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Abstract

Medical report generation, which aims to automatically generate a long and coher-
ent report of a given medical image, has been receiving growing research interests.
Existing approaches mainly adopt a supervised manner and heavily rely on cou-
pled image-report pairs. However, in the medical domain, building a large-scale
image-report paired dataset is both time-consuming and expensive. To relax the
dependency on paired data, we propose an unsupervised model Knowledge Graph
Auto-Encoder (KGAE) which accepts independent sets of images and reports
in training. KGAE consists of a pre-constructed knowledge graph, a knowledge-
driven encoder and a knowledge-driven decoder. The knowledge graph works as the
shared latent space to bridge the visual and textual domains; The knowledge-driven
encoder projects medical images and reports to the corresponding coordinates in
this latent space and the knowledge-driven decoder generates a medical report
given a coordinate in this space. Since the knowledge-driven encoder and decoder
can be trained with independent sets of images and reports, KGAE is unsupervised.
The experiments show that the unsupervised KGAE generates desirable medical
reports without using any image-report training pairs. Moreover, KGAE can also
work in both semi-supervised and supervised settings, and accept paired images
and reports in training. By further fine-tuning with image-report pairs, KGAE
consistently outperforms the current state-of-the-art models on two datasets.

1 Introduction

Medical images, such as radiology and pathology images, and their corresponding reports are widely
used for clinical diagnosis and treatment [8, 11]. A medical report is usually a paragraph of multiple
sentences which describes both the normal and abnormal findings in the medical image. In clinical
practice, writing a report can be time-consuming and tedious for experienced radiologists, and
error-prone for inexperienced radiologists [4]. Therefore, given the large volume of medical images,
automatically generating reports can improve current clinical practice in diagnostic radiology and
assist radiologists in clinical decision-making [15, 25]. Specifically, it can relieve radiologists from
such heavy workload and alert radiologists of the abnormalities to avoid misdiagnosis and missed
diagnosis. Therefore, automatic medical report generation attracts remarkable attention in both
artificial intelligence and clinical medicine.

Recently, inspired by the great success of neural machine translation [2, 38, 49, 50, 48], image
captioning [44, 39, 46, 28, 30, 29] and medical imaging analysis [47, 51, 52], the data-driven deep
∗Corresponding authors.
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Figure 1: Illustration of our Knowledge Graph Auto-Encoder, which consists of a pre-constructed
knowledge graph, a knowledge-driven encoder and a knowledge-driven decoder. The Green and Red
lines denote the data flow in the training process and testing process of report generation, respectively.

neural models, particularly those based on the encoder-decoder frameworks [15, 16, 25, 22, 41, 45,
53, 54, 6], have achieved great success in advancing the state-of-the-art of medical report generation.
However, these models are trained in a supervised learning manner and heavily rely on labeled
paired image-report datasets [9, 17], which are not easy to acquire in the real world. Specifically, the
medical-related data can only be manually labeled by professional radiologists, and also involves
privacy issues. Therefore, the medical report generation datasets are particularly labor-intensive
and expensive to obtain. As a result, the scales of existing widely-used datasets for medical report
generation models [16, 25, 22, 23], i.e., MIMIC-CXR (0.22M samples) [17] and IU X-ray (4K
samples) [9], are relatively small compared to image recognition datasets, e.g., ImageNet (14M
samples) [10], and image captioning datasets, e.g., Conceptual Captions (3.3M samples) [36]. In
addition, the MIMIC-CXR and IU X-Ray datasets only include Chest X-Ray images, for other types
of medical images (MRI, Dermoscopy, Retinal, etc.) of other body parts (brain, skin, eye, etc.), the
image-report pairs could be much less or even unavailable. Therefore, to relax the reliance on the
paired data sets, making use of all available data, like independent image or report sets, is becoming
increasingly important.

In this paper, we propose an unsupervised model Knowledge Graph Auto-Encoder (KGAE), which
utilizes independent sets of images and reports in training (the image and report set are separate
and have no overlap). KGAE consists of a pre-constructed knowledge graph, a knowledge-driven
encoder and a knowledge-driven decoder. As shown in Figure 1, the knowledge graph works as
the shared latent space of images and reports. The knowledge-driven encoder can take either the
image I or the report R as queries and project them to corresponding coordinates GI and GR in the
latent space. In this manner, since GI and GR share the same latent space, we can use positions in
latent space to measure the relationship between images and reports which narrows the gap between
visual and textual domains. In brief, to bridge the gap between vision and language domains without
training on the pairs of images and reports, we adopt the knowledge graph to create a latent space
and propose a knowledge-driven encoder, which includes a common mapping function to project
images and reports to the same latent space. As a result, our encoder can extract the image and report
knowledge representations, i.e., the knowledge related to the image and report, they (image, report
knowledge) share the common latent space, which allows our model to bridge the gap between vision
and language domains without the training on the pairs of image and report. Next, we introduce
the knowledge-driven decoder to exploit GI and GR to generate the report. In the training stage,
we estimate the parameters of the decoder by reconstructing the input report R based on GR, i.e.,
R→ GR → R auto-encoding pipeline; In the prediction stage, we directly input GI into the trained
decoder to generate the report. In this way, our approach can produce desirable reports without any
labeled image-report pairs.

