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ABSTRACT

Federated multi-task learning (FMTL) seeks to collaboratively train customized
models for users with different tasks while preserving data privacy. Most existing
approaches assume model congruity (i.e., the use of fully or partially homoge-
neous models) across users, which limits their applicability in realistic settings.
To overcome this limitation, we aim to learn a shared representation space across
tasks rather than shared model parameters. To this end, we propose Muscle loss,
a novel contrastive learning objective that simultaneously aligns representations
from all participating models. Unlike existing multi-view or multi-model con-
trastive methods, which typically align models pairwise, Muscle loss can effec-
tively capture dependencies across tasks because its minimization is equivalent
to the maximization of mutual information among all the models’ representations.
Building on this principle, we develop FedMuscle, a practical and communication-
efficient FMTL algorithm that naturally handles both model and task heterogene-
ity. Experiments on diverse image and language tasks demonstrate that FedMus-
cle consistently outperforms state-of-the-art baselines, delivering substantial im-
provements and robust performance across heterogeneous settings.

1 INTRODUCTION

Federated learning (FL) enables a group of users to collaboratively train models while preserving
privacy by not sharing their local data (Konečnỳ et al., 2016; AbdulRahman et al., 2021). Most
conventional FL algorithms assume that users share the same model architecture (Smith et al., 2017;
Li et al., 2019; T Dinh et al., 2020; Li et al., 2021b) or perform the same task (Diao et al., 2021; Alam
et al., 2022; Zhu et al., 2022; Setayesh et al., 2023), which limits their applicability in diverse real-
world settings (Cai et al., 2024; Wang et al., 2024). As illustrated in Figure 1, practical FL scenarios
may involve users with heterogeneous model architectures and tasks, each using a task-specific
local dataset. For example, with recent advances in foundation models (FMs), users can select a
pre-trained FM based on their resource constraints and task requirements, and then fine-tune it using
a local dataset (Bommasani et al., 2022; Shao et al., 2024; Zheng et al., 2025). Task heterogeneity
in FL scenarios has motivated the development of various federated multi-task learning (FMTL)
algorithms (Park et al., 2021; He et al., 2024; Chen et al., 2023; Lu et al., 2024; Jia et al., 2024).

Early works in FMTL focused on personalization tasks (i.e., non-IID data across users) and aimed to
learn a customized model with the same architecture for each user (Smith et al., 2017; Marfoq et al.,
2021). Recent studies have addressed a wider range of tasks by dividing users’ models into a shared
encoder and task-specific predictors (Jia et al., 2024; Lu et al., 2024). As a result, most existing
FMTL algorithms assume that users employ fully or partially homogeneous model architectures.
From a broader perspective, our central idea is that sharing model parameters, whether fully or
partially, ultimately aims to establish a shared representation space for effective knowledge transfer
among users’ tasks. Therefore, the objective of an FMTL algorithm can be reframed as learning a
shared representation space across tasks.

Contrastive learning (CL) is a widely used technique for learning a shared representation space (He
et al., 2020; Misra & Maaten, 2020; Chen et al., 2020). The core idea of CL is to bring similar
instances, known as positives, closer together in the representation space while pushing dissimilar
ones, known as negatives, farther apart (Radford et al., 2021). One popular CL loss function is In-
foNCE (Oord et al., 2019), which aligns the representations of two models. For scenarios with more
than two models, prior works typically adopt pairwise alignment approaches, applying the InfoNCE
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Figure 1: FedMuscle overview. Users may have heterogeneous models, tasks, and local datasets. A shared
public dataset is used by all users to align the representation spaces of their models via the Muscle loss function.

loss to each pair of models (Yang et al., 2022; Girdhar et al., 2023; Xue et al., 2024). However, pair-
wise alignment cannot effectively capture the dependencies among representations obtained from all
models (Koromilas et al., 2025). To address this limitation, Cicchetti et al. (2025) recently proposed
a Gramian-based contrastive loss that aligns all models’ representations simultaneously. Neverthe-
less, their approach lacks theoretical justification.

In this paper, we propose Muscle (Multi-task/modal Systematic Contrastive Learning), a novel CL
loss function that effectively captures dependencies among the representations of all models in multi-
model scenarios. This loss incorporates theoretically grounded weighting coefficients to emphasize
more dissimilar negatives, an important mechanism absent in prior works. We show that minimizing
the proposed Muscle loss is equivalent to maximizing a lower bound on the mutual information (MI)
between the models’ outputs, thereby enhancing knowledge transfer across tasks. Furthermore,
we design a novel FMTL algorithm called FedMuscle by leveraging the Muscle loss. As shown
in Figure 1, in FedMuscle, users transmit their private knowledge on a shared public dataset to
the server rather than sharing their local datasets or model parameters. Not revealing local model
parameters provides an additional layer of privacy protection, especially when users employ pre-
trained FMs (Du et al., 2025). Upon receiving low-dimensional representations of public data from
users, the server computes the weighting coefficients and aggregated representations that each user
needs to align its representation space with those of others by minimizing the Muscle loss.

In summary, (1) we propose Muscle loss, a CL objective that applies to representations from
any number of models and systematically captures dependencies among them. (2) We develop
FedMuscle, a novel FMTL algorithm that addresses both model and task heterogeneity across users
by aligning their representation spaces using Muscle loss. (3) We empirically validate the effective-
ness of FedMuscle on various computer vision (CV) and natural language processing (NLP) tasks,
demonstrating its superior performance over state-of-the-art baselines under settings with model and
task heterogeneity. (4) We show that our proposed systematic CL framework can be seamlessly inte-
grated into multi-modal FL algorithms, such as CreamFL (Yu et al., 2023), to enhance performance
by replacing the heuristic knowledge distillation approach with Muscle loss.

2 RELATED WORK

Federated Multi-Task Learning Various FMTL algorithms have been proposed to address task
heterogeneity in FL. For example, FeSTA (Park et al., 2021), SpreadGNN (He et al., 2024), Fed-
Bone (Chen et al., 2023), FedHCA2 (Lu et al., 2024), and FedLPS (Jia et al., 2024) have been
introduced to enhance the generalization performance of all tasks by leveraging knowledge from re-
lated tasks. However, all of these FMTL algorithms assume model congruity, meaning that all users
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employ fully or partially homogeneous model architectures. Another line of research is federated
semi-supervised learning (FSSL) (Jeong et al., 2021), with algorithms such as CoFED(Cao et al.,
2023) and SAGE (Liu et al., 2025), where users collaboratively generate pseudo-labels for a public
dataset. However, most FSSL approaches can only handle personalization tasks.

Model Heterogeneity in FL Model heterogeneity in FL may arise from users’ diverse and lim-
ited storage, communication, and computational capabilities (Setayesh et al., 2023). Some existing
works assume a global model architecture, where each user’s local model parameters are a subset
of the global model’s parameters (Diao et al., 2021; Hong et al., 2022). However, such approaches
limit the flexibility for users to choose arbitrary model architectures. To overcome this limitation,
one potential solution is to adopt knowledge distillation (KD)-based FL algorithms (Li & Wang,
2019; Park et al., 2024). For example, FCCL (Huang et al., 2022), KT-pFL (Zhang et al., 2021), and
FedDF (Lin et al., 2020) leverage KD and an unlabeled public dataset to address model heterogene-
ity. However, in these approaches, knowledge can only be transferred among models with the same
logit size (i.e., models associated with the same task). FedHeNN (Makhija et al., 2022) addresses
this issue by introducing a proximal term into users’ local loss functions. Centered kernel alignment
(CKA) is used in FedHeNN to measure similarity among representation matrices. Nevertheless, the
reliability of CKA as a similarity metric is still under investigation (Davari et al., 2023).

Representation Learning in FL CL is a widely used technique for representation learning. Re-
cently, incorporating CL into FL has shown promise in improving the performance of users’ models.
Federated SimCLR (Louizos et al., 2024) employs the SimCLR loss (Chen et al., 2020) as the users’
local loss function. In MOON (Li et al., 2021a), each user applies CL to bring the representations
obtained from its local model closer to those of the global model and farther from those of its pre-
vious local model. However, both Federated SimCLR and MOON assume homogeneous models
across users. FedPCL (Tan et al., 2022) and FedTGP (Zhang et al., 2024) utilize CL with a fo-
cus on class-wise prototypes, which makes them inapplicable to multi-task scenarios. multi-modal
federated learning (MFL) (Yu et al., 2023; Qi & Li, 2024; Che et al., 2024; Chen et al., 2024) is
another line of research that relies on representation learning. CreamFL (Yu et al., 2023) is one of
the most effective MFL algorithms, in which local contrastive regularization (LCR) is applied at the
users and global-local contrastive aggregation (GCA) is performed at the server to learn a global
model. Although the focus of our work is not on obtaining a global model, our experiments show
that replacing LCR and GCA in CreamFL with our proposed systematic CL using the Muscle loss
improves the performance of the global model on a multi-modal retrieval task.

3 PROBLEM FORMULATION

Notations In this paper, we represent vectors by boldface lowercase letters (e.g., z) and sets by
calligraphic letters (e.g., Z). The cardinality of set Z and the number of elements in vector z are de-
noted by |Z| and |z|, respectively. We define [N ] = {1, 2, . . . , N} and {zi}Ni=1 = {z1, z2, . . . zN}.
The cosine similarity between two normalized vectors zi and zj is given by zi · zj = zT

i zj .

