). Binary strings where the total number of 01 and 10 substrings is even. Equiva-
lently, this is the language of binary strings that have the same first and last symbol, or strings with
fewer than two symbols. This is a low-sensitivity language, since only changing the first or last bit
changes membership. This language corresponds to the Even Pairs task of Delétang et al. (2023).
This language is given as an example in Sipser (2013, Chapter 1.4); see also Example 1.11.

Positive Examples Negative Examples
ε
0
11
010100
11101101

01
10100
100110

Repeat 01 (R). The string 01 repeated any number of times. This is a high-sensitivity language,
since changing any bit changes membership.

Positive Examples Negative Examples
ε
01
0101

0
10101
011001

Parity (R). Binary strings with an odd number of 1s. This is a high-sensitivity language, since
changing any bit changes membership. It appears commonly in the theoretical literature on the rep-
resentational capacity of transformers since the high sensitivity makes it difficult for transformers
to represent the language (Hahn, 2020; Chiang & Cholak, 2022; Bhattamishra et al., 2023; 2020a;
Hahn & Rofin, 2024). However, it can easily be learned by RNNs and scrathpad-augmented trans-
formers (Liu et al., 2023; Hahn & Rofin, 2024). This language corresponds to the Parity Check task
of Delétang et al. (2023).
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Positive Examples Negative Examples
1
01011

ε
101110

Cycle Navigation (R). Suppose an agent is on a 5-state cycle, numbered from 0 to 4, starting at
state 0. Strings in this language consist of a sequence of moves—move right (>), move left (<), or
stay (=)—followed by the integer corresponding to the state reached after executing the sequence of
moves. This language corresponds to the Cycle Navigation task of Delétang et al. (2023).

Positive Examples Negative Examples
0
>=>><2
<=<>=<3
>=>==<1

3
>=>><4
<=<>=<
4=31<

Modular Arithmetic (R). An expression involving the digits {0, . . . , 4} and the operators
{+, -, ×}, then the result of evaluating that expression in modulo 5 arithmetic. All operators are
left-associative infix operators with equal precedence. Note that this is different from the Modular
Arithmetic (Simple) task of Delétang et al. (2023), which gives higher precedence to ×, which would
result in a more complex DFA.

Positive Examples Negative Examples
3=3
2+4+0-3=3
1-3×2=1

ε
1=4
2+4+0-3=2
1-3×2=0
-1=4
=×3+-0+

Dyck-(2, 3) (R). In general, the language Dyck-(k,m) contains strings of balanced brackets of
k types with a maximum nesting depth of m. We specifically test k = 2 and m = 3. Bounded
Dyck languages have been studied for RNNs (Hewitt et al., 2020; Bhattamishra et al., 2020b) and
transformers (Ebrahimi et al., 2020; Bhattamishra et al., 2020a;b; Yao et al., 2021; Wen et al., 2023)
both in terms of (empirical) representational capacity as well as interpretability. These languages
are star-free (Strobl et al., 2024b), and the language Dyck-(k,m) has a dot-depth of m. In this
sense, bounded Dyck languages span the (infinite) hierarchy of star-free languages, which have
been closely linked to transformers (Yang et al., 2024). Bhattamishra et al. (2020a) argue that
transformers struggle to learn languages beyond dot-depth 1.

Positive Examples Negative Examples
ε
([])
[()]
([()]())[()]

](]))[(]
([]
[(])
([(())]())[()]
)][(

First (R). Binary strings that start with 1. This is a low-sensitivity language, since only changing
the first bit changes membership. More concretely, it is a special case of a 1-Parity language, i.e.,
the Parity language restricted to a single position (Hahn & Rofin, 2024). Bhattamishra et al. (2023)
refer to such functions as 1-Sparse functions. Transformers have been shown to learn such sparse
functions well (Edelman et al., 2022; Bhattamishra et al., 2023; Hahn & Rofin, 2024).

Positive Examples Negative Examples
1
101110

ε
0
0111010

Majority (DCF). Binary strings with more 1s than 0s. It is between low- and high-sensitivity,
since strings membership flips only when the number of 1s equals half of the string length. This
language has been studied by Pérez et al. (2021); Merrill et al. (2022); Bhattamishra et al. (2023);
Strobl (2023). Although it lies higher on the Chomsky hierarchy than the sensitive Parity and Even
Pairs, its lower sensitivity makes it easier for transformers to learn (Bhattamishra et al., 2023; Hahn
& Rofin, 2024).
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Positive Examples Negative Examples
1
110
011011010

ε
001
1100

We generate a positive example by first sampling a length n uniformly from [max(nmin, 1), nmax],
then a number of 1s c1 uniformly from [⌊n/2⌋+1, n]. We compute the number of 0s as c0 = n− c1.
We return a random permutation of the string 0c01c1 .

To test whether a string is in the language, we simply return whether the number of 1s is greater than
the number of 0s.

To compute NEXTL(w<t), we always include {0, 1}, and we add EOS if w<t ∈ L.

Stack Manipulation (DCF). Each string starts with a binary string representing the contents of a
stack, written bottom to top. Then, there is a sequence of operations to be performed on the stack,
where popping is indicated with POP , pushing 0 is indicated with the string PUSH 0, and pushing 1
is indicated with the string PUSH 1. Popping from an empty stack is not allowed. Finally, there is
a =, and the contents of the resulting stack are written top to bottom (if the stack were not reversed,
this language would not be context-free). This language corresponds to the Stack Manipulation task
of Delétang et al. (2023); note that their version treats popping from an empty stack as a no-op.

Positive Examples Negative Examples
=
01011 POP PUSH 0 PUSH 1=101010
11 POP PUSH 0=01
01 POP POP PUSH 0 PUSH 1=10

ε
01011 POP PUSH 0 PUSH 1=010101
11= POP PUSH =01
01 POP POP POP PUSH 0 PUSH 1=10

To generate a positive example, we first sample the number of original stack symbols nstack and
then the number of push operations npush. Let npop be the number of pop operations. Note that
the length of the resulting stack is nstack + npush − npop, and the total length of the string is n =
nstack+2npush+npop+1+npush−npop = 2nstack+3npush+1. The minimum value of npush is 0.
So, following simple algebra, we sample nstack uniformly from

[
max(0, ⌈nmin−1

2 ⌉), ⌊nmax−1
2 ⌋

]
, and

then we sample npush uniformly from
[
max(0, ⌈nmin−2nstack−1

3 ⌉), ⌊nmax−2nstack−1
3 ⌋

]
. We sample

an initial stack uniformly from {0, 1}nstack . We then sample a sequence of operations while counting
the number of pushes generated so far and simulating the stack actions. At each step, we sample an
action uniformly from { PUSH , POP }. We disallow POP if the stack is empty. If we sample PUSH ,
we uniformly sample a pushed symbol from {0, 1}. We stop when we sample a PUSH and npush

pushes have already been generated (this allows POP to occur after the last push). We then add =
and the resulting stack.

To test whether a string is in the language, we scan it from left to right while checking that it has the
right format and simulating the stack actions. We push all 0s and 1s at the beginning to a stack. We
scan PUSH and POP commands and perform them on the stack, until we scan =. We reject if PUSH
is not followed by 0 or 1, or if we attempt to pop from an empty stack. We then check that the rest
of the string is equal to the resulting stack.

To compute NEXTL(w<t), we scan w in order of increasing t while simulating the stack actions, as
above. If w<t ends within the initial stack part, we set it to {0, 1, POP , PUSH , =}. If w<t ends with
POP , or a 0 or 1 after a PUSH , we include =, and we include PUSH if fewer than npush pushes have
been seen, and we include POP if the stack is not empty. If w<t ends with PUSH , we set it to {0, 1}.
There is only one correct string for the final stack; if w<t ends within the final stack part, we set it
to {0}, {1}, or {EOS} depending on what the correct string is.

Marked Reversal (DCF). Strings of the form u#uR, where u is a binary string. This is a clas-
sic example of a deterministic context-free language (Hopcroft et al., 2006). This corresponds to
the Reverse String task of Delétang et al. (2023), which explicitly marks the point when a model
should stop reading w and start generating wR. This is a high-sensitivity language, since changing
any symbol changes membership. DuSell & Chiang (2020; 2022; 2023; 2024) showed that LSTM
and transformer language models struggle on this language compared to stack-augmented neural
networks.
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Positive Examples Negative Examples
#
011#110
0#0
01001#10010

ε
011#101101
011#11
0#11#110#
011110

Let m = |u|. To generate a positive example, we first sample m uniformly from
[⌈max(0, nmin−1

2 )⌉, ⌊nmax−1
2 ⌋], then we sample u uniformly from {0, 1}m. We then return the string

u#uR. Notice that the string is guaranteed to be in the desired length range.

To test whether a string is in the language, we check whether there is a single #, and whether the
substring after the marker is the reverse of the substring before the marker.

To compute NEXTL(w<t), we scan w in order of increasing t. If w<t ends within the first half
(before the # symbol), then the set of next valid symbols is set to {0, 1, #}. The rest of the string is
deterministic based on w, and we use one of {0}, {1}, or {EOS} as needed.

Unmarked Reversal (CF). Strings of the form uuR, where u is a binary string. This is a classic
example of a nondeterministic context-free language (Hopcroft et al., 2006, p. 254). DuSell &
Chiang (2020; 2022; 2024) showed that LSTM and transformer language models struggle on this
language compared to stack-augmented neural networks.

Positive Examples Negative Examples
ε
011110
00
0100110010

1
01110
011100
11110

Let m = |u|. To generate a positive example, we first sample m uniformly from [⌈nmin

2 ⌉, ⌊
nmax

2 ⌋],
then we sample u uniformly from {0, 1}m. We then return the string uuR.

To test whether a string is in the language, we check whether the length of the string is even and
whether the second half is the reverse of the first half.

To compute NEXTL(w<t), we always include {0, 1}, and we include EOS if w<t ∈ L.