Overall, the contributions of this paper are as follows:

• In this paper, we make the first attempt to conduct unsupervised medical report generation
where the image-report pairs are not available. To this end, we propose the Knowledge Graph
Auto-Encoder (KGAE). By leveraging a pre-constructed knowledge graph, we introduce
the knowledge-driven encoder and decoder which are trained with independent sets of
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images and reports. According to the experimental results, the unsupervised KGAE can
even outperform several supervised approaches.

• In addition to the unsupervised mode, KGAE can also be applied in a semi-supervised or
supervised manner. Under the semi-supervised setting, by using only 60% of paired dataset,
KGAE is able to achieve competitive results with current state-of-art models; Under the
supervised setting, by training on fully paired datasets as in existing works, KGAE can set
new state-of-the-art performances on the IU X-ray and MIMIC-CXR, respectively.

• The analysis, both quantitative and qualitative, as well as a human evaluation conducted by
professional radiologists, further proves the effectiveness of our approach.

2 Related Works
Medical report generation aims to generate a relatively long paragraph to describe a given medical
image. It is similar to the image captioning task [5], which aims to generate a sentence to describe a
given image. In image captioning, the encoder-decoder framework [39], where the encoder [20, 12]
computes visual representations for the image and the decoder [13, 38] generates a target sentence
based on the visual representations, has achieved great success [1, 31, 35, 44]. However, instead of
only generating one single sentence, medical report generation aims to generate a long paragraph
including multiple structured sentences that describe both the normal and abnormal parts [25, 15].
To this end, given the success of encoder-decoder framework on image captioning, most existing
medical report generation models attempt to exploit the hierarchical LSTM (HLSTM) [15, 16, 19] or
Transformer [6] to generate an accurate, long and coherent report. However, existing models require
the paired image-report datasets, which are time-consuming and expensive to collect. In this paper,
we propose the unsupervised model Knowledge Graph Auto-Encoder (KGAE) which doesn’t need
paired images and reports.

Note that although the knowledge graph has been integrated in existing medical report generation
models [54, 22], these approaches are supervised and require paired images and reports. Thus, their
objectives and motivations of using knowledge graph are different from our work. In detail, existing
knowledge-graph based medical report generation methods aim to adopt the knowledge graph to boost
the performance of supervised models. However, in our work, we aim to generate a medical report
without using any coupled image-report training pairs, i.e., unsupervised medical report generation.
A key challenge of unsupervised medical report generation is to bridge the gap between vision and
language domains. To this end, we adopt the knowledge graph to create a latent space and propose a
knowledge-driven encoder to project image and report to the same latent space.

3 Approach
We first formulate the conventional supervised medical report generation problems; Then, we describe
the proposed Knowledge Graph Auto-Encoder for unsupervised medical report generation in detail.

3.1 Conventional Supervised Medical Report Generation Models
Given a medical image I , the goal is to generate a descriptive report R. Most models [15, 16, 6]
normally include an image encoder and a report decoder, which can be formulated as:

Image Encoder : I → I ′; Report Decoder : I ′ → R, (1)

where I ′ ∈ RNI×d denotes the image embeddings extracted by the image encoder, e.g., ResNet-50
[12]. Then, I ′ is used to guide the generation of the target report R in the report decoder, e.g., LSTM
[13] and Transformer [38]. During training, given the ground truth report for the input image, we
can train the encoder-decoder model by minimizing a supervised training loss, e.g., cross-entropy
loss. However, paired image-report (I-R) datasets are particularly labor-intensive and expensive to
obtain. Therefore, in this paper, we aim to relax the reliance on the paired datasets and make use of
the independent sets of images and reports instead.

3.2 Knowledge Graph Auto-Encoder
As shown in Figure 1, the proposed KGAE includes a knowledge graph, a knowledge-driven encoder
and a knowledge-driven decoder, which will be described in detail in the following sections.

Knowledge Graph The motivation of using the knowledge graph is that writing medical reports
usually requires particular domain knowledge [11, 22]. Therefore, we can utilize the knowledge
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graph, which models the domain-specific knowledge structure, to serve as a bridge to correlate
the knowledge representations of the visual and textual domains. In particular, we construct an
off-the-shelf global medical knowledge graph G = (V,E) covering the common abnormalities and
normalities, where V = {vi}i=1:NKG ∈ RNKG×d is a set of nodes and E = {ei,j}i,j=1:NKG is a set of
edges. In detail, based on the report corpus, i.e., MIMIC-CXR [17], we consider the NKG frequent
clinical abnormalities (e.g., "enlarged heart size", "pleural effusion", and "bibasilar consolidation")
and normalities (e.g., "heart size is normal" and "lungs are clear") as nodes. The edge weights are
calculated by the normalized co-occurrence of different nodes computed from report corpus. Please
note that this knowledge graph is built purely from the training set of MIMIC-CXR, thus there is
no label leakage. After that, the knowledge graph is embedded by a graph embedding module, i.e.,
graph convolution network [32, 24], which is implemented as follows:

v′i = vi + ReLU(

NKG∑
j=1

ei,jWvvj), (2)

where ReLU(·) represents the ReLU activation function and Wv ∈ Rd×d is the learnable matrix. As
a result, we can acquire a set of node embeddings V ′ = {v′1, v′2, . . . , v′NKG

} ∈ RNKG×d. It is worth
noting that more complex graph structures could be constructed by using more large-scale medical
textbooks. Therefore, our model is not limited to the currently constructed graph and could provide a
good basis for the research of unsupervised medical report generation for other domains.