Problem Setting We consider an FL setting with one server and N users, where each user has
a local, task-specific labeled dataset. Let Dn denote the local dataset of user n ∈ [N ]. Users may
employ heterogeneous models based on their tasks and available resources (e.g., storage capacity and
computational capability). Let θn denote the parameters of user n’s local model. The optimization
problem minθn E[Ln(θn)] can be solved locally by each user n to find a customized model for
its task, where Ln is the loss function corresponding to user n’s task, and the expectation is taken
over its labeled dataset Dn. However, the key goal of FMTL is to enable users to train their local
models under the orchestration of the server, thereby capturing common task-agnostic information.
This coordination can improve the generalization capability of the users’ models, leading to better
performance compared to training solely on their local datasets. Unlike existing FMTL algorithms
that employ a parameter-sharing mechanism (e.g., a shared encoder) to capture common information
across tasks, we use joint representation learning among the users’ models.

For each user n ∈ [N ], we decouple its local model θn into a representation model wn and a
task-specific prediction head ϕn, such that θn = {wn, ϕn}. We assume that the output features
of all representation models have the same dimension d1. We also consider that users have ac-

1This requirement does not preclude model heterogeneity across users and can be relaxed by appending a
lightweight, learnable projection head that maps each user’s latent representation to a common dimension.
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cess to a shared unlabeled public dataset. This public dataset may be uni-modal or multi-modal,
depending on the users’ tasks. Moreover, it can be easily obtained by collecting data from rele-
vant domains (Huang et al., 2022), using publicly available datasets (Yu et al., 2023), or generating
synthetic data samples (Huang et al., 2024). Let D denote the shared public dataset. In each com-
munication round of FMTL, each user n first trains its local model θn on its local dataset Dn for E
local epochs. Then, users extract representation vectors corresponding to samples from the public
dataset and transmit them to the server. In particular, for each data sample xi ∈ D, user n feeds
it into wn to obtain a normalized representation vector denoted by zn

i ∈ Rd. Considering a batch
of size B from the public dataset, each user n transmits a representation matrix Zn ∈ RB×d to the
server, where each row of Zn corresponds to a sample in the batch. As illustrated in Figure 1, based
on our proposed Muscle loss function (to be presented in Section 4), the server obtains an aggregated
matrix and a weighting coefficient vector for each user by using the representation matrices received
from the other users. The complete proposed FMTL algorithm is presented in Section 5.

4 THE CONTRASTIVE LEARNING FRAMEWORK

In this section, we first explain why pairwise alignment approaches may not fully capture the depen-
dencies among the representations of more than two models. Next, we propose Muscle as a new CL
loss and show that it can systematically capture such dependencies. Finally, we theoretically demon-
strate the relationship between the Muscle loss and the MI among the models’ representations.

4.1 PRELIMINARIES

InfoNCE is a popular CL loss function, and its variants have been widely used in the literature to
improve the quality of learned representations between two views of the same data (Chen et al.,
2020) or across two modalities (Radford et al., 2021). The idea behind the InfoNCE loss function
is to learn a representation space that contrasts samples from two different distributions. Given
{zn

i }Bi=1 and {zm
i }Bi=1 as the representations corresponding to a batch of B samples, zn

i and zm
j

are considered positive pairs if i = j (i.e., the representation vectors originate from the same data
sample), and negative pairs if i ̸= j. Without loss of generality, we treat zn

i as the anchor. That
is, we identify its positive and negative counterparts and define the loss function accordingly. The
InfoNCE loss is given as follows (Oord et al., 2019):

Ln,m
InfoNCE(z

n
i ) = − log

exp(zn
i · zm

i /τn,m)∑
j∈[B] exp(z

n
i · zm

j /τn,m)
, (1)

where τn,m is a temperature parameter that moderates the effect of similarity. To extend InfoNCE to
more than two distributions (e.g., representations obtained from multiple modalities, views, or mod-
els), pairwise alignment approaches apply the InfoNCE loss to contrast samples from each pair of
distributions (Tian et al., 2020; Yang et al., 2022; Wang & Sun, 2022). In particular, given zn

i as the
anchor, we have Ln

Pairwise(z
n
i ) =

∑
m∈[N ]\{n} L

n,m
InfoNCE(z

n
i ). However, since Ln

Pairwise(z
n
i ) accounts

only for pairwise dependencies, it cannot effectively capture dependencies among all distributions
or learn a representation space that contrasts their samples jointly.

4.2 OUR PROPOSED MUSCLE LOSS FUNCTION

We introduce the Muscle loss, which goes beyond pairwise alignment by jointly considering repre-
sentations from multiple models. To this end, we focus on the N -tuple of representation vectors in
learning representations across N models. In particular, all representation vectors {zm

i }Nm=1,m̸=n

are considered positives for the anchor representation vector zn
i . Also, any combination of represen-

tation vectors from all models in [N ]\{n} (i.e., one from each model except model n) is considered
a negative for the anchor vector zn

i if at least one of the vectors in the combination corresponds to a
data sample j ̸= i. We define the Muscle loss function as follows:

Ln
Muscle(z

n
i ) = − log

f(zn
i , {zm

i }Nm=1,m̸=n)∑
j∈Jn f(zn

i , {zm
jm

}Nm=1,m̸=n)
, (2)

where f is a function that assigns high values to positive N -tuples and low values to negative N -
tuples. For the sake of brevity, we define J n = {j = (j1, . . . , jN ) | jm ∈ [B], m ∈ [N ] \ {n}}.
In Appendix A, we show that the optimal value of f(zn

i , {zm
jm

}Nm=1,m̸=n) is proportional to the
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probability density ratio p(zn
i , {zm

jm
}Nm=1,m̸=n)/p(z

n
i )p({zm

jm
}Nm=1,m̸=n), and that, the Muscle

loss function can be expressed as follows:

Ln
Muscle(z

n
i ) = − log

α(i,...,i) exp(z
n
i ·
∑

m∈[N ]\{n} z
m
i /τ

(N)
n,m)∑

j∈Jn αj exp(zn
i ·
∑

m∈[N ]\{n} z
m
jm

/τ
(N)
n,m)

, (3)

where τ
(N)
n,m is a temperature parameter that moderates the effect of similarity between the rep-

resentations of models n and m, given the correlations among representations of all N mod-
els. Additionally, we have αj = exp(− 1

2

∑
m∈[N ]\{n}

∑
m′∈[N ]\{n,m} γ

(N)

m,m′zm
jm

· zm′

jm′ ), where
γ
(N)

m,m′ = 1/τ
(N−1)

m,m′ − 1/τ
(N)

m,m′ . As shown in equation (3), αj , where j ∈ J n, serves as a weighting
coefficient in the Muscle loss function. These coefficients depend on the similarity among the rep-
resentations of non-anchor models. In Appendix B, we show that the proposed Muscle loss captures
dependencies among representations more effectively than pairwise alignment, owing to the use of
these weighting coefficients.

Remark 1 In Appendix C, we show that τ (N)
n,m > τ

(N−1)
n,m , which implies that γ(N)

m,m′ in αj is always
positive. Consequently, greater dissimilarity among the representation vectors {zm

jm
}Nm=1,m̸=n re-

sults in a larger weighting coefficient αj . This leads the Muscle loss function to place greater
emphasis on increasing the dissimilarity between the anchor vector zn

i and negatives that exhibit a
higher dissimilarity among themselves. In Appendix D, we provide a simple example to illustrate
the impact of the weighting coefficients αj in the Muscle loss function.

The following theorem establishes the relationship between our proposed Muscle loss function and
the MI among the models’ representations.

Theorem 1 Given Ln
Muscle(z

n
i ) in equation (3), the mutual information I(zn

i ; {zm
i }Nm=1,m̸=n) is

lower-bounded as follows:

I(zn
i ; {zm

i }Nm=1,m̸=n) ≥ (N − 1) log(B)− ELn
Muscle(z

n
i ), (4)

where E denotes the expectation over random batch of data samples.

Proof. See Appendix E. □

Remark 2 Given inequality (4), minimizing the Muscle loss is equivalent to maximizing a lower
bound on I(zn

i ; {zm
i }Nm=1,m̸=n). Thus, the Muscle loss facilitates knowledge transfer from models

m ∈ [N ]\{n} to model n by aligning the representations of model n with those of the other models.
In Appendix F, we provide a discussion on why the Muscle loss is more effective for facilitating
knowledge transfer among models compared to the pairwise alignment from the MI perspective.

Our proposed Muscle loss function enables a systematic CL framework by incorporating weighting
coefficients αj . In the next section, we demonstrate how this systematic CL framework can be
leveraged to develop a novel FMTL algorithm.

5 FEDMUSCLE METHODOLOGY

In this section, we propose FedMuscle, a novel FMTL algorithm designed to address both model
and task heterogeneity across users. To achieve this, FedMuscle aligns the representation spaces of
users’ models using the Muscle loss function defined in (3). As discussed in Section 3, given a batch
of public data samples, each user n ∈ [N ] sends a representation matrix Zn to the server. For each
user n, the server computes an aggregated matrix and a weighting coefficient vector, which are then
sent back to the user to compute the CL loss locally as follows:

Ln
CL = − 1

B

∑
i∈[B]

log
αn
(i,...,i) exp

(
zn
i · sn

(i,...,i)

)
∑

j∈Jn αn
j exp

(
zn
i · sn

j

) , (5)

where, based on (3), we have αn
j = exp(− 1

2

∑
m∈[N ]\{n}

∑
m′∈[N ]\{n,m} γ

(N)

m,m′zm
jm

· zm′

jm′ ) and
snj =

∑
m∈[N ]\{n} z

m
jm

/τ (N)
n,m . Note that, for each user n, the server can compute αn

j and snj for all
j ∈ J n using the representation matrices Zm received from the other users m ∈ [N ] \ {n}.
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Algorithm 1 Training Procedure of FedMuscle

1: Input: Public datasetD; local datasetDn, n ∈ [N ]; number of local epochs E; number of communication
rounds R; number of CL epochs T ; batch size B; number of selected representation matrices M .