Marked Copy (CS). Strings of the form u#u, where u is a binary string. This is a classic exam-
ple of a mildly context-sensitive language (Joshi, 1985). This is a high-sensitivity language, since
changing any symbol changes membership. This language is somewhat similar to the Duplicate
String task of Delétang et al. (2023), which requires a model to read u and output uu, which is more
like the language {u#uu | u ∈ {0, 1}∗}. Jelassi et al. (2024) showed both theoretically and empiri-
cally that transformers are better at copying than modern recurrent architectures, since the latter are
constrained by their hidden state bottleneck. This language is also analogous to the String Equal-
ity task in Bhattamishra et al. (2024), who also found that transformers outperform both modern
and classic recurrent architectures. DuSell & Chiang (2023) showed that LSTM language models
struggle on this task compared to certain stack-augmented LSTMs.

Positive Examples Negative Examples
#
011#011
0#0
01001#01001

ε
011#01
011011
0##11#01#1

We generate positive examples, test membership, and compute NEXTL(w<t) similarly to Marked
Reversal.

Missing Duplicate (CS). This language contains strings of the form uu, where u is a binary string,
but where one of the symbols in uu has been replaced with _, and where the replaced symbol was
a 1. This language corresponds to the Missing Duplicate task of Delétang et al. (2023), which does
not explicitly mark the boundary between the two us.
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Positive Examples Negative Examples
_1
001000_0
11_01001110100

ε
00100_10
11101001110100
_01_1_00

To generate a positive example, we sample m = |u| uniformly from [max(1, ⌈nmin

2 ⌉), ⌊
nmax

2 ⌋]. To
ensure that u contains at least one 1, we first sample a string u′ uniformly from {0, 1}m, then we
uniformly at random replace one of its symbols with 1 to get u. We uniformly at random pick one
of the 1s in uu and replace it with _ to get the final string w.

To test whether a string is in the language, we check if its length is even and if it contains exactly
one _. We replace the _ with 1 and check if the first half is the same as the second half.

To compute NEXTL(w<t), if w<t does not contain _, we set it to {0, 1, _}. If w<t does contain _,
we include {0, 1}, and we add EOS if w<t ∈ L.

Odds First (CS). A binary string u, then #, then a string v = uoddueven, where uodd is all
the symbols in u at odd positions, and ueven is all the symbols in u at even positions. In other
words, strings in this language are of the form u′a#u′

oddaueven, where u′ is the perfect shuffle of
u′
odd, ueven ∈ {0, 1}∗, and a ∈ {0, 1, ε}. This corresponds to the Odds First task of Delétang et al.

(2023).

Positive Examples Negative Examples
#
1#1
010101#000111
0101010#0000111
10011011#10110101

ε
010101#000110
010101000111
0#1##

To generate a positive example, we first sample a string u as in Marked Reversal. We then return
u#uoddueven.

To test whether a string is in the language, we first check whether it contains exactly one #. We let
the string to the left of # be u, and we check if the string to the right is equal to uoddueven.

To compute NEXTL(w<t), if w<t ends before #, we set it to {0, 1, #}. The rest of the string is
deterministic based on the value of u, and we use either {0}, {1}, or {EOS} to match uoddueven.

Binary Addition (CS). Strings of the form ux+uy=uz , where ux, uy, uz are little-endian binary
encodings (possibly with trailing 0s) of integers x, y, z ∈ Z≥0, and x + y = z. The number 0 is
encoded as 0, but not ε. This language corresponds to the Binary Addition task of Delétang et al.
(2023).

Positive Examples Negative Examples
0+0=0
001+1=101
001000+100=1010000
101+01011=11111
1+11=001

ε
+=
001+1=011
100+1=101
0011101
=0+10=1+

We generate a positive example as follows. Note that, in general, binary encodings must have at
least one bit, and a binary string of length m can only encode integers in [0, 2m − 1]. Let nx =
|ux|, ny = |uy|, nz = |uz|. We first sample nx, ny, nz , then we sample x, y, z that satisfy x ≤
2nx − 1, y ≤ 2ny − 1, z = x + y ≤ 2nz − 1. We sample a total string length n uniformly from
[max(5, nmin), nmax]. Let nx = n′

x + 1, ny = n′
y + 1, nz = n′

z + 1. We sample n′
x, n

′
y, n

′
z using a

Dirichlet distribution with parameters (1, 1, 1) so that nx, ny, nz are equally distributed and always
sum to n−2. If ny > nx, we swap them, so that nx ≤ ny; this will make the distribution over x less
restrictive on y, because it reduces cases where x is so large that few y can be chosen that satisfy
the constraint on z. We sample x uniformly from [0,min(2nx − 1, 2nz − 1)], and y uniformly from
[0,min(2ny − 1, 2nz − 1− x)]. We encode x, y, z = x+ y as ux, uy, uz , padding them with 0s as
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needed to reach lengths of exactly nx, ny, nz . In order to avoid bias in the distribution of x vs. y,
with probability 1

2 , we swap ux and uy . We return ux+uy=uz .

To test whether a string is in the language, we simply check that it has the expected format, parse
x, y, z, and check that x+ y = z.

To compute NEXTL(w<t), we scan w in order of increasing t. Before ux, we set it to {0, 1}. After
any symbol in ux, we set it to {0, 1, +}. Similarly, before uy , we set it to {0, 1}, and after any symbol
in uy , we set it to {0, 1, =}. After =, we must deterministically generate ⟨z⟩, so we set it to {0} or
{1} as needed. After ⟨z⟩, and after any trailing 0s, we set it to {0, EOS}.

Binary Multiplication (CS). Strings of the form ux×uy=uz , where, like Binary Addition,
ux, uy, uz are binary encodings of integers x, y, z ∈ Z≥0, and xy = z. This language corresponds
to the Binary Multiplication task of Delétang et al. (2023).

Positive Examples Negative Examples
0×0=0
001×11=0011
001000×1100=0011000
1001×0111=0111111

ε
×=
001×11=1011
100×1010=0101000
0011101
=0×10=1×

We generate a positive example similarly to Binary Addition. We first sample nx, ny, nz , then we
sample x, y, z that satisfy x ≤ 2nx − 1, y ≤ 2ny − 1, z = xy ≤ 2nz − 1. We sample n, nx, ny, nz

in the same way as Binary Addition, except the Dirichlet distribution has parameters (1, 1, 2). This
means nz tends to be twice as big as nx or ny; we do this because the number of bits required for
xy is approximately the sum of the bits required for x and y. Note that guaranteeing nx ≤ ny is
particularly important here for a good distribution of y. We sample x uniformly from [0, 2nx −1]. If
x > 0, we sample y uniformly from [0,min(2ny −1, ⌊ 2

nz−1
x ⌋)]. Otherwise, we sample y uniformly

from [0, 2ny − 1]. The rest is like Binary Addition, except we return ux×uy=uz .

We test whether a string is in the language and compute NEXTL(w<t) like Binary Addition, except
we use xy = z instead of x+ y = z, and × instead of +.

Compute Sqrt (CS). Strings of the form ux=uz , where, similarly to Binary Addition and Binary
Multiplication, ux, uz are binary encodings of integers x, z ∈ Z≥0, and ⌊

√
x⌋ = z. This language

corresponds to the Compute Sqrt task of Delétang et al. (2023).

Positive Examples Negative Examples
0=0
011=11
00101=001
00101000=00100

ε
=
011=01
0=11=1

We generate a positive example similarly to Binary Addition and Binary Multiplication. Let nx =
|ux|, nz = |uz|. We first sample nx, nz , then we sample x, z that satisfy x ≤ 2nx − 1, z =
⌊
√
x⌋ ≤ 2nz − 1. We sample a total string length n uniformly from [max(3, nmin), nmax]. Let

nx = n′
x + 1, nz = n′

z + 1. We sample n′
x, n

′
z using a Dirichlet distribution with parameters (2, 1),

so that nx and nz sum to n − 2, and nx tends to be twice as big as nz . We do this because the
number of bits required for ⌊

√
x⌋ is about half of that required for x. We sample x uniformly from

[0,min(2nx − 1, 22nz − 1)]. We encode x, z = ⌊
√
x⌋ as ux, uz , padding them with 0s as needed to

reach lengths of exactly nx, nz . We return ux=uz .

To test whether a string is in the language, we simply check that it has the expected format, parse
x, z, and check that ⌊

√
x⌋ = z.

To compute NEXTL(w<t), we scan w in order of increasing t. Before ux, we set it to {0, 1}. After
any symbol in ux, we set it to {0, 1, =}. After =, we must deterministically generate ⟨z⟩, so we set it
to {0} or {1} as needed. After ⟨z⟩, and after any trailing 0s, we set it to {0, EOS}.
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Table 3: The best loss functions, corresponding to the accuracy scores reported in Table 2. “R” =
recognition; “LM” = language modeling; “NS” = next symbol prediction. No single loss function
consistently results in the best performance; the most frequent winner is just R.

Inductive Bias Expressivity

Language Tf RNN LSTM Tf RNN LSTM

Even Pairs R R+LM+NS R R R+NS R
Repeat 01 R R+NS R R R R
Parity R+NS R+NS R+NS R+NS R+LM R
Cycle Navigation R+LM+NS R R R R R
Modular Arithmetic R R R R+NS R R
Dyck-(2, 3) R+LM R+LM+NS R R+NS R+NS R+NS
First R+NS R+LM R+LM R R R
Majority R+LM R+NS R+NS R+LM R+LM+NS R+LM+NS
Stack Manipulation R R+NS R R+LM+NS R R+LM
Marked Reversal R+NS R+NS R R+LM R+LM R+LM
Unmarked Reversal R R+NS R+NS R R+NS R+NS
Marked Copy R+NS R+LM R R+NS R R
Missing Duplicate R+LM+NS R R R+LM+NS R+LM+NS R+LM
Odds First R R R R+LM+NS R R+LM+NS
Binary Addition R R+NS R R+LM R+NS R+NS
Binary Multiplication R+NS R R+NS R+NS R+LM R+NS
Compute Sqrt R R R R R R
Bucket Sort R R+LM+NS R R+NS R+NS R+LM+NS

Bucket Sort (CS). A string u ∈ {1, . . . , 5}∗, then #, then the digits of u in sorted order. Note that
it is only necessary to keep track of the counts of each type of digit to recognize this language. This
language corresponds to the Bucket Sort task of Delétang et al. (2023).

Positive Examples Negative Examples
#
4512345#1234455
31204124#01122344
41#14

ε
4512345#1434255
31204124#0112
1#2##12

Let m = |u|. To generate a positive example, we first sample m as in Marked Reversal, then we
sample u uniformly from {1, . . . , 5}m. We then compute the sorted string u′ and return the string
u#u′.