Knowledge-driven Encoder The knowledge-driven encoder (KE) is designed to utilize the knowl-
edge graph G to extract knowledge representations (GI ∈ RNI×d and GR ∈ RNR×d) of both image I
and report R to bridge the vision and the language domains, which can be formulated as:

GI = KEI(I,G); GR = KER(R,G). (3)

In implementations, as shown in Figure 1, we first adopt the ResNet-50 [12] and the Transformer
[38] as the image embedding module and report embedding module to embed the image I and report
R, acquiring the image embeddings I ′ ∈ RNI×d and report embeddings R′ ∈ RNR×d, respectively.
Next, to extract the knowledge representations from knowledge graph G, we adopt the attention
mechanism [38] to implement the KE. The motivation stems from that the attention mechanism can
compute the association weights between different features and allows probabilistic many-to-many
relations instead of monotonic relations, as in [38, 44, 29]. As a result, we take I ′ and R′ as the
queries, and take the knowledge graph G (i.e., V ′ = {v′1, v′2, . . . , v′NKG

} ∈ RNKG×d) as the lookup
matrix:
GI = KEI(I,G) =F(AttentionI(I

′, V ′)); GR = KER(R,G) = F(AttentionR(R′, V ′))

Attention(x, y) = softmax

(
xWq (yWk)

>
√
d

)
yWv.

(4)

where x ∈ RNx×dx , y ∈ RNy×dy ; Wq ∈ Rdx×dx , Wk ∈ Rdy×dy and Wv ∈ Rdy×dy (dx = dy) are
learnable parameters. F is implemented as two fully-connected (FC) layers with a ReLU in between,
i.e., FC-ReLU-FC. The resulted GI ∈ RNI×d and GR ∈ RNR×d turn out to be a set of attended (i.e.,
extracted) knowledge related to the image and report. The knowledge representations GI and GR
share the common latent space which bridges the vision and the language domains. Note that the F
used in KEI and KER shares the same parameters and is thus introduced to further boost the bridging
capabilities of different modalities. It means that we adopt two KEs, i.e., KEI and KER, and each KE
includes an attention model as well as a common mapping function F . The only shared weights of
KEI and KER are the parameters of F , and the parameters of attention models are independent.

Knowledge-driven Decoder The decoder is designed to generate the reports based on the graph
representations GI or GR. For clarity, we use Gk to represent the GR and GI during the training and
testing stages, respectively. In implementations, since medical report generation requires generating a
long paragraph, we choose the (three-layer) Transformer [38] as the basic module of our decoder and
incorporate the proposed Knowledge-driven Attention (KA) to effectively model the long sequences.

At each decoding step t, the decoder takes the embedding of current input word xt = wt + et ∈ R2d

as input, where wt and et denote the word embedding and fixed position embedding, respectively,
and generate each word rt in report R = {r1, r2, . . . , rT }, which can be defined as follows:

ht = Attention(xt, x1:t)
h′t = KA(ht,Gk, B)

, where Gk =

{
GR, Training
GI , Testing ; rt ∼ pt = softmax(FFN(h′t)Wp), (5)
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where FFN stands for Feed-Forward Network in the original Transformer [38]; Wp ∈ R2d×|D| is the
learnable parameter (|D| denotes the vocabulary size); B represents the knowledge bank in the KA.

In particular, the knowledge-driven attention (KA) is inspired by the success of many works that
attempt to augment a working memory into the network, e.g., memory network. Memory network pre-
serves a dynamic knowledge base for subsequent inference [37, 21, 42, 43, 40, 46, 33]. For example,
[37, 21] and [42, 43] proposed to preserve the context of a document and visual knowledge to solve
language modeling and visual question answering, respectively. In this paper, since the knowledge
representations Gk are extracted from the off-the-shelf global knowledge graph G, we incorporate a
knowledge memory mechanism to distill and preserve the fine-grained medical knowledge related
to report generation task, which encourages our decoder to generate more accurate and desirable
reports. Specifically, we introduce the knowledge bank B = {b1, b2, . . . , bNB} ∈ RNB×d, where NB
stands for the total number of the knowledge corresponding to report generation. As a result, given
the graph representations Gk ∈ RNk×d, the knowledge memory mechanism is defined as follows:

Bk = softmax
(
GkB>

)
B. (6)

Through above operation, each feature/vector in the Gk ∈ RNk×d can distill the fine-grained knowl-
edge preserved in B to acquire Bk ∈ RNk×d for accurate report generation.

Based on the above mechanism, the knowledge-driven attention in Eq. (5) is defined as:

h′t = KA(ht,Gk, B) = Attention(ht, [Gk;Bk]) = Attention
(
ht,
[
Gk; softmax

(
GkB>

)
B
])

. (7)

where [·; ·] denotes the concatenation operation. It is worth noting that these operations are all
differentiable, thus the bank B can be learned in an end-to-end fashion.