2: Output: A customized local model θn for each user n ∈ [N ] on its task.
3: Randomly initialize θn = {wn, ϕn} for each user n ∈ [N ].
4: for each communication round r ∈ [R] do
5: for each user n ∈ [N ] in parallel do
6: {wn, ϕn}←LocalUpdate(θn, Dn, E)
7: for each CL epoch t ∈ [T ] do
8: for each batch of data samples from D do
9: Obtain the representation matrix Zn and send it to the server.

10: Receive Sn and αn from the server, where Sn and αn are computed based on the M repre-
sentation matrices randomly selected by the server for user n.

11: Update wn by minimizing the CL loss function in (5).
12: end for
13: end for
14: end for
15: end for
16: function LocalUpdate(θn, Dn, E)
17: for each local epoch e ∈ [E] do
18: Update θn by minimizing the loss function Ln corresponding to user n’s task on Dn.
19: end for
20: Return {wn, ϕn}

Let Sn and αn denote the aggregated matrix and the weighting coefficient vector computed by the
server for user n, respectively. The rows of Sn and the elements of αn correspond to snj and αn

j

for all j ∈ J n, respectively. Algorithm 1 summarizes the training procedure of FedMuscle. The
users collaboratively train their local models over R communication rounds. In each communication
round r ∈ [R], each user n ∈ [N ] performs E local epochs to update its model θn using its local
dataset Dn. The users then perform T CL epochs to update their representation models by aligning
the representation spaces of their models. Specifically, in each communication round r ∈ [R] and
each CL epoch t ∈ [T ], each user n sends the representation matrix Zn, obtained from a batch of the
public dataset D, to the server and receives the aggregated matrix Sn and the weighting coefficient
vector αn from the server. The user then minimizes the CL loss function Ln

CL in equation (5).

For each user n ∈ [N ], the communication cost of the FedMuscle algorithm in the uplink direction
depends on the size of the representation matrix Zn, which is B × d. The communication cost in
the downlink direction, however, depends on the sizes of Sn and αn. If the server uses the repre-
sentation matrices from all the other users, i.e., [N ] \ {n}, to compute Sn and αn, their dimensions
are BN−1 × d and BN−1, respectively. Note that the large sizes of Sn and αn may incur high
communication costs in the downlink direction, as more parameters need to be transmitted from the
server to user n, particularly when N is large. To reduce communication costs in FedMuscle, we
randomly select only M of the available representation matrices from the N − 1 users to compute
Sn and αn for user n in each communication round and CL epoch. Let Nn ⊆ [N ] \ {n} denote
the set of users whose representation matrices are selected to compute the elements of Sn and αn

for user n, where |Nn| = M . Thus, we have J n = {j = (jm)m∈Nn | jm ∈ [B], m ∈ Nn} to
specify the index tuples used in computing the terms of the CL loss function Ln

CL in equation (5).
Consequently, in FedMuscle, we have Sn ∈ R|Jn|×d and αn ∈ R|Jn|, where |J n| = BM .

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets and Tasks We conduct our experiments using datasets such as CIFAR-10, CIFAR-
100 (Krizhevsky, 2009), common objects in context (COCO) (Lin et al., 2014), Yahoo! An-
swers (Zhang et al., 2015), Pascal VOC (Everingham et al., 2015), and Flickr30K (Plummer et al.,
2015). Inspired by the experimental setup in (Chen et al., 2020), we consider the following three CV
tasks: image classification using CIFAR-10 (IC10), image classification using CIFAR-100 (IC100),
and multi-label classification using COCO (MLC). We refer to this uni-modal setup as Setup1,

6
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which enables a fair comparison with existing baseline algorithms. To evaluate the performance of
FedMuscle in a more challenging, multi-modal setting, we further expand Setup1 by adding two
additional tasks: semantic segmentation using COCO (SS) and text classification using Yahoo! An-
swers (TC). We refer to this multi-modal setup as Setup2. For the uni-modal Setup1, we consider
that the samples in the public dataset are entirely drawn from one of the following datasets: CIFAR-
100, COCO, or Pascal VOC. For the multi-modal Setup2, we consider that the samples in the public
dataset are entirely drawn from Flickr30K. In Setup2, users with CV tasks obtain representations
from the images in the public dataset, while users with the TC task obtain representations from the
image captions. The size of the shared public dataset is set to 5000. For additional details on the
number of training and test samples for each task, please refer to Appendix G.

Implementation Details We use heterogeneous FMs as the users’ local models. Specifically, our
experiments involve heterogeneous ViT models (Dosovitskiy et al., 2021) pre-trained on ImageNet-
21K (Deng et al., 2009), heterogeneous SegFormer models (Xie et al., 2021) pre-trained on
ImageNet-1K and fine-tuned on ADE20K (Zhou et al., 2017), and heterogeneous BERT-based mod-
els (Devlin et al., 2019; Sanh et al., 2019) pre-trained on a large corpus of English text2. Details of
the selected models and assigned tasks for users in Setup1 and Setup2 are provided in Appendix H.
We set d (i.e., the output dimension of the representation models) to 256. To reduce the com-
putational cost for users, we fine-tune their pre-trained FMs using parameter-efficient fine-tuning
(PEFT) (Zhang et al., 2023). Specifically, we use low-rank adaptation (LoRA) (Hu et al., 2022) with
a rank of 16. The models are trained using the AdamW optimizer (Loshchilov & Hutter, 2019) with
a learning rate of 1e-3. We set the batch size B to 32 and the value of M in Algorithm 1 to 3. The
temperature parameters τ

(4)
n,m and τ

(3)
n,m are set to 0.2 and 0.15, respectively. Unless otherwise stated,

the number of local epochs E, communication rounds R, and CL epochs T are set to 1, 150, and
1, respectively. We implement FedMuscle and the baseline algorithms using PyTorch (Paszke et al.,
2019), and run all experiments on NVIDIA Tesla V100 GPUs.

Baselines We compare the performance of our proposed algorithm, FedMuscle, with Fe-
dRCL (Seo et al., 2024) as a CL-based FL algorithm; SAGE (Liu et al., 2025) and CoFED (Cao
et al., 2023) as FSSL algorithms; FedDF (Lin et al., 2020) as a KD-based FL algorithm; and Fed-
HeNN (Makhija et al., 2022), a model-agnostic FL algorithm. Additionally, we compare FedMuscle
with SimCLR (Chen et al., 2020), pseudo-labeling (Cascante-Bonilla et al., 2021), and local train-
ing, where each user’s model is trained individually. Specifically, SimCLR and pseudo-labeling
utilize the public dataset for self-supervised and semi-supervised learning, respectively, while local
training relies solely on each user’s labeled local dataset.

Performance Metrics For the IC10, IC100, and TC tasks, accuracy on the test samples is used
as the performance metric. For the MLC and SS tasks, micro-average F1-score (micro-F1) (Wu &
Zhou, 2017) and mean intersection over union (mIoU) (Everingham et al., 2010) are used as the
performance metrics, respectively. All the evaluation metrics are expressed as percentages (%), and
higher values indicate better performance. Furthermore, to provide an overall evaluation metric for
an algorithm’s performance, the average per-user performance improvement relative to the local
training baseline, denoted as ∆, can be employed (Lu et al., 2024). Specifically, we have ∆ =
1
N

∑
n∈[N ] (M

n
alg −Mn

local)/M
n
local, where Mn

alg and Mn
local represent the performance metrics of the

considered algorithm and the local training baseline, respectively, for the task of user n ∈ [N ].

6.2 BENCHMARK EXPERIMENTS

Comparison with Baselines Table 1 presents the performance of FedMuscle compared to the
baseline algorithms in the uni-modal Setup1. Based on the results in Table 1, our observations are as
follows: (1) The proposed algorithm, FedMuscle, consistently achieves better overall performance
in terms of ∆ compared to the baseline algorithms. (2) Using public datasets with detailed images,
such as Pascal VOC and COCO, leads to improved performance for FedMuscle. (3) Even when
the public dataset is derived from CIFAR-100, which contains less detailed images, FedMuscle still
enhances users’ performance on their respective tasks.

Performance of FedMuscle in Multi-Modal Setup2 Table 2 shows the performance of FedMus-
cle across a broader range of tasks, including both CV and NLP tasks. The results in Table 2 demon-
strate that even with the addition of two users performing the SS task and two users performing the

2Pre-trained FMs are downloaded from Hugging Face at www.huggingface.co/models.
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Table 1: Performance of FedMuscle compared to the considered baseline algorithms in Setup1.

Public
Dataset

User
# Model Task Eval.