To test whether a string is in the language, we check whether there is a single #, and whether the
substring after the marker is the bucket sort of the substring before the marker.

To compute NEXTL(w<t), we scan w in order of increasing t. If w<t ends within the first half
(before the # symbol), then the set of next valid symbols is set to {1, . . . , 5, #}. The rest of the string
is deterministic based on the value of u, and we use one of {1}, . . . , {5}, {EOS} as needed.

F FULL RESULTS

We show the best loss functions for each architecture, language, and validation set in Table 3.

We show unabridged versions of the results from §4 for all languages in Tables 4 to 21. Every
row is aggregated across 10 runs. The scores shown in each row are of the model with the lowest
recognition cross-entropy on the validation set (this value is shown under “Val. CE”; lower is better).
All columns are accuracy scores except for “Val. CE.” We show the best score in each column in
bold.

Here, we refer to the test set used in §4, which has lengths in [0, 500], as the long test set. We also
report accuracy on a short test set of 1k held-out examples with lengths in [0, 40]. The short test set
only includes examples that do not occur in the training set, short validation set, or long validation
set; it tests how well a model generalizes to unseen strings within the same length distribution. For
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languages where the training and validation data already includes all possible strings, we leave this
column blank. We also report accuracy on the training and validation sets to show how well the
model fits the training data.

In order to see the effects of model selection, we also report the mean and maximum accuracy
scores on the long test set across all runs, as it is often the case that the model that generalizes best
to longer strings is not the one with the lowest recognition cross-entropy. Although this kind of
test-set-based model selection is impossible in the wild, for our purposes it is useful for revealing
when an architecture is capable of chancing upon a solution that generalizes, even if it cannot be
reliably found with model selection.

In all rows, “+LM” means a language modeling loss term is added, “+NS” means a next symbol
prediction loss term is added, “S” means a short validation set is used, and “L” means a long val-
idation set is used. “Train” is accuracy on the training set, “Val. CE” is recognition cross-entropy
on the validation set (which is used as the model selection criterion), “Val.” is accuracy on the val-
idation set, “S. Test” is accuracy on the short test set, “L. Test” is accuracy on the long test set, “L.
Test (Mean)” is “L. Test” averaged across runs with standard deviations, and “L. Test (Max)” is the
maximum.
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Table 4: Full results on the Even Pairs language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 1.000 0.000 1.000 1.000 1.000 0.994 ± 0.01 1.000
Tf (L) 1.000 0.000 1.000 1.000 1.000 0.999 ± 0.00 1.000
Tf (+LM, S) 1.000 0.000 1.000 1.000 0.997 0.978 ± 0.04 1.000
Tf (+LM, L) 1.000 0.000 1.000 1.000 0.923 0.956 ± 0.06 1.000
Tf (+NS, S) 1.000 0.000 1.000 1.000 0.998 0.994 ± 0.01 1.000
Tf (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.996 ± 0.01 1.000
Tf (+LM+NS, S) 1.000 0.000 1.000 1.000 0.992 0.959 ± 0.06 1.000
Tf (+LM+NS, L) 1.000 0.000 1.000 1.000 1.000 0.992 ± 0.01 1.000
RNN (S) 0.549 0.673 0.565 0.513 0.512 0.504 ± 0.01 0.517
RNN (L) 0.542 0.680 0.527 0.480 0.509 0.508 ± 0.01 0.518
RNN (+LM, S) 0.541 0.674 0.559 0.520 0.505 0.506 ± 0.01 0.517
RNN (+LM, L) 0.576 0.658 0.607 0.575 0.640 0.523 ± 0.04 0.640
RNN (+NS, S) 1.000 0.000 1.000 1.000 1.000 0.556 ± 0.15 1.000
RNN (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.621 ± 0.19 1.000
RNN (+LM+NS, S) 1.000 0.000 1.000 1.000 1.000 0.601 ± 0.20 1.000
RNN (+LM+NS, L) 1.000 0.000 1.000 1.000 1.000 0.614 ± 0.20 1.000
LSTM (S) 1.000 0.000 1.000 1.000 1.000 0.831 ± 0.22 1.000
LSTM (L) 1.000 0.000 1.000 1.000 0.761 0.900 ± 0.15 1.000
LSTM (+LM, S) 1.000 0.000 1.000 1.000 1.000 0.554 ± 0.15 1.000
LSTM (+LM, L) 0.538 0.680 0.520 0.518 0.509 0.503 ± 0.01 0.515
LSTM (+NS, S) 1.000 0.000 1.000 1.000 1.000 0.611 ± 0.20 1.000
LSTM (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.697 ± 0.22 1.000
LSTM (+LM+NS, S) 0.539 0.671 0.551 0.508 0.511 0.504 ± 0.01 0.516
LSTM (+LM+NS, L) 0.537 0.681 0.513 0.518 0.497 0.503 ± 0.01 0.517

Table 5: Full results on the Repeat 01 language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.999 0.000 1.000 0.707 0.717 ± 0.09 0.844
Tf (L) 0.994 0.134 0.969 0.593 0.693 ± 0.10 0.857
Tf (+LM, S) 0.998 0.001 1.000 0.833 0.675 ± 0.12 0.847
Tf (+LM, L) 0.997 0.087 0.979 0.617 0.687 ± 0.08 0.838
Tf (+NS, S) 1.000 0.000 1.000 0.546 0.710 ± 0.10 0.842
Tf (+NS, L) 0.971 0.126 0.962 0.845 0.734 ± 0.10 0.845
Tf (+LM+NS, S) 0.999 0.003 1.000 0.681 0.659 ± 0.09 0.842
Tf (+LM+NS, L) 0.997 0.105 0.970 0.592 0.706 ± 0.10 0.850
RNN (S) 1.000 0.000 1.000 1.000 0.935 ± 0.10 1.000
RNN (L) 1.000 0.000 1.000 1.000 0.880 ± 0.10 1.000
RNN (+LM, S) 1.000 0.000 1.000 1.000 0.956 ± 0.09 1.000
RNN (+LM, L) 1.000 0.000 1.000 1.000 0.948 ± 0.08 1.000
RNN (+NS, S) 1.000 0.000 1.000 1.000 0.969 ± 0.07 1.000
RNN (+NS, L) 1.000 0.000 1.000 1.000 0.978 ± 0.07 1.000
RNN (+LM+NS, S) 1.000 0.000 1.000 1.000 0.911 ± 0.11 1.000
RNN (+LM+NS, L) 1.000 0.000 1.000 1.000 0.914 ± 0.10 1.000
LSTM (S) 1.000 0.000 1.000 1.000 0.972 ± 0.07 1.000
LSTM (L) 1.000 0.000 1.000 1.000 0.905 ± 0.13 1.000
LSTM (+LM, S) 1.000 0.000 1.000 0.864 0.928 ± 0.14 1.000
LSTM (+LM, L) 1.000 0.000 1.000 0.939 0.975 ± 0.02 1.000
LSTM (+NS, S) 1.000 0.000 1.000 1.000 0.921 ± 0.10 1.000
LSTM (+NS, L) 1.000 0.000 1.000 1.000 0.982 ± 0.05 1.000
LSTM (+LM+NS, S) 1.000 0.000 1.000 1.000 0.953 ± 0.13 1.000
LSTM (+LM+NS, L) 1.000 0.000 1.000 0.964 0.881 ± 0.20 1.000
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Table 6: Full results on the Parity language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.713 0.503 0.688 0.601 0.538 0.528 ± 0.01 0.544
Tf (L) 0.664 0.620 0.595 0.569 0.521 0.529 ± 0.01 0.543
Tf (+LM, S) 0.764 0.452 0.722 0.680 0.558 0.530 ± 0.01 0.558
Tf (+LM, L) 0.756 0.552 0.658 0.686 0.561 0.532 ± 0.01 0.561
Tf (+NS, S) 0.969 0.060 0.973 0.953 0.559 0.557 ± 0.03 0.630
Tf (+NS, L) 0.903 0.424 0.766 0.882 0.550 0.547 ± 0.02 0.599
Tf (+LM+NS, S) 0.909 0.198 0.895 0.874 0.579 0.552 ± 0.03 0.604
Tf (+LM+NS, L) 0.865 0.444 0.751 0.820 0.587 0.553 ± 0.03 0.591
RNN (S) 0.546 0.677 0.531 0.534 0.521 0.507 ± 0.01 0.525
RNN (L) 0.554 0.687 0.540 0.540 0.522 0.512 ± 0.01 0.541
RNN (+LM, S) 1.000 0.000 1.000 1.000 1.000 0.605 ± 0.20 1.000
RNN (+LM, L) 1.000 0.000 1.000 1.000 1.000 0.572 ± 0.15 1.000
RNN (+NS, S) 1.000 0.000 1.000 1.000 1.000 0.712 ± 0.24 1.000
RNN (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.671 ± 0.19 1.000
RNN (+LM+NS, S) 1.000 0.000 1.000 1.000 1.000 0.706 ± 0.24 1.000
RNN (+LM+NS, L) 1.000 0.000 1.000 1.000 1.000 0.682 ± 0.21 1.000
LSTM (S) 1.000 0.000 1.000 1.000 1.000 0.664 ± 0.22 1.000
LSTM (L) 1.000 0.000 1.000 1.000 1.000 0.705 ± 0.24 1.000
LSTM (+LM, S) 1.000 0.000 1.000 1.000 1.000 0.599 ± 0.20 1.000
LSTM (+LM, L) 0.544 0.686 0.542 0.542 0.497 0.494 ± 0.00 0.497
LSTM (+NS, S) 1.000 0.000 1.000 1.000 1.000 0.902 ± 0.20 1.000
LSTM (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.752 ± 0.25 1.000
LSTM (+LM+NS, S) 1.000 0.000 1.000 1.000 1.000 0.613 ± 0.20 1.000
LSTM (+LM+NS, L) 1.000 0.000 1.000 1.000 1.000 0.547 ± 0.15 1.000