In our subsequent analysis, we will show that the introduced knowledge memory mechanism indeed
distills and preserves the desired medical knowledge, and thus boost the generation of reports.

3.3 Implementation Details

Unsupervised Training Details To train our KGAE in an unsupervised manner, instead of using
the paired image-report dataset in the conventional supervised model, we only require an image set
CheXpert [14], which includes 224,316 X-ray images, and a separate report corpus MIMIC-CXR
[17] + IU X-ray [9], which includes 222,758 + 2,770 = 225,528 reports2.

In detail, to train our knowledge-driven encoder KEI and KER (see Eq. (4)), we feed the GI and GR
into a common multi-label classification network [54, 15] trained with binary cross entropy loss for 14
common radiographic observations classification3. In this way, our encoder can extract the knowledge
representations GI and GR of both image and report in a common latent space, effectively bridging the
vision and the language domains. To train the knowledge-driven decoder, as well as the knowledge
bank B (see Eq. (5)), since there are no coupled image-report pairs, we propose to reconstruct the
report R based on the GR. Therefore, through Eq. (5), taking the input report R = {r1, r2, . . . , rT }
as the ground truth report, we can train our approach by minimizing the cross-entropy loss:

LCE = −
T∑

t=1

log (p (rt | r1:t−1)) . (8)

In this way, we can train our decoder in the R→ GR → R auto-encoding pipeline.

During testing, we first adopt the knowledge-driven encoder to extract the knowledge representations
GI of the test image (see Eq. (4)). Then, we directly feed GI into the decoder to generate final report
in the I → GI → R pipeline (see Eq. (5)). In this way, our approach can relax the reliance on the
image-report pairs. In our following experiments, we validate the effectiveness of our approach,
which even outperforms some supervised approaches.

Semi-Supervised and Supervised Training Details To further validate the effectiveness of our
approach, we fine-tune the unsupervised KGAE using partial and full image-report pairs to acquire
the KGAE-Semi(-Supervised) and KGAE-Supervised, respectively, where the former can evaluate the
performance of our approach under limited labeled pairs for training and the latter can compare the

2There are no paired image-report samples between CheXpert and MIMIC-CXR+IU X-ray.
3Atelectasis, Cardiomegaly, Consolidation, Edema, Enlarged Cardiomediastinum, Fracture, Lung Lesion,

Lung Opacity, No Finding, Pleural Effusion, Pleural Other, Pneumonia, Pneumothorax, Support Devices.
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performance of KGAE with state-of-the-art supervised approaches. In the (semi-)supervised setting,
given the image-report pairs, i.e., I-R, we first incorporate the original visual information into the
knowledge representation GI , and then train our KGAE by generating the ground truth report in the
I → GI → R pipeline and minimizing the cross-entropy loss in Eq. (8). During testing, we also
follow the unsupervised setting to generate the final report in the I → GI → R pipeline.

4 Experiments
We first introduce the datasets, metrics and detailed settings used for evaluation. Then, we present the
evaluation of our approach under the unsupervised, semi-supervised and supervised training settings.

4.1 Datasets, Metrics and Settings

Datasets In this paper, we adopt the test sets of IU X-ray [9] and MIMIC-CXR [17] for evaluation.
All protected health information (e.g., patient name and date of birth) was de-identified. In particular,
the IU X-ray [9] is a widely-used public benchmark dataset for medical report generation and contains
7,470 chest X-ray images associated with 3,955 fully de-identified medical reports. Each report is
composed of impression, findings and indication sections, etc. [22]. Following [25], our method also
focuses on the findings section as it is the most important component of reports. Then, following
[16, 22, 25, 6], we randomly select 70%-10%-20% image-report pairs of dataset to form the training-
validation-testing sets. The MIMIC-CXR [17] includes 377,110 chest x-ray images associated with
227,835 reports. The dataset is officially split into 368,960 images (222,758 reports) for training,
2,991 images (1,808 reports) for validation and 5,159 images (3,269 reports) for testing. It is worth
noting that we focus on the unsupervised medical report generation, where the image-report pairs are
not available, thus the image-report training pairs of both the IU X-ray and MIMIC-CXR datasets
are discarded and are not used in our unsupervised training stage. Only the training reports of
MIMIC-CXR and IU X-ray, i.e., 222,758 + 2,770 = 225,528 reports, are used as the independent
report corpus to train our unsupervised model. Only under the (semi-)supervised training setting, we
will adopt the image-report training pairs to train our approach.

Metrics To fairly compare with existing models [25, 6], we adopt the evaluation toolkit [5] to
calculate the widely-used natural language generation metrics, i.e., BLEU [34], METEOR [3] and
ROUGE-L [26], which measure the match between the generated reports and ground truth reports,
but are not specialized for the abnormalities in the reports. Therefore, to measure the accuracy of
descriptions for clinical abnormalities, we further report clinical efficacy metrics following the work
of Chen et al. [6]. The clinical efficacy metrics are calculated by comparing the generated reports
with ground truth reports in 14 different categories related to thoracic diseases and support devices,
producing the Precision, Recall and F1 scores.