Metric

Algorithm

FedMuscle
(Ours)

SAGE
(2025)

FedHeNN
(2022)

CoFED
(2023)

FedDF
(2020)

FedRCL
(2024)

SimCLR
(2020)

Pseudo-
labeling
(2021)

Local
Training

Pa
sc

al
V

O
C

1 ViT-Base MLC micro-F1 46.33± 0.12 41.97± 0.34 41.27± 0.48 47.47± 0.12 42.43± 0.17 41.77± 0.34 40.80± 0.45 45.93± 0.52 42.17± 0.24

2 ViT-Small MLC micro-F1 49.77± 0.29 45.37± 0.59 45.87± 0.46 48.80± 0.36 43.67± 1.29 44.07± 0.29 44.83± 0.46 48.07± 0.45 43.67± 0.59

3 ViT-Large MLC micro-F1 49.40± 0.50 44.10± 0.08 48.23± 0.66 49.77± 0.49 42.57± 0.19 42.43± 0.42 44.53± 0.68 48.20± 0.28 42.93± 0.41

4 ViT-Base IC100 Accuracy 36.67± 0.34 24.50± 0.57 24.10± 0.51 24.67± 0.29 23.93± 0.41 25.27± 0.09 27.43± 0.42 21.40± 0.33 24.77± 0.42

5 ViT-Small IC100 Accuracy 29.93± 0.54 25.13± 0.47 24.83± 1.10 23.70± 1.31 24.70± 0.45 27.23± 0.61 23.60± 0.16 22.77± 1.10 24.70± 0.36

6 ViT-Tiny IC10 Accuracy 66.57± 1.01 43.33± 1.15 41.63± 1.33 43.40± 0.37 43.20± 0.24 44.63± 0.12 49.03± 0.80 43.77± 1.73 43.77± 0.62

∆ (%) ↑ +26.70 +0.96 -0.41 +5.83 -0.82 +2.17 +3.57 +1.64 0.00

C
O

C
O

1 ViT-Base MLC micro-F1 49.10± 0.45 41.97± 0.33 42.07± 0.66 50.87± 0.38 43.17± 0.46 41.77± 0.34 42.50± 0.70 47.23± 0.17 42.17± 0.24

2 ViT-Small MLC micro-F1 51.30± 0.22 46.97± 0.17 46.27± 0.54 52.43± 0.41 43.67± 0.54 44.07± 0.29 44.70± 0.37 50.30± 0.24 43.67± 0.59

3 ViT-Large MLC micro-F1 50.60± 0.36 44.47± 0.68 47.17± 1.77 53.50± 0.37 42.07± 0.54 42.43± 0.42 45.17± 1.06 50.53± 0.05 42.93± 0.41

4 ViT-Base IC100 Accuracy 37.27± 0.78 25.20± 0.49 24.53± 0.66 24.83± 0.17 24.10± 0.67 25.27± 0.09 28.87± 1.11 21.70± 0.85 24.77± 0.42

5 ViT-Small IC100 Accuracy 30.93± 0.12 25.47± 0.52 25.20± 0.43 24.73± 0.75 25.23± 0.33 27.23± 0.61 23.17± 0.87 23.67± 0.66 24.70± 0.36

6 ViT-Tiny IC10 Accuracy 63.23± 0.58 43.03± 0.54 43.07± 1.03 40.90± 1.44 43.20± 0.24 44.63± 0.12 47.37± 0.45 44.13± 1.73 43.77± 0.62

∆ (%) ↑ +28.65 +2.31 +2.57 +9.85 -0.25 +2.17 +4.49 +4.86 0.00

C
IF

A
R

-1
00

1 ViT-Base MLC micro-F1 42.33± 0.05 42.10± 0.14 41.43± 1.16 43.73± 0.57 42.40± 0.22 41.77± 0.34 40.23± 0.24 43.73± 0.21 42.17± 0.24

2 ViT-Small MLC micro-F1 46.50± 0.14 44.97± 0.19 45.90± 0.83 47.10± 0.64 43.93± 0.74 44.07± 0.29 43.90± 0.75 47.27± 0.73 43.67± 0.59

3 ViT-Large MLC micro-F1 45.63± 0.68 44.17± 0.33 47.67± 0.96 45.23± 0.49 43.10± 0.22 42.43± 0.42 38.33± 0.17 46.53± 0.79 42.93± 0.41

4 ViT-Base IC100 Accuracy 33.43± 0.21 24.67± 0.34 24.23± 1.11 27.17± 0.78 23.17± 0.74 25.27± 0.09 19.73± 0.68 26.93± 0.25 24.77± 0.42

5 ViT-Small IC100 Accuracy 29.60± 0.71 24.63± 0.49 25.50± 0.24 27.27± 1.29 24.13± 0.38 27.23± 0.61 22.53± 1.32 26.80± 1.18 24.70± 0.36

6 ViT-Tiny IC10 Accuracy 58.37± 0.57 41.83± 0.21 44.43± 1.99 43.30± 0.33 43.20± 0.24 44.63± 0.12 50.03± 1.05 43.77± 0.52 43.77± 0.62

∆ (%) ↑ +16.88 +0.1 +2.83 +5.99 -1.42 +2.17 -4.94 +6.26 0.00

Computation Cost (TeraFLOPS) 523 1171 34 586 322 78 849 152 29

Table 2: Performance of FedMuscle in Setup2.

User
# Model Task Eval.

Metric

Algorithm
FedMuscle

(Ours)
Local

Training

1 ViT-Base MLC micro-F1 47.80± 0.40 42.17± 0.24

2 ViT-Small MLC micro-F1 51.05± 0.45 43.67± 0.59

3 ViT-Large MLC micro-F1 49.00± 0.50 42.93± 0.41

4 ViT-Base IC100 Accuracy 36.15± 0.25 24.77± 0.42

5 ViT-Small IC100 Accuracy 28.70± 0.70 24.70± 0.36

6 ViT-Tiny IC10 Accuracy 61.60± 0.40 43.77± 0.62

7 SegFormer-B0 SS mIoU 33.95± 1.65 33.73± 1.93

8 SegFormer-B1 SS mIoU 33.40± 2.20 32.43± 0.48

9 BERT-Base TC Accuracy 45.95± 0.05 41.10± 0.88

10 DistilBERT-Base TC Accuracy 54.10± 0.20 56.03± 0.98

∆ (%) ↑ +14.39 0.00

TC task, FedMuscle still improves the overall
performance of users on their respective tasks
in terms of ∆. Despite the differences in modal-
ities, the use of CL in FedMuscle aligns repre-
sentations from various modalities into a shared
representation space, enabling each user to cap-
ture common task-agnostic information from
the models of other users.

Impact of Muscle Loss in FedMuscle The
results in Figure 2 show that, compared to the
Gramian-based contrastive loss recently proposed by Cicchetti et al. (2025), the Muscle loss func-
tion improves ∆ by 11.2%, 28.4%, and 11.1% when Pascal VOC, COCO, and CIFAR-100 are used
as the public datasets, respectively3. These improvements stem from the fact that the Muscle loss
has solid theoretical justifications and can better capture dependencies among the representations
obtained from multiple models. In addition, the computation of the Muscle loss is modular and
partially offloaded to the server. By contrast, the Gramian-based loss requires computing the deter-
minant of Gramian matrices, which imposes (M+1)3 times higher computational cost on the users.
In Appendix J, we provide more details on the features offered by the Muscle loss compared to the
Gramian-based loss. Furthermore, a comparison between the ∆ values in Figure 2 and Table 1 re-
veals that even pairwise alignment in FedMuscle yields better performance than baseline algorithms.
This highlights the effectiveness of the FedMuscle algorithm under model and task heterogeneity.

Pascal VOC COCO CIFAR-100

10

20

30

 (%
)

+26.7
+28.6

+16.9

+24.0
+22.3

+15.2
+17.3

+19.2

+10.5

Pairwise Alignment
Gramian-based Loss
Muscle Loss (Ours)

Figure 2: Performance of FedMuscle in Setup1 using
the proposed Muscle loss function, compared to the
Gramian-based contrastive loss and pairwise alignment.

Integration of Muscle Loss into a Multi-
Modal FL Algorithm To evaluate the effec-
tiveness of our proposed CL framework, we in-
tegrate it into an MFL algorithm. We also aim
to demonstrate its effectiveness in a setting with
a larger number of users, where the models are
trained from scratch. To this end, we adopt the
CreamFL (Yu et al., 2023) setup, which consists
of 10 uni-modal image users with the CIFAR-
100 dataset, 10 uni-modal text users with the
AG News dataset (Zhang et al., 2015), and 15
multi-modal users with the Flickr30K dataset.
CreamFL aims to learn a global model at the
server using representations derived from a public dataset shared among the users and the server.
COCO is used as the public dataset. We integrate the Muscle loss into the CreamFL setup by re-
placing its local contrastive regularization and global-local contrastive aggregation methods with
our proposed systematic CL framework based on the Muscle loss. More details are provided in Ap-

3Detailed results can be found in Appendix I.
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Table 3: Global model performance on the image-text retrieval task in CreamFL (Yu et al., 2023) setup.

Eval. Set Algorithm i2t R@1 i2t R@5 i2t R@10 t2i R@1 t2i R@5 t2i R@10 ∆ (%) ↑

1K Test Images
Local Training 48.36 79.66 89.24 37.46 74.05 86.59 0.00

CreamFL 49.20 80.76 89.92 37.83 74.62 86.53 +0.93
CreamFL + Muscle Loss (Ours) 49.32 80.96 90.02 38.11 74.39 86.87 +1.17

5K Test Images
Local Training 24.78 52.44 66.30 17.72 43.28 57.47 0.00

CreamFL 24.48 53.48 66.92 17.96 43.74 58.15 +0.88
CreamFL + Muscle Loss (Ours) 25.50 53.62 66.70 18.20 44.15 58.15 +1.94

1 10 25
Number of Communication Rounds

10

20

30

 (%
)

+5.7

+25.4

+28.9

+10.2

+27.1
+29.2

+12.8

+27.3
+29.1

T = 1
T = 3
T = 5

Figure 3: Impact of the number of local epochs E,
communication rounds R, and CL epochs T on Fed-
Muscle performance. COCO is used as the public
dataset.

0 50 100 150 200 250 300 350
Communication Cost (GB)

10

15
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25

30

 (%
)

R=150, T=1, |D|   {100, 500, 1000, 3000, 5000}
R   {1, 10, 25}, T=3, |D|=5000
R   {1, 10, 25}, T=5, |D|=5000
∈

∈

∈

Figure 4: Impact of the public dataset size |D| and
number of communication rounds R on the communi-
cation cost of FedMuscle. COCO is used as the public
dataset.

pendix K. Table 3 shows that integrating the Muscle loss into the CreamFL setup improves the global
model’s performance in terms of image-to-text recall (i2t R) and text-to-image recall (t2i R) metrics.

6.3 ABLATION STUDIES

We investigate the computation–communication trade-off in FedMuscle in Figure 3. This figure
illustrates the impact of the number of local epochs E, communication rounds R, and CL epochs T
on the performance of FedMuscle. To ensure a fair comparison, we set E × R = 150 for all cases.
Note that higher values of E and R correspond to increased computation and communication costs,
respectively. The results in Figure 3 show that a greater number of communication rounds leads to
improved performance for FedMuscle4. Additionally, when the number of communication rounds
is low, FedMuscle can still achieve improved performance by increasing the number of CL epochs.