Table 7: Full results on the Cycle Navigation language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.931 0.250 0.911 0.946 0.811 0.836 ± 0.05 0.934
Tf (L) 0.923 0.192 0.938 0.946 0.901 0.844 ± 0.05 0.934
Tf (+LM, S) 0.931 0.249 0.911 0.946 0.805 0.804 ± 0.10 0.933
Tf (+LM, L) 0.926 0.191 0.938 0.946 0.923 0.866 ± 0.05 0.933
Tf (+NS, S) 0.984 0.074 0.973 0.987 0.767 0.812 ± 0.04 0.884
Tf (+NS, L) 0.950 0.169 0.943 0.957 0.776 0.819 ± 0.04 0.927
Tf (+LM+NS, S) 0.931 0.251 0.911 0.946 0.810 0.838 ± 0.05 0.932
Tf (+LM+NS, L) 0.924 0.192 0.938 0.946 0.932 0.838 ± 0.05 0.932
RNN (S) 0.930 0.255 0.910 0.946 0.934 0.930 ± 0.01 0.934
RNN (L) 0.928 0.192 0.939 0.946 0.934 0.917 ± 0.05 0.934
RNN (+LM, S) 0.929 0.254 0.910 0.946 0.934 0.915 ± 0.05 0.934
RNN (+LM, L) 0.931 0.189 0.941 0.946 0.934 0.904 ± 0.09 0.934
RNN (+NS, S) 0.930 0.256 0.910 0.946 0.934 0.900 ± 0.07 0.934
RNN (+NS, L) 0.929 0.190 0.940 0.946 0.934 0.877 ± 0.13 0.934
RNN (+LM+NS, S) 0.928 0.264 0.907 0.946 0.934 0.888 ± 0.11 0.934
RNN (+LM+NS, L) 0.929 0.192 0.940 0.946 0.934 0.839 ± 0.17 0.934
LSTM (S) 0.929 0.257 0.910 0.946 0.934 0.900 ± 0.04 0.934
LSTM (L) 0.929 0.190 0.940 0.946 0.927 0.914 ± 0.03 0.934
LSTM (+LM, S) 0.930 0.252 0.910 0.946 0.934 0.878 ± 0.13 0.934
LSTM (+LM, L) 0.929 0.191 0.940 0.946 0.934 0.828 ± 0.17 0.934
LSTM (+NS, S) 0.931 0.255 0.911 0.946 0.934 0.822 ± 0.16 0.934
LSTM (+NS, L) 0.929 0.193 0.940 0.946 0.923 0.880 ± 0.13 0.933
LSTM (+LM+NS, S) 0.935 0.237 0.912 0.947 0.884 0.874 ± 0.13 0.934
LSTM (+LM+NS, L) 0.929 0.189 0.940 0.946 0.933 0.798 ± 0.20 0.934
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Table 8: Full results on the Modular Arithmetic language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.977 0.093 0.976 0.979 0.643 0.686 ± 0.11 0.812
Tf (L) 0.978 0.117 0.963 0.981 0.829 0.698 ± 0.09 0.830
Tf (+LM, S) 0.983 0.085 0.980 0.980 0.531 0.659 ± 0.11 0.796
Tf (+LM, L) 0.929 0.270 0.889 0.919 0.559 0.676 ± 0.08 0.790
Tf (+NS, S) 0.984 0.085 0.981 0.981 0.740 0.654 ± 0.12 0.869
Tf (+NS, L) 0.975 0.100 0.969 0.976 0.884 0.706 ± 0.09 0.884
Tf (+LM+NS, S) 0.979 0.089 0.976 0.981 0.826 0.671 ± 0.12 0.852
Tf (+LM+NS, L) 0.972 0.122 0.965 0.973 0.582 0.612 ± 0.08 0.793
RNN (S) 0.986 0.080 0.982 0.978 0.997 0.996 ± 0.00 0.997
RNN (L) 0.988 0.062 0.987 0.984 0.997 0.989 ± 0.02 0.997
RNN (+LM, S) 0.987 0.081 0.982 0.980 0.997 0.882 ± 0.10 0.997
RNN (+LM, L) 0.988 0.062 0.987 0.984 0.997 0.964 ± 0.07 0.997
RNN (+NS, S) 0.987 0.079 0.982 0.980 0.997 0.950 ± 0.08 0.997
RNN (+NS, L) 0.988 0.062 0.987 0.984 0.996 0.965 ± 0.07 0.997
RNN (+LM+NS, S) 0.986 0.079 0.982 0.978 0.997 0.966 ± 0.07 0.997
RNN (+LM+NS, L) 0.988 0.062 0.987 0.984 0.997 0.955 ± 0.07 0.997
LSTM (S) 0.986 0.078 0.982 0.978 0.997 0.982 ± 0.03 0.997
LSTM (L) 0.985 0.063 0.987 0.978 0.997 0.955 ± 0.08 0.997
LSTM (+LM, S) 0.986 0.081 0.982 0.978 0.997 0.981 ± 0.03 0.997
LSTM (+LM, L) 0.988 0.061 0.987 0.984 0.997 0.995 ± 0.00 0.997
LSTM (+NS, S) 0.986 0.078 0.982 0.978 0.997 0.952 ± 0.09 0.997
LSTM (+NS, L) 0.988 0.061 0.987 0.984 0.997 0.957 ± 0.07 0.997
LSTM (+LM+NS, S) 0.986 0.081 0.982 0.978 0.964 0.918 ± 0.14 0.997
LSTM (+LM+NS, L) 0.988 0.062 0.987 0.984 0.996 0.950 ± 0.08 0.997

Table 9: Full results on the Dyck-(2, 3) language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.968 0.119 0.969 0.968 0.585 0.630 ± 0.05 0.711
Tf (L) 0.965 0.146 0.953 0.967 0.804 0.690 ± 0.08 0.804
Tf (+LM, S) 0.998 0.010 0.998 0.994 0.604 0.702 ± 0.09 0.811
Tf (+LM, L) 0.979 0.157 0.950 0.975 0.599 0.652 ± 0.06 0.778
Tf (+NS, S) 0.998 0.002 1.000 0.995 0.596 0.622 ± 0.07 0.765
Tf (+NS, L) 0.964 0.163 0.941 0.969 0.756 0.687 ± 0.09 0.819
Tf (+LM+NS, S) 0.996 0.008 0.996 0.991 0.693 0.627 ± 0.05 0.734
Tf (+LM+NS, L) 0.994 0.123 0.959 0.989 0.788 0.693 ± 0.08 0.791
RNN (S) 0.972 0.093 0.976 0.977 0.980 0.907 ± 0.08 0.982
RNN (L) 0.972 0.092 0.979 0.976 0.972 0.929 ± 0.10 0.982
RNN (+LM, S) 0.999 0.005 1.000 0.998 0.991 0.941 ± 0.07 0.991
RNN (+LM, L) 0.999 0.014 0.998 0.998 0.826 0.945 ± 0.05 0.982
RNN (+NS, S) 0.999 0.005 0.999 0.999 0.957 0.952 ± 0.07 0.998
RNN (+NS, L) 0.998 0.014 0.998 0.997 0.988 0.923 ± 0.07 0.996
RNN (+LM+NS, S) 1.000 0.000 1.000 1.000 0.999 0.953 ± 0.05 0.999
RNN (+LM+NS, L) 1.000 0.001 1.000 1.000 0.991 0.922 ± 0.09 0.996
LSTM (S) 0.971 0.097 0.975 0.978 0.982 0.907 ± 0.10 0.982
LSTM (L) 0.971 0.094 0.979 0.978 0.977 0.883 ± 0.10 0.977
LSTM (+LM, S) 0.971 0.100 0.975 0.978 0.982 0.835 ± 0.14 0.982
LSTM (+LM, L) 0.972 0.089 0.979 0.976 0.701 0.868 ± 0.10 0.980
LSTM (+NS, S) 0.972 0.097 0.975 0.977 0.982 0.882 ± 0.16 0.982
LSTM (+NS, L) 0.972 0.091 0.979 0.975 0.976 0.942 ± 0.07 0.983
LSTM (+LM+NS, S) 0.971 0.098 0.974 0.977 0.962 0.838 ± 0.19 0.983
LSTM (+LM+NS, L) 0.972 0.089 0.979 0.977 0.975 0.922 ± 0.10 0.982
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Table 10: Full results on the First language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 1.000 0.000 1.000 1.000 1.000 0.926 ± 0.12 1.000
Tf (L) 1.000 0.000 1.000 1.000 0.987 0.936 ± 0.10 1.000
Tf (+LM, S) 1.000 0.000 1.000 1.000 1.000 0.934 ± 0.08 1.000
Tf (+LM, L) 1.000 0.000 1.000 1.000 1.000 0.974 ± 0.04 1.000
Tf (+NS, S) 1.000 0.000 1.000 1.000 0.952 0.982 ± 0.04 1.000
Tf (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.969 ± 0.08 1.000
Tf (+LM+NS, S) 1.000 0.000 1.000 1.000 0.999 0.935 ± 0.14 1.000
Tf (+LM+NS, L) 1.000 0.000 1.000 1.000 1.000 0.928 ± 0.12 1.000
RNN (S) 1.000 0.000 1.000 1.000 1.000 0.629 ± 0.20 1.000
RNN (L) 1.000 0.000 1.000 1.000 1.000 0.701 ± 0.24 1.000
RNN (+LM, S) 1.000 0.000 1.000 1.000 1.000 0.800 ± 0.24 1.000
RNN (+LM, L) 1.000 0.000 1.000 1.000 1.000 0.800 ± 0.24 1.000
RNN (+NS, S) 1.000 0.000 1.000 1.000 1.000 0.703 ± 0.24 1.000
RNN (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.799 ± 0.25 1.000
RNN (+LM+NS, S) 1.000 0.000 1.000 1.000 1.000 0.750 ± 0.25 1.000
RNN (+LM+NS, L) 1.000 0.000 1.000 1.000 1.000 0.704 ± 0.24 1.000
LSTM (S) 1.000 0.000 1.000 1.000 1.000 0.932 ± 0.15 1.000
LSTM (L) 1.000 0.000 1.000 1.000 1.000 1.000 ± 0.00 1.000
LSTM (+LM, S) 1.000 0.000 1.000 1.000 1.000 0.938 ± 0.14 1.000
LSTM (+LM, L) 1.000 0.000 1.000 1.000 1.000 0.896 ± 0.15 1.000
LSTM (+NS, S) 1.000 0.000 1.000 1.000 1.000 0.850 ± 0.23 1.000
LSTM (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.944 ± 0.09 1.000
LSTM (+LM+NS, S) 1.000 0.000 1.000 1.000 1.000 0.850 ± 0.23 1.000
LSTM (+LM+NS, L) 1.000 0.000 1.000 1.000 0.779 0.912 ± 0.15 1.000