Settings The size d is set to 256. For the attention mechanism in Eq. (4) and Eq. (5), we adopt the
multi-head attention [38], the number of heads n in multi-head attention is set to 8. The intermediate
dimension in F , i.e., Eq. (4), is set to 1024. Based on the average performance on the validation set,
the NB in knowledge bank, i.e., Eq. (6), is set to 10,000. The NKG in the knowledge graph is set to
200. In our knowledge-driven encoder, the image embedding module adopts the ResNet-50 [12] pre-
trained on ImageNet [10] and fine-tuned on CheXpert dataset [14] to extract the image embeddings
in the shape of 7 × 7 × 2048, which will be projected to d = 256, acquiring I ′ ∈ R49×256, i.e.,
NI = 49; The report embedding module is implemented by the Transformer [38] equipping with
the self-attention mechanism provided in Lin et al. [27]; NR = NI = 49. In both unsupervised and
(semi-)supervised settings (see Section 3.3), the batch size is set to 16 and Adam optimizer [18] with
a learning rate of 1e-4 is used for parameter optimization. Before testing on the IU X-ray/MIMIC-
CXR, we further only employ the training data from IU X-ray/MIMIC-CXR to train the model. All
re-implementations and our experiments were run on 8 V100 GPUs.

4.2 Automatic Evaluation

We evaluate the performance of our approach under unsupervised, semi-supervised and supervised
settings. The results are shown in Table 1, Table 2 and Figure 2. We select several supervised
methods, including a recently state-of-the-art model R2Gen [6], for comparison. These models follow
the encoder-decoder architecture, trained on the full pairs of images and reports.

Unsupervised Setting As shown in Table 1 and Table 2, our unsupervised model KGAE achieves
competitive results with some supervised models in both IU X-ray and MIMIC-CXR datasets, and
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Table 1: Performance in terms of natural language generation metrics on the IU X-ray and MIMIC-
CXR. B-n, M and R-L are short for BLEU-n, METEOR and ROUGE-L, respectively. Higher is better
in all columns. It is worth noting that the KGAE is trained in an unsupervised manner, KGAE-Semi
is trained 60% paired data, KGAE-Supervised and existing methods are trained with full paired data.

Methods Year Ratio of
Pairs

IU X-ray [9] MIMIC-CXR [17]

B-1 B-2 B-3 B-4 M R-L B-1 B-2 B-3 B-4 M R-L

NIC [39] 2015 100% 0.216 0.124 0.087 0.066 - 0.306 0.299 0.184 0.121 0.084 0.124 0.263
AdaAtt [31] 2017 100% 0.220 0.127 0.089 0.068 - 0.308 0.299 0.185 0.124 0.088 0.118 0.266
Att2in [35] 2017 100% 0.224 0.129 0.089 0.068 - 0.308 0.325 0.203 0.136 0.096 0.134 0.276
Transformer [6] 2020 100% 0.396 0.254 0.179 0.135 0.164 0.342 0.314 0.192 0.127 0.090 0.125 0.265
M2 Trans. [7] 2020 100% 0.437 0.290 0.205 0.152 0.176 0.353 0.238 0.151 0.102 0.067 0.110 0.249
R2Gen [6] 2020 100% 0.470 0.304 0.219 0.165 0.187 0.371 0.353 0.218 0.145 0.103 0.142 0.277

KGAE
Ours

0% 0.417 0.263 0.181 0.126 0.149 0.318 0.221 0.144 0.096 0.062 0.097 0.208
KGAE-Semi 60% 0.497 0.320 0.232 0.171 0.189 0.379 0.352 0.219 0.149 0.108 0.147 0.290
KGAE-Supervised 100% 0.512 0.327 0.240 0.179 0.195 0.383 0.369 0.231 0.156 0.118 0.153 0.295

Table 2: Performance of automatic evalu-
ation in terms of clinical efficacy metrics,
which measure the accuracy of descriptions
for clinical abnormalities, on the test set of
MIMIC-CXR dataset. Higher is better in
all columns.

Methods Year Ratio of
Pairs

MIMIC-CXR [17]

Precision Recall F1

NIC [39] 2015 100% 0.249 0.203 0.204
AdaAtt [31] 2017 100% 0.268 0.186 0.181
Att2in [35] 2017 100% 0.322 0.239 0.249
Up-Down [1] 2018 100% 0.320 0.231 0.238
M2 Trans. [7] 2020 100% 0.197 0.145 0.133
Transformer [6] 2020 100% 0.331 0.224 0.228
R2Gen [6] 2020 100% 0.333 0.273 0.276

KGAE
Ours

0% 0.214 0.158 0.156
KGAE-Semi 60% 0.360 0.302 0.307
KGAE-Supervised 100% 0.389 0.362 0.355
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Figure 2: Performance of re-implemented state-of-the-
art model R2Gen [6] and our approach on the test sets
with respect to various amount of paired data used for
training. The margins in different ratios are shown with
the polyline and the right y-axis. As we can see, our
approach consistently outperforms the R2Gen.

even outperforms several supervised models. Specifically, on the IU X-ray dataset, Table 1 shows
that KGAE surpasses the NIC [44], AdaAtt [31] and Att2in [35] in terms of all metrics, and the
Transformer [6] in terms of BLEU-1,2,3. On the MIMIC-CXR dataset, Table 2 shows that KGAE
outperforms theM2 Trans. [7] in terms of Precision, Recall and F1. The competitive results prove
the effectiveness of our approach in addressing the unsupervised medical report generation, and thus
can generate desirable medical reports without the training on the pairs of image and report.