Furthermore, Figure 4 explicitly illustrates the relationship between FedMuscle’s performance and
its communication cost for two of the cases from Figure 3, i.e., T = 3 and T = 5. Figure 4 also
shows the impact of the public dataset size |D| on FedMuscle’s communication cost. A larger |D|
leads to more representation vectors being transmitted between users and the server, resulting in
higher communication costs. However, as shown in Figure 4, FedMuscle is flexible enough to
achieve high performance in terms of ∆ while maintaining a low communication cost by appropri-
ately adjusting the number of communication rounds R, the number of CL epochs T , and the size
of the public dataset |D|. Additional ablation studies on the number of randomly selected repre-
sentation matrices M and on the output dimension of the representation models d are presented in
Appendices M and N, respectively.

7 CONCLUSION

In this work, we proposed a new CL loss function, called Muscle, which systematically and effec-
tively captures dependencies among representations obtained from multiple models. These depen-
dencies are modeled through theoretically grounded weighting coefficients in the Muscle loss. Fur-
thermore, we showed that minimizing the Muscle loss is equivalent to maximizing a lower bound
on the MI between the models’ representations. Building on the Muscle loss, we designed Fed-
Muscle, a novel and effective FMTL algorithm that enables collaborative training of heterogeneous
models in the presence of task heterogeneity across users. To this end, FedMuscle aligns the rep-
resentation spaces of users’ models using a shared public dataset to capture common, task-agnostic
information. Through extensive experiments, we showed that FedMuscle consistently improves
users’ performance on their respective tasks compared to state-of-the-art baseline algorithms under
both model and task heterogeneity. A discussion of possible future work is provided in Appendix O.

4Detailed results can be found in Appendix L.
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REPRODUCIBILITY STATEMENT

For theoretical results, we provide the complete proofs along with their underlying assumptions in
Section 4 and Appendices A, B, C, E, and F. All data used in this study are publicly available. The
code for running our algorithm is also provided in the supplementary material. Furthermore, we
provide all experimental details in Section 6 and Appendices G, H, and K. We have cited all original
sources for the models, baselines, and datasets used in this work. Please refer to Section 6 for further
details.
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We provide more details and results about our work in the appendices. Here are the contents:

• Appendix A: Derivation of our proposed Muscle loss function.
• Appendix B: Effect of αj in capturing dependencies.

• Appendix C: The relation between τ
(N)
k,l and τ

(N−1)
k,l .

• Appendix D: Effect of the weighting coefficient αj in a toy example.
• Appendix E: Proof of Theorem 1.
• Appendix F: Discussion on the MI related to Ln

Muscle(z
n
i ) and Ln

Pairwise(z
n
i ).

• Appendix G: Details of the local training and test datasets in experiments.
• Appendix H: Details of the selected models and assigned tasks for users.
• Appendix I: Impact of Muscle loss function in FedMuscle.
• Appendix J: Features offered by the Muscle loss.
• Appendix K: Integration of Muscle loss into CreamFL.
• Appendix L: Effect of local epochs, communication rounds, and CL epochs.
• Appendix M: Impact of the number of randomly selected representation matrices M .
• Appendix N: Impact of the output dimension of the representation models.
• Appendix O: Discussion on possible future work directions.
• Appendix P: Limitations.
• Appendix Q: The use of large language models (LLMs).

A DERIVATION OF OUR PROPOSED MUSCLE LOSS FUNCTION

Considering equation (2), we have

ELn
Muscle(z

n
i ) = −E log

f(zn
i , {zm

i }Nm=1,m̸=n)∑
j∈Jn f(zn

i , {zm
jm

}Nm=1,m̸=n)
, (6)

where E denotes the expectation over random batch of data samples. Equation (6) can be interpreted
as the categorical cross-entropy for correctly classifying the positives, where the fraction inside the
log(·) function represents the predicted probability. The optimal expected categorical cross-entropy
is obtained as −E log p(correctly classifying positives), where

p(correctly classifying positives) =

p
(
{zm

i }Nm=1,m̸=n

∣∣ zn
i

)∏
j′∈Jn\(i,...,i) p

(
{zm

j′m
}Nm=1,m̸=n

)
∑

j∈Jn p
(
{zm

jm
}Nm=1,m̸=n

∣∣ zn
i

)∏
j′∈Jn\(j1,...,jN ) p

(
{zm

j′m
}Nm=1,m̸=n

)
(7)

=

p
(
{zm

i }N
m=1,m ̸=n

∣∣ zn
i

)
p({zm

i }N
m=1,m̸=n)∑

j∈Jn

p
(
{zm

jm
}N
m=1,m̸=n

∣∣ zn
i

)
p({zm

jm
}N
m=1,m̸=n)

. (8)

By comparing equations (6) and (8), we observe that the optimal value of f
(
zn
i , {zm

jm
}Nm=1,m̸=n

)
is obtained as follows:

f∗ (zn
i , {zm

jm}Nm=1,m̸=n

)
∝

p
(
{zm

jm
}Nm=1,m̸=n

∣∣ zn
i

)
p
(
{zm

jm
}Nm=1,m̸=n

) (9)

=
p
(
zn
i , {zm

jm
}Nm=1,m̸=n

)
p (zn

i ) p
(
{zm

jm
}Nm=1,m̸=n

) , (10)
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where ∝ denotes proportionality, implying equivalence up to a multiplicative constant.

In the InfoNCE loss, f∗ is associated with the cosine similarity between two vectors (i.e., positive
pairs). However, as inferred from equation (10), in our proposed Muscle loss, f∗ should be related
to the similarity of more than two vectors. To this end, we define a cosine similarity matrix, each
element of which is the cosine similarity between two vectors.

Let C ∈ RN×N denote the cosine similarity matrix corresponding to the set of vectors {uk ∈
Rd | k ∈ [N ]}, where d is the dimension of each vector in the set. We have Ck,l = uk · ul,
k, l ∈ [N ]. Using matrix C, we consider that the following expression holds:

p
(
{uk}Nk=1

)∏
k∈[N ] p (uk)

∝ exp

1

2

∑
k∈[N ]

∑
l∈[N ]\{k}

Ck,l/τ
(N)
k,l

 (11)

= exp

1

2

∑
k∈[N ]

∑
l∈[N ]\{k}

uk · ul/τ
(N)
k,l

 , (12)

where τ
(N)
k,l = τ

(N)
l,k is a temperature parameter that moderates the effect of similarity between

vectors uk and ul, given the correlations among all N vectors. Note that if we set N = 2 in
expression (12), it simplifies to p(uk,ul)

p(uk)p(ul)
∝ exp

(
uk · ul/τ

(2)
k,l

)
. Since there are no additional

vectors influencing the similarity between uk and ul when N = 2, we can set τ (2)k,l = τk,l, where

τk,l is the temperature parameter used in the InfoNCE loss. Therefore, for N = 2, p(uk,ul)
p(uk)p(ul)

∝
exp (uk · ul/τk,l), which aligns with the formulation used in the InfoNCE loss (Oord et al., 2019;
Tian et al., 2020). Furthermore, for a set with more than two vectors, expression (12) accounts for
interactions among all vector pairs by incorporating cosine similarity across all pairs, along with
distinct temperature parameters.

Based on expression (12), the optimal function f∗ in (10) is obtained as follows:

f∗ (zn
i , {zm

jm}Nm=1,m̸=n

)
∝

exp
(

1
2

(
2
∑

m∈[N ]\{n} z
n
i · zm

jm
/τ

(N)
n,m +

∑
m∈[N ]\{n}

∑
m′∈[N ]\{n,m} z

m
jm

· zm′

jm′/τ
(N)
m,m′

))
exp

(
1
2

∑
m∈[N ]\{n}

∑
m′∈[N ]\{n,m} z

m
jm

· zm′
jm′/τ

(N−1)
m,m′

)
(13)

=
exp

(∑
m∈[N ]\{n} z

n
i · zm

jm
/τ

(N)
n,m

)
exp

(
1
2

∑
m∈[N ]\{n}

∑
m′∈[N ]\{n,m}(1/τ

(N−1)
m,m′ − 1/τ

(N)
m,m′)zm

jm
· zm′

jm′

) (14)

= αj exp

zn
i ·

∑
m∈[N ]\{n}

zm
jm/τ (N)

n,m

, (15)

where αj = exp
(
− 1

2

∑
m∈[N ]\{n}

∑
m′∈[N ]\{n,m} γ

(N)
m,m′zm

jm
· zm′

jm′

)
, and γ

(N)
m,m′ = 1/τ

(N−1)
m,m′ −

1/τ
(N)
m,m′ . Combining (15) and (2) results in the Muscle loss function Ln

Muscle(z
n
i ) defined in equa-

tion (3).
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B EFFECT OF αj IN CAPTURING DEPENDENCIES

In this section, we show that, compared to pairwise alignment (Tian et al., 2020; Wang & Sun,
2022; Yang et al., 2022; Xue et al., 2024), our proposed Muscle loss more effectively captures
dependencies among representations obtained from more than two models. This improvement arises
from the use of weighting coefficients αj , j ∈ J n.