Table 11: Full results on the Majority language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 1.000 0.001 1.000 1.000 0.970 0.946 ± 0.07 0.990
Tf (L) 1.000 0.004 1.000 1.000 0.985 0.943 ± 0.07 0.995
Tf (+LM, S) 1.000 0.001 1.000 1.000 0.992 0.969 ± 0.04 0.992
Tf (+LM, L) 1.000 0.005 1.000 1.000 0.991 0.959 ± 0.05 0.996
Tf (+NS, S) 1.000 0.000 1.000 1.000 0.992 0.961 ± 0.05 0.992
Tf (+NS, L) 1.000 0.005 0.998 1.000 0.985 0.966 ± 0.04 0.993
Tf (+LM+NS, S) 1.000 0.001 1.000 1.000 0.989 0.969 ± 0.02 0.989
Tf (+LM+NS, L) 1.000 0.007 0.998 1.000 0.991 0.975 ± 0.04 0.993
RNN (S) 1.000 0.003 1.000 1.000 0.913 0.868 ± 0.12 0.928
RNN (L) 1.000 0.025 0.997 1.000 0.926 0.834 ± 0.14 0.931
RNN (+LM, S) 1.000 0.000 1.000 1.000 0.918 0.875 ± 0.12 0.924
RNN (+LM, L) 1.000 0.021 0.996 1.000 0.916 0.880 ± 0.13 0.945
RNN (+NS, S) 0.999 0.005 0.999 0.998 0.899 0.896 ± 0.03 0.927
RNN (+NS, L) 0.999 0.030 0.994 0.998 0.934 0.916 ± 0.01 0.934
RNN (+LM+NS, S) 1.000 0.006 0.999 1.000 0.919 0.887 ± 0.07 0.927
RNN (+LM+NS, L) 1.000 0.021 0.997 1.000 0.927 0.877 ± 0.13 0.949
LSTM (S) 1.000 0.000 1.000 1.000 0.979 0.939 ± 0.04 0.997
LSTM (L) 1.000 0.000 1.000 1.000 0.973 0.943 ± 0.02 0.989
LSTM (+LM, S) 1.000 0.000 1.000 1.000 0.980 0.942 ± 0.04 0.998
LSTM (+LM, L) 1.000 0.000 1.000 1.000 0.990 0.946 ± 0.04 0.995
LSTM (+NS, S) 1.000 0.000 1.000 1.000 0.999 0.952 ± 0.04 0.999
LSTM (+NS, L) 1.000 0.000 1.000 1.000 0.989 0.862 ± 0.18 0.997
LSTM (+LM+NS, S) 1.000 0.000 1.000 1.000 1.000 0.913 ± 0.14 1.000
LSTM (+LM+NS, L) 1.000 0.000 1.000 1.000 0.991 0.963 ± 0.04 1.000
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Table 12: Full results on the Stack Manipulation language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.929 0.190 0.917 0.912 0.610 0.664 ± 0.14 0.869
Tf (L) 0.920 0.294 0.885 0.897 0.573 0.640 ± 0.13 0.868
Tf (+LM, S) 0.981 0.072 0.983 0.980 0.515 0.595 ± 0.13 0.854
Tf (+LM, L) 0.935 0.238 0.909 0.922 0.869 0.701 ± 0.14 0.869
Tf (+NS, S) 0.976 0.101 0.973 0.976 0.857 0.591 ± 0.14 0.868
Tf (+NS, L) 0.928 0.255 0.906 0.914 0.545 0.684 ± 0.14 0.869
Tf (+LM+NS, S) 0.981 0.059 0.985 0.979 0.515 0.571 ± 0.11 0.868
Tf (+LM+NS, L) 0.950 0.246 0.914 0.939 0.870 0.608 ± 0.13 0.870
RNN (S) 0.926 0.229 0.923 0.919 0.928 0.834 ± 0.12 0.929
RNN (L) 0.943 0.187 0.940 0.944 0.933 0.783 ± 0.17 0.933
RNN (+LM, S) 0.985 0.070 0.986 0.983 0.520 0.691 ± 0.18 0.930
RNN (+LM, L) 0.925 0.211 0.927 0.919 0.930 0.817 ± 0.12 0.930
RNN (+NS, S) 0.986 0.073 0.986 0.989 0.520 0.838 ± 0.16 0.930
RNN (+NS, L) 0.930 0.208 0.931 0.919 0.927 0.854 ± 0.12 0.930
RNN (+LM+NS, S) 0.988 0.050 0.991 0.990 0.523 0.762 ± 0.20 0.930
RNN (+LM+NS, L) 0.935 0.206 0.934 0.937 0.932 0.852 ± 0.11 0.932
LSTM (S) 0.989 0.047 0.991 0.993 0.987 0.746 ± 0.17 0.987
LSTM (L) 0.956 0.189 0.936 0.951 0.876 0.784 ± 0.07 0.885
LSTM (+LM, S) 0.987 0.045 0.991 0.992 0.551 0.568 ± 0.09 0.818
LSTM (+LM, L) 0.989 0.069 0.986 0.990 0.540 0.674 ± 0.14 0.906
LSTM (+NS, S) 0.987 0.051 0.988 0.992 0.664 0.669 ± 0.14 0.922
LSTM (+NS, L) 0.989 0.063 0.986 0.993 0.750 0.674 ± 0.10 0.799
LSTM (+LM+NS, S) 0.989 0.043 0.991 0.993 0.602 0.528 ± 0.03 0.602
LSTM (+LM+NS, L) 0.988 0.066 0.985 0.993 0.541 0.620 ± 0.13 0.896

Table 13: Full results on the Marked Reversal language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.969 0.116 0.969 0.967 0.552 0.604 ± 0.11 0.847
Tf (L) 0.876 0.316 0.879 0.877 0.616 0.693 ± 0.08 0.758
Tf (+LM, S) 0.969 0.117 0.969 0.967 0.534 0.577 ± 0.08 0.740
Tf (+LM, L) 0.960 0.197 0.943 0.953 0.870 0.689 ± 0.13 0.870
Tf (+NS, S) 0.995 0.032 0.992 0.991 0.541 0.641 ± 0.12 0.827
Tf (+NS, L) 0.969 0.176 0.944 0.967 0.868 0.647 ± 0.12 0.868
Tf (+LM+NS, S) 0.993 0.027 0.995 0.994 0.539 0.580 ± 0.10 0.859
Tf (+LM+NS, L) 0.966 0.170 0.941 0.962 0.853 0.665 ± 0.09 0.853
RNN (S) 0.968 0.119 0.969 0.965 0.603 0.693 ± 0.17 0.947
RNN (L) 0.960 0.131 0.965 0.961 0.594 0.761 ± 0.15 0.947
RNN (+LM, S) 0.969 0.119 0.969 0.967 0.535 0.662 ± 0.14 0.911
RNN (+LM, L) 0.959 0.130 0.965 0.960 0.948 0.793 ± 0.11 0.948
RNN (+NS, S) 0.967 0.124 0.969 0.965 0.544 0.699 ± 0.18 0.948
RNN (+NS, L) 0.968 0.102 0.975 0.966 0.643 0.612 ± 0.12 0.947
RNN (+LM+NS, S) 0.968 0.119 0.969 0.967 0.538 0.651 ± 0.17 0.947
RNN (+LM+NS, L) 0.955 0.136 0.963 0.958 0.947 0.660 ± 0.14 0.947
LSTM (S) 0.969 0.116 0.969 0.967 0.954 0.744 ± 0.17 0.963
LSTM (L) 0.952 0.163 0.950 0.946 0.574 0.755 ± 0.13 0.859
LSTM (+LM, S) 0.999 0.001 1.000 0.992 0.584 0.552 ± 0.05 0.679
LSTM (+LM, L) 0.969 0.103 0.975 0.967 0.596 0.681 ± 0.16 0.947
LSTM (+NS, S) 0.969 0.117 0.969 0.967 0.561 0.653 ± 0.12 0.845
LSTM (+NS, L) 0.969 0.107 0.975 0.967 0.578 0.623 ± 0.10 0.852
LSTM (+LM+NS, S) 0.969 0.116 0.969 0.967 0.617 0.624 ± 0.11 0.946
LSTM (+LM+NS, L) 0.981 0.073 0.981 0.980 0.593 0.585 ± 0.05 0.674
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Table 14: Full results on the Unmarked Reversal language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.970 0.099 0.971 0.969 0.552 0.584 ± 0.03 0.632
Tf (L) 0.818 0.454 0.774 0.839 0.583 0.600 ± 0.04 0.631
Tf (+LM, S) 0.955 0.147 0.952 0.958 0.563 0.552 ± 0.04 0.617
Tf (+LM, L) 0.695 0.558 0.674 0.677 0.559 0.544 ± 0.04 0.623
Tf (+NS, S) 0.963 0.112 0.965 0.949 0.541 0.557 ± 0.02 0.612
Tf (+NS, L) 0.868 0.456 0.779 0.846 0.547 0.578 ± 0.04 0.630
Tf (+LM+NS, S) 0.959 0.127 0.957 0.940 0.540 0.539 ± 0.03 0.578
Tf (+LM+NS, L) 0.752 0.529 0.726 0.748 0.607 0.589 ± 0.04 0.630
RNN (S) 0.975 0.094 0.974 0.977 0.670 0.708 ± 0.09 0.763
RNN (L) 0.970 0.139 0.965 0.962 0.726 0.736 ± 0.05 0.763
RNN (+LM, S) 0.973 0.020 0.982 0.998 0.622 0.715 ± 0.05 0.763
RNN (+LM, L) 0.981 0.097 0.982 0.984 0.748 0.721 ± 0.05 0.763
RNN (+NS, S) 0.976 0.097 0.971 0.968 0.682 0.716 ± 0.08 0.766
RNN (+NS, L) 0.974 0.158 0.957 0.963 0.665 0.744 ± 0.05 0.813
RNN (+LM+NS, S) 0.961 0.061 0.973 0.984 0.636 0.712 ± 0.07 0.763
RNN (+LM+NS, L) 0.971 0.150 0.954 0.961 0.765 0.744 ± 0.04 0.765
LSTM (S) 0.963 0.150 0.954 0.944 0.610 0.685 ± 0.09 0.763
LSTM (L) 0.989 0.056 0.988 0.987 0.746 0.717 ± 0.08 0.763
LSTM (+LM, S) 0.786 0.440 0.774 0.751 0.763 0.711 ± 0.10 0.763
LSTM (+LM, L) 0.786 0.444 0.782 0.751 0.763 0.711 ± 0.10 0.763
LSTM (+NS, S) 0.966 0.145 0.953 0.934 0.743 0.761 ± 0.01 0.763
LSTM (+NS, L) 0.987 0.068 0.982 0.985 0.838 0.731 ± 0.12 0.884
LSTM (+LM+NS, S) 0.786 0.441 0.774 0.751 0.763 0.711 ± 0.10 0.763
LSTM (+LM+NS, L) 0.786 0.444 0.782 0.751 0.763 0.711 ± 0.10 0.763