Semi-Supervised Setting To further prove the effectiveness of our approach, we fine-tune the
unsupervised KGAE using partial downstream paired image-report datasets (see Section 3.3), resulting
in the KGAE-Semi. To this end, in Figure 2, we evaluate the performance of our approach on both
IU X-ray and MIMIC-CXR datasets with respect to the increasing amount of paired data. For a
fair comparison, we also re-train the state-of-the-art model R2Gen [6] using the same amount of
pairs. As we can see, our model outperforms the R2Gen under all ratios of paired dataset used
for training. It is worth noting that the fewer the image-report pairs, the larger the margins, e.g.,
under the very limited pairs setting (20% of paired datasets), our approach significantly surpasses the
R2Gen by 8.5% absolute BLEU-4 score on IU X-ray and 9.8% absolute F1 score on MIMIC-CXR.
Intuitively, since our approach can relax the reliance on the paired datasets, we can make use of
available unpaired image and report data as a solid bias for medical report generation task. Table 1
and Table 2 further prove the effectiveness of our approach, which achieves results competitive with
current state-of-the-art models by using only 60% of paired dataset.

Supervised Setting We fine-tune the unsupervised KGAE using full image-report pairs, acquiring
the KGAE-Supervised model (see Section 3.3). Table 1 and Table 2 show that KGAE-Supervised sets
the new state-of-the-art results on the two datasets in all metrics. Moreover, in terms of the clinical

7



Table 3: We invite three professional clinicians to conduct human evaluation for comparing our
approach withM2 Trans. [7] and R2Gen [6] under various amount of pairs for training in terms
of the comprehensiveness of the generated true abnormalities and the faithfulness of the generated
normalities and abnormalities to the ground truth reports. All values are reported in percentage (%).

Metrics

KGAE (0%)
vs.M2 Trans. (100%)

KGAE (0%)
vs. R2Gen (100%)

KGAE-Semi (20%)
vs. R2Gen (20%)

KGAE-Supervised (100%)
vs. R2Gen (100%)

Loss Tie Win Loss Tie Win Loss Tie Win Loss Tie Win

Faithfulness 34 18 48 62 15 23 21 10 69 25 22 53
Comprehensiveness 27 20 53 57 17 26 24 11 65 32 21 47

efficacy metrics, our approach achieves 0.389 precision score, 0.362 recall score and 0.355 F1 score,
outperforming the state-of-the-art model R2Gen [6]. The superior clinical efficacy scores demonstrate
the capability of our approach to produce higher quality descriptions for clinical abnormalities than
existing models.

Overall Combining the results of unsupervised, semi-supervised and supervised settings, the
proposed KGAE can relax the dependency on the paired datasets, and thus makes the medical report
generation model use the available separate image and report data to boost the performance. The
advantages under the scenarios with limited labeled pairs (i.e., semi-supervised setting) show that
KGAE might be applied to other medical images (MRI, Dermoscopy, Retinal, etc.), where the
coupled images and reports pairs could be much less or even unavailable.

4.3 Human Evaluation

We conduct human evaluations to verify the effectiveness of KGAE in clinical practice. Specifically,
to assist radiologists in clinical decision-making and reduce their workload, it is important to generate
accurate reports (faithfulness), i.e., the model does not generate normalities and abnormalities that
does not exist according to doctors, with comprehensive abnormalities (comprehensiveness), the
model does not leave out the abnormalities. Therefore, we randomly select 100 samples from
the MIMIC-CXR and invite three professional clinicians to compare our approach and baselines
independently. The clinicians are unaware of which model generates these reports. The results are
shown in Table 3. As we can see, under the unsupervised setting, our approach achieves competitive
results with the supervised model, outperforming theM2 Trans with winning pick-up percentages.
Under the (semi-)supervised setting, our method is better than state-of-the-art model R2Gen [6] in all
metrics, especially for the semi-supervised setting (20% of paired dataset), our method substantially
surpasses the R2Gen, which is in accordance with the automatic evaluation, by 69− 21 = 48 and
65− 24 = 41 points in terms of the faithfulness and comprehensiveness metrics, respectively.

5 Analysis
In this section, we conduct several analysis to better understand our proposed approach.

5.1 Knowledge Graph Sensitivity

In this section, to evaluate the knowledge graph sensitivity, we evaluate the performances using
different knowledge graphs defined on IU X-Ray only, MIMIC-CXR only, both MIMIC-CXR and IU
X-Ray. Table 4 shows the results of KGAE (0%) and KGAE-Supervised (100%) on the IU X-ray
dataset. As we can see, our KGAE using different knowledge graphs can consistently outperform
several existing supervised models, i.e., NIC, AdaAtt, Att2in, across all metrics (Table 1). Similarly,
our KGAE-Supervised with different knowledge graphs can also consistently outperform existing
state-of-the-art model, i.e., R2Gen (Table 1). The results prove the robustness of our proposed model
to the pre-defined knowledge graph. Therefore, this work could provide a good basis or starting point
for the research of unsupervised medical report generation in other clinical domains such as MRI and
Dermoscopy.