We consider a special case in which there is no dependency among the representation vectors. In
this case, αj = 1 for all j ∈ J n. Thus, we have

Ln
Muscle(z

n
i ) = − log

α(i,...,i) exp(z
n
i ·
∑

m∈[N ]\{n} z
m
i /τ

(N)
n,m)∑

j∈Jn αj exp(zn
i ·
∑

m∈[N ]\{n} z
m
jm

/τ
(N)
n,m)

(a)
= − log

exp(zn
i ·
∑

m∈[N ]\{n} z
m
i /τ

(N)
n,m)∑

j∈Jn exp(zn
i ·
∑

m∈[N ]\{n} z
m
jm

/τ
(N)
n,m)

(b)
= −

∑
m∈[N ]\{n}

log
exp(zn

i · zm
i /τ

(N)
n,m)∑

jm∈[B] exp(z
n
i · zm

jm
/τ

(N)
n,m)

(c)
=

∑
m∈[N ]\{n}

Ln,m
InfoNCE(z

n
i )

(d)
= Ln

Pairwise(z
n
i ), (16)

where equality (a) follows from the assumption that αj = 1, j ∈ J n; equality (b) follows from the
logarithmic product rule; and equalities (c) and (d) follow from the InfoNCE and pairwise alignment
formulations provided in Section 4.1.

Equality (16) shows that, when there is no dependency among the representation vectors, our pro-
posed Muscle loss and pairwise alignment are equivalent. Nevertheless, the assumption of no de-
pendency among representation vectors is generally incorrect, as some representation vectors may
originate from the same data sample. While pairwise alignment approaches inherently rely on this
assumption, our proposed Muscle loss can effectively capture dependencies among representation
vectors through the use of weighting coefficients αj , j ∈ J n.
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C THE RELATION BETWEEN τ
(N)
k,l AND τ

(N−1)
k,l

As discussed in Appendix A, the temperature parameter τ
(N)
k,l moderates the effect of similarity

between vectors uk and ul when modeling the probability density ratio among N vectors in (12).
In this section, we show that the temperature parameter τ (N−1)

k,l , which serves the same purpose for

N − 1 vectors, should be smaller than τ
(N)
k,l . From (12), for N vectors, we have

p
(
{uk}Nk=1

)∏
k∈[N ] p (uk)

∝ exp

1

2

N∑
k=1

∑
l∈[N ]\{k}

uk · ul/τ
(N)
k,l

 . (17)

Similarly, for N − 1 vectors, we have

p
(
{uk}N−1

k=1

)∏
k∈[N−1] p (uk)

∝ exp

1

2

N−1∑
k=1

∑
l∈[N−1]\{k}

uk · ul/τ
(N−1)
k,l

 . (18)

Now, we aim to derive an expression similar to (18) using (17). We have
p
(
{uk}N−1

k=1

)∏
k∈[N−1] p (uk)

=

∫
Rd

p
(
{uk}Nk=1

)∏
k∈[N ] p (uk)

p (uN ) duN

(a)∝
∫
Rd

exp

1

2

∑
k∈[N ]

∑
l∈[N ]\{k}

uk · ul/τ
(N)
k,l

 p (uN ) duN

=

∫
Rd

exp

1

2

N−1∑
k=1

∑
l∈[N−1]\{k}

uk · ul/τ
(N)
k,l +

N−1∑
k=1

uk · uN/τ
(N)
k,N

 p (uN ) duN

= exp

1

2

N−1∑
k=1

∑
l∈[N−1]\{k}

uk · ul/τ
(N)
k,l

∫
Rd

exp

(
N−1∑
k=1

uk · uN/τ
(N)
k,N

)
p (uN ) duN︸ ︷︷ ︸

A

,

(19)
where (a) results from (17).

Next, we aim to find a simplified expression for A in (19). We have

A =

∫
Rd

exp

(
uN ·

N−1∑
k=1

uk/τ
(N)
k,N

)
p (uN ) duN

(a)∝
∫
Rd

exp

(
uN ·

N−1∑
k=1

uk/τ
(N)
k,N − 1

2
∥uN∥2

)
duN

=

∫
Rd

exp

1

2

∥∥∥∥∥
N−1∑
k=1

uk/τ
(N)
k,N

∥∥∥∥∥
2

− 1

2

∥∥∥∥∥uN −
N−1∑
k=1

uk/τ
(N)
k,N

∥∥∥∥∥
2
 duN

= exp

1

2

∥∥∥∥∥
N−1∑
k=1

uk/τ
(N)
k,N

∥∥∥∥∥
2
∫

Rd

exp

−1

2

∥∥∥∥∥uN −
N−1∑
k=1

uk/τ
(N)
k,N

∥∥∥∥∥
2
 duN

(b)∝ exp

(
1

2

N−1∑
k=1

N−1∑
l=1

uk · ul/τ
(N)
k,N τ

(N)
l,N

)
, (20)

where to obtain (a), we assume that the marginal distribution of each uk, for k ∈ [N ], is an isotropic
Gaussian. Thus, we have p (uN ) ∝ exp

(
− 1

2 ∥uN∥2
)

. Also, (b) follows from the fact that the

integral
∫
Rd exp

(
− 1

2

∥∥∥uN −
∑N−1

k=1 uk/τ
(N)
k,N

∥∥∥2) duN evaluates to a constant.
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Image 1 Image 2 Image 3

Applying 

Positives

Negatives

Figure 5: Illustration of the impact of αj , j ∈ J n on different terms of our proposed Muscle loss function
in (3) for a batch of three images: (a) when αj = 1, and (b) when αj is determined based on the dependencies
among outputs of representation models. For ease of visualization, τ (3)

n,m is set to one for n, m ∈ {1, 2, 3}.

By combining (19) and (20), we have

p
(
{uk}N−1

k=1

)∏
k∈[N−1] p (uk)

∝ exp

1

2

N−1∑
k=1

∑
l∈[N−1]\{k}

uk · ul

(
1/τ

(N)
k,l + 1/τ

(N)
k,N τ

(N)
l,N

) . (21)

Comparing (18) with (21) shows that the temperature parameters must satisfy the following equa-
tion:

1/τ
(N−1)
k,l = 1/τ

(N)
k,l + 1/τ

(N)
k,N τ

(N)
l,N , l, k ∈ [N − 1] (22)

Since temperature parameters are positive, equality (22) implies that the temperature parameters
must satisfy the following inequality: τ (N−1)

k,l < τ
(N)
k,l .

D EFFECT OF THE WEIGHTING COEFFICIENT αj IN A TOY EXAMPLE

Figure 5 illustrates how αj , j ∈ J n, impacts the terms in our proposed Muscle loss function. Con-
sider a batch of three images consisting of a dog (image 1), a cat (image 2), and a bench (image 3).
The images are selected such that images 1 and 2 are more similar than images 2 and 3, and images
1 and 3 are the least similar. Figure 5(a) and (b) correspond to the cases where αj = 1, j ∈ J n

(i.e., similar to the pairwise alignment) and where αj , j ∈ J n, are obtained based on our proposed
Muscle loss function in (3), respectively. z1

1 is the output of the representation model 1 for image 1.
When z1

1 is considered as the anchor vector, Figure 5(a) shows that the terms corresponding to the
negatives originating from images 1 and 2 (e.g., z2

2 + z3
1) have a greater impact on the loss function

when αj = 1, j ∈ J n. However, this is not the case in Figure 5(b). Specifically, αj tends to have
a higher value when the negatives originate from images 1 and 3 (e.g., z2

1 + z3
3), which are more

dissimilar. Therefore, in the Muscle loss function, αj can adjust the importance of the terms in the
loss function based on the dissimilarity among the negatives.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E PROOF OF THEOREM 1

Based on equation (6), we have

ELn
Muscle(z

n
i ) =− E log

f(zn
i , {zm

i }Nm=1,m̸=n)∑
j∈Jn f(zn

i , {zm
jm

}Nm=1,m̸=n)

(a)
=− E log


p(zn

i , {zm
i }N

m=1,m̸=n)
p(zn

i )p({zm
i }N
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j∈Jn
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p(zn
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jm
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i }N
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i }N

m=1,m̸=n)
p(zn
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i }N
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i )p({zm

jm
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=E log

1 + p (zn
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(
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)
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(
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(
{zm
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)
p
(
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) |J n|E
p
(
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(
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(b)
=E log

1 +
p (zn

i ) p
(
{zm

i }Nm=1,m̸=n

)
p
(
zn
i , {zm

i }Nm=1,m̸=n

) BN−1


≥ (N − 1) log(B)− E log

 p
(
zn
i , {zm

i }Nm=1,m̸=n

)
p (zn

i ) p
(
{zm

i }Nm=1,m̸=n

)


(c)
=(N − 1) log(B)− I(zn

i ; {zm
i }Nm=1,m̸=n), (23)

where equality (a) results from (10). Equality (b) is obtained by using |J n| = BN−1. Inequal-
ity (c) results from the definition of I(zn

i ; {zm
i }Nm=1,m̸=n). Finally, inequality (4) is concluded by

rearranging the terms in (23).