Table 15: Full results on the Marked Copy language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.970 0.113 0.970 0.977 0.548 0.565 ± 0.04 0.639
Tf (L) 0.859 0.327 0.866 0.872 0.795 0.698 ± 0.07 0.795
Tf (+LM, S) 0.970 0.114 0.970 0.977 0.542 0.614 ± 0.10 0.846
Tf (+LM, L) 0.949 0.206 0.937 0.955 0.625 0.646 ± 0.08 0.785
Tf (+NS, S) 0.991 0.035 0.992 0.991 0.588 0.627 ± 0.11 0.872
Tf (+NS, L) 0.950 0.213 0.922 0.950 0.843 0.693 ± 0.14 0.856
Tf (+LM+NS, S) 0.990 0.025 0.991 0.992 0.550 0.573 ± 0.08 0.827
Tf (+LM+NS, L) 0.963 0.226 0.944 0.970 0.573 0.612 ± 0.08 0.775
RNN (S) 0.970 0.118 0.970 0.977 0.602 0.723 ± 0.15 0.920
RNN (L) 0.958 0.134 0.964 0.965 0.946 0.710 ± 0.14 0.946
RNN (+LM, S) 0.970 0.115 0.970 0.977 0.545 0.756 ± 0.15 0.945
RNN (+LM, L) 0.959 0.135 0.965 0.969 0.595 0.730 ± 0.15 0.945
RNN (+NS, S) 0.970 0.115 0.970 0.977 0.677 0.755 ± 0.14 0.908
RNN (+NS, L) 0.960 0.133 0.965 0.967 0.946 0.757 ± 0.13 0.946
RNN (+LM+NS, S) 0.970 0.117 0.970 0.976 0.598 0.730 ± 0.15 0.946
RNN (+LM+NS, L) 0.961 0.127 0.966 0.968 0.591 0.728 ± 0.14 0.945
LSTM (S) 0.970 0.113 0.970 0.977 0.564 0.691 ± 0.15 0.946
LSTM (L) 0.970 0.099 0.976 0.977 0.649 0.717 ± 0.12 0.946
LSTM (+LM, S) 0.970 0.113 0.970 0.977 0.568 0.582 ± 0.07 0.781
LSTM (+LM, L) 0.970 0.098 0.976 0.977 0.596 0.656 ± 0.09 0.807
LSTM (+NS, S) 0.995 0.041 0.990 0.994 0.568 0.609 ± 0.12 0.962
LSTM (+NS, L) 0.970 0.098 0.976 0.977 0.721 0.664 ± 0.11 0.923
LSTM (+LM+NS, S) 0.970 0.113 0.970 0.977 0.631 0.604 ± 0.09 0.849
LSTM (+LM+NS, L) 0.970 0.098 0.976 0.977 0.657 0.600 ± 0.07 0.760
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Table 16: Full results on the Missing Duplicate language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.938 0.200 0.933 0.949 0.614 0.650 ± 0.09 0.781
Tf (L) 0.856 0.316 0.876 0.874 0.857 0.709 ± 0.10 0.857
Tf (+LM, S) 0.880 0.311 0.871 0.890 0.638 0.608 ± 0.05 0.687
Tf (+LM, L) 0.856 0.315 0.876 0.874 0.782 0.699 ± 0.09 0.796
Tf (+NS, S) 0.953 0.169 0.943 0.952 0.720 0.637 ± 0.10 0.857
Tf (+NS, L) 0.860 0.317 0.875 0.874 0.777 0.651 ± 0.07 0.777
Tf (+LM+NS, S) 0.955 0.166 0.948 0.956 0.696 0.661 ± 0.08 0.760
Tf (+LM+NS, L) 0.864 0.315 0.880 0.874 0.858 0.728 ± 0.11 0.858
RNN (S) 0.946 0.176 0.944 0.949 0.919 0.824 ± 0.10 0.944
RNN (L) 0.951 0.163 0.953 0.957 0.783 0.815 ± 0.07 0.937
RNN (+LM, S) 0.951 0.178 0.946 0.957 0.945 0.789 ± 0.10 0.945
RNN (+LM, L) 0.951 0.163 0.953 0.957 0.945 0.860 ± 0.07 0.945
RNN (+NS, S) 0.959 0.162 0.952 0.959 0.946 0.804 ± 0.14 0.946
RNN (+NS, L) 0.982 0.116 0.967 0.970 0.942 0.879 ± 0.10 0.945
RNN (+LM+NS, S) 0.950 0.179 0.946 0.957 0.945 0.790 ± 0.13 0.945
RNN (+LM+NS, L) 0.951 0.162 0.954 0.957 0.696 0.813 ± 0.15 0.946
LSTM (S) 0.951 0.178 0.946 0.957 0.926 0.852 ± 0.07 0.945
LSTM (L) 0.951 0.162 0.953 0.957 0.922 0.794 ± 0.07 0.922
LSTM (+LM, S) 0.951 0.179 0.946 0.957 0.945 0.795 ± 0.15 0.945
LSTM (+LM, L) 0.951 0.161 0.953 0.957 0.771 0.769 ± 0.12 0.945
LSTM (+NS, S) 0.958 0.163 0.951 0.957 0.946 0.821 ± 0.15 0.946
LSTM (+NS, L) 0.951 0.162 0.953 0.957 0.913 0.784 ± 0.13 0.945
LSTM (+LM+NS, S) 0.954 0.174 0.947 0.957 0.940 0.770 ± 0.18 0.945
LSTM (+LM+NS, L) 0.951 0.162 0.953 0.957 0.904 0.749 ± 0.15 0.904

Table 17: Full results on the Odds First language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.966 0.122 0.968 0.966 0.537 0.592 ± 0.11 0.851
Tf (L) 0.835 0.345 0.853 0.849 0.850 0.730 ± 0.09 0.850
Tf (+LM, S) 0.969 0.116 0.969 0.968 0.536 0.559 ± 0.07 0.754
Tf (+LM, L) 0.958 0.207 0.924 0.959 0.561 0.613 ± 0.09 0.763
Tf (+NS, S) 0.993 0.048 0.991 0.993 0.545 0.537 ± 0.00 0.545
Tf (+NS, L) 0.941 0.236 0.919 0.944 0.861 0.724 ± 0.11 0.861
Tf (+LM+NS, S) 0.995 0.043 0.991 0.998 0.538 0.579 ± 0.08 0.799
Tf (+LM+NS, L) 0.955 0.182 0.937 0.952 0.864 0.693 ± 0.11 0.864
RNN (S) 0.966 0.119 0.968 0.966 0.544 0.793 ± 0.15 0.948
RNN (L) 0.957 0.137 0.962 0.959 0.948 0.795 ± 0.12 0.948
RNN (+LM, S) 0.968 0.119 0.969 0.968 0.542 0.708 ± 0.14 0.948
RNN (+LM, L) 0.959 0.137 0.963 0.959 0.948 0.766 ± 0.15 0.948
RNN (+NS, S) 0.959 0.138 0.963 0.959 0.948 0.789 ± 0.18 0.948
RNN (+NS, L) 0.967 0.116 0.972 0.967 0.594 0.712 ± 0.15 0.948
RNN (+LM+NS, S) 0.969 0.117 0.969 0.968 0.536 0.575 ± 0.08 0.777
RNN (+LM+NS, L) 0.957 0.138 0.961 0.959 0.669 0.758 ± 0.14 0.947
LSTM (S) 0.969 0.116 0.969 0.968 0.572 0.668 ± 0.14 0.921
LSTM (L) 0.969 0.102 0.974 0.968 0.838 0.718 ± 0.15 0.914
LSTM (+LM, S) 0.969 0.115 0.969 0.968 0.617 0.612 ± 0.10 0.857
LSTM (+LM, L) 0.969 0.103 0.974 0.968 0.701 0.687 ± 0.10 0.853
LSTM (+NS, S) 0.997 0.014 0.997 0.997 0.575 0.595 ± 0.13 0.936
LSTM (+NS, L) 0.969 0.104 0.974 0.968 0.611 0.673 ± 0.12 0.906
LSTM (+LM+NS, S) 0.997 0.027 0.995 0.993 0.565 0.597 ± 0.09 0.848
LSTM (+LM+NS, L) 0.969 0.103 0.974 0.968 0.964 0.696 ± 0.13 0.964
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Table 18: Full results on the Binary Addition language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.925 0.235 0.919 0.922 0.673 0.643 ± 0.13 0.913
Tf (L) 0.915 0.262 0.902 0.915 0.645 0.654 ± 0.09 0.778
Tf (+LM, S) 0.974 0.107 0.963 0.962 0.562 0.602 ± 0.10 0.913
Tf (+LM, L) 0.933 0.228 0.917 0.925 0.744 0.713 ± 0.09 0.876
Tf (+NS, S) 0.976 0.084 0.977 0.968 0.632 0.629 ± 0.13 0.914
Tf (+NS, L) 0.924 0.248 0.910 0.924 0.831 0.692 ± 0.10 0.831
Tf (+LM+NS, S) 0.975 0.094 0.968 0.966 0.577 0.615 ± 0.11 0.896
Tf (+LM+NS, L) 0.967 0.154 0.944 0.960 0.850 0.684 ± 0.11 0.854
RNN (S) 0.924 0.227 0.922 0.921 0.549 0.719 ± 0.10 0.879
RNN (L) 0.927 0.236 0.915 0.924 0.598 0.813 ± 0.08 0.878
RNN (+LM, S) 0.943 0.194 0.931 0.940 0.566 0.718 ± 0.15 0.893
RNN (+LM, L) 0.929 0.235 0.916 0.925 0.822 0.703 ± 0.14 0.914
RNN (+NS, S) 0.988 0.085 0.979 0.981 0.604 0.743 ± 0.12 0.915
RNN (+NS, L) 0.930 0.226 0.914 0.928 0.731 0.790 ± 0.12 0.915
RNN (+LM+NS, S) 0.978 0.094 0.974 0.968 0.604 0.675 ± 0.10 0.898
RNN (+LM+NS, L) 0.939 0.214 0.923 0.934 0.903 0.762 ± 0.12 0.914
LSTM (S) 0.929 0.220 0.925 0.925 0.595 0.745 ± 0.12 0.916
LSTM (L) 0.929 0.233 0.916 0.925 0.651 0.783 ± 0.09 0.915
LSTM (+LM, S) 0.989 0.081 0.979 0.969 0.685 0.702 ± 0.12 0.914
LSTM (+LM, L) 0.951 0.210 0.923 0.952 0.692 0.780 ± 0.09 0.915
LSTM (+NS, S) 0.988 0.083 0.981 0.976 0.648 0.709 ± 0.13 0.902
LSTM (+NS, L) 0.929 0.233 0.916 0.925 0.916 0.750 ± 0.14 0.916
LSTM (+LM+NS, S) 0.992 0.074 0.981 0.982 0.581 0.715 ± 0.12 0.866
LSTM (+LM+NS, L) 0.986 0.115 0.966 0.978 0.820 0.786 ± 0.11 0.916