5.2 Ablation Study

In Table 5, we conduct quantitative analysis to better understand our approach under both the
unsupervised and supervised training settings. For different ablation settings, the KGAE-Supervised
is acquired by further fine-tuning the KGAE using image-report pairs.
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Table 4: Analysis of the knowledge graph sensitivity. Performance of our approach using different
knowledge graphs defined on IU X-Ray only, MIMIC-CXR only, both MIMIC-CXR and IU X-Ray.

Methods Ratio of
Pairs Knowledge Graphs

IU X-ray [9]

B-1 B-2 B-3 B-4 M R-L

KGAE 0%
IU X-Ray 0.425 0.271 0.185 0.114 0.123 0.310
MIMIC-CXR 0.417 0.263 0.181 0.126 0.149 0.318
MIMIC-CXR + IU X-Ray 0.419 0.260 0.180 0.124 0.143 0.321

KGAE-Supervised 100%
IU X-Ray 0.519 0.331 0.235 0.174 0.191 0.376
MIMIC-CXR 0.512 0.327 0.240 0.179 0.195 0.383
MIMIC-CXR + IU X-Ray 0.505 0.323 0.239 0.181 0.198 0.385

Table 5: We conduct the quantitative analysis under both the unsupervised setting (KGAE) and
supervised setting (KGAE-Supervised). We analysis the effect of the shared F in the encoder
(Eq. (4)), and the effect of the number of the knowledge in the decoder’s knowledge bank B (Eq. (6)).

Methods Settings F B
IU X-ray [9] MIMIC-CXR [17]

B-1 B-2 B-3 B-4 M R-L B-1 B-2 B-3 B-4 M R-L

KGAE (0%)

(a) - - 0.291 0.170 0.127 0.086 0.120 0.301 0.166 0.095 0.064 0.032 0.070 0.174
(b)

√
- 0.352 0.227 0.154 0.109 0.133 0.313 0.192 0.118 0.079 0.045 0.085 0.187

(c)
√

5,000 0.403 0.252 0.170 0.117 0.144 0.316 0.211 0.137 0.093 0.058 0.093 0.202
(d)

√
15,000 0.412 0.260 0.178 0.121 0.148 0.320 0.217 0.140 0.092 0.059 0.101 0.205

Full Model
√

10,000 0.417 0.263 0.181 0.126 0.149 0.318 0.221 0.144 0.096 0.062 0.097 0.208

KGAE-Supervised (100%)

(e) - - 0.482 0.310 0.219 0.166 0.184 0.373 0.323 0.204 0.128 0.104 0.115 0.266
(f)

√
- 0.470 0.304 0.217 0.162 0.181 0.368 0.320 0.206 0.129 0.101 0.118 0.267

(g)
√

5,000 0.505 0.323 0.232 0.178 0.190 0.379 0.363 0.228 0.152 0.115 0.147 0.290
(h)

√
15,000 0.498 0.315 0.221 0.170 0.186 0.374 0.368 0.235 0.158 0.114 0.150 0.293

Full Model
√

10,000 0.512 0.327 0.240 0.179 0.195 0.383 0.369 0.231 0.156 0.118 0.153 0.295

As we can see, under the unsupervised setting, both the introduced shared F and knowledge bank B
can significantly boost the performance, which proves our arguments and verifies the effectiveness of
our approach in performing the unsupervised medical report generation.

Under the supervised setting, as shown in settings (e,f), applying shared F generates unchanged and
impaired performance on the MIMIC-CXR and IU X-ray datasets, respectively. We speculate the
reason is that the supervised model no longer requires the F to bridge the vision and the language
domains. Therefore, the performance is unchanged on the large dataset MIMIC-CXR. However, the
increased parameters introduced by F might bring overfitting or increase the difficulty in optimization
on the small dataset IU X-ray, which somewhat hinders the performance. For the knowledge bank
B, we can find that the results of setting (h) outperforms (g) on the MIMIC-CXR dataset, but
underperforms (g) on the IU X-ray dataset. We speculate the reason is that the large MIMIC-CXR
dataset contains more knowledge than the small IU X-ray dataset, so a larger knowledge bank may
learn more knowledge of MIMIC-CXR to boost the performance while introducing more noisy
knowledge into the IU X-ray dataset to degrade the performance.