F DISCUSSION ON THE MI RELATED TO Ln
MUSCLE(z

n
i ) AND Ln

PAIRWISE(z
n
i )

It is shown by Oord et al. (2019); Tian et al. (2020) that Ln,m
InfoNCE(z

n
i ) in (1) is related to the MI

I(zn
i ; z

m
i ) as follows:

I(zn
i ; z

m
i ) ≥ log(B)− ELn,m

InfoNCE(z
n
i ). (24)

Using (24), for Ln
Pairwise(z

n
i ), we have:

ELn
Pairwise(z

n
i ) =

∑
m∈[N ]\{n}

ELn,m
InfoNCE(z

n
i )

≥ (N − 1) log(B)−
∑

m∈[N ]\{n}

I(zn
i ; z

m
i ). (25)

By rearranging the terms in (25), we have the following inequality for the pairwise alignment:∑
m∈[N ]\{n}

I(zn
i ; z

m
i ) ≥ (N − 1) log(B)− ELn

Pairwise(z
n
i ). (26)

Based on inequality (26), minimizing Ln
Pairwise(z

n
i ) is equivalent to maximizing the MI∑

m∈[N ]\{n} I(z
n
i ; z

m
i ). This pairwise MI formulation lacks conditional MI. In other words, the

other representation vectors zm′

i , where m′ ∈ [N ] \ {m, n}, provide no additional information
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Figure 6: Venn diagrams illustrating the MI I(z1
i ;z

2
i ,z

3
i ) among three variables z1

i , z2
i , and z3

i . (a) In
general, I(z1

i ;z
2
i ,z

3
i ) = I(z1

i ;z
2
i ) + I(z1

i ;z
3
i |z2

i ). Since z1
i , z2

i , and z3
i are not independent of one

another, I(z1
i ;z

2
i ,z

3
i ) does not equal I(z1

i ;z
2
i ) + I(z1

i ;z
3
i ). (b) A special case where I(z1

i ;z
2
i ,z

3
i ) =

I(z1
i ;z

2
i ) + I(z1

i ;z
3
i ). However, this case cannot occur because z1

i , z2
i , and z3

i are positives originating
from the same data sample xi. Since our proposed Muscle loss function is related to I(z1

i ;z
2
i ,z

3
i ), it more

effectively captures dependencies between the representation vectors.

about the pair (zn
i , z

m
i ). However, we know that all the positives zn

i , n ∈ [N ], originate from the
same data sample xi ∈ D, and thus, they should share some joint dependencies. This MI perspective
further confirms that pairwise alignment approaches cannot fully capture the dependencies among
the representation vectors in multi-model scenarios.

On the other hand, as shown in Theorem 1, minimizing our proposed Muscle loss func-
tion is equivalent to maximizing the MI I(zn

i ; {zm
i }Nm=1,m̸=n). Figure 6 illustrates that

I(zn
i ; {zm

i }Nm=1,m̸=n) and
∑

m∈[N ]\{n} I(z
n
i ; z

m
i ) are not generally equal. In particular, by

using the chain rule for MI (Thomas & Joy, 2006), we have: I(zn
i ; {zm

i }Nm=1,m̸=n) =∑N
m=1 I(z

n
i ; z

m
i | {zm′

i }m−1
m′=1,m′ ̸=n). The conditional MI in this formulation captures the depen-

dencies among all the representation vectors zn
i , n ∈ [N ], thereby facilitating more effective knowl-

edge transfer among them.

G DETAILS OF THE LOCAL TRAINING AND TEST DATASETS IN
EXPERIMENTS

We consider that users employ heterogeneous pre-trained FMs tailored to their respective tasks.
These pre-trained FMs can be fine-tuned for users’ specific tasks, allowing the size of local datasets
to remain small. Additionally, we assign different local dataset sizes to users based on the complexity
of their tasks. Specifically:

• Each user performing the IC10 task has 50 training samples and 4000 test samples.
• Each user performing the IC100 task has 100 training samples and 2000 test samples.
• Each user performing the MLC task has 200 training samples and 1000 test samples.
• Each user performing the SS task has 1000 training samples and 3000 test samples.
• Each user performing the TC task has 100 training samples and 5000 test samples.

The data samples are uniformly divided across users with the same task.

H DETAILS OF THE SELECTED MODELS AND ASSIGNED TASKS FOR USERS

In Setup1, we consider six users and assign their tasks and FMs as follows:

• Users 1, 2, and 3 perform the MLC task using ViT-Base, ViT-Small, and ViT-Large, re-
spectively.

• Users 4 and 5 perform the IC100 task using ViT-Base and ViT-Small, respectively.
• User 6 performs the IC10 task using ViT-Tiny.
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In Setup2, in addition to the six users from Setup1, we consider four more users with the following
tasks and FMs:

• Users 7 and 8 perform the SS task using SegFormer-B0 and SegFormer-B1, respectively.
• Users 9 and 10 perform the TC task using BERT-Base and DistilBERT-Base, respectively.

For users performing the MLC, IC100, and IC10 tasks, we use two linear layers with a rectified
linear unit (ReLU) in between as the task-specific prediction head. For users performing the SS
task, we use the multi-layer perceptron (MLP) decoder proposed by Xie et al. (2021) as their task-
specific prediction head. For users performing the TC task, we use a linear layer as the task-specific
prediction head.

I IMPACT OF MUSCLE LOSS FUNCTION IN FEDMUSCLE

Table 4: Performance of FedMuscle in Setup1 using our proposed Muscle loss function compared to the
Gramian-based contrastive loss and pairwise alignment.

Public
Dataset

User
# Model Task Eval.

Metric
FedMuscle Local

TrainingMuscle Loss (Ours) Gramian-based Loss Pairwise Alignment

Pa
sc

al
V

O
C

1 ViT-Base MLC micro-F1 46.33± 0.12 48.10± 0.45 41.90± 0.08 42.17± 0.24

2 ViT-Small MLC micro-F1 49.77± 0.29 49.43± 0.33 48.07± 0.33 43.67± 0.59

3 ViT-Large MLC micro-F1 49.40± 0.50 49.07± 0.42 44.57± 0.49 42.93± 0.41

4 ViT-Base IC100 Accuracy 36.67± 0.34 34.83± 0.87 33.53± 0.17 24.77± 0.42

5 ViT-Small IC100 Accuracy 29.93± 0.54 29.43± 0.40 28.20± 0.36 24.70± 0.36

6 ViT-Tiny IC10 Accuracy 66.57± 1.01 62.47± 1.80 61.83± 0.98 43.77± 0.62

∆ (%) ↑ +26.70 +24.01 +17.34 0.00

C
O

C
O

1 ViT-Base MLC micro-F1 49.10± 0.45 48.17± 1.11 42.27± 0.33 42.17± 0.24

2 ViT-Small MLC micro-F1 51.30± 0.22 49.57± 0.59 48.53± 0.54 43.67± 0.59

3 ViT-Large MLC micro-F1 50.60± 0.36 49.67± 0.05 44.67± 0.12 42.93± 0.41

4 ViT-Base IC100 Accuracy 37.27± 0.78 35.20± 0.16 35.13± 0.31 24.77± 0.42

5 ViT-Small IC100 Accuracy 30.93± 0.12 29.30± 1.65 29.20± 0.57 24.70± 0.36

6 ViT-Tiny IC10 Accuracy 63.23± 0.58 56.77± 1.23 61.10± 1.91 43.77± 0.62

∆ (%) ↑ +28.65 +22.31 +19.18 0.00

C
IF

A
R

-1
00

1 ViT-Base MLC micro-F1 42.33± 0.05 44.13± 0.79 41.20± 0.22 42.17± 0.24

2 ViT-Small MLC micro-F1 46.50± 0.14 45.80± 0.73 46.03± 0.33 43.67± 0.59

3 ViT-Large MLC micro-F1 45.63± 0.68 46.53± 0.33 43.47± 0.26 42.93± 0.41

4 ViT-Base IC100 Accuracy 33.43± 0.21 31.70± 0.54 31.20± 0.45 24.77± 0.42

5 ViT-Small IC100 Accuracy 29.60± 0.71 28.47± 0.66 25.60± 1.23 24.70± 0.36

6 ViT-Tiny IC10 Accuracy 58.37± 0.57 56.90± 2.57 56.43± 0.78 43.77± 0.62

∆ (%) ↑ +16.88 +15.19 +10.48 0.00

J FEATURES OFFERED BY THE MUSCLE LOSS

In this section, we provide a detailed discussion of the features offered by our proposed Muscle loss
that are not available in the recently proposed Gramian-based contrastive loss by Cicchetti et al.
(2025).

• Theoretical foundation: Our proposed Muscle loss is derived from a strong theoretical
analysis, whereas the Gramian-based contrastive loss, though effective, is based on intu-
ition and lacks theoretical justification.

• Consistency with InfoNCE: For two modalities or models, the Muscle loss reduces to the
standard InfoNCE loss, demonstrating that it is a well-structured extension. In contrast, the
Gramian-based contrastive loss is not equivalent to the InfoNCE loss in the two-modality
(or two-model) case.

• Well-definedness: The Gramian-based contrastive loss is defined as follows (Cicchetti
et al., 2025): Ln

Gramian(z
n
i ) = − log

exp(−Vol(zn
i , z1

i , ..., z
n−1
i ,zn+1

i , ..., zN
i )/τ)∑K

j=1 exp(−Vol(zn
i , z1

j , ..., z
n−1
j ,zn+1

j , ..., zN
j )/τ)

, where Vol

denotes the volume of the N -dimensional parallelotope determined by the determinant of
the Gramian matrix. However, in the case of N > d, the determinant of the Gramian matrix
is zero. Although this condition may not hold in most realistic scenarios, it shows that the
Gramian-based contrastive loss is not a well-structured extension for multi-model settings.
The Muscle loss does not have such limitations and remains well-defined regardless of the
relationship between N and d.

• Insights into temperature parameters: Our proposed Muscle loss provides new insights
into the temperature parameters. Based on the analysis provided in Appendix C, we know,
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for example, that for three models, the temperature parameters for each pair should be
larger than those used for the same pair in a two-model setting.

• Control on negative transfer: Some tasks or modalities may be more semantically related
to each other than others. Low semantic relevance can lead to negative transfer and degrade
performance. The temperature parameters τ

(N)
n,m, defined between each pair of models in

the Muscle loss, provide a flexible and principled mechanism to mitigate negative transfer
among tasks with low semantic relevance. This is because semantically closer tasks or
modalities can benefit from stronger alignment (lower temperature), while semantically
distant ones require softer alignment (higher temperature). In contrast, the Gramian-based
contrastive loss uses a single temperature parameter τ and lacks a mechanism to mitigate
negative transfer among tasks or modalities with low relevance.

• Modularity and integration: The structure of the Muscle loss enables modular integration
into FL settings. As demonstrated in Section 5, when using the Muscle loss, each user
transmits only its representation matrices and offloads to the server the part of the loss
computation that depends on the representation matrices of other users. The Gramian-
based contrastive loss, however, lacks such modularity, resulting in higher computational
costs for users.