Table 19: Full results on the Binary Multiplication language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.959 0.118 0.958 0.952 0.563 0.616 ± 0.12 0.889
Tf (L) 0.933 0.216 0.916 0.928 0.720 0.705 ± 0.09 0.821
Tf (+LM, S) 0.973 0.082 0.974 0.968 0.627 0.573 ± 0.03 0.627
Tf (+LM, L) 0.932 0.255 0.899 0.931 0.582 0.688 ± 0.10 0.807
Tf (+NS, S) 0.975 0.071 0.977 0.958 0.760 0.700 ± 0.11 0.922
Tf (+NS, L) 0.952 0.165 0.941 0.949 0.723 0.703 ± 0.11 0.923
Tf (+LM+NS, S) 0.983 0.054 0.979 0.970 0.617 0.642 ± 0.12 0.884
Tf (+LM+NS, L) 0.972 0.169 0.933 0.961 0.615 0.637 ± 0.07 0.787
RNN (S) 0.937 0.168 0.944 0.930 0.606 0.745 ± 0.13 0.919
RNN (L) 0.936 0.194 0.934 0.931 0.889 0.801 ± 0.07 0.893
RNN (+LM, S) 0.980 0.063 0.980 0.969 0.604 0.672 ± 0.13 0.897
RNN (+LM, L) 0.936 0.192 0.934 0.931 0.597 0.736 ± 0.12 0.919
RNN (+NS, S) 0.963 0.122 0.958 0.955 0.559 0.684 ± 0.14 0.919
RNN (+NS, L) 0.935 0.195 0.934 0.931 0.645 0.750 ± 0.14 0.919
RNN (+LM+NS, S) 0.982 0.060 0.978 0.973 0.610 0.714 ± 0.15 0.919
RNN (+LM+NS, L) 0.956 0.190 0.937 0.945 0.910 0.784 ± 0.10 0.916
LSTM (S) 0.946 0.145 0.951 0.939 0.616 0.734 ± 0.10 0.902
LSTM (L) 0.937 0.189 0.933 0.933 0.774 0.712 ± 0.06 0.792
LSTM (+LM, S) 0.995 0.019 0.994 0.983 0.610 0.664 ± 0.10 0.898
LSTM (+LM, L) 0.961 0.155 0.943 0.952 0.876 0.759 ± 0.12 0.897
LSTM (+NS, S) 0.992 0.046 0.987 0.980 0.652 0.779 ± 0.12 0.919
LSTM (+NS, L) 0.961 0.165 0.942 0.966 0.890 0.784 ± 0.11 0.915
LSTM (+LM+NS, S) 0.997 0.031 0.994 0.986 0.639 0.638 ± 0.07 0.756
LSTM (+LM+NS, L) 0.971 0.123 0.953 0.966 0.771 0.688 ± 0.10 0.915
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Table 20: Full results on the Compute Sqrt language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.956 0.130 0.954 0.948 0.718 0.673 ± 0.10 0.828
Tf (L) 0.937 0.254 0.898 0.926 0.629 0.705 ± 0.10 0.860
Tf (+LM, S) 0.971 0.100 0.964 0.960 0.629 0.623 ± 0.10 0.885
Tf (+LM, L) 0.911 0.264 0.887 0.906 0.629 0.648 ± 0.09 0.782
Tf (+NS, S) 0.973 0.101 0.967 0.967 0.578 0.631 ± 0.11 0.852
Tf (+NS, L) 0.953 0.205 0.919 0.947 0.645 0.639 ± 0.06 0.739
Tf (+LM+NS, S) 0.970 0.094 0.968 0.963 0.592 0.648 ± 0.11 0.856
Tf (+LM+NS, L) 0.960 0.177 0.932 0.952 0.811 0.695 ± 0.11 0.846
RNN (S) 0.892 0.280 0.897 0.884 0.887 0.784 ± 0.12 0.887
RNN (L) 0.892 0.306 0.878 0.884 0.773 0.699 ± 0.13 0.887
RNN (+LM, S) 0.976 0.110 0.965 0.975 0.647 0.681 ± 0.15 0.882
RNN (+LM, L) 0.911 0.281 0.893 0.898 0.806 0.776 ± 0.09 0.878
RNN (+NS, S) 0.982 0.099 0.976 0.982 0.636 0.720 ± 0.15 0.887
RNN (+NS, L) 0.894 0.301 0.874 0.884 0.709 0.767 ± 0.08 0.887
RNN (+LM+NS, S) 0.987 0.080 0.979 0.983 0.644 0.638 ± 0.10 0.887
RNN (+LM+NS, L) 0.917 0.283 0.888 0.910 0.816 0.715 ± 0.14 0.887
LSTM (S) 0.892 0.278 0.897 0.884 0.853 0.836 ± 0.07 0.887
LSTM (L) 0.892 0.307 0.878 0.883 0.887 0.799 ± 0.07 0.887
LSTM (+LM, S) 0.995 0.043 0.989 0.989 0.658 0.653 ± 0.15 0.887
LSTM (+LM, L) 0.985 0.123 0.959 0.982 0.610 0.697 ± 0.13 0.887
LSTM (+NS, S) 0.986 0.076 0.976 0.978 0.576 0.795 ± 0.10 0.887
LSTM (+NS, L) 0.915 0.293 0.869 0.914 0.729 0.830 ± 0.07 0.887
LSTM (+LM+NS, S) 0.995 0.036 0.991 0.994 0.659 0.614 ± 0.08 0.831
LSTM (+LM+NS, L) 0.984 0.140 0.944 0.981 0.613 0.679 ± 0.11 0.887

Table 21: Full results on the Bucket Sort language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.974 0.107 0.973 0.963 0.569 0.629 ± 0.08 0.764
Tf (L) 0.821 0.417 0.806 0.824 0.670 0.727 ± 0.03 0.756
Tf (+LM, S) 0.986 0.029 0.989 0.977 0.556 0.590 ± 0.10 0.858
Tf (+LM, L) 0.988 0.094 0.973 0.975 0.837 0.706 ± 0.11 0.880
Tf (+NS, S) 0.976 0.077 0.978 0.977 0.891 0.616 ± 0.12 0.891
Tf (+NS, L) 0.945 0.200 0.920 0.936 0.878 0.709 ± 0.13 0.884
Tf (+LM+NS, S) 0.997 0.008 0.999 0.992 0.553 0.603 ± 0.10 0.874
Tf (+LM+NS, L) 0.960 0.168 0.947 0.948 0.579 0.572 ± 0.02 0.629
RNN (S) 0.967 0.132 0.966 0.953 0.911 0.766 ± 0.09 0.911
RNN (L) 0.945 0.181 0.942 0.929 0.757 0.769 ± 0.14 0.897
RNN (+LM, S) 0.990 0.063 0.984 0.977 0.575 0.647 ± 0.12 0.880
RNN (+LM, L) 0.960 0.128 0.965 0.953 0.630 0.706 ± 0.10 0.908
RNN (+NS, S) 0.965 0.138 0.964 0.957 0.924 0.778 ± 0.13 0.924
RNN (+NS, L) 0.962 0.126 0.966 0.954 0.957 0.771 ± 0.15 0.957
RNN (+LM+NS, S) 0.962 0.142 0.962 0.950 0.930 0.836 ± 0.09 0.951
RNN (+LM+NS, L) 0.960 0.129 0.965 0.953 0.613 0.690 ± 0.09 0.869
LSTM (S) 0.969 0.095 0.966 0.966 0.546 0.688 ± 0.13 0.967
LSTM (L) 0.971 0.109 0.970 0.956 0.813 0.700 ± 0.09 0.813
LSTM (+LM, S) 0.998 0.013 0.997 0.991 0.592 0.645 ± 0.10 0.774
LSTM (+LM, L) 0.999 0.003 1.000 0.998 0.605 0.621 ± 0.10 0.769
LSTM (+NS, S) 0.996 0.015 0.998 0.992 0.576 0.572 ± 0.04 0.664
LSTM (+NS, L) 0.979 0.087 0.980 0.968 0.592 0.588 ± 0.04 0.671
LSTM (+LM+NS, S) 0.992 0.039 0.991 0.984 0.569 0.554 ± 0.03 0.597
LSTM (+LM+NS, L) 0.989 0.075 0.982 0.981 0.594 0.640 ± 0.09 0.835
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G EDIT DISTANCE FROM LANGUAGES

In this section, we give a formal definition of string–language edit distance and provide an algorithm
for computing it for regular languages.