5.3 Qualitative Analysis

In Figure 3, we conduct the qualitative analysis to better understand our approach. As we can
see, the visualization verifies the effectiveness of our knowledge-driven encoder in extracting the
knowledge representations of both image and report. For the generated reports, our unsupervised
KGAE generates a desirable report, which correctly describes “innumerable nodules are present” and
“heart size is normal”. When removing the bank B, the model tends to generate plausible general
reports with no prominent abnormal narratives and some repeated reports, which shows that the
knowledge memory mechanism can indeed distill and preserve the desired medical knowledge to
boost the generation of reports. Under the semi-supervised setting, the R2Gen can not well handle
the medical report generation task and generates some repeated sentences of normalities (Underlined
text) and fails to depict some rare but important abnormalities, i.e., “nodules” and “scoliosis”, while
our approach can generate fluent report supported by accurate abnormalities. Under the supervised
setting, our approach can generate an accurate report showing significant alignment with the ground
truth report. It further prove our arguments and the effectiveness of our proposed approach.
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Input Image 

No pleural effusion. No acute 
cardiopulmonary abnormality. 
There is no pneumothorax or 

pleural effusion. The lungs are 
clear. Heart size is normal

KGAE w/o 𝑩𝑩 (0%)

The heart size and pulmonary vascularity 
appear within normal limits. There are 
small bilateral pulmonary nodules. No 

focal airspace disease. No pneumothorax 
or pleural effusion. Scoliosis is present.

KGAE (0%)

Heart size and pulmonary 
vascularity appear within 
normal limits. Innumerable 
bilateral lung nodules are 
present. These are seen 
diffusely throughout both 
lungs. No superimposed 
focal airspace disease is 
seen. No pleural effusion 
or pneumothorax is identi-
fied. Scoliosis is present.

Ground Truth

Unsupervised Setting𝒢𝒢𝐼𝐼

𝒢𝒢𝑅𝑅

no 
pneumothorax

no pleural 
effusion 

heart size is 
normal

nodules

no 
pneumothorax

scoliosis

heart size is 
normal

nodules

There is no pneumothorax or large 
pleural effusion. There is mild 

scoliosis of the spine. The lungs are 
free of focal airspace disease. Heart 

is normal in size. 

R2Gen (100%) KGAE-Supervised (100%)
Supervised Setting

The heart size is normal. No evidence 
of pneumothorax or pleural effusion. 
No acute bony abnormal. The lungs 
are clear. There is no pneumothorax. 

There is no pneumothorax. 

R2Gen (20%) KGAE-Semi (20%) 
Semi-supervised Setting

Heart size is normal. No focal 
airspace consolidation. Innumerable 
nodules are demonstrated. There is 
no pneumothorax or pleural effusion.

Heart size and mediastinal contour 
are within normal limits. Nodules are 
present. There is no focal airspace 

consolidation. No large pleural 
effusion or pneumothorax. 

Figure 3: Reports generated by our approach and a state-of-the-art model R2Gen [6]. Under the
unsupervised setting, we show four nodes with top-4 attention weights in Eq. (4) to visualize GI and
GR. The Purple and Blue colored text denote the generated wrong sentences (Faithfulness) and true
abnormalities (Comprehensiveness), respectively; Underlined text denotes the repeated sentences.

6 Conclusions and Discussions
In this paper, we propose the Knowledge Graph Auto-Encoder (KGAE). Without any image-report
pairs, KGAE can extract the knowledge representations of both image and report from the knowledge
graph to bridge the visual and textual domains, and generate desirable reports by being trained in
the auto-encoding pipeline. The experiments verify the effectiveness of our approach, which even
exceeds several supervised models. Moreover, by further fine-tuning KGAE using paired datasets,
we achieve the state-of-the-art results on two public datasets with the best human preference.

In the future, 1) since we can relax the dependency on paired data, it can be interesting to apply the
KGAE to other types of medical images of other body parts, where the image-report pairs could be
much less or even unavailable, to assist radiologists in clinical decision-making and reduce their
workload; 2) We can replace the explicit pre-defined knowledge graph with an implicit large matrix
(e.g., knowledge bank in our decoder) to improve the generalization ability of our approach.

Societal Impacts: In this paper, we target the problem of medical report generation. Although the
proposed model outperforms state-of-the-art approaches, it aims to assist the radiologists instead of
replacing them. For experienced radiologists, given a large amount of medical images, our model can
automatically generate medical reports, the radiologists only need to make revisions rather than write
a new report from scratch. However, it is possible that some radiologists direct copy the generated
report as the final report. Also for less experienced radiologists, they may not be able to correct the
errors in machine-generated reports. In order to apply the proposed model in clinical practice, it is
required to add process control to avoid unintended use.

Limitations: Although the proposed KGAE can work in an unsupervised manner, we still need the
independent sets of medical images and medical reports which may still be difficult to collect for
some types of medical images. In addition, our approach introduces the knowledge graph to bridge
visual and textual domain, in the paper, we collect the frequent clinical findings as nodes and build
the knowledge graph from the set of reports automatically. When applying to new domains, we need
to collect a new set of clinical findings.
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(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Section 4.1. The used datasets are publicly available. All
necessary patient/participant consent has been obtained and the appropriate institutional
forms have been archived.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] See Datasets in Section 4.1. All protected
health information was de-identified. De-identification was performed in compliance
with Health Insurance Portability and Accountability Act (HIPAA) standards in order
to facilitate public access to the datasets. Deletion of protected health information
(PHI) from structured data sources (e.g., database fields that provide patient name or
date of birth) was straightforward. All necessary patient/participant consent has been
obtained and the appropriate institutional forms have been archived.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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