K INTEGRATION OF MUSCLE LOSS INTO CREAMFL

In the CreamFL (Yu et al., 2023) setup, the local models used by the users are as follows:

• ResNet-18 (He et al., 2016) is used by the uni-modal image users.

• GRU (Chung et al., 2014) is used by the uni-modal text users.

• ResNet-18 and GRU serve as the image and text encoders, respectively, for the multi-modal
users.

The global model at the server is designed to be larger than those used by the users. In particular,
the server employs ResNet-101 and BERT as the image and text encoders, respectively. All models
are trained from scratch. In CreamFL, only the representations of the public data obtained from the
models are communicated between the users and the server. Specifically, the server generates global
image and text representations using the global model and sends them to the users.

Each user first trains its local model using its local dataset and then applies a local contrastive
regularization method. In this step, each user employs CL with the InfoNCE loss to align the repre-
sentations of the public data generated by its own model (e.g., local image representations) with the
global representations of the other modality (e.g., global text representations). Additionally, each
user aims to make the representations obtained from its own model for a given modality (e.g., im-
age) similar to the global representations of the same modality. To this end, each user employs a
loss function similar to the one proposed in MOON (Li et al., 2021a). Then, each user obtains the
representations of the public data from its model and sends them to the server.

The server first trains the global model using the public dataset and then applies a global-local
contrastive aggregation method. In this step, for each modality, the server assigns a score to the local
representations received from the users and aggregates them based on these scores. To compute the
score for each local representation, the server calculates the InfoNCE loss for that representation as
the anchor, using the global representations of the other modality as positives and negatives. Then,
for each modality, the server minimizes the ℓ2 distance between the global representations and the
aggregated local representations.

The local contrastive regularization and global-local contrastive aggregation methods in CreamFL
are heuristic approaches. For example, extending these methods to support more than two modalities
would be challenging. We replace these heuristic approaches with our proposed Muscle loss, which
can systematically capture dependencies among representations across any number of modalities.
On the user side, we replace local contrastive regularization with minimization of the Muscle loss
to align the local representations of each modality (e.g., image) with the global representations
of all modalities (e.g., image and text). On the server side, we replace global-local contrastive
aggregation with the Muscle loss to align the global representations of each modality with all local
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representations received from the users. For this experiment, we used the code provided by the
CreamFL paper (Yu et al., 2023) and retained all of their original hyperparameters.

L EFFECT OF LOCAL EPOCHS, COMMUNICATION ROUNDS, AND CL EPOCHS

Table 5: Performance of FedMuscle under different numbers of local epochs E, communication rounds R, and
CL epochs T . The product of local epochs and communication rounds is fixed at 150 (i.e., E×R = 150). The
public dataset is derived from COCO.

User
# Model Task Eval.

Metric

FedMuscle Local
TrainingR = 1 R = 10 R = 25

T = 1 T = 3 T = 5 T = 1 T = 3 T = 5 T = 1 T = 3 T = 5

1 ViT-Base MLC micro-F1 43.73± 0.45 44.13± 0.41 48.90± 0.14 47.33± 0.21 48.60± 0.50 44.20± 0.45 49.03± 0.33 49.27± 0.17 49.47± 0.12 42.17± 0.24

2 ViT-Small MLC micro-F1 45.30± 0.57 46.63± 0.60 46.77± 0.69 50.53± 0.45 51.23± 0.46 51.07± 0.19 51.17± 0.21 51.93± 0.21 51.23± 0.26 43.67± 0.59

3 ViT-Large MLC micro-F1 44.00± 0.70 44.23± 0.68 45.30± 0.50 49.37± 0.09 50.33± 0.34 50.70± 0.41 51.40± 0.43 51.57± 0.12 51.97± 0.31 42.93± 0.41

4 ViT-Base IC100 Accuracy 23.83± 0.17 25.07± 0.53 26.57± 0.92 31.87± 0.48 34.60± 0.28 35.13± 0.66 34.40± 0.16 36.37± 0.12 37.10± 0.22 24.77± 0.42

5 ViT-Small IC100 Accuracy 26.70± 0.83 27.77± 0.82 29.50± 1.02 31.73± 0.68 30.37± 0.54 30.17± 0.83 31.40± 0.28 30.60± 0.65 30.27± 0.90 24.70± 0.36

6 ViT-Tiny IC10 Accuracy 52.53± 2.12 58.20± 1.21 58.10± 1.88 66.60± 0.93 65.60± 0.59 65.13± 0.69 67.53± 0.05 65.07± 0.48 64.07± 1.02 43.77± 0.62

∆ (%) ↑ +5.71 +10.18 +12.81 +25.37 +27.05 +27.3 +28.91 +29.21 +29.06 0.00

M IMPACT OF THE NUMBER OF RANDOMLY SELECTED REPRESENTATION
MATRICES M

We present an ablation study on the number of selected representation matrices M in Table 6. The
results are obtained under Setup1, using Pascal VOC as the public dataset. As shown in the table,
increasing M improves overall performance in terms of ∆, but also increases the communication
cost per round. Notably, the performance gains from increasing M beyond 3 (e.g., from 3 to 4
or 5) are marginal. Therefore, we adopt M = 3 with random user selection in our experiments
in Section 6, as this offers a balanced trade-off between performance and communication overhead.
We also find that random selection provides sufficient diversity across rounds to facilitate knowledge
transfer among all tasks.

Table 6: Performance of FedMuscle under different number of selected representation matrices M . The public
dataset is derived from Pascal VOC.

M 1 2 3 4 5
∆ +17.90 +24.17 +26.70 +27.53 +27.74

Communication Cost per Round (GB) 0.004 0.050 0.956 19.080 381.565

N IMPACT OF THE OUTPUT DIMENSION OF THE REPRESENTATION MODELS

We investigate whether tuning the output dimension of the representation models (i.e., d) as a hy-
perparameter can further improve the performance of FedMuscle. Note that a higher d results in
increased communication costs. The results in Figure 7 show that the performance remains nearly
constant regardless of the chosen output dimension. These findings are consistent with the results
presented by Chen et al. (2020) and Yu et al. (2023).

O DISCUSSION ON POSSIBLE FUTURE WORK DIRECTIONS

Multi-Modal Representation Learning Although most existing self-supervised learning ap-
proaches have focused on single-modality inputs (e.g., images), performance can be enhanced by
capturing the complementary information available across multiple modalities (Sükei et al., 2024).
For example, in (Radford et al., 2021), image captions are considered as an additional modality and
CLIP is proposed to learn a multi-modal representation space by jointly training a text and an image
encoder. For two modalities, typical CL loss functions, such as InfoNCE, can be used. Multi-modal
representation learning using image, text, and 3D point cloud modalities has recently been studied
in (Xue et al., 2024). However, they used the pairwise alignment approach, which cannot fully cap-
ture dependencies among the modalities. For more than two modalities, a systematic approach to
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Figure 7: Impact of the output dimension of the representation models on FedMuscle’s performance. We set
E = 150, R = 1, and T = 5. The public dataset is derived from COCO.

learning a multi-modal representation space that effectively captures dependencies among modal-
ities is still needed. Recently, Cicchetti et al. (2025) proposed a Gramian-based contrastive loss.
Although their approach is effective and intuitive, it lacks theoretical justification and provides no
mechanism to address negative transfer among modalities with low semantic relevance. While our
primary motivation for deriving the Muscle loss function in (3) was to learn a shared representation
space across users’ models in FMTL, we believe that the Muscle loss can also enhance performance
in multi-modal representation learning. In particular, we can define positives and negatives based
on the available modalities and then effectively capture the dependencies among them using our
proposed Muscle loss function.

Performance Metric for Federated Multi-Task Learning Users in an FMTL setting have differ-
ent tasks with distinct performance metrics. Obtaining an overall performance metric across users
is challenging due to task heterogeneity. In our experiments, we followed existing works (Lu et al.,
2024; Maninis et al., 2019) and used the average per-user performance improvement relative to the
local training baseline (i.e., ∆) as the overall performance metric. However, we believe that this
metric cannot fully capture the overall performance of an algorithm. This is because a specific al-
gorithm may enhance the performance of only one user and degrade the performance of all other
users, yet ∆ may still be positive. For this reason, we presented detailed performance metrics for all
users in our experiments. Developing a more informative overall performance evaluation metric for
federated multi-task learning could be a valuable future research direction.

Selection of Representation Matrices in FedMuscle In Algorithm 1, we randomly select M
representation matrices from other users to compute the aggregated matrix and the weighting coeffi-
cient vector for each user. Replacing this random selection with a systematic approach that provides
more relevant knowledge based on each user’s task and those of other users would be an interesting
direction for future research.

P LIMITATIONS

• FedMuscle relies on a public dataset. Legal and copyright issues related to the public
data should be carefully considered in real-world applications. Similar to typical feder-
ated learning algorithms, where users adhere to the global model architecture and training
guidelines imposed by the server, in FedMuscle, users should also adhere to the public
dataset provided by the server.

• FedMuscle utilizes the Muscle loss on the representations from users’ models. Since users
have heterogeneous models and diverse tasks, it is important to identify which part of each
model should serve as the representation model and which part should function as the
task-specific prediction head. This distinction allows users to generate representations that
are meaningful and suitable for CL, facilitating the alignment of representations across
different users’ models.

• We considered multiple CV and NLP tasks in our experimental setup and provided a com-
parison with multi-modal federated learning algorithms based on their experimental set-
tings. However, we believe that the experimental setup can be further expanded by in-

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

corporating more challenging tasks. We will continue to explore this direction in future
work.

Q THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to edit the paper, including grammar, spelling, and word choice. Thus, LLMs did
not play a significant role in the research ideation or writing of this paper.
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