Definition 10. For any string w and language L, the edit distance D(w,L) is defined as

D(w,L) def
= min

u∈L
D(w, u), (20)

whereD(w, u) is the Levenshtein distance between w and u, or the minimal number of single-symbol
edits (insertions, deletions, and replacements) required to transform w into u.

Suppose L is a regular language over alphabet Σ recognized by DFA A. Then for any w ∈ Σ∗,
D(w,L) can be computed as follows:

1. Construct a nondeterministic weighted finite automaton (WFA) AD(w,·) over the tropical
semiring (R≥0 ∪ {∞},min,+,∞, 0) that assigns weight D(w, u) to every string u (Fig-
ure 3);

2. Lift A to the tropical semiring by assigning weight 0 to all transitions and accept states,
resulting in a WDFA A·∈L;

3. Intersect A·∈L and AD(w,·) using the standard WFA intersection algorithm (Mohri, 2009),
resulting in an automaton AD(·,L) that encodes D(w, u) for every u ∈ L; and

4. Compute the shortest path in AD(·,L) using the Floyd–Warshall algorithm (Floyd, 1962;
Warshall, 1962).

The rest of this section describes these steps in more detail and argues their correctness.

G.1 WEIGHTED FINITE AUTOMATA

We start by defining WFAs, which are used in multiple steps. This is a more general, nondetermin-
istic version of Def. 4.

Definition 11. A weighted finite automaton (WFA) over semiring (K,⊕,⊗,0,1) is a tu-
ple A = (Q,Σ, δ, q0, ρ) such that (i) Q is a finite set of states; (ii) Σ is an alphabet;
(iii) δ : Q × (Σ ∪ {ε}) × Q → K is the transition function; and (iv) q0 ∈ Q is the start state5;
and (v) ρ : Q → K is the accept weight function. If δ(q, a, r) = w, we say that A has a transition

from q to r that scans a with weight w, and we write q
a/w−−→ r ∈ δ.

This definition is nondeterministic in the sense that it permits multiple outgoing transitions on the
same symbol from the same state. We define paths and path weights in a similar way to §2.2.

Definition 12. A path π in WFA A is a sequence of states and transitions

π = r0
a1/w1−−−−→ r1 · · · rm−1

am/wm−−−−−→ rm (21)

such that

1. r0 = q0, and

2. for all i = 0, . . . ,m− 1, ri
ai+1/wi+1−−−−−−−→ ri+1 ∈ δ.

We say that π scans the string a1 · · · am, and that the path weight of π is

w(π)
def
=

(
m⊗
i=1

wi

)
⊗ ρ(rm). (22)

5Some definitions use an initial weight function λ : Q → K to indicate start states. For simplicity, we
assume one start state with a weight of 1.
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Note that in a nondeterministic WFA, multiple paths may scan the same string. We denote the set of
all paths of A as Π(A) and the set of paths that scan w as Π(A, w).
The weight that a WFA assigns to a string is the sum of the weights of all paths that scan that string.

Definition 13. The stringsum of string w ∈ Σ∗ under WFA A is

A(w) def
=

⊕
π∈Π(A,w)

w(π). (23)

We also make use of the sum of the weights of all paths in a WFA.

Definition 14. The allsum of WFA A is

Z(A) def
=

⊕
π∈Π(A)

w(π) (24a)

=
⊕
w∈Σ∗

A(w). (24b)

G.2 ALGORITHM DETAILS

First, we encode the input string w = w1w2 · · ·wn into a chain-like WFA AD(w,·) in the tropical
semiring, as shown in Figure 3.

q0 q1 · · · qn

w1/0
ε/1

a/1 (a ∈ Σ \ {w1})

w2/0
ε/1

a/1 (a ∈ Σ \ {w2})

wn/0
ε/1

a/1 (a ∈ Σ \ {wn})

a/1 (a ∈ Σ) a/1 (a ∈ Σ) a/1 (a ∈ Σ)

Figure 3: Diagram of AD(w,·). The double-circled state has accept weight 0; the others have accept
weight∞.

Given an input string u ∈ Σ∗, every path in AD(w,·) that scans u encodes a way of transforming
w into u. Every time a transition deviates from scanning w by inserting, replacing, or deleting a
symbol, it incurs a cost of 1. Taking the minimum weight of any path that scans u gives D(w, u).
Lemma 1. For all u ∈ Σ∗, AD(w,·)(u) = D(w, u).

Proof. For every wi in w,AD(w,·) either matches a symbol in u withAD(w,·) with cost 0, simulates
the deletion of wi with cost 1 so that it can continue scanning u some other way, or simulates the
replacement of wi with a symbol in u with cost 1. Before and after symbols in w, AD(w,·) can also
simulate the insertion of any number of symbols, each with cost 1. So, a path is in Π(AD(w,·), u)
iff it corresponds to a way of changing w into u, and its weight is the number of edits it performs to
turn w into u. The stringsum gives the minimum number of edits.

AD(w,·)(u) =
⊕

π∈Π(AD(w,·),u)

w(π) (25a)

= min
π∈Π(AD(w,·),u)

w(π) (25b)

= D(w, u) (25c)

Next, we lift the weights ofA into the tropical semiring, resulting in a WDFAA·∈L. The weights of
all transitions and the accept weights of all accept states inA are set to 0 inA·∈L. All other weights
are set to∞. So, A·∈L assigns weight 0 to all strings in L, and weight∞ to all others.
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Lemma 2. For all u ∈ Σ∗,

A·∈L(u) =

{
0 if u ∈ L

∞ otherwise.
(26)

Proof. By definition, A has a path that scans u iff u ∈ L. By construction, A·∈L has a path that
scans u with weight 0 iff A has a path that scans u. Therefore, if u ∈ L, the stringsum A·∈L(u) is
the minimum of one or more path weights of 0, so it is 0. Otherwise, the stringsum is a summation
over an empty set of path weights, which is defined to be∞ in the tropical semiring.

Next, we intersect AD(w,·) and A·∈L using the standard intersection algorithm for WFAs, resulting
in a WFA AD(·,L) that assigns weight D(w, u) to u if u ∈ L and∞ otherwise.

Lemma 3. For all u ∈ Σ∗,

AD(·,L)(u) =

{
D(w, u) if u ∈ L

∞ otherwise.
(27)

Proof. By definition of intersection, the stringsum of the intersected automaton is

AD(·,L)(u)
def
= AD(w,·)(u)⊗A·∈L(u). (28)

Using Lemmas 1 and 2 and Eq. (28), we have

AD(·,L)(u) =

{
D(w, u) + 0 if u ∈ L

D(w, u) +∞ otherwise
(29a)

=

{
D(w, u) if u ∈ L

∞ otherwise.
(29b)

Finally, we compute the allsum of AD(·,L), which gives us the minimum edit distance from w to
any string u ∈ L. Let AD(·,L) = (Q,Σ, δ, q0, ρ). To compute the allsum, we first use the Floyd–
Warshall all-pairs shortest path algorithm6 to compute the shortest path weight from q0 to r, denoted
A[q0, r], for every r ∈ Q. We then compute the allsum as

Z(AD(·,L)) =
⊕
r∈Q

A[q0, r]⊗ ρ(r) (30a)

= min
r∈Q

A[q0, r] + ρ(r). (30b)

This gives us the edit distance D(w,L).
Theorem 1. Z(AD(·,L)) = D(w,L).

Proof. By definition, the allsum is

Z(AD(·,L))
def
=
⊕
u∈Σ∗

AD(·,L)(u). (31)

Using Lemma 3 and Def. 10, we have

Z(AD(·,L)) = min
u∈Σ∗

AD(·,L)(u) (32a)

= min
u∈L
D(w, u) (32b)

= D(w,L). (32c)

6This is a special case of Lehmann’s algorithm (Algorithm 4). The only difference is that we do not need to
compute the star operation in Algorithm 4, line 7, which is always 0 in the tropical semiring.
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H PERFORMANCE VS. INPUT LENGTH

We show recognition cross-entropy (lower is better) vs. input length for the models shown under
“Expressivity” in Table 2. At every length n on the x-axis that is a multiple of 10, we show the
average cross-entropy of the model on all strings in the long test set with lengths in the range [n −
10, n + 10] (this smooths the curves for the sake of readability). The shaded regions indicate one
standard deviation. The horizontal dashed lines indicate the maximum lengths in the training and
validation sets. In general, we find that cross-entropy usually does not increase significantly on
longer strings. Notable exceptions include Repeat 01, Parity, Modular Arithmetic, and Dyck-(2, 3)
for the transformer and Majority for the RNN. This is in contrast to Delétang et al. (2023), who found
that models often fail catastrophically on longer input strings in their string-to-string transduction
setup.
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(e) Modular Arithmetic
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Figure 4: Recognition cross-entropy (lower is better) vs. input length for the models shown under
“Expressivity” in Table 2.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500

0

0.5

1

1.5

↑ Incorrect

Input Length

C
ro

ss
-E

nt
ro

py
←

Tf

LSTM

RNN

(g) First

0 100 200 300 400 500

0

1

2

↑ Incorrect

Input Length

C
ro

ss
-E

nt
ro

py
←

Tf

LSTM

RNN

(h) Majority

0 100 200 300 400 500

0

0.5

1

Input Length

C
ro

ss
-E

nt
ro

py
←

Tf

LSTM

RNN

(i) Stack Manipulation

0 100 200 300 400 500

0

0.5

1

1.5

↑ Incorrect

Input Length

C
ro

ss
-E

nt
ro

py
←

Tf

LSTM

RNN

(j) Marked Reversal

0 100 200 300 400 500

0

1

2

↑ Incorrect

Input Length

C
ro

ss
-E

nt
ro

py
←

Tf

LSTM

RNN

(k) Unmarked Reversal
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(l) Marked Copy
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(m) Missing Duplicate
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Figure 4: Recognition cross-entropy (lower is better) vs. input length for the models shown under
“Expressivity” in Table 2.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500

0

0.5

1

Input Length

C
ro

ss
-E

nt
ro

py
←

Tf

LSTM

RNN

(o) Binary Addition

0 100 200 300 400 500

0

0.5

1

Input Length

C
ro

ss
-E

nt
ro

py
←

Tf

LSTM

RNN

(p) Binary Multiplication
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Figure 4: Recognition cross-entropy (lower is better) vs. input length for the models shown under
“Expressivity” in Table 2.